
�������	
�������������������

��������������

��������	��

����������������������������

���������������� ���

!"#�$%&'(�)

!�	�##)#*+)$�,�"�"-

."/0"1�,)2)	3�$)1

����������������		

��������������������
����

��
��
��������������������������

������������

�� !!""##$$

Abstract

The goal of this thesis is to enhance efficiency of using parallel execution in

web service environments. To this end, we focus on parallel execution poli-

cies of web services to design a policy-aware parallel execution control ar-

chitecture for composite services. Service-oriented architecture (SOA) has

been a widely accepted and engaged paradigm for the realization of busi-

ness processes that incorporate several distributed, loosely coupled partner-

s. It allows users to combine existing atomic services to define composite

services that meet users’ requirements. With the expansion of SOA, the

academic world and industry have started to adopt Web service and SOA

to build applications. One example is natural language processing area;

many language resources have been provided as language services. Some

problems in language processing such as translation or morphological anal-

ysis of a large document often require long processing time. This type of

service is related to the concept of data-intensive service. To reduce the

processing time, efficient parallel and concurrent technology are promising

approaches. Parallel execution is well studied in high performance com-

puting (HPC) area, where people own computing resources and their tasks’

implementation. Many existing parallel execution models introduce several

i

factors that cause performance limitation of parallel execution such as serial

porting in the task, parallel overhead and balancing issues. These models

help task providers analyze their programs and adjust the implementation or

computing resources accordingly to improve parallel execution of the tasks.

However, in SOA, service users do not own services. If there is a parallel ex-

ecution limitation of a service, service users have no way to know the exact

reasons causing the limitation. They may regard the limitation as a parallel

execution policy of the service. Modeling parallel execution effects of we-

b service as a policy model and considering policy of each atomic service

to predict optimal parallelism for a composite service have not been con-

sidered in existing researches. Parallel execution policies of services affect

performance improvement of composite service, which is a combination of

the different services. To attain optimal performance improvement, users

need to configure an optimal degree of parallelism (DOP) for the composite

service regarding different policies of atomic services.

Therefore, in this thesis, we present following contributions toward the de-

sign of a policy-aware parallel execution control architecture for composite

services:

1. Modeling parallel execution policies of web services:

We propose a model to capture performance improvement behaviors

of web services under parallel execution from the view of service

users. The model need to correctly capture the parallel execution poli-

cies and need to be simple to be used in calculating performance of

composite services. To define the model, first we analyze and observe

performance improvement patterns of many web services when us-

ing parallel execution. From the observed performance improvement

ii

patterns, we define a linear model to capture these patterns. Three

types of policies are defined: Slow-down policy, restriction policy and

penalty policy. We evaluate our proposed model by comparing with

other regression model, the evaluation results show that our model

accurately captures parallel execution policies of web services.

2. Predicting parallel execution performance of composite services:

We propose a prediction model to predict parallel execution perfor-

mance of composite services regarding different parallel execution

policies of atomic services. The model embeds policy model to de-

fine different formula, calculating performance of composite services,

for different workflow structures of the composite services. Four

workflow structures are considered in the proposed model: Sequential

structure, parallel structure, conditional structure and loop structure.

Evaluation is conducted on real-world translation web services, the

results show that our proposed prediction model has good prediction

accuracy with regard to identifying optimal degree of parallelism of

composite services.

3. Controlling parallel execution of composite services:

Using the proposed prediction model we design an architecture for

controlling parallel execution of composite services. This architecture

can serve as a middleware for SOA platforms to support and control

parallel execution of workflows. Typically, we implement this archi-

tecture as an extension of the Language Grid platform. When user

invoking a composite service, the architecture able to analyze parallel

execution policies of atomic services from binding information, it pre-

iii

dicts the optimal DOP for the composite service. Then, it creates an

optimal parallel execution deployment for the composite service. We

extend the existing workflow execution engine to interprets parallel

execution deployment and execute the composite service. In multiple

users environment, the architecture can detect the multiple usage of an

atomic service in different workflows. If these workflows are invoked

in parallel, using prediction model, the architecture allocates a suit-

able parallel processes for each workflow in order to attain optimal

reduction of execution time for all workflows.

iv

Acknowledgements

First and foremost I would like to express my deepest gratitude to my su-

pervisor, Professor Toru Ishida, who has been a tremendous mentor for me.

None of the work in this thesis could have been carried out without his con-

tinuous guidance, valuable advice, fruitful discussions, and heartwarming

encouragements. I would like to thank professor for encouraging my re-

search and for allowing me to grow as a research scientist. His advice on

both research as well as on my future career is priceless.

I also owe my sincere gratitude to my adviser committee members,

Professor Masatoshi Yoshikawa, and Professor Yasuo Okabe for serving

as advisers to keep monitoring my research progress and providing useful

comments and suggestions.

I would especially like to thank Associate Professor Yohei Murakami

for his valuable advices and close support to my research. I have been very

appreciated by his so much effort in guiding my research.

I would like to show my gratitude to all faculty members of Ishida and

Matsubara Laboratory, Associate Professor Shigeo Matsubara for his kind

support, Assistant Professor Donghui Lin for fruitful discussion for my pa-

pers, Takao Nakaguchi for his advices in implementing technical parts of

v

my PhD work, and Masayuki Otani for his useful advice for my presenta-

tions at lab seminars. I also greatly appreciate the laboratory coordinators,

Ms. Terumi Kosugi, Ms. Hiroko Yamaguchi, and Ms. Yoko Kubota for

their help in administrative affairs.

Special thanks also go to all my lab mates: Ari Hautasaari, Andrew

W. Vargo, Huan Jiang, Chunqi Shi, Mairidan Wushouer, Amit Pariyar, Ke-

mas Muslim Lhaksmana, Xin Zhou, Shinsuke Goto, Hiroaki Kingetsu, Xun

Cao, Wenya Wu, Nguyen Cao Hong Ngoc, Arbi Haza Nasution, Mondheer-

a Pituxcoosuvarn, Victoria Abou Khalil, Shohei Hida, Akihiko Itoh, Hi-

romichi Cho, Kaori Kita, Daisuke Kitagawa, Jun Matsuno and many others.

I am happy for being a part of this wonderful lab with wonderful people.

This thesis is presented to my beloved wife Dang Thi Thanh Nga who

spent a lot efforts for being a good partner of me in my daily life and was

always my support in the moments when there was no one else can help, my

two beloved daughters Mai Bao Ngan and Mai Bao Tran for their charming

smiles and refreshing hugs. Words cannot express how grateful I am to my

parents, Mai Xuan Hung and Trinh Thi Thuc for all of the scarifies that they

have made on my behalf. Many thanks to other family member for their

support and encouragement. I am also thankful to my friends in here Kyoto

especially members of KYOTO RONG HOUSE who helped me to make

my stay in Kyoto a very pleasant one.

My stay in Kyoto University was supported by JICA under SEED-Net

scholarship from October 2012 to September 2015. This research was par-

tially supported by Service Science, Solutions and Foundation Integrated

Research Program from JST RISTEX, and a Grant-in-Aid for Scientific Re-

search (S) (24220002) from Japan Society for the Promotion of Science.

vi

Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Overview . 1

1.2 Objectives . 4

1.3 Issues and Approaches . 5

1.4 Thesis Outline . 8

2 Background 11

2.1 Service-Based Application 11

2.1.1 Web Service . 14

2.1.2 Web Service Composition 16

2.2 Parallel Execution in Service Workflow Environments 19

2.2.1 Workflow Management Systems 19

2.2.2 Parallel Execution of Workflows 20

3 Modeling Parallel Execution Policies of Web Services 24

3.1 Introduction . 24

vii

3.2 Motivation Example . 26

3.3 Parallel Execution of a Web Service 27

3.4 Testing Methodology . 29

3.4.1 Experiment Implementation 30

3.4.2 Performance Improvement Patterns 31

3.5 Parallel Execution Policy Model 33

3.6 Evaluation . 38

3.7 Conclusion . 40

4 Predicting Parallel Execution Performance of Composite Ser-

vices 42

4.1 Introduction . 42

4.2 Predicting Parallel Execution Performance of Composite

Services . 45

4.2.1 Composite Service Performance 45

4.2.2 Parallel Execution of a Composite Service 47

4.2.3 Performance Prediction of Different Workflow

Structures . 48

4.2.4 Performance Prediction of Complex Cases 56

4.2.5 Determining Optimal DOP of a Composite Service . 61

4.3 Evaluation . 63

4.3.1 Simple Workflows 63

4.3.2 Complex Workflow 70

4.4 Conclusion . 74

5 Implementation of Policy-Aware Parallel Execution Control Ar-

chitecture 75

viii

5.1 Introduction . 75

5.2 Design Goal . 77

5.2.1 Scenario . 77

5.2.2 Architecture Overview 80

5.3 Parallel Execution Support for Workflow Execution Engine . 83

5.3.1 Mapping Service Interface Invocation and Stand-off

Annotation . 83

5.3.2 Adapting Pipeline Engine as Service Workflow Ex-

ecution Engine . 86

5.4 Parallel Execution Control 87

5.4.1 Service Usage Monitor 87

5.4.2 Parallel Execution Configurator 87

5.5 Experiment . 90

5.6 Conclusion . 94

6 Conclusion 96

6.1 Contributions . 96

6.2 Future Direction . 99

Publications 101

Bibliography 103

ix

List of Tables

3.1 Comparison of the proposed model with regression models . 39

4.1 Execution time aggregate functions 47

4.2 Prediction accuracy evaluation 72

5.1 Summary of experiment results 94

x

List of Figures

1.1 Overview of solutions for the policy-aware parallel execu-

tion control architecture . 7

2.1 Service-Based Application 12

2.2 Web Service Architecture 15

2.3 Hierarchy of Composite Services 16

2.4 Workflow Orchestration . 17

2.5 Parallelism of workflow . 21

3.1 Ideal and actual speed-up cases 26

3.2 Parallel execution of a web service 27

3.3 Different speed-up behaviors 28

3.4 Implementation concept of the test system 30

3.5 Web services with slow-down and restriction patterns 32

3.6 Web services with slow-down and penalty patterns 32

3.7 Performance patterns for parallel execution policies 35

3.8 Combination of policies . 37

3.9 Evaluating policy model of different services 38

4.1 A simple composite service 43

xi

4.2 Different policies of J-Server and Google translation services 44

4.3 Four types of composite structures 46

4.4 Pipeline processing time-line of a composite service 48

4.5 Processing time-line of sequential structure 49

4.6 Processing time-line of parallel structure 52

4.7 Processing time-line of conditional structure 54

4.8 Processing time-line of loop structure 56

4.9 Combination of policies . 57

4.10 Parallel structure reduction 59

4.11 Conditional structure reduction 59

4.12 Loop structure reduction 60

4.13 Reduction of a complex workflow 61

4.14 Evaluating sequential structure 65

4.15 Evaluating parallel structure 66

4.16 Evaluating conditional structure 68

4.17 Evaluating loop structure 69

4.18 Evaluating a complex composite service 70

5.1 A composite service for two-hop translation 78

5.2 A more complex two-hop translation service 80

5.3 Policy-Aware Parallel Execution Control Architecture 81

5.4 Policy-Aware Parallel Execution Control for Language Grid 82

5.5 Service workflow and processing pipeline 84

5.6 CDEF structure in UIMA 85

5.7 Wrappers . 86

5.8 Example of a parallel execution deployment 88

xii

Chapter 1

Introduction

1.1 Overview

Recent years have seen an emergence of service-oriented applications,

where applications are created using existing services. Web service be-

comes a major trend in both academic and industry for loosely couple

service-oriented architecture (SOA) and interoperable solutions across het-

erogeneous platforms and systems. SOA has been a widely accepted and

engaged paradigm for the realization of business processes that incorporate

several distributed, loosely coupled partners. It allows users to combine ex-

isting services to define composite services that meet users’ requirements.

With the expansion of SOA, the academic world and industry have start-

ed to adopt Web service and SOA to build applications. As in the natural

language processing area, many language resources (e.g. machine trans-

lator, morphological analysis) have been provided as language services in

1

service-oriented frameworks such as the Language Grid [Ishida, 2011] and

PANACEA [Bel, 2010]. With the increasing volume of data to be analysed,

one of the challenges in SOA is to make web service efficient in processing

large-scale data. Data-parallel tasks is often used when a service process

large amounts of data. One typical example of web services that use data-

parallel task is translation task of a large data set. The input data set is split

into independent partitions and multiple partitions will be translated by a

translation service in parallel. This type of parallel execution would helps

to decrease the overall execution time of the translation task. This thesis

focuses on enhancing processing efficiency of data parallelism for language

services such as translation services.

In high performance computing (HPC) area, there are some existing parallel

execution performance models introducing factors that cause performance

limitation of parallel execution. Most of models were defined from the view

of tasks’ providers who own the tasks and computing resources. These fac-

tors are mostly controlled and can be adjusted by the task providers to gain

better parallel execution efficiency, such as serial portions in the task as

pointed out in Amdahl’s law [Amdahl, 1967, Sun and Chen, 2010], parallel

overhead [Martin et al., 1997] and balancing issues. In SOA, due to some

reasons, service providers may have some decisions to control parallel ex-

ecution of their provided services. For example, if a provider is rich in

computing resources, he/she may ready to accept large numbers of con-

current requests, if the provider have a limit computing resources or due

to some security concerns he/she may control the number of concurrent re-

quests that their provided services can served. However, service users do not

own the services, nor they can control the services’ execution or computing

2

resource, they have no way to know the exact reasons that cause the parallel

execution limitation of the web services. Service users only observe perfor-

mance improvement patterns of the services. In this thesis, from the point

of view of service users, we regard the performance improvement pattern-

s as policies of service providers. Some providers may explicitly describe

policies for their provided services, for example Google describe policies

about per-user limit on their website1. Different from HPC or parallel com-

puting areas, in SOA, service users do not own services, provided by other

providers, they cannot change the services’ implementation or providers’

computing resource to have better parallel execution. In order to use par-

allel execution efficiently, users need to adapt their invocation according to

the services’ behaviors (we defined as services’ policies in this thesis).

Composing and optimizing composite services, or workflows of atomic ser-

vices, has gained increasing attention in SOA. Technologies such as data-

intensive and many-task computing [Raicu et al., 2012, Humbetov, 2012],

and scientific workflows [Taylor et al., 2014] have the potential to en-

able rapid data analysis for workflow. Many studies have pro-

posed parallel and pipelined execution techniques to speed-up workflows

[Pautasso and Alonso, 2006], and adaptive parallel execution approach for

workflows in cloud environments regarding the availability of resources

[Oliveira et al., 2012]. There are also many methodologies that focus on

creating composite services which can attain the optimal Quality of Ser-

vice (QoS) based on linear integer programming [Cardoso et al., 2004,

Zeng et al., 2004] or Genetic Algorithms (GAs) [Canfora et al., 2008].

Most of the existing researches do not deal with the parallel execution tech-

1Google per-user limit policy:https://developers.google.com/analytics/devguides/

reporting/core/v3/limits-quotas

3

nology in web service composition. Neither do they consider how the par-

allel execution policy of each atomic service affects the efficiency of the

execution of the composite service.

1.2 Objectives

The objectives of this thesis is to design a policy-aware parallel execution

control architecture for composite services. The target is to enhancing pro-

cessing efficiency of data-parallelism for language services such as transla-

tion services. Since web services are provided by different providers with

different policies, the system needs to analyze parallel execution policies

of atomic services that form a composite service. Based on these policies

and control structure of the composite service, the system predicts perfor-

mance and determines the optimal parallelism for the composite service.

The system will maintain the parallel execution of composite services in or-

der to attain optimal performance improvement. There are two motivations

to achieve these goals:

1. Help service users to have better data-parallelism (parallel execution)

when invoking web services. Parallel execution policies of web ser-

vices are normally not described explicitly by service providers, ser-

vice users can only observe performance improvement patterns of we-

b services when using parallel execution. However, there is no exist-

ing work on modelling these patterns. In this thesis, we first focus on

modeling the performance improvement patterns as parallel execu-

tion policies of web services. The model (hereafter called the ”policy

4

model”) should correctly capture parallel execution effects of atomic

services, and should be simple to be used in predicting performance

of composite services. The policy model is useful for service users to

understand parallel execution policies of web services. This enables

users to adapt parallel invocations of a web service to the service pol-

icy in order to attain the optimal speed-up.

2. Help SOA platforms to support better parallel execution for composite

services (workflows) considering policies of all atomic services. We

propose a prediction model that embeds parallel execution policies

of all atomic services that compose a composite service to calculate

parallel execution performance of the composite service. From the

calculation, the optimal degree of parallelism (DOP) of the composite

service, where it attains optimal performance improvement, is deter-

mined. Using the proposed model, a parallel execution control archi-

tecture is design as a middle-ware to help SOA platforms to maintain

optimal parallel execution of composite service.

1.3 Issues and Approaches

In designing and implementing the policy-aware parallel execution control

architecture for composite services we listed three approaches to deal with

following issues.

1. Modeling parallel execution policies of atomic services. There are

many factors that can have effects to parallel execution performance

improvement of web services. The limitation of parallel execution

5

may because of limitation of computing resources, limitation of the

service’s implementation, or decision of service providers. Howev-

er, service users do not have clear information about the reasons of

the limitation. Instead, they have a clear image about the perfor-

mance improvement pattern of the service. Users also only care about

this pattern in order to have suitable parallel execution of the service.

From observation of performance improvement patterns of different

services, we define a policy model to capture these performance im-

provement patterns of different atomic services. The word “policy”

here means how an atomic service reacts to parallel execution, it does

not necessary mean a policy employed by the service provider. The

policy model is designed to be simple in order to be used in predicting

performance of composite services latter on. It also needs to accurate-

ly capture the policy patterns.

2. Predicting performance of composite services. As a composite ser-

vice is created by combining different atomic services provided by

various providers. Parallel execution policies of different atomic ser-

vices may vary. A question arises : “which is the optimal degree

of parallelism for a composite service, where it attains optimal per-

formance improvement?”. We propose a model that uses the policy

model and characteristics of the composite service control structures

to form formulate for predicting the service’s performance. From the

prediction, we can have an idea which is the optimal value of the de-

gree of parallelism (or DOP).

3. Controlling parallel execution of composite services. After pre-

dicting performance of composite services, the system needs to con-

6

Modeling parallel execution
policies of atomic services

Predicting performance of
composite service

Controlling parallel execution
of composite service

1

2

3

Issues

Parallel execution policy model:
A model to capture policy patterns of

atomic services

Prediction model:
A model to predict performance of

composite service and estimate optimal
degree of parallelism

Parallel Execution Control Architecture:
Implement an architecture to control parallel

execution of workflows to attain optimal
performance improvement

Our solutions

Figure 1.1: Overview of solutions for the policy-aware parallel execution

control architecture

trol parallel execution of composite services for the optimal outcome

(minimize execution time). Since atomic services can be dynamically

bound to a composite service, the system needs to dynamically adjust

DOP of the composite service based on binding information. Further-

more, in multiple users environment, an atomic service can be used in

multiple composite services, if these composite services are invoked

in parallel, in order to maintain optimal outcome, the system allocates

suitable number of concurrent processes for each composite service

based on the atomic service’s policy.

As shown in Figure 1.1, to realize the policy-aware parallel execution con-

trol architecture, this research starts from proposing the policy model to

capture policy patterns of atomic services. Using the policy model we intro-

duce a model to predict performance of composite service and estimate the

optimal degree of parallelism of composite service. At the end, we focus on

dealing with implementation issues to implement the policy-aware architec-

7

ture that can control parallel execution of composite services to attain the

optimal execution time reduction.

1.4 Thesis Outline

This thesis consists of six chapters including Chapter 1. The content of each

of the remaining chapters are summarized as follows.

Chapter 2 describes the background of this thesis. This chapter begins with

a general introduction of service composition and quality of service (QoS),

and presents previous work on parallel execution of web services to im-

prove the services’ processing efficiency. In order to create an overview on

parallel execution in web service environments, this chapter classifies the

existing work into three groups according to the parallelization techniques

found in Workflow Management Systems (WfMSs): data parallelism, task

parallelism, and pipeline parallelism.

Chapter 3 depicts a way to model parallel execution policies of atomic ser-

vices. In an environment where service providers employ policies that arbi-

trarily limit parallel execution of their services, service users’ excess parallel

execution of the services decreases the processing efficiency of their whole

set of tasks. Therefore, the service users need to know the optimal degree

of parallelism in order to maximize the processing efficiency of the tasks

before invoking the services. To this end, by measuring the effects of the de-

gree of parallelism on processing efficiency of more than 50 services (here-

after atomic services), this chapter classifies the parallel execution policies

into three types: low acceleration policy that gradually decreases the de-

8

gree of speedup, steady policy that fixes the processing efficiency when the

degree of parallelism is beyond a certain amount, and penalty policy that

decreases the processing efficiency as the degree of parallelism increases.

Moreover, this chapter also details a way to capture parallel execution pro-

cessing efficiency of atomic services that employ a combination of different

policies. A series of experiments on 50 different atomic services shows that

the proposed model can estimate the processing efficiency of parallel exe-

cution with a lower standard error than the existing curve fitting with linear

and quartic regression.

Chapter 4 presents a way to predict the processing efficiency of composite

services with parallel execution. A composite service is a service where

a workflow orchestrates atomic services with different policies. In order

to maximize the processing efficiency of composite services with parallel

execution, service users need to optimize the degree of parallelism by con-

sidering policies of all atomic services. Therefore, this chapter introduces

data parallelism and pipeline parallelism to execute a workflow in parallel.

Processing time-line of the pipeline parallelism is used to define an aggre-

gation function to compute processing efficiency for each simple workflow

consisting of single control construct, such as a sequential construct, con-

current construct, conditional construct, and loop construct. This chapter

also proposes a method to synthesize the policies of atomic services in a

complex workflow consisting of an arbitrary combination of control con-

structs. Finally, this chapter evaluates accuracy of the proposed method in

predicting the optimal degree of parallelism of composite services. A series

of experiments on composite services combining several different transla-

tion services shows that the proposed method has good prediction accuracy

9

in identifying optimal degrees of parallelism for composite services. The

proposed method is helpful in designing architecture to control parallel ex-

ecution of composite services for improving processing efficiency.

Chapter 5 proposes a service platform architecture to control parallel exe-

cution of composite services based on parallel execution policies of atomic

services. Using the proposed method of predicting optimal degree of paral-

lelism of composite services, this chapter designs architecture for control-

ling parallel execution of composite services. The architecture first analyzes

parallel execution policies of atomic services that compose the composite

service. It then computes the optimal degree of parallelism of the composite

service. Finally, the architecture generates a parallel execution configuration

file that is interpreted by an extended workflow engine to control parallel

execution of the composite service. Furthermore, in order to efficiently pro-

cess multiple workflows that share the same atomic service, the architecture

re-calculates optimal degree of parallelism of each workflow by consider-

ing multiple requests from different workflows sent to the shared atomic

service. It then updates the parallel execution configuration files with the

new optimal degree of parallelism for the workflows at run-time. To verify

the effect of the architecture in maintaining optimal parallel execution effi-

ciency of workflows, the architecture is implemented in the Language Grid,

a service platform that is specialized in natural language processing. An ex-

periment is conducted on multiple language composite services; the results

show that the proposed architecture can significantly improve the processing

efficiency of parallel execution of composite services.

Finally, we conclude the thesis in Chapter 6 by summarizing the results

obtained through this research and addressing future works.

10

Chapter 2

Background

2.1 Service-Based Application

Over the recent years, the concept of Service-Oriented Computing (SOC)

has emerged in order to address the challenges posed by the increasing

complexity of heterogeneous software applications and the need of these

applications to be integrated within and across organisational boundaries.

SOC provides the theoretical foundations to address these challenges by

utilising services as fundamental building blocks for developing applica-

tions [Papazoglou, 2003]. A service is a reusable component that is loose-

coupled, well-defined, self-described and agnostic of any particular deploy-

ment platform and/or implementation technology.

The idea that providers can offer their applications’ functionalities or ser-

vices over the Web, and other consumers can use and compose these ser-

vices, has led to the emergence of a new architectural style, that is common-

11

Enterprise A
A Service-Based Application

Abstract Workflow

��� ��� ���

Instance (Service Composition)
Concrete Workflow

Discovery/Selection

�� �� ��

Web service ��

Service Provider 3Service Provider 1

Web service ��

Web service ��

Service Provider 2

Client

Figure 2.1: Service-Based Application

ly referred to as, Service-Oriented Architecture (SOA). With this architec-

ture, the development of a distributed application is performed by creating a

Service-Based Application (SBA). A Service-Based Application is a com-

position of independent services which perform the desired functionalities.

The running application is performed by dynamic binding to concrete ser-

vices. Concrete services could be provided by third parties, not necessarily

by the owner of the service based application.

Figure 2.1 illustrates an example of SBA. Enterprise A intends to develop

a service-based application in order to provide a certain functionality for

its clients. Firstly, an abstract workflow is defined by decomposing the ex-

pected functionality into a collection of interrelated tasks (or activities) that

function in a logical sequence to achieve the ultimate business goal. Such

an abstract workflow is not executable because it lacks binding references.

Therefore, the abstract workflow is required to be instantiated before the

12

execution can start. The instantiation of workflow aims to construct an exe-

cutable concrete workflow by mapping each task ASi to a specific service.

A concrete workflow presents a service composition which binds the execu-

tion of each abstract service ASi to a specific service Si. In this context, all

the services involved in a service composition are defined as constituent ser-

vices. As shown in Figure 2.1, al the constituent service can be developed

based on different technology, provided by different providers and running

on heterogeneous platforms.

The advent of cloud computing promotes such Software-as-a-Service

(SaaS) model. Service providers do not have uniform conditions, they may

provider services with different policies. Some provider may offer service

packages which allow unlimited invocations within a certain period, others

may not allow users to invoke their service with many concurrent process-

es. Such different policies are needed to be considered when constructing

a service-based application (composite service). Additionally, the SBA ex-

hibits the following characteristics:

• Distributed resources. The composition of services represents dis-

tributed computational resources, from both software level and hard-

ware level. SBA users will have no control over computational re-

sources and implementation of each service.

• Cross administration domain. Services can be developed and man-

aged by different organizations/enterprises (service providers). SBA

users need to follows policies of service providers.

Next, we introduce some basic concepts for service-oriented computing,

which are used in this thesis.

13

2.1.1 Web Service

Web service is the basic building block for developing SBA. It is a self-

describing, self-contained software module available via a network, such as

the Internet, which completes tasks, solves problems, or conducts transac-

tions on behalf of a user or application. Web services constitute a distributed

computer infrastructure, made up of many different interacting application

modules trying to communicate over private or public networks to virtually

form a single logical system.

A more precise definition is published by W3C1:

“A Web service is a software system designed to support inter-

operable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specif-

ically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP messages,

typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.”

From the above description, a web service provides an interface de-

fined in terms of XML messages and that can be accessed over the

Internet. It is an application that exposes a function which is acces-

sible using standard Web technologies and that adheres to Web ser-

vices standards, to name a few, Extensible Markup Language (XML)

[Bray et al., 1998] for presenting data, Simple Object Access Protocol

(SOAP) [Gudgin et al., 2003] for transmitting data, the Web Service De-

scription Language (WSDL) [Chinnici et al., 2007] for defining services in-

1W3C-the World Wide Web Consortium: http://www.w3.org/TR/ws-arch/

14

Service Registry

Service Requester Service Provider

1. Publish (WSDL)2. Find (UDDI)

3. Bind & Interact

SOAP/HTTP

Figure 2.2: Web Service Architecture

terfaces etc.

Web Service Architecture. Figure 2.2 shows the Web Service Architecture

which consists of three main parts: service provider, service requester and

service registry.

• A service provider implements web services and defines the web ser-

vices’ interfaces to publish to a service registry.

• A service requester invokes the required service from the service reg-

istry

• Service registry stores the published services in a repository form.

Quality of Service. The Quality of Service (QoS) reflects the non-

functional performance of a Web service. A QoS attribute indicates how

well a Web service performs in terms of a specific quality metrics. We list

some examples of QoS attributes as following. More detail of the QoS at-

tributes are described in [Al-Moayed and Hollunder, 2010].

• Time. The response time (execution time) reflects the expected dura-

tion for a service finish processing a task.

• Cost. The cost is the fee that a service requester has to pay in order to

15

Figure 2.3: Hierarchy of Composite Services

invoke a Web service.

• Availability. The availability reflects the probability that the Web

service is available.

Atomic Web Service and Composite Web Service. According to different

implementation, a service can be classified into two categories: an atomic

service or a composite service. The former represents an individual software

component which provides the expected functionality; whereas the latter

defines a service composition which aggregates a number of basic and fine-

grained services.

2.1.2 Web Service Composition

One of the key driving ideas in SOC is service composition, which is the

possibility to quickly crate new services and applications (composite ser-

vices) by combining the existing ones (component services). The need for

service composition arises when current existing services do not provide

the required functionality or when the coordinated execution of existing

services is needed in the context of some new business objective. Usual-

16

Enterprise A

Implement

Service Composition
�� �� ��

Web service ��

Service Provider 3Service Provider 1

Web service ��

Web service ��

Service Provider 2

Workflow description
(BPEL Process)

Workflow Engine/
WFMS

Execute

Figure 2.4: Workflow Orchestration

ly, the process of service composition is recursive, i.e., the newly created

composite service can consequently be used as component services in oth-

er compositions as shown in Figure 2.3. Web service composition can be

modelled as executable process using Web service composition languages

like BPEL [Andrews et al., 2003] and WSFL [Leymann et al., 2001] incor-

porating the concepts and mechanisms in the workflow community. There-

fore, the logic in a composite service can be captured using workflow pat-

terns [van Der Aalst et al., 2003]. The composite web service provider typ-

ically runs an orchestrator (Workflow engine/Workflow Management Sys-

tem(WFMS)) that invokes the aggregated services according to a predefined

workflow as shown in Figure 2.4. Since the workflow is defined based on u-

nambiguous functionality description of a service (“abstract service”), and

several alternatives (“concrete services”) may exist that match such a de-

scription [Preist, 2004], the workflow engine/WFMS need to able to find a

suitable concrete service.

17

QoS-Aware Service Composition. In order to select suitable concrete

services for an abstract composite service many approaches have been

proposed based on QoS. The stage of finding a optimal set of concrete

web services that satisfies several QoS constraints (e.g., minimising the

overall response time) is called QoS-aware service optimization. This

problem has been addressed by many studies from different angles. In

[Zeng et al., 2003], Zeng et al. focused on the runtime management of ser-

vice composition under dynamically changeing QoS environments, and the

optimizations were carried out to avoid global constraint violations at run-

time. Many works used constraint satisfaction problem (CSP) to form an op-

timal composite service. Guan et al. [Guan et al., 2006] proposed one of the

first framework for QoS-Aware service composition. Their framework mod-

elled the functional requirements as hard constraints and used constraint

hierarchies as a formalism for specifying QoS constraints. Hassine et al.

[Hassine et al., 2006] proposed approached using constraint optimization

problem formalism to determine the best executable workflow according to

predefined optimality criteria. Jaeger et al. [Jaeger et al., 2004] proposed an

approach for calculating the QoS of a composite service based on the well-

know workflow patterns proposed in [van Der Aalst et al., 2003]. Based on

this calculation, Yu et al. [Yu et al., 2007] proposed a set of algorithms for

Web service selection with end-to-end QoS constraints. An important stage

in QoS-Aware service composition is QoS computation, many studies have

introduced different factors in QoS computation. Bramantoro and Ishida

[Bramantoro and Ishida, 2009] introduced a method to include user prefer-

ences and skill into QoS metrics. Goto et al. [Goto et al., 2011] proposed

an idea to use reputation as an QoS factor to select services for a compos-

ite. To deal will context-aware QoS, where the QoS of service may vary in

18

different context, Lin et al. [Lin et al., 2012] proposed a dynamic service

selection approach based on context-aware QoS. However, to the best of

our knowledge there is no existing work that consider providers’ decision

on parallel execution of atomic services in service composition.

2.2 Parallel Execution in Service Workflow En-

vironments

2.2.1 Workflow Management Systems

Composite services are normally composed, managed and executed

by a workflow management system (WFMS). During the last years

many WfMSs appeared; to name only a few of the most popu-

lar ones: Triana [Allen et al., 2003], Kepler [Altintas et al., 2005], Pe-

gasus [Deelman et al., 2005], KNIME [Berthold et al., 2008], Galaxy

[Goecks et al., 2010], and Taverna [Missier et al., 2010]. Each WFMS has

its own workflow language to describe workflow composition. The lan-

guages come along with a workflow engine which interprets the workflow

description and invoke the component services. To help users to design

workflows, a WFMS may also provide a graphical user interface. As sci-

entists and engineers are using WFMSs to build more and more complex

workflows to manage and process large data sets especially for scientific

data. This trend requires current WFMSs to support parallelization to re-

duce execution time of workflows.

19

2.2.2 Parallel Execution of Workflows

Workflow parallelization identifies the tasks that can be executed in par-

allel in the workflow execution plan (WEP). There are different means to

accomplish parallelization, all of which involve subdividing either the set

of workflow tasks or the input data (or both). According to the dependen-

cies defined in a workflow, different parallelization techniques can result

in various execution plans. Some parameters can be used to evaluate the

efficiency of each technique. An important parameter of parallelization is

the degree of parallelism, which is defined as the number of concurrently

running computing nodes or threads at any given time and that can vary

for a given workflow depending on the type of parallelism. In this section,

we distinguish three major types of parallelization: data parallelism, task

parallelism and pipeline parallelism. Data parallelism deals with the paral-

lelism within a task while task parallelism and pipeline parallelism handle

the parallelism between different tasks.

Data Parallelism

In data parallelism, input or intermediate data is split into distinct partition-

s, each of which is processed on a different compute node (or thread). This

means that the workflow (or part of the workflow) is replicated on each com-

pute node for a different partition of data. Data parallelism is only feasible

if data can be split into independent partitions. Most suitable for data par-

allelism are so-called embarrassingly parallel problems in which data items

can be processed independently from each other. Figure 2.5a shows and ex-

ample when the input data is split into two independent partitions, the two

partitions can be processed in parallel with two instances of the workflow

20

A

B
C

i1

i3
b1 a1 c1

Node 1

A

B
C

i2

i4
b2 a2 c2

Node 2

(a) Data parallelism. The workflow is performed in two computing nodes simul-

taneously. Each computing node processes a data partition.

Ai1 i2 a1 a2

B Ci3 i4 b1 b2 a1 a2 c1 c2

Node 1

Node 2

(b) Task parallelism. A and B is performed in two computing nodes concurrently.

C begins execution after execution of A and B

A

B

i2

i4

Cb1b2 a1a2 c1 c2

a2b2

A

B

i1

i3
a1b1

Node 1

Node 2

(c) Pipeline parallelism. C starts execution once a data partition is ready. When A

and B are processing the second part of data (i2, i4), C can process the output of the

first part (a1,b1) at the same time

Figure 2.5: Different types of parallelism. Circles represent tasks. There

are three tasks: A, B and C. A and B are independent. C processes the

output data produced by A and B. Rectangles represent data partitions.

21

in two compute nodes. As the input data needs to be partitioned, e.g., by a

partitioning task, the activity result is also partitioned. Thus, the partitioned

output data can be the base for data parallelism for the next tasks. However,

to combine the different results to produce a single result, e.g. the final re-

sult to be delivered to the user, requires special processing, e.g., by having

all the tasks writing to a shared disk or sending their results to a task that

produces the single result. This parallelism technique is also known as the

strong scaling technique.

Task Parallelism

Task parallelism is achieved when the tasks composing a workflow are exe-

cuted in parallel over several computing nodes. It is only applicable to tasks

located on parallel branches of the workflow. The maximum number of par-

allel tasks can be computed easily in advance by analyzing the workflow

structure. However, choosing the right scheduling strategy is not trivial, as

parallel tasks might exhibit varying execution times. Differences in task

execution times are also the reason for junctions in the data flow being dif-

ficult to handle: tasks requiring input data from several concurrent previous

tasks have to wait until all parent tasks have finished execution. Buffering

of intermediate results or synchronization of task execution is therefore re-

quired for task parallelism. Figure 2.5b shows an example of two tasks in a

workflow can be executed in parallel when they are independent.

Pipeline Parallelism

In pipeline parallelism, sequential steps of data processing are executed si-

multaneously on different parts of input data. Thus, one part of the output

data of one task is consumed intermediately by the next dependent task in

22

a pipeline manner. Figure 2.5c shows an example of pipeline parallelism.

Pipeline parallelism shares characteristics with task and data parallelism and

can be considered a subset of both:

• Similar to data parallism, input data is split and processed indepen-

dently of different compute nodes. However, in contrast to data par-

allelism, the chronological order in which fragments of data are pro-

cessed as well as the assignment of tasks to compute nodes are deter-

mined in advance and restricted by the concept of the pipeline.

• As with task parallelism, the tasks composing a workflow are dis-

tributed over independent compute nodes. However, it is not limited

to tasks on parallel branches of the workflow, resulting in a potentially

higher degree of parallelism.

• Pipeline parallelism is closely related to streaming techniques

[Gordon et al., 2006].

The efficiency of data parallelism and pipeline parallelism of a composite

service can be improved by choosing a suitable degree of parallelism. In

this thesis we focus on these two parallelism techniques and use parallel

execution policies of atomic service to determine the optimal DOP of the

composite service. We mostly use language services especially translation

services for our analysis and experiments throughout the thesis.

23

Chapter 3

Modeling Parallel Execution

Policies of Web Services

3.1 Introduction

Web service based applications are performing more and more, larger and

larger transactions. They are becoming intensive users of web transaction

through Service Oriented Architecture Standard. The accessing, transfer-

ring and processing of data need to occur parallel in order to tackle the

problem brought on by the increasing volume of data. With the advent

of high performance computing and cloud computing technologies, service

providers enable to support parallel execution for their provided services.

Consider a client processing a large data by invoking a web service. Strong

scaling technique (data parallelism) can be used to process the data faster

by splitting the data into independent partitions and multiple partitions are

24

sent to the service concurrently. If the service supports parallel execution,

a typical customer would expect the speed-up of the client will be directly

proportional to the number of concurrent requests (or the degree of paral-

lelism - DOP). However, the actual achieved speedup is not always directly

proportional to the DOP. There are several factors that effect efficiency of

parallel execution such as serial fractions in the service implementation as

pointed out in Amdahl’s law [Amdahl, 1967, Sun and Chen, 2010], or par-

allel overhead [Tallent and Mellor-Crummey, 2009]. Service providers may

also employ policies to limit parallel execution of their provided services

based on their arbitrary decisions. Service providers have control over those

factors, they can change some of the factors to control parallel execution

support of provided services. However, from the view of service users, s-

ince they do not own the service, they cannot know exact reasons causing

the parallel execution limitation of the service. What the service users ob-

serve is the performance improvement behavior of the service when they

invoke the service with parallel requests. In this context, we model the per-

formance improvement behaviors as parallel execution policies of services.

In this chapter, first of all we analyse and observe parallel execution effect-

s of different atomic services. Then, from the observation we determine

different performance improvement patterns and define the policy model.

Finally, we evaluate how well our proposed policy model can capture paral-

lel execution effects of different web services.

25

Figure 3.1: Ideal and actual speed-up cases

3.2 Motivation Example

Consider a translation application that uses Google translation service to

translate a document. In order to reduce the translation time, an user con-

figures the application to split the document into M independent partitions,

and then send n multiple requests to Google translation service in parallel.

Suppose that the method of splitting document is determined (M is fixed).

Increasing n is expected to reduce the time taken to translate the whole doc-

ument. Let Speed-up (S(P)) of the application be the ratio of the execution

time of the application when n = 1 to the execution time of the application

when n = P (S(P) = T (1)/T (P)). A straightforward extrapolation to the

higher number of concurrent requests would give the speed-up shown by

the dashed line in Figure 3.1.

This type of extrapolation is too common and unwarranted in our experi-

ence. As we will see, the actual speed-up of the application is more likely

to follow the solid line in Figure 3.1. The difference between these two

26

predicted curves is significant. This example underscores the importance

of obtaining a thorough understanding of the speed-up characteristics of a

web service before invoking the services with parallel execution. One way

to accomplish this is to assess speed-up patterns by analysing the parallel

execution effects of different types of web services. Once these patterns are

determined we can define a model which can help users to better estimate

service performance under parallel execution.

3.3 Parallel Execution of a Web Service

We use Data Parallelism to perform parallel invocation to a web service as

follows. Assume that a client wants to process a large dataset. At the client-

side, the input data is split in to M partitions and n threads of the client

are created to send n partitions to the service in parallel as shown in Figure

3.2. At server-side the service needs to serve n requests in parallel. Execu-

tion time required for processing the input data depends on the number of

concurrent requests, denoted by f (n).

…

… …

Input data
Split

Assign

request
response

Process #1 Process #2

Web service s

…Partition1 Partition2 Partition�

Partition1 Partition2 Partition� Partition�

Client-Side

Server-Side

Process #n

Data Pool

Figure 3.2: Parallel execution of a web service

27

Figure 3.3: Different speed-up behaviors

Performance Speed-up

We use Speed-up as a measure of the reduction in execution time taken to

execute a fixed workload when increasing number of concurrent threads.

Speed-up is calculated by the following equation: S(n) = f (1)/ f (n), where

f (1) is the execution time required to perform the work with a single thread

and f (n) is the time required to performance the same task with n concurrent

threads.

Possible speed-up behaviors of a service may fall into three categories:

• Linear–the speed-up ratio is equal to the number of concurrent pro-

cesses, n, i.e., S(n) = n.

• Sub-linear–the speed-up ratio with n concurrent processes is lass than

n, i.e., S(n)< n

• Super-linear–the speed-up ratio with n concurrent processes is greater

than n, i.e., S(n)> n

28

Several models have been proposed to describe those speed-up behavior cat-

egories for parallel algorithms and architectures [Sun and Chen, 2010]. A

well known and most cited model is Amdahl’s law [Amdahl, 1967], which

models the effect of the serial fraction of the task to the speed-up of the

task. Different ratios of serial parts (F) yield different speed-up behaviors

as shown by the dash lines in Figure 3.3.

Most of existing models assume that the performance speed-up is deter-

mined chiefly by task limitations, computing resource limitations or paral-

lel overhead. With the improvement of high performance computing, these

limitations may not be the problem for rich providers, such as Google or

Microsoft. Instead, service provider’s arbitrary decision about how to im-

plement parallel execution (parallel execution policies) may have big effect

on the performance speed-up. However, this kind of effect is not considered

in existing models. Furthermore, considering from the view of service users,

since they do not own services, they can only observe performance improve-

ment behaviors of the services when using parallel execution. In this work

we regard the performance improvement behaviors of services (such as the

solid line in Figure 3.3) as parallel execution policies of the services. We

will analyze and define a model for parallel execution policies.

3.4 Testing Methodology

In order to define a model for parallel execution policies, we first test many

web services with parallel execution. We then observe and analyze the per-

formance improvement pattern of each service.

29

Aggregate

Controller FC

Delegate 1

Controller Document
Splitter

Data Pool

Delegate 2

Controller Analyser
Input queue

Provided by ActiveMQ
Provided by UIMA
Provided by developers

Input queue

Client-Side
Server-Side Web service s

Output queue

Figure 3.4: Implementation concept of the test system

The testing environment is based on a client-server architecture. We cre-

ate a client to invoke web services with parallel execution. One chal-

lenge is to collect different web services provided by different providers

for analysis. One of the most reliable sources we used is the Language

Grid [Ishida, 2011]. The Language Grid (LG) provides an infrastructure for

sharing and combining language services. Different groups or providers can

join and share language services on the Language Grid1. Currently, more

than 140 organizations have joined the Language Grid to share over 170 lan-

guage services. We also assessed web services from outside the LG, such

as from Programmableweb2.

3.4.1 Experiment Implementation

We implement a client using multi-threading technique to invoke web ser-

vices. First, the input data is split into independent partitions. Then, n

1Web services on the LG: http://langrid.org/service manager/language-services
2ProgrammableWeb: http://www.programmableweb.com/

30

threads of the client are initialized to process n partitions in parallel. There-

fore n requests are sent to the service concurrently. We also use pooling

technique to stream data partitions to the client whenever a thread is avail-

able. We use Apache UIMA3 to realize our test system. First, we create a

Document Splitter to split input document into independent partitions and

store partitions to a queue. UIMA uses ActiveMQ4 to create and manage

queues. We create a client which invoke a web service to process data par-

titions from the queue. We implement a Follow Controller (FC) to connect

the Document Splitter and the Client, and control the queues and number

of threads of the Client. Figure 3.4 shows implementation concept of our

experiment in the UIMA framework.

3.4.2 Performance Improvement Patterns

We conducted series of experiments on more than 50 web services provided

by different providers, about two-thirds of them are registered in the Lan-

guage Grid, the other are collected from outside the Language Grid. We

observed different performance improvement patterns of different web ser-

vices. These patterns are categorized as follows:

Slow-down and restriction patterns

Figure 3.5 shows slow-down and restriction patterns of several services. For

example, performance improvement of J-Server translation service follows

slow-down pattern when number of concurrent requests smaller than 16, the

performance is throttled when the number of concurrent requests exceeds 4

3Apache UIMA: http://uima.apache.org/
4Apache ActiveMQ: http://activemq.apache.org/

31

(a) Performance improvement (b) Speed-up

Figure 3.5: Web services with slow-down and restriction patterns

(a) Performance improvement (b) Speed-up

Figure 3.6: Web services with slow-down and penalty patterns

(slow-down point Ps). The performance statures when the number of con-

current requests reaches to 16 (restriction point Pr). Similarly, performance

improvement of Mecab morphological analysis service follow slow-down

and restriction patterns with Ps = 4 and Pr = 14. Ps = 2 and Pr = 12 are

slow-down point and restriction point of Google URL shorten service. A-

mazon S3 service shows a slow-down pattern with Ps = 14.

Slow-down and penalty patterns

Figure 3.6 shows slow-down and penalty patterns of several services. For

32

example, performance improvement of Google translation service follows

slow-down pattern when number of concurrent requests smaller than 8, the

performance is throttled when the number of concurrent requests exceed-

s 4 (slow-down point Ps). The performance is reduced when number of

concurrent requests exceeds 8 (penalty point Pp). Similarly, performance

improvement of Yandex translation service follows slow-down and penalty

patterns with Ps = 10 and Pp = 12. TreeTagger service shows slow-down

and penalty patterns with Ps = 4 and Pp = 8.

3.5 Parallel Execution Policy Model

From the observation of performance improvement patterns of services un-

der parallel execution, we define a model to capture those different patterns.

We call this model is parallel execution policy model (or policy model in

short). One main objective of this model is to help users to easily embed

service policies into the calculation of composite service performance. The

model should be simple to be used when calculating composite service per-

formance. We define the policy model as a linear model, the definition of

the model is as follows:

Definition (Parallel Execution Policy). A parallel execution policy of a

web service is defined by the change of the performance improvement trend

of the service under parallel execution. This performance improvemen-

t trend is determined by a tuple of parameters (α , α�, α ′, P), with each

parameter is defined as follows:

• Suppose that the service processes M data partitions using parallel

33

execution. The execution time of the service depends on number of

concurrent processes (n) of the service, denoted by f (n).

• α is execution time of the service when the M partitions are serially

executed, i.e., n = 1: f (1) = α .

• P is the upper bound of concurrent processes specified by the service

provider, beyond which the performance improvement trend changes.

• α� is time taken by the service to process M partitions with P concur-

rent processes: f (P) = α�.

• α ′ is time taken by the service to process M partitions with N (P <

N ≤ M) concurrent processes: f (N) = α ′.

From the observed performance improvement patterns, we define three

types of parallel execution policy as follows: Slow-down policy, restriction

policy and penalty policy.

Slow-down policy. With this policy, performance improvement of a service

is throttled when number of concurrent requests exceeds a specified value

(slow-down point Ps). This policy may due to the parallel execution limita-

tion of the service’s implementation. The performance improvement pattern

yielded by this policy is depicted in Figure 3.7a. The execution time of the

service is given by Equation 3.1.

f (n) =

⎧⎨
⎩

α − α−α�

Ps−1 (n−1), if 1 ≤ n < Ps

α�− α�−α ′
N−Ps

(n−Ps), if Ps ≤ n ≤ N
(3.1)

• When 1 ≤ n < Ps, service performance steadily increases with the

number of concurrent processes (α > α� > α ′).

34

	(�)

Number of concurrent processes
�1 �
�

�

Ex
ec

ut
io

n
tim

e
(m

s)

�⋆

��

(a) Slow-down policy

	(�)

�1
� �

Ex
ec

ut
io

n
tim

e
(m

s)

�

�⋆

Number of concurrent processes

(b) Restriction policy

	(�)

��
�1

Ex
ec

ut
io

n
tim

e
(m

s)

Number of concurrent processes

�

��

�⋆

(c) Penalty policy

Figure 3.7: Performance patterns for parallel execution policies

• When Ps ≤ n ≤ N, service performance continues to improve but at a

slower rate. (α−α�

Ps−1 > α�−α ′
N−Ps

).

Restriction policy. Service providers limit the maximum number of concur-

rent requests that their services can serve. Service performance statures at

a specified number of concurrent requests (restriction point Pr). This may

be due to limitation of computing resources. This policy creates the perfor-

mance pattern show in Figure 3.7b. In this case, the execution time of the

service is given by Equation 3.2.

35

f (n) =

⎧⎨
⎩

α − α−α�

Pr−1 (n−1), if 1 ≤ n < Pr

α�, if Pr ≤ n ≤ N
(3.2)

• When 1 ≤ n < Pr, service performance steadily increases with the

number of concurrent processes (α� < α).

• When Pr ≤ n ≤ N, execution time of the service remains the same

(α ′ = α�).

Penalty policy. In some cases, due to limitation of computing resources,

or some commercial strategies or security concern, service providers limit

parallel execution of their service to a certain number of concurrent requests

where the services attain the optimal performance. If the number of concur-

rent requests sent to the service exceeds the specified number (penalty point

Pp), service performance is reduced. The performance improvement pattern

of this policy is shown in Figure 3.7c. The execution time of the service is

calculated by the Equation 3.3.

f (n) =

⎧⎨
⎩

α − α−α�

Pp−1 (n−1), if 1 ≤ n < Pp

α�+ α ′−α�

N−Pp
(n−Pp), if Pp ≤ n ≤ N

(3.3)

• When 1 ≤ n < Pp, service performance steadily increase with the

number of concurrent processes (α > α�).

• When Pp ≤ n ≤ N, service performance falls (α ′ > α�).

Determining value of P

One of the most important things in the proposed policy model is to deter-

mine value of P. In this work we assume that at a period of time due to

36

	(�)

Ex
ec

ut
io

n
tim

e
(m

s)

Number of concurrent processes

Slow-down policy
Restriction policy

��

��

��

1
� �
� �

(a) Slow-down and restriction

	(�)

Ex
ec

ut
io

n
tim

e
(m

s)

Number of concurrent processes

Slow-down policy
Penalty policy

��

��

��

1
� �
� �

(b) Slow-down and penalty

Figure 3.8: Combination of policies

a specific intention a service provider sets a static value of P for a service.

P may change at other time when the provider’s intention or conditions are

changed. Because the value of P is not explicitly stated, in order to deter-

mine P we analyze the observed performance improvement pattern of the

service and choose the point that the improvement trend is changed. Since

the tested data of the performance improvement is not perfectly linear, in

order to find the point where the performance improvement line changes,

we use a threshold to determine whether a point is considered to be on the

linear line. If the difference between the actual point and the point calcu-

late by using the linear point is smaller the threshold, this actual point is

considered as a point on the linear line.

Combination of policies.

From our observation, most of the services employ a combination of differ-

ent parallel execution policy. We observed two combinations, the first one is

combination of slow-down policy and restriction policy as shown in Figure

3.8a. Examples of this combination include J-Server translation service and

37

(a) J-Server translation service (b) Google translation service

Figure 3.9: Evaluating policy model of different services

Mecab morphological analysis service. The second one is combination of

slow-down policy and penalty policy depicted in Figure 3.8b. Examples of

this combination include Google translation service and Yandex translation

service.

3.6 Evaluation

In this section, we evaluate our proposed policy model in the aspect of how

well the model captures performance improvement of web services under

parallel execution. Our model is compared with two regression models: a

linear fitting model and a curve fitting model with a quartic regression (curve

fitting function: y = ax4+bx3+cx2+dx+e). Figure 3.9 shows comparison

of our policy model and the two regression models of two services: J-Server

translation service and Google translation service. The figure shows predic-

tion of the policy model is closer to actual experiment results compare to

the other two regression models.

38

Table 3.1: Comparison of the proposed model with regression models

S (milliseconds) R-Squared (%) P-value
Linear model Quartic model Policy Model Linear model Quartic model Policy model Policy model

J-Server Tran. 3287.94 1583.47 1049.75 21.3 86.3 92.0 1.23e-09

Google Tran. 5877.13 3035 2460.25 43.8 88.77 90.17 1.31e-08

Mecab 3310.78 1634.90 764.73 19.9 85.3 95.7 3.71e-11

Amazon S3 13734.94 6264.98 4795.82 31.2 89.3 91.6 1.57e-09

Google URL 2080.93 1014.05 698.97 23.2 86.3 91.3 4.06e-09

Tree Tagger 3078.94 1297.93 659.91 1.2 86.8 95.5 5.82e-11

LSD 2521.01 1267.16 885.72 4.5 89.5 93.2 1.56e-09

In more detail, we use standard error (S), and R-squared (R2) to compare the

models. S gives some idea of how much the model’s prediction differs from

the actual results. R2 provides an index of the closeness of the actual results

to the prediction. S and R2 are calculated by the following equations:

S =

√√√√√
n
∑
1
(Actuali −Predictioni)2

n− p
, and R2 = 1−

n
∑
1
(Actuali −Predictioni)

2

n
∑
1
(Actuali −mean(Actual))2

where n is number of observations, p is the number of regression parameters

(p = 2 in the case of linear regression and our model, p = 5 in the case of

the quartic regression model).

We also use F-test to calculate P-value for evaluating statistical significance

of our proposed model. Table 3.1 shows comparison of the policy model

with the two regression models for different web services. The results show

that, in all cases, the policy model has the lower standard error and higher

R-Squared than either the linear regression model or the quartic regression

model. The P-value of the policy model is significantly low (much less

than 0.05). We conclude that our policy model has much better accuracy

in capturing performance improvement behaviors of web services than the

39

conventional regression models. The policy model is also highly statistically

significant and can faithfully estimate the parallel execution effects of web

services.

3.7 Conclusion

Parallel execution is well studied in parallel computing and high perfor-

mance computing. Many models have been proposed to modelling the ef-

fect of different factors to the parallel execution efficiency. Most of ap-

proaches focused on the side of task/service providers in a sense that service

providers can control those factors to increase the parallel execution effi-

ciency. In this work, we focus on the side of users who do not have control

on computing resources, implementation of tasks/services. From the view

of service users, the limitation of parallel execution of a service is regarded

as a policy of the service provider. We introduced a new factor, which is

service’ policy, that affects parallel execution efficiency of the service.

In this chapter we have analysed performance improvement behaviors of d-

ifferent web services under parallel execution. We provided analyses and

evaluations of our parallel execution policy model which includes three

types of policies: Slow-down policy, Restriction policy, and Penalty poli-

cy. By conducting a series experiments on more than 50 web services, we

have experimentally confirmed our model well captures the effects of paral-

lel execution policy. Our model has been proved to be superior to regression

models in capturing the parallel execution effects of web services. The e-

valuation results also showed that our parallel execution policy model can

40

well illustrate performance improvement behaviors of web services under

parallel execution. More importantly, our propose model requires less data

in order to correctly predict execution time of a web service. However, the

three types of parallel execution policies may not correctly cover all types of

web service policies. This leaves room for our future work to continue our

analysis with larger number of web services to find more types of policies

of web services.

41

Chapter 4

Predicting Parallel Execution

Performance of Composite

Services

4.1 Introduction

Composing and optimizing a composite service, or a workflow of atom-

ic services, has gained increasing attention in SOA. With the increasing

volume of data to be analysed, there is a need of using parallel execution

for composite services. Technologies such as data-intensive and many-

task computing [Raicu et al., 2012, Humbetov, 2012], and scientific work-

flows [Taylor et al., 2014] have the potential to enable rapid data analysis

for workflows. Many studies have proposed parallel and pipelined exe-

cution technique to speed-up workflows [Pautasso and Alonso, 2006], and

42

J-Server
Translation

Google
Translation

Client

Receive Reply

Figure 4.1: A simple composite service

adaptive parallel execution approach for workflows in cloud environments

regarding the availability of resources [Oliveira et al., 2012]. These work-

s focus on proposing method to support parallel execution for workflows.

They do not consider how to optimize the workflow by satisfying require-

ments of service providers for web services in the workflow. There are

also many methodologies focusing on crating composite services which can

attain the optimal Quality of Service (QoS) based on linear integer program-

ming [Cardoso et al., 2004, Zeng et al., 2004] or Genetic Algorithms (GAs)

[Canfora et al., 2008]. Most of the proposed approaches did not consider

atomic services’ policies in optimizing the composite services. An unique

point in SOA is, a composite service is combination of different atomic ser-

vices provided by various providers. Different providers may have different

decision on supporting parallel execution for their provided services. To

raise the efficiency of parallel execution, we need to consider the different

policies when configuring degree of parallelism (DOP) for the composite

service. Different from current approaches, in this work we focus on pre-

dicting the optimal DOP of a composite service by considering the service

policies of all participating providers.

Figure 4.1 shows a simple example of composite service. This is a two-

43

Figure 4.2: Different policies of J-Server and Google translation services

hop translation service, combining J-Server translation service and Google

translation service, for translating a document from Japanese to Vietnamese

via English. J-Server translation service translates document from Japanese

to English, and then Google translation service translates the intermediate

translated document from English to Japanese. To reduce execution time,

the client invokes the composite service with parallel execution. The input

data is split into independent partitions, and several are processed in parallel.

By using pipelined execution, if the client configures to process n partitions

in parallel, each atomic service will serve n concurrent requests at all the

time. From previous chapter, we observed that the two atomic services have

different parallel execution policies as shown in Figure 4.2. In this scenari-

o, when configuring parallel execution of the composite service we need to

specify a suitable DOP of the composite service. This configuration should

conform to all atomic services’ policies in order to attain the optimal perfor-

mance improvement for the composite service. To tackle this problem, in

44

this chapter, we propose a model that embeds parallel execution policies of

atomic services into formulae to calculate composite service performance.

From the calculation, we predict the optimal DOP for the composite service.

Extensive experiments are conducted on real-world translation services. We

use several measures such as mean prediction error (MPE), mean absolute

deviation (MAD) and tracking signal (TS) to evaluate our model. The analy-

sis results show that our proposed model has good prediction accuracy with

regard to identifying optimal DOPs for composite services.

4.2 Predicting Parallel Execution Performance

of Composite Services

In this section we propose a model that can predict parallel execution per-

formance of composite services. Our model considers policies of all atomic

services and the workflow structures for the prediction.

4.2.1 Composite Service Performance

A composite service can be seen as a set of atomic services that coop-

erate to execute a process that defines the interaction workflow. There

are four basic composite structures: Sequential, Parallel, Conditional and

Loop, see Figure 4.3, where circles represent atomic services and arrows

represent the transfer of data between services. QoS of a composite ser-

vice is aggregate QoS of all atomic services. Existing QoS calculation

methods can be classified into two categories: Reduction method with sin-

45

�� ��…

(a) The sequential structure

��

��

…
(b) The parallel structure

��
��

��
��…

(c) The conditional structure

��

�

(d) The loop structure

Figure 4.3: Four types of composite structures

gle QoS for service composition [Cardoso et al., 2004, Jaeger et al., 2004],

and direct aggregation method with multiple QoSs for the service

composition [Ardagna and Pernici, 2007, Yu and Bouguettaya, 2008]. In

[Cardoso et al., 2004] several aggregation formulae were proposed to es-

timate execution time of composite services with different workflow struc-

tures. Given that composite service C consists of k atomic services, the

formulae to calculate execution time of C is as follows:

• C = {s1,s2, ...,sk}

• T (si) is the execution time of service si.

• Aggregate functions to calculate execution time of C for differen-

t structures are shown in Table 4.1. In the conditional structure, ri

denotes the probability of service si invocation,
m
∑

i=1
pi = 1. In the loop

structure, k represents number of iteration of service s1.

46

Table 4.1: Aggregation functions to calculate execution time

Structure Sequential Parallel Conditional Loop

Expected Execution Time
k
∑

i=1
T (si)

k
max
i=1

T (si)
k
∑

i=1
piT (si) k×T (s1)

We adapt these formulae to calculate execution time of composite services

under parallel execution. The parallelism techniques, which are used to

improve composite service performance, are described in next section.

4.2.2 Parallel Execution of a Composite Service

As mentioned in chapter 2, in this work, we focus on two parallelism tech-

niques: data parallelism and workflow pipeline execution. We describe

more detail about these two techniques in this section.

Data parallelism. When considering data-intensive applications, several

input data sets are to be processed using a given workflow. Benefit from

the large number of resources available in a grid, workflow services can

be instantiated as several computing tasks running on different hardware

resources and processing different input data in parallel. Similar to Da-

ta Parallelism in atomic service, when a composite service processes large

amounts of data sets, the data sets are split into independent partitions, and

several computing tasks of each atomic service in the composite service are

instantiated to process several partitions in parallel.

Workflow pipeline execution. When a single workflow is operate in par-

allel on many data partitions. Workflow pipeline execution denotes that the

processing of several independent partitions by several instances of an atom-

47

��

�

���
� ���

����
� ���

�

…
���

� ���
� ���

� ���
�

…��

Figure 4.4: Pipeline processing time-line of a composite service

ic service are independent. This parallelism enables pipeline processing of

a workflow. That is, when n concurrent requests are sent to a composite ser-

vice, multiple instances of each atomic service are created and processed in

parallel. A pooling technique is used such that when processing M data sets,

n out of M data sets are streamed to the composite service in parallel with-

out waiting for responses. The execution of the composite service is done

in pipeline manner. Consider an example of a sequential composition of

two services. This example yields the pipeline processing time-line shown

in Figure 4.4, where L = �M/n� is number of time-steps needed to send M

data sets. At the beginning of time period, n data set are sent in parallel. tn
i j

is the time that n concurrent processes of service si take to finish processing

n data sets at time step j. Processing time-line of different control structures

are different, and so performance prediction of different structures are also

different. We describe prediction for each structure as following.

4.2.3 Performance Prediction of Different Workflow

Structures

Sequential Structure

Consider a composite service consisting of two services s1 and s2 with Se-

48

���
� ���

����
� ���

�

…
���

� ���
� ���

� ���
�

…

��

��

�

(a) When f1(n)< f2(n)

���
� ���

����
� ���

�

…
���

� ���
� ���

� ���
�

…

��

��

�

(b) When f1(n)> f2(n)

Figure 4.5: Processing time-line of sequential structure

quential structure as shown in Figure 4.3a. s1 and s2 may have different

policies when using parallel execution as specified in Chapter 3. We need to

estimate performance of the composite service considering policy of each

atomic service.

First, we describe how the parallel execution is applied to this structure.

The input data is separated into M partitions. There is a pool to control

the number of concurrent partitions sent to the composite service (DOP).

Suppose, the pool is configured to send n concurrent partitions to the com-

posite service. Therefore, all M partitions are sent to the composite service

in L = �M/n� times. Each atomic service is executed in parallel with n con-

current processes. Let (α1, α�
1 , α ′

1, P1) and (α2, α�
2 , α ′

2, P2) be the parallel

execution policies of s1 and s2. Execution time of service s1 and service s2 to

process M partitions, f1(n) and f2(n), can be predicted by using our policy

model as described in Section 3.5. The pool sends data partitions continu-

ously to the service without waiting for responses. Processing time-line of

the composite service is illustrated in Figure 4.5. tn
1 j is execution time of n

concurrent instances of service s1 process n partitions at time-step j. tn
2 j is

execution time of n concurrent instances of service s2 process n partitions at

time-step j. The relative performance of s1 and s2 also impacts composite

service performance. We consider here two cases:

49

• Case 1: Service s1 has better performance than service s2 - f1(n) <

f2(n). The resulting processing time-line is depicted in Figure 4.5a.

Let fc(n) be the execution time of the composite service. In this case

fc(n) is calculated as follows:

fc(n) = f2(n)+ tn
11 (4.1)

tn
11 is the time taken by service s1 to finish processing n partitions

in parallel. Suppose that the execution time of s1 to process each

partition is approximate equal. We have:

tn
11 �

f1(n)
�M/n� (4.2)

From Equation (4.1) and (4.2) we have:

fc(n)� f2(n)+
f1(n)
�M/n� (4.3)

• Case 2: service s2 has better performance than service s1 - f1(n) >

f2(n). Processing time-line is depicted in Figure 4.5b. Similarly,

fc(n) is calculated as following equation:

fc(n) = f1(n)+ tn
2L � f1(n)+

f2(n)
�M/n� (4.4)

To generalize, let us consider a composite service consisting of a Sequential

structure of k services (s1,s2, ...,sk). Execution time of each service when

processing a large dataset (separated into M partitions) using parallel exe-

cution with n concurrent instances are f1(n), f2(n), ..., fk(n) respectively.

50

Execution time of the composite service (fc(n)) can be predicted as follows:

Tmax = max(f1(n), f2(n), ..., fk(n))

fc(n)� Tmax +

k
∑

i=1
fi(n)−Tmax

�M/n�

(4.5)

Parallel Structure

Consider a composite service with service s1 and s2 in the parallel structure

shown in Figure 4.3b. In this case the two services process data in parallel.

The original dataset is separated into M partitions, n of which are sent to

the composite service concurrently. DOP of the composite service is set to

n, so n processes of each atomic service are executed in parallel. Suppose

that (α1, α�
1 , α ′

1, P1) and (α2, α�
2 , α ′

2, P2) are parallel execution policies of

s1 and s2. Execution time of s1 and s2, f1(n) and f2(n), can be predicted by

using the policy model. Similarly, we use a pool to stream data partitions to

the service without waiting responses. This yields pipeline execution of the

workflow. The processing time-line of the composite service is illustrated

in Figure 4.6. tn
1 j is execution time of n concurrent instances of service s1

process n partitions at time-step j. tn
2 j is execution time of n concurrent in-

stances of service s2 process n partitions at time-step j. From this processing

time-line, the execution time of the composite service (fc(n)) is predicted

as the maximum value of f1(n) and f2(n):

fc(n)� max(f1(n), f2(n)) (4.6)

To generalize, consider a parallel combination of k services (s1, s2, ..., sk).

51

���
� ���

����
� ���

�

…
���

� ���
� ���

� ���
�

…

��

��

�

(a) When f1(n)< f2(n)

���
� ���

����
� ���

�

…
���

� ���
� ���

� ���
�

…

��

��

�

(b) When f1(n)> f2(n)

Figure 4.6: Processing time-line of parallel structure

Suppose that parallel execution policy of service si is (αi, α�
i , α ′

i , Pi), execu-

tion time of service si with n concurrent processes (fi(n)) can be calculated

by using our policy model. In this case, the execution time of the composite

service is predicted with the following generalized equation:

fc(n)�
k

max
i=1

fi(n) (4.7)

Conditional Structure

Figure 4.3c shows a Conditional combination of two service s1 and s2. A-

gain the composite service processes a big dataset that is separated into M

partitions. We configure the pool so that n partitions can be sent to the com-

posite service concurrently. The Conditional structure states that a portion

of n partitions will be sent to service s1, the remainder is sent to service s2.

Suppose that the ratios are r1 and r2 (r1 + r2 = 1). This means that r1n par-

titions are processed by s1 in parallel, while the remaining r2n partitions are

processed by s2 concurrently. In total, r1M partitions are processed by s1,

and r2M partitions are processed by s2. We configure the parallel execution

so that r1n concurrent instances of s1 and r2n concurrent instances of s2 are

initiated. Execution time of s1 and s2, f1(r1n) and f2(r2n), are calculated as

52

follows:

f1(r1n) =

⎧⎨
⎩

α1 − α1−α�
1

P1−1 (r1n−1), if 1 ≤ r1n < P1

α�
1 − α�

1−α ′
1

r1M−P1
(r1n−P1), if P1 ≤ r1n ≤ r1M

f2(r2n) =

⎧⎨
⎩

α2 − α2−α�
2

P2−1 (r2n−1), if 1 ≤ r2n < P2

α�
2 − α�

2−α ′
2

r2M−P2
(r2n−P2), if P2 ≤ r2n ≤ r2M

Where (α1, α�
1 , α ′

1, P1) is parallel execution policies of s1 when process-

ing r1M partitions and (α2, α�
2 , α ′

2, P2) is that of s2 when processing r2M

partitions.

When n = 1, data partitions are sent to the composite service one at a time,

one partition is processed by s1 or s2 at a time. The execution time the com-

posite service to process M partitions is execution time of s1 to process r1M

partitions adds execution time of s2 to process r2M partitions. When n > 1,

since there are r1n concurrent processes of s1 and r2n concurrent process-

es of s2, the execution of the conditional structure is similar with parallel

structure where s1 processes rM partitions and s2 processes r2M partitions

concurrently. In this case, processing time-line of the conditional structure

is as illustrated in Figure 4.7; the number of time-steps, L = �M/n�. The

execution time of the conditional structure fc(n) is predicted as follows:

fc(n)�

⎧⎨
⎩

f1(1)+ f2(1), if n = 1

max(f1(r1n), f2(r2n)), if n > 1
(4.8)

To generalize, consider a Conditional structure of k services (s1, s2, ..., sk).

Suppose that r1, r2, ..., rk are the ratios of requests sent to each service. We

53

���
���

���
���

���
���

���
���

…
���

���
���

���
���

���
���

���

…

��

��

�

Figure 4.7: Processing time-line of conditional structure

have:

•
k
∑

i=1
ri = 1

• riM partitions are processed by si

• With n partitions sent to the composite service in parallel, rin in-

stances of service si will be initiated and processed concurrently.

• Execution time of service si when processing riM partitions with rin

concurrent instances can be calculated with fi(rin), where the parallel

execution policy of si is (αi, α�
i , α ′

i , Pi).

The execution time of the composite service (fc(n)) is predicted by the fol-

lowing equation:

fc(n)�

⎧⎪⎨
⎪⎩

k
∑
1

fi(1), if n = 1

k
max
i=1

fi(rin), if n > 1

(4.9)

Loop Structure

Consider the Loop structure of a service s1 as shown in Figure 4.3d. Con-

sider the example of the iteration number of two. In this case, this Loop

54

structure can be converted to a Sequential structure of two services s1. The

composite service processes M partitions. n processes of service s1 are exe-

cuted to process n partitions in parallel. (α1, α�
1 , α ′

1, P1) is parallel execution

policy of s1, execution time of the service is f1(n) can be predicted by us-

ing the policy model. The processing time-line of the composite service is

illustrated in Figure 4.8; the number of time-steps is L = �M/n�. At the

first time step, n requests are sent to s1 in parallel, tn
11 is the time taken by

n instances of s1 to process the first n partitions. From the second time step

to (�M/n�) time step, 2n requests are sent to service s1 concurrently, so the

time to process n partitions is maximum value of f1(n) and f1(2n). Let’s ΔT

is duration from second time step to (�M/n�) time step, ΔT is calculated as

follows:

ΔT � (�M/n�−1)
max(f1(n), f1(2n))

�M/n�

At the last time step, n last partitions are processed in parallel by n concur-

rent instances of s1. The execution time of the composite service (fc(n)) is

predicted by the equation bellow:

fc(n)� 2
f1(n)
�M/n� +ΔT

� 2
f1(n)
�M/n� +(�M/n�−1)

max(f1(n), f1(2n))
�M/n�

(4.10)

To generalize, consider a Loop structure where s1 is executed k time. The

structure can be converted to a sequence structure of k service s1. Processing

of the composite service follows pipeline processing time-line. At time-

step i (1 ≤ i < k), in concurrent request are sent to s. From time-step k to

�M/n�, kn concurrent requests are sent to service s. The execution time of

55

���
� ���

����
� ���

�

…
…

��

��

�

Figure 4.8: Processing time-line of loop structure

the composite service can be calculated by following equation:

fc(n)�

2
k−1

∑
j=1

j
max
i=1

f (in)

�M/n� +(�M/n�− k+1)

k
max
i=1

f (in)

�M/n� (4.11)

4.2.4 Performance Prediction of Complex Cases

Our prediction model can also deal with complex cases such as combination

of different parallel execution policies for one atomic service, or a compos-

ite service which contains different control structures.

Combination of Policies

A service provider may employ more than one parallel execution policy for

an atomic service. For instance, an atomic service may have both slow-

down policy and restriction policy. In this case, to calculate execution time

of the service we need to determine each interval of number of concurrent

processes in which the service follows only one policy. Then, apply differ-

ent policy models in different intervals to calculate execution time.

Figure 4.9 shows an example of a combination of the three policies: slow-

down policy, restriction policy, and penalty policy:

56

	(�)

Ex
ec

ut
io

n
tim

e
(m

s)

Number of concurrent processes

Slow-down policy
Restriction policy
Penalty policy

��

��

��

��

1
� �
�
� �

Figure 4.9: Combination of policies

• When 1 ≤ n ≤ Pr, the service follows slow-down policy, execution

time is calculated by applying Equation 3.1:

f (n) =

⎧⎨
⎩

α1 − α1−αp
Ps−1 (n−1), if 1 ≤ n < Ps

αp − αp−αr
Pr−Ps

(n−Ps), if Ps ≤ n ≤ Pr

• When Pr ≤ n ≤ Pp, the service follows restriction policy. Apply E-

quation 3.2, execution time of the service is: f (n) = αr.

• When Pp ≤ n ≤ M, the service follows penalty policy, execution time

is calculated as follows:

f (n) = αr +
αm −αr

M−Pp
(n−Pp)

Combine all these intervals, we can calculate execution time of the service

57

by the following equation:

f (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α1 − α1−αp
Ps−1 (n−1), if 1 ≤ n < Ps

αp − αp−αr
Pr−Ps

(n−Ps), if Ps ≤ n < Pr

αr, if Pr ≤ n < Pp

αr +
αm−αr
M−Pp

(n−Pp), if Pp ≤ n ≤ M

Combination of control structures

A composite service may contain different control structures. To calculate

execution time of this type of composite service, we first reduce the com-

plex workflow to a simple workflow which contains only sequential struc-

ture. After the reduction, it is easily to calculate the execution time of the

composite service by applying the equation for the sequential structure.

We adopt the reduction methodology proposed in [Cardoso et al., 2004] to

calculate execution time of a complex workflow under parallel execution.

The reduction for each structure is as follows:

• Reduction of parallel structure.

Figure 4.10 illustrates how a parallel structure of m services s1, s2, ...,

sm can be reduced to a single service s1m. In this reduction, execu-

tion time of sa and sb remain unchanged. We apply prediction model

for parallel workflow as shown in Section 4.2.3 to compute execu-

tion time of the reduction. Execution time of s1m is calculate by the

Equation 4.7.

• Reduction of conditional structure.

58

��

��

�� ��
��… �� �����

Figure 4.10: Parallel structure reduction

��

��

�� �� �� �����
��…

�1

�2

��

Figure 4.11: Conditional structure reduction

Figure 4.11 illustrates how a conditional structure of m services s1,

s2, ..., sm can be reduced to a single service s1m. In this reduction,

execution time of sa and sb remain unchanged. We apply prediction

model for conditional workflow as shown in Section 4.2.3 to compute

execution time of the reduction. Execution time of s1m is calculate by

the Equation 4.9.

• Reduction of loop structure.

Figure 4.12 illustrates how a loop structure of service s1 with k it-

erations can be reduced to a single service s1loop. In this reduction,

execution time of sa and sb remain unchanged. We apply prediction

model for loop workflow as shown in Section 4.2.3 to compute exe-

cution time of the reduction. Execution time of s1loop is calculate by

the Equation 4.11.

• Reduction of a complex workflow.

59

���� ��

�

�� ��������

Figure 4.12: Loop structure reduction

Figure 4.13 shows a reduction of a complex workflow with 4 different

structures:

– Parallel combination of s1 and s2 is reduced to s12 part:

f12(n) = max(f1(n), f2(n)).

– Assume that the ratios of request sent to services s3 and s4 are

r3 and r4 (r3 + r4 = 1). Conditional combination of s3 and s4 is

reduced to s34 part:

f34(n)�

⎧⎨
⎩

f3(1)+ f4(1), if n = 1

max(f3(r3n), f4(r4n)), if n > 1

– Assume that s5 is looped with 2 iterations. This loop is reduced

to s5loop part:

f5loop(n)� 2
f5(n)
�M/n� +(�M/n�−1)

max(f5(n), f5(2n))
�M/n�

The complex workflow is reduced to sequential combination of three

part s12, s34, and s5loop, we apply the model for sequential structure to

60

��� �� �!����

�� ��

�

�!

��

Figure 4.13: Reduction of a complex workflow

calculate execution time of the composite service:

Tmax = max(f12(n), f34(n), f5loop(n)),

fc(n)� Tmax +
(f12(n)+ f34(n)+ f5loop(n))−Tmax

�M/n�

4.2.5 Determining Optimal DOP of a Composite Service

We can obtain the optimum parallel execution by determining the optimal

DOP of composite service that gain the optimal performance improvement.

Execution time of the composite service (fc(n)) is calculated by using the

above model. Different parallel execution policies and different structures

yield different fc(n). In a simple case, we can determine the optimal DOP

by estimating the composite service performance on different interval of n.

For example, assume that a composite service is a sequential composition

of two service s1 and s2, where s1 is covered by the penalty policy specified

by (α1, α�
1 , α ′

1, Pp1), s2 is covered by the restriction policy specified by (α2,

α�
2 , α ′

2, Pr2). Execution time of s1 and s2 are f1(n) and f2(n) calculated by

using the policy model.

61

Assume that the relative of f1(n) and f2(n) is as follows:

• ∃P� where f1(P�) = f2(P�).

• When n < P�, f1(P�)< f2(P�).

• When n > P�, f1(P�)> f2(P�).

• Pp1 < P� < Pr2.

We apply the prediction model for sequential combination to calculate fc(n)

on each interval as follows:

• When 1 < n ≤ Pp1 both f1(n) and f2(n) decrease when n increases.

Since f1(n) < f2(n), fc(n) = f2(n)+
f1(n)
�M/n� . It is obvious that fc(n)

decreases when n increases.

• When Pp1 < n ≤ P�, f1(n) increases and f2(n) decreases when n in-

creases. Since f1(n) < f2(n), fc(n) = f2(n)+
f1(n)
�M/n� . f1(n) has very

small effect to fc(n), so fc(n) still decreases when n increases.

• When P� < n ≤ Pr2, f1(n) increases and f2(n) decreases when n in-

creases. Since f1(n) > f2(n), fc(n) = f1(n)+
f2(n)
�M/n� . f1(n) has big

impact to fc(n), fc(n) increases when n increases.

• When Pr2 < n ≤ M, f1(n) increases and f2(n) remains stable when

n increases. Since f1(n) > f2(n), by applying Equation 4.3, we have

fc(n) = f1(n)+
f2(n)
�M/n� . It is obvious that fc(n) increases when n in-

creases.

• In this case, it is easily to estimate that, when n = P�, fc(n) gains

minimum value.

In general, in order to find optimum value of n where fc(n) has minimum

62

value. From the function, we determine the linear trend of the equation

value in different intervals of n. Finally, we can estimate the optimal point

(Popt) where the function has minimum value. The complexity of this pro-

cess depends on number of atomic services and services’ performance rela-

tive. If there are many intervals, function fc(n) is different in each interval,

the process becomes very complex and difficult to find the optimum n.

4.3 Evaluation

We conduct experiments to evaluate our prediction model. Specifically, we

attempt to answer the following question: How accurate is our prediction

model, compared to the actual result?

We created different composite services with different structures and used

our proposed model to predict performance of the composite services and

estimate the optimal degree of parallelism.

4.3.1 Simple Workflows

Sequential Structure. Consider a case where a composite service has two

services s1 and s2 in Sequential structure with the following conditions:

• s1 employs slow-down and restriction policies specified by Ps1 and

Pr1, respectively.

• s2 employs slow-down and penalty policies specified by Ps2 and Pp2,

respectively.

63

There are several correlation patterns between f1(n) and f2(n). Figure 4.14a

shows a prediction of a crossed performance case (when the number of con-

current processes is P�: f1(P�) = f2(P�), and Pp2 ≤ Pr1 ≤ P�). The solid

line shows the performance pattern of the composite service. In this case,

the composite service has optimal performance when n = Pr1. We explain

this prediction as follows:

• When n = 1, f1(n) > f2(n), applying Equation 4.3 yields fc(1) =

α1 +
α2
M .

• When 1 < n ≤ Pp2, both f1(n) and f2(n) decrease when n increases.

Since f1(n) > f2(n), applying Equation 4.3 yields fc(n) = f1(n) +
f2(n)
�M/n� . It is obvious that fc(n) decreases as n increases.

• When Pp2 < n ≤ Pr1, f1(n) decreases and f2(n) increases as n in-

creases. Since f1(n) > f2(n), by applying Equation 4.3, fc(n) =

f1(n)+
f2(n)
�M/n� . f2(n) has very small effect to fc(n), so fc(n) still de-

creases as n increases.

• When Pr1 < n ≤ P�, f1(n) remains stable and f2(n) increases when

n increases. Since f1(n) > f2(n), by applying Equation 4.3, fc(n) =

f1(n)+
f2(n)
�M/n� . We can see that fc(n) will slightly increase as n in-

creases.

• When P� < n ≤ M, f1(n) remains stable and f2(n) increases when n

increases. Since f1(n)< f2(n), applying Equation 4.3 yields fc(n) =

f2(n)+
f1(n)
�M/n� . It is obvious that fc(n) increases when n increases.

• The composite service attains optimal performance when n = Pr1.

64

�� +
��

�

��

	(�)

1
��
⋆
��
�� M n

��

��

��
⋆

��
⋆

Sequential composition

��

��

(a) An ideal prediction
(b) Combination of J-Server and Google

translation services

Figure 4.14: Evaluating sequential structure

As a real example for this case, we create a back translation service from

two translation services J-Server translation service and Google transla-

tion service. J-Server employs slow-down and restriction policies with

Ps jserver = 4 and Pr jserver = 12. Google translation service employs slow-

down and penalty policies with Psgoogle = 4 and Ppgoogle = 8. When number

of concurrent processes n = 20, fgoogle(n) = f jserver(n). Performance pre-

diction of the composite service when translating a document, containing

500 paragraphs from Japanese to English, is shown in Figure 4.14b. The

solid line is the prediction given by our prediction model, while the dash

line is the real execution time of the composite service. In this example, the

model predicts that when n = Pr jserver = 12, the composite service attain-

s its best performance. This prediction matches the real result. However,

the predicted execution time is not so accurate, the best performance of the

composite service calculated by the model was 18384 milliseconds, while

the real result was 20317 milliseconds. With the optimal DOP, performance

of the composite service improve significantly, i.e., execution time of the

composite service decreased to nearly 86 percent.

65

	(�)

��1
⋆
��
��
��
��

��

��

��
⋆

��
⋆

Parallel composition

��

��

(a) An ideal prediction
(b) Combination of Google and Bing

translation services

Figure 4.15: Evaluating parallel structure

Parallel Structure. We created a composite service from two services s1

and s2 with the Parallel structure. According to the prediction model, exe-

cution time of the composite service, fc, is calculated as fc(n) = max(f1(n),

f2(n)). It is easy to predict the performance of the composite service. With

the case in Figure 4.15a, according to the prediction model the composite

service reaches its best performance when n = P�, where f1(P�) = f2(P�).

As a real example of this case, we created a Parallel combination of Google

translation service and Bing translation service. A document with 500

paragraphs was translated in parallel from Japanese to English. Figure

4.15b compares the prediction (solid line) and the real execution time (dash

line) of the composite service. According to the prediction, when n = 14

(fgoogle(14) = fbing(14)), the composite service attains its best performance;

this prediction matches to the real result. However, the prediction of the

best execution time of composite service was not so precise, i.e., the model

predicted the best execution time of the composite service to be 13642 mil-

liseconds, while the real result was 15181 milliseconds. With the optimal

DOP, performance of the service increased by approximately 87 percent.

66

Conditional Structure. Consider the case where a composite service is a

Conditional composition of two service s1 and s2. s1 employs slow-down

and penalty policies, while s2 employs slow-down and restriction policies.

Figure 4.16a shows a performance prediction of the composite service when

the ratios of requests sent to each services r1 = r2 = 0.5. P� is number of

concurrent processes when f1(P�) = f2(P�). The solid line shows that the

composite service has optimal performance when n = 2P�. We explain this

result as follows:

• When n = 1, by appling Equation 4.8, we have fc(1)� f1(1)+ f2(1)=

α1 +α2.

• When 1 < n/2 ≤ P�, f2(n/2) decreases when n increases. Since

f1(n/2) < f2(n/2), by applying Equation 4.8, we have fc(n) �

max(f1(n/2), f2(n/2)) = f2(n/2). It is obvious that fc(n) decreas-

es when n increases.

• When P� < n/2 ≤ M/2, f1(n/2) increases when n increases. S-

ince f1(n/2) > f2(n/2), by applying Equation 4.8, we have fc(n) �

max(f1(n/2), f2(n/2)) = f1(n/2). It is obvious that fc(n) increases

when n increases.

• The composite service gains optimal performance when n = 2P�.

To give real example for this case, we created a Conditional combination

of two translation services Google translation service and Baidu translation

service. Performance prediction (solid line) and the actual execution time

(dash line) of the composite service, when processing a document with 500

paragraphs, are shown in Figure 4.16b for r1 = r2 = 0.5. The result shows

that the prediction model precisely predicts the optimal case. In this exam-

67

�� + ��

��

	(�)

���/21 2
��
⋆
��
�� 2
⋆

��

��

��
⋆

��
⋆

Conditional composition

��

��

(a) An ideal prediction when

r1 = r2 = 0.5
(b) Combination of Google and Baidu

translation services

Figure 4.16: Evaluating conditional structure

ple, when n = 24, the composite service attains the best performance. This

matches the actual result. However, the prediction of execution time is not

so accurate. The best execution time of the composite service calculated by

the model was 7265 milliseconds, while the real result was 8479 millisec-

onds. In the optimal case, execution time of the composite decreased by

nearly 86 percent.

Loop Structure. Consider the case of a composite service that demands

service s1 in a Loop structure. In a simple case, the loop iteration is 2. Sup-

pose that the service s1 combines slow-down and penalty policies specified

by Ps1 and Pp1. Performance prediction of the composite service is shown

in Figure 4.17a. The solid line shows the predicted performance of the loop

composition. In this case the composite service attains the best performance

when n = Popt , where f1(2n) starts surpassing f1(n). We explain this result

as follows:

• When n = 1, by applying Equation 4.10, we have fc(1) � 2
f1(1)

M +

(M−1)max(f1(1), f1(2))
M = 2 α

M + M−1
M α = M+1

M α .

68

�

	(�)

��1
��#

�⋆

(� + 1)�

�
��

Loop composition (� = 2)
��

(a) An ideal prediction
(b) Loop of Yandex translation service (k

= 2)

Figure 4.17: Evaluating loop structure

• When 1 < n ≤ Popt , f1(2n) < f1(n), by applying Equation 4.10, we

have fc(n)�
2 f1(n)
�M/n� +

�M/n�−1
�M/n� max(f1(n), f1(2n)) =

�M/n�+1
�M/n� f1(n). S-

ince f1(n) decreases as n increases, fc(n) decreases when n increases.

• When Popt < n ≤ M, f1(2n) > f1(n), by applying Equation 4.10,

we have fc(n) �
2 f1(n)
�M/n� +

�M/n�−1
�M/n� max(f1(n), f1(2n)) =

2 f1(n)
�M/n� +

�M/n�−1
�M/n� f1(2n). Since f1(2n) > f1(n) and f1(2n) increases as n in-

creases, so fc(n) increases as n increases.

As a real example for this case, consider a loop of Yandex translation ser-

vice with iteration number of 2. This loop is converted into a Sequential

structure of two Yandex translation services. Figure 4.17b shows perfor-

mance prediction of the composite service when translating the 500 para-

graphs document. The solid line is the prediction of the model, while dash

line is the actual execution time of the composite service. The result shows

that, our model precisely predicted the optimal DOP of the composite ser-

vice. In this example, when n = 8, the composite service attains its best

performance. However, predicted execution time is not so precise. The best

69

JapaneseAgricultureDocument

JServerTranslationService_Ja_En

SentenceSpliter

Condition

GoogleTranslationService_En_Vi BingTranslationService_En_Fr

Workflow input ports

TranslatedDocument_Vi TranslatedDocument_En
Output ports

(a) A complex two-hop translation

service

(b) Evaluation of the complex composite

service

Figure 4.18: Evaluating a complex composite service

execution time calculated by the model was 126317 milliseconds, while the

real execution time was 158038 milliseconds. With the optimal configura-

tion the performance improved approximately 80 percent.

4.3.2 Complex Workflow

We consider here a realistic case when a Japanese agriculture expert who

wants to translate a Japanese document that contains two parts, one is infor-

mation about rice and the other is information about fertilizer. The former

is intended to transfer information to Vietnamese farmers, while the latter is

for French fertilizer suppliers. We assume that there is no direct translation

services from Japanese to Vietnamese and French. The Japanese expert does

not want to translate the whole document into Vietnamese or French due to

high cost of the translation. In order to do this task we create a compos-

ite service shown in Figure 4.18a. This composite service is combination

of three translation services with two structures, i.e. Sequential structure

and Conditional structure. First, the document is translated into English

using J-Server translation service. Then, that part of translated document,

70

containing information about rice, is translated into Vietnamese by Google

translation service. The other part, containing information about fertilizer-

s, is translated into French by Bing translation service. J-Server and Bing

employ slow-down and restriction policies with Ps jserver = 4, Pr jserver = 12

and Psbing = 4, Prbing = 14, Google employs slow-down and penalty policies

with Psgoogle = 4 and Ppgoogle = 8. Figure 4.18b shows a performance pre-

diction when the composite service translates a document of 500 paragraphs

(250 paragraphs about rice, 250 paragraphs about fertilizer). The solid line

shows the execution time predicted by our model, while the dash line is the

actual execution time. Our model predicts that the composite service attains

best performance when the number of concurrent processes is 28 (28 con-

current processes of J-Server, 14 concurrent processes of Google, and 14

concurrent processes of Bing) which matches the real result. However pre-

dicted execution time is not so precise, the best execution time calculated

by the model was 16164 milliseconds, while the real result was 19495 mil-

liseconds. With the optimal DOP, execution time of the composite service

decreased by nearly 85%.

Prediction Accuracy

In order to evaluate the accuracy of the proposed model we invoked the

above composite service with 15 different agriculture documents with dif-

ferent sizes ranging from 100 paragraphs to 1500 paragraphs. We used the

following measures to evaluate accuracy of the proposed model in predict-

ing optimal DOP and optimal execution time.

• First we calculate the difference between actual result and the pre-

diction, this difference indicates errors of the prediction: Error (e) =

Actual result - Prediction result.

71

Table 4.2: Prediction accuracy evaluation

Input data
Optimal Degree of Parallelism (DOP) Optimal Execution time (millisecond)

Prediction Actual result

MPE = 0

MAD = 1.07

TS = 0

Prediction Actual result

MPE = 1204.33

MAD = 1204.33

TS = 15

100 paragraphs 28 24 2596 3531

200 paragraphs 24 24 5373 6550

300 paragraphs 24 24 8390 9360

400 paragraphs 24 24 11386 12670

500 paragraphs 24 28 13984 15287

600 paragraphs 28 28 17580 18574

700 paragraphs 24 24 23177 24696

800 paragraphs 24 24 25273 26344

900 paragraphs 24 28 30170 31146

1000 paragraphs 28 28 35567 36627

1100 paragraphs 24 24 42164 43238

1200 paragraphs 28 28 43960 45789

1300 paragraphs 24 24 46757 48043

1400 paragraphs 28 24 54229 55631

1500 paragraphs 28 28 57951 59136

For n time periods where we have actual results and prediction values, we

calculate:

• Mean Prediction Error (MPE): MPE =
n
∑

i=1
(ei)/n

• Mean Absolute Deviation (MAD): MAD =
n
∑

i=1
|ei|/n

• Tracking signal (TS): T S =
n
∑

i=1
ei/MAD

While MAD is a measure that indicates the absolute size of the errors,

the MPE measure indicates the prediction model bias. The ideal value of

MPE is 0, when MPE < 0 the prediction model tends to over-predict, when

MPE > 0 the model tends to under-predict. The tracking signal (T S) checks

whether there is some bias or not. It simply consists of the summation of the

errors over all prediction events. Theoretically, if there is no bias, this sum

should remain close to zero. The division by the MAD aims at measuring

the distance from the mean in terms of MAD. A prediction model has a good

72

prediction accuracy if the value of T S close to zero. A control limit of T S

for a good prediction model is typical in (-4, 4). Table 4.2 shows evaluation

of the model in two aspects:

• Predicting the optimal number of concurrent processes:

– MPE = 0 and MAD = 1.07. This means that the model yields

good predictions; the average absolute error is 1.07 units.

– TS = 0. This means that in overall there is no bias of the predic-

tion. We can assume that our proposed model well predicts the

optimal DOP.

• Prediction of the optimal execution time:

– MPE = MAD = 1204.33. This means that the model tends to

under-predict, with an average absolute error of 1204.33 mil-

liseconds.

– T S = 15. This value of T S shows that the model is not so accu-

rate in predicting the optimal execution time.

The proposed prediction model is not so accurate and always under-predict

the optimal execution time. One reason for this is that our current mod-

el omits some parallel overhead such as time for creating and terminating

threads. The accuracy of the model would be improved by adding the par-

allel overhead time to calculate execution time of an atomic service under

parallel execution. We will consider this issue in our future works.

73

4.4 Conclusion

This this proposed a prediction model that considers the policies of the

atomic service providers in predicting the performance of a composite ser-

vice under parallel execution. To the best of our knowledge, this is the first

attempt to incorporate service providers’ decisions into parallel computing

for service composition. We embedded the proposed policy model to create

different formulae, calculating performance of composite services, for dif-

ferent workflow structures. Four workflow structures are considered in the

proposed model: Sequential structure, parallel structure, conditional struc-

ture and loop structure. Using these formulae we can calculate execution

time of composite services when using parallel execution and estimate the

optimal degree of parallelism for the composite services. Our model is help-

ful to build an architecture to control parallel execution of workflows with

optimal DOP to attain best performance improvement.

We conducted experiments on real-world translation services to evaluate ac-

curacy of our model. The analysis results show that our model has a good

prediction accuracy with regard to identifying optimal degree of parallelism

for composite services. Our model is, however, not so accurate in predicting

the optimal execution time. Our future work includes improving the mod-

el to increase prediction accuracy and extending the model for other QoS

metrics such as cost and reputation.

74

Chapter 5

Implementation of Policy-Aware

Parallel Execution Control

Architecture

We design an architecture that uses our proposed prediction model to con-

trol parallel execution of composite services. This chapter describes some

implementation issues in realizing the architecture. We will implement this

architecture as an extension to the Language Grid platform1.

5.1 Introduction

With the maturing of service computing technologies, various programs and

data have become available as Web services. In NLP for example, many

1The Language Grid: http://langrid.org/en/index.html

75

language resource providers want to share their resources as language ser-

vices. The Language Grid [Ishida, 2011] provides an service-oriented plat-

form which enables service providers registering, sharing and combining

language services. In the Language Grid, service interfaces are standard-

ized according to the defined service types. This allows us to realize various

non-functional requirements by only selecting the appropriate service once

a composite service is modeled based on the standardized interfaces of con-

stituent services.

However, Web services are provided by different service providers with a

wide variety of policies, such as parallel execution policies as we have in-

troduced in previous chapters. When execute a composite service the system

need to consider to satisfy the policies of all service providers concerned,

while optimizing QoS. Previous chapters introduced a model regarding par-

allel execution policies of atomic service to estimate optimal degree of par-

allelism of a composite service where it attain the optimal performance im-

provement. In this chapter, we proposed an implementation of the policy-

aware parallel execution control architecture which use the proposed model

to control parallel execution of composite services.

Our objective is to implemented this architecture as an extended compo-

nent for the Language Grid. To realize this architecture we face with the

following issues:

• The Language Grid introduces Service Workflow Executor to invoke

composite services. Current workflow engines, used in this execu-

tor, lack of parallel and pipelined execution support. To support par-

allel and pipelined execution for workflows we need to integrate an

pipeline engine to the Service Workflow Executor component.

76

• The Language Grid support a dynamic binding for concrete services

in a workflow at run-time. The optimal degree of parallelism of the

workflow changes with different binding services. Therefore, it is

necessary to dynamically generate parallel execution deployment for

workflow at run-time when concrete service is bound.

• In a multiple users environment such as the Language Grid, a con-

crete service may be used in multiple workflows. In this case, if those

workflows are invoked in parallel, regarding parallel execution policy

of the shared service, the architecture should able to allocate suitable

parallel processes for each workflow in order to attain optimal execu-

tion time for all workflows.

5.2 Design Goal

In this section, we first describe a scenario of controlling parallel execu-

tion of a composite service. On a service-oriented collective intelligence

platform like the Language Grid, we need to ensure not to violate service

providers’ policies during execution of a composite service. Then we give

an overview of our proposed architecture.

5.2.1 Scenario

Parallel execution control for single workflow

Take a composite service for two-hop translation deployed on the Language

Grid as an example. This composite service is used to translate documents

77

Translator
(Ja-En)

Translator
(En-Vi)

Two-hop translation service

JServer

Baidu
translate

Concrete translation
services for Ja - En

Google
translate

Bing
translate

Concrete translation
services for En - Vi

Abstract service Concrete service

Figure 5.1: A composite service for two-hop translation

with a language pair which is not supported by one translation service. This

composite service combines two translation services sequentially to do the

translation task. Let take a translation of a document from Japanese and

Vietnamese as an example.

Figure 5.1 shows the overview of the composite service. First, the Japanese

document is translated from Japanese (Ja) to English (En) using a translation

service supporting Ja-En pair. Then, the intermediate translated documen-

t is translated from English to Vietnamese (Vi) using a service supporting

En-Vi pair. We assume that the composite service is defined in a workflow

description language (typically is WS-BPEL). In this composite service de-

scription, the constituent services are defined with only the interfaces, and

they are not bound to any concrete endpoint. These are called abstract ser-

vices. Endpoint of each abstract service is determined when the composite

service is invoked. The service to which an endpoint is bound is called a

concrete service.

78

We show the process of execution of this composite service as follows.

When user send a request of translating a document, user may also need to

specify binding information for concrete services, or in an automatic way,

the system will select suitable concrete services for the composite service.

Many researches have been proposed in selecting services to compose an

optimal composite service. In the context of the Language Grid, Hassine

et al. [Hassine et al., 2011] proposed methods to automatically composing

composite services based on a constraint optimization problem. After con-

crete services are bound, the workflow execution engine start to execute the

workflow. Suppose that the input document is big and can be split into inde-

pendent partitions. In order to reduce execution time, the workflow engine

need to use parallel execution. Data parallelism and pipeline execution can

be used here. The input data is split into multiple partitions, and many par-

titions are streamed to the workflow in parallel. Each service will have to

serve multiple requests in parallel. Due to different parallel execution poli-

cies of concrete services, we need to control parallelism of the workflow to

attain optimal performance improvement.

To provide such parallel execution control architecture for the Language

Grid, we have to deal with several issues. The first issue is to add parallel

and pipelined execution support for current workflow engine. The second

issues is to generate parallel execution control information (parallel execu-

tion deployment) for the workflow, this information is then interpreted by

the extended workflow engine.

Parallel execution control for multiple workflows

Suppose that there is another workflow as shown in Figure 5.2. This is also

two-hop translation service to translate a half of a document from Japanese

79

Translator
(Ja-En)

Translator
(En-Fr)

Translator
(En-Vi)

Figure 5.2: A more complex two-hop translation service

(Ja) to French (Fr) and the other half of the document from Japanese to Viet-

namese (Vi) via English (En). In multiple users environment, this workflow

and the workflow introduced above are invoked in the same time. There

is a case that the Translators for En-Vi in both workflows are bound to the

same concrete service. Using our proposed prediction model introduced in

chapter 4, we can estimate optimal DOP of the two workflows and our ar-

chitecture will generate parallel execution deployments for each workflow.

However, if the two workflow are invoked in parallel, using the generated

parallel execution may violate the parallel execution policy of the service

bound for the Translator (En-Vi). This may result in the increase of total

execution time of two workflows. Therefore, our architecture need to allo-

cate suitable number parallel processes for each workflow in order to attain

minimized execution time of both workflows.

5.2.2 Architecture Overview

Here we proposed an architecture to control parallel execution of composite

services based on parallel execution policies of atomic services. Figure 5.3

gives an overview of this architecture.

80

Workflow Execution Engine

Composite service

��� ��� ���

•Request
•Binding
Information

•Response

Parallel Execution Configurator

•Parallel Execution
Configuration file

Workflow Parallel Execution Optimizer

Parallel Processes Allocation

Optimal DOP
Calculator

Parallel Execution
Deployment Generator

Parallel Processes
Allocator

Parallel Execution
Deployment Updater

Service Usage Monitor

•Binding
Information

Multiple Use Detector

Service Policy Analyzer

Service
policies

Policy
Analyzer

•Parallel
Execution
Policies

•Multiple
workflows
information

Service Request Handler

Figure 5.3: Policy-Aware Parallel Execution Control Architecture

The architecture consists of two parts: A service usage monitor and a par-

allel execution configurator. The service usage monitor gets concrete atom-

ic services endpoint from binding information, these atomic services are

analysed and parallel execution policy of each service is determined. This

component also monitor multiple use of an atomic service, it detects work-

flows which have invocation to the same atomic service. Parallel execution

policies and multiple workflows information then are passed to the Paral-

lel Execution Configurator. This component calculates optimal DOP of a

workflow using our proposed prediction model, and then it generates a par-

allel execution deployment for the workflow. If there is multiple use of an

atomic service from multiple workflows, the configurator will re-calculate

suitable parallel processes for each workflow and update the parallel ex-

ecution development. The workflow execution engine then interprets the

parallel execution development and execute the workflows.

81

Service Container Framework

Composite Service Container

Atomic Service Container

Service Request
Handler

Axis SOAP
(RPC/ENC) Handler

ProtocolBuffers
RPC Handler
Java Method

Handler

Parallel Execution
Controller

Service Usage
Monitor

Parallel Execution
Configurator

Service Workflow
Executor

BPEL Engine
WS-BPEL Workflow

JavaScript Engine
JavaScript Workflow

UIMA Engine
UIMA Workflow

…

Application system

Service Component
Executor

Axis SOAP
(RPC/ENC) Invoker

ProtocolBuffers
RPC Invoker

…

Java Method
Invoker

Service
Supervisor

Service Request
Handler

Service Container Framework

Axis SOAP
(RPC/ENC) Handler

ProtocolBuffers
RPC Handler
Java Method

Handler

…

Service Decorator
Thread Control

Decorator

Result Filter
Decorator

…

Service Wrapper
Executor

Java-coded Wrapper

…

Resources

Program

Data

SOAP Protocol Buffers Java method invocation

Figure 5.4: Policy-Aware Parallel Execution Control for Language Grid

This architecture can serve as middle-ware for SOA platforms to support

and control parallel execution of composite services. Typically, in this work,

we implement this architecture as an extended component in the Language

Grid Architecture [Murakami et al., 2011]. Figure 5.4 shows the extension

of the Language Grid architecture with parallel execution control. We focus

on two implementation issues to realize this extension. The first issue is to

extend the workflow execution engine to support parallel execution. The

second issue represent parallel execution control information to be easily

interpreted by the workflow execution engine.

82

5.3 Parallel Execution Support for Workflow

Execution Engine

The Language Grid was built based on SOA. It uses a service workflow

engine, such as WS-BPEL execution engine to execute workflows. Howev-

er, this workflow engine lacks of parallel and pipelined execution support.

Processing pipeline based approach is another approach for combining dif-

ferent tasks. This approach focuses on combining language resources in a

pipeline to process large-scale data. It has good parallel and pipelined ex-

ecution support. One typical example is UIMA [Ferrucci and Lally, 2004].

UIMA has become one of the most popular architecture in NLP community,

it is core technique for IBM to build the well-known Watson DeepQA sys-

tem [Ferrucci et al., 2010]. To support parallel and pipeline execution for

the Language Grid, we integrated UIMA engine as a workflow execution

engine in the Language Grid. We address the following issues to realize this

integration.

5.3.1 Mapping Service Interface Invocation and Stand-off

Annotation

The service workflow approach and processing pipeline approach based on

two different models. The former employs service interface invocation mod-

el, whereas the latter follows stand-off model. Figure 5.5 shows examples

of the these two approaches.

In service workflow approach (Figure 5.5a), each service is defined with

83

Text

Tokens

Tokens

POSes

Annotated text with
Tokens and POSes

(a) Service workflow

Tokenizer

POS Tagger

Parser

Text

Text

Tokens

Text

Tokens

POSes

Text

Tokens

POSes

ParseTrees

(b) Processing pipeline

Figure 5.5: Service workflow and processing pipeline

an functional interface. For example, a Tokenizer service is defined by a

function with input is plain text and output is set of tokens. In order to

combined services in a workflow, the services’ interface must be compati-

ble, i.e, output of a previous service matches with input of the later service

in the workflow. With the stand-off model, on the other hand, in process-

ing pipeline approach, language resources are defined as annotators. In a

pipeline, each annotator processes with document and enriches the docu-

ment with annotation. The annotated document is represent in a Common

Data Exchange Format (CDEF) and the CDEF document is passed along

components in the pipeline.

CDEF plays an important role in helping the components in a pipeline to

work together. Many de-facto standards have been proposed to define CDEF

such as in [Vanhoutte, 2004, Ide and Romary, 2009]. In UIMA, CDEF ba-

84

<?xml version="1.0" encoding="UTF-8"?>
<annotatedDoc>
 <doc id="1" mimeType="text"
 docString="Text of the document"/>
 <annotations>
 <annot type="POS" docID="1" begin="1"
 end="5" componentID="POSTager">
 <fs>
 <f name="lemma" value="Text"/>
 <f name="postag" value="noun"/>
 ...
 </fs>
 </annot>
 ...
 </annotations>
</annotatedDoc>

Figure 5.6: CDEF structure in UIMA

sically consists of two parts: one representing document text, and the other

representing annotations.

In order to interwork two kinds of systems, first we need to map between

service inter-face and CDEF format. The mapping is defied so as to map

input/output of language service to annotation type in CDEF. We define

CDEF Maker and CDEF Extractor to conduct the mapping and create two

wrappers: Language Service Wrapper and Annotator Wrapper, see Figure

5.7a and Figure 5.7b respectively. The former is used to wrap an annotator

as a language service. The latter is used to wrap a language service as an

annotator.

• CDEF Extractor manipulates with CDEF to extract annotation and

maps it with in-put/output of a service. Annotation type and structure

are extracted from CDEF document. The Extractor then maps the

annotation with a corresponding object type which is served as input

or output of a service.

85

AnnotatorCDEF
Maker

CDEF CDEF
Extractor

CDEF

Service outputService input

(a) Language service wrapper

Language
Service

CDEF
Extractor

CDEF
MakerCDEF CDEFAnnotation

Service
result

Annotation’s offset

(b) Annotator wrapper

Figure 5.7: Wrappers

• CDEF Maker maps input/output of language services to annotation

types and creates CDEF document.

With this mapping, processing pipeline components can be wrapped as ser-

vices in service workflow framework and can be combined with other ser-

vices to define composite service. Language service can be wrapped as an

annotator and used in pipeline flow.

5.3.2 Adapting Pipeline Engine as Service Workflow Exe-

cution Engine

First we adapt the pipeline engine to be able to interpret different struc-

tures of workflow such as sequential structure, parallel structure, condition-

al structure and loop structure by introducing different flow controller to

pipeline engine to interpret and execute with these structures: Sequential

flow controller, Parallel flow controller, Conditional flow controller, and

Loop flow controller.

To use the pipeline engine to execute a composite service, we then con-

vert the composite service representation to a pipeline representation while

keeping semantic of the composite service. Each atomic service in the com-

posite service is wrapped as an annotator by using the Annotator Wrapper.

These annotators are bound to the pipeline representation.

86

5.4 Parallel Execution Control

5.4.1 Service Usage Monitor

First, the system needs to determine parallel execution policies of atomic

services from the binding information. For an atomic service, the Policy

Analyzer will check whether the policy of the service is already exist in

the database or not. If the policy does not exist, the Policy Analyzer will

conduct a test for the service. Based on the policy model, introduced in

chapter 3, it determines the policy pattern of the service and stores the policy

information into the service policies database.

At the same time, the system monitor multiple use of an atomic service in

workflows. From the multiple requests and binding information, the Mul-

tiple Use Detector will check whether an atomic service is bound in more

than one workflows. The Detector will return all information of workflows

that bind to the shared service.

The parallel execution policies of atomic services and the multiple work-

flows information are passed to the Parallel Execution Controller part.

5.4.2 Parallel Execution Configurator

Workflow Parallel Execution Optimizer

Using our proposed prediction model (chapter 4), the Workflow Parallel

Execution Optimizer calculate optimal DOP of each workflow regarding

parallel execution of all atomic services. In order to execute the workflow

with optimal parallelism, we define an configuration file to represent parallel

87

<deployment>
 <service>
 <inputQueue endpoint="inputQueue" size="DOP" />
 <topDescriptor>
 <import location="TwoHopTransDescriptor.xml" />
 </topDescriptor>
 <analysisEngine async="true" key="TwoHopTransDescriptor">
 <delegates>
 <analysisEngine key="FirstTransDescriptor">
 <scaleout numberOfInstances="DOP" />
 </analysisEngine>
 <analysisEngine key="SecondTransDescriptor">
 <scaleout numberOfInstances="DOP" />
 </analysisEngine>
 </delegates>
 </analysisEngine>
 </service>
</deployment>

Figure 5.8: Example of a parallel execution deployment

execution deployment for the workflow. This is an xml file specifying infor-

mation to be interpreted by the workflow engine. Figure shows an example

of a parallel execution deployment file of the two-hop translation workflow

specifying by an pipeline representation file “TwoHopTransDescritor.xml”.

This workflow consists of two translation annotators. The workflow will

be deployed as a service with an input queue. The size of the input queue

determines the number of data partitions can be processed in parallel. An-

notators in the workflow are processed asynchronously to support pipelined

execution. The number of instances of each annotator is set as DOP of

the workflow. With this deployment file, the workflow engine will initi-

ated multiple threads of each annotator to process multiple data partitions

concurrently.

88

Parallel Processes Allocation.

Suppose there are k workflow w1,w2, ...,wk defined as follows: w1 =

{s,s12, ...,s1l}, w1 = {s,s22, ...,s2m}, ... Using our prediction model, we

can create formulae to calculate execution time of the workflows:

f1(n) = prediction f omula1(fs(n), fs12
(n), ... fs1m(n))

f2(n) = prediction f omula2(fs(n), fs22
(n), ... fs2m(n))

...

These workflows have a binding to the same service s. In the case that these

workflows are not invoked in parallel, the optimal DOP of each workflow is

estimate by using our proposed prediction model. popt1 , popt2 , ..., poptk are

optimal DOPs of w1,w2, ...,w3 respectively. Consider the case that k work-

flows are invoked concurrently with optimal DOPs. In this case, the number

of concurrent requests sent to service s is: popt1 + popt2 + ...+ poptk (if s

belongs to a conditional branch of one or more workflows, this equation is

calculated differently). If parallel execution policy of the service s is restric-

tion, performance of the service remains stable when number of concurrent

requests to the service exceeds a specified number. In this case, executing

workflows with optimal DOPs still gains optimal performance improvement

for all workflows. However, if the parallel execution policy of the service s

is penalty policy, since the number of concurrent requests sent to s exceeds

the penalty point, the performance of service s goes down. This may cause

execution time of workflows increase. In order to attain optimal reduction

gain of execution time of all workflows, the system should allocates suit-

able numbers of parallel processes for workflows, let’s say (p1, p2, ..., pk).

89

P =
k
∑
1

pi is number of parallel requests sent to service s. These values are

determined so that
k
∑
1

fi(pi) is minimized, where:

f1(p1) = prediction f omula1(fs(P), fs12
(p1), ... fs1m(p1))

f2(p2) = prediction f omula2(fs(P), fs22
(p1), ... fs2m(p1))

...

After determining the optimal parallel processes allocation, the system dy-

namically update parallel execution deployment file of each workflow. Fi-

nally, workflow execution engine interprets new parallel execution deploy-

ment configuration and execute the workflows.

5.5 Experiment

In this experiment we try to evaluate the impact of the parallel control ar-

chitecture in maintaining the optimal parallel execution of workflows. We

conduct experiments on the composite services introduced in the scenario.

• The first two-hop translation service (w1) is sequential composition of

two translation services. A client sends a request and binding infor-

mation to translate a document of 500 paragraphs from Japanese to

Vietnamese via English. The binding information is as follows: the

first translator is bound to J-Server translation service, and the second

translator is bound to Google translation service.

J-Server and Google translation services are analysed to determine

90

parallel execution policies. J-Server has slow-down and restriction

policies with slow-down point p js = 4, restriction point p jr = 12.

While Google translation service employs slow-down and penalty

policies with slow-down point pgs = 4, penalty point pgp = 8. Ap-

ply the policy model execution time of J-Server translation service

and Google translation service are calculated with f jserver(n) and

fgoogle(n). Suppose that the document is split into M1 = 500 inde-

pendent partitions, n partitions are sent to the composite service in

parallel. Using the prediction model for sequential structure (see sec-

tion 4.2.3), the execution time of the two-hop translation service is

predicted by following equations:

f1(n)� max(f jserver(n), fgoogle(n))+
min(f jserver(n), fgoogle(n))

�M1/n�

The estimated optimal DOP is popt1 = 12. With this DOP, the predict-

ed minimum execution time is 22,230 milliseconds (actual execution

time is 22,993 milliseconds).

• The second two-hop translation service contains sequential structure

and conditional structure. A client send a request and binding infor-

mation to translate another Japanese agricultural document contain-

ing 500 paragraphs. A half of the document (250 paragraphs), con-

taining information about rice, is translated Vietnamese via English.

The other half, containing information about fertilizer, is translate to

French (Fr) via English. The binding information is as follows: the

first translator (to translate whole document from Ja - En) is bound

to Baidu translation service. The second translator (to translate a half

of document from En - Vi) is bound to Google translation service.

91

The third translator (to translate a half of document from En -Fr) is

bound to Bing translation service. The concrete translation services

are analysed, following are parallel execution policies of the services:

Baidu has slow-down and restriction policies with slow-down point

pbas = 6 and restriction point pbar = 12, Bing employs slow-down

and restriction policies with slow-down point pbis = 6 and restriction

point pbir = 14. fbaidu(n), fbing(n), and fgoogle(n) are formulae to

calculate execution time of Baidu, Bing and Google translation ser-

vices respectively. Suppose that the document is split into M2 = 500

partitions and n concurrent are processed concurrently. Using our

prediction model for sequential structure and conditional structure we

form a formula to predict execution time of the composite service as

following:

f2(n)� max(fbaidu(n),max(fgoogle(n/2)+ fbing(n/2)))

+
min(fbaidu(n),max(fgoogle(n/2)+ fbing(n/2))

�M2/n�

Using this equation, the estimated optimal DOP of the composite ser-

vice is popt2 = 28. With this DOP, the minimum execution time of

the composite service is 22,230 milliseconds (actual execution time is

23,530 milliseconds). Total time for the two composite services finish

processing the two documents is 45,460 milliseconds.

The system generates parallel execution deployment file for each composite

service with the estimated optimal DOP. We create a client invoking the two

composite services to process the two documents in parallel. Google trans-

lation service is invoked in both workflows, in this case Google translation

92

service need to serve 26(12 + 28/2) concurrent requests. The execution

time of composite services in this case are: f1(12) = 52,584 milliseconds,

and f2(28) = 47,645 milliseconds. The execution time has increased ap-

proximately 136% for the first composite service and 102% for the second

one compared to the optimal case of invoking single workflow. Total time

for two composite service finish processing the two documents is 52,584

milliseconds.

The system re-calculates DOPs of composite services in order to attain op-

timal reduction gains of execution time. Using equation in previous section,

new values of DOPs, p1 and p2, are determined so that: f1(p1)+ f2(p2) is

minimized. Where f1(p1) and f2(p2) are adjusted as following:

f1(p1) = max(f jserver(p1), fgoogle(p1 + p2/2))

+
min(f jserver(p1), fgoogle(p1 + p2/2))

�M1/p1�
f2(p2) = max(fbaidu(p2),max(fgoogle(p2/2+ p1)+ fbing(p2/2)))

+
min(fbaidu(p2),max(fgoogle(p2/2+ p1)+ fbing(p2/2))

�M2/p2�

Solving this problem, the system determines p1 = 6, p2 = 20. The sys-

tem updates parallel execution deployment of each composite service with

new value of DOP. Execution time of composite are: f1(6) = 31,083 mil-

liseconds and f2(20) = 24,458 milliseconds. With the new value of DOPs,

the execution time only increases 40% for the first composite service and

4% for the second composite service. Total time for the two services finish

processing the two documents is 31,083 milliseconds.

93

Table 5.1: Summary of experiment results

Invoking two composite services in parallel
Invoking two composite

services sequentially
Without parallel

process allocation

Use parallel

process allocationComposite

service Opt.

DOP

Execution

time (ms)

Total

time

Opt.

DOP

Execution

time (ms)

Total

time

Opt.

DOP

Execution

time (ms)

Total

time

w1 12 22230 12 52584 6 31083

w2 28 23530
45760

28 47645
52584

20 24458
31083

Table 5.1 shows summary of performance improvement of the two example

of composite services when using our proposed architecture. The exper-

iment results show that, the parallel control architecture significantly in-

crease the efficiency of parallel execution of composite service. Based on

parallel execution policies of atomic services, the architecture maintains an

optimal degree of parallelism of each composite service.

5.6 Conclusion

In this chapter we presented the implementation of an architecture which

uses our propose policy model and prediction model to control parallel ex-

ecution of composite service in SOA platforms. The architecture can serve

as a middle-ware for SOA platforms to support and control parallel exe-

cution of composite services. Typically we integrated this architecture as

an extended component for the Language Grid platform. We addressed the

following two implementation issues in realize this system:

Support parallel and pipelined execution for the workflow engine

We adapted a pipeline execution engine as a workflow engine to sup-

port parallel and pipelined execution of composite services. As a case

94

study, we adapted UIMA pipeline engine as a workflow engine in the

Language Grid.

Control parallel execution of composite services

We defined a deployment file to represent parallel execution of a com-

posite service. This file specifies degree of parallelism (DOP) of the

composite service. The workflow engine interprets the file to execute

the composite service with the specified DOP. By specifying suitable

DOP, the system can control parallel execution of composite services

to attain the optimal reduction gain of execution time.

This architecture helps SOA platforms dynamically control parallel execu-

tion of composite services, based on parallel execution policies of all atomic

services, to attain optimal performance improvement. The architecture can

significantly improve parallel execution efficiency of composite services.

95

Chapter 6

Conclusion

6.1 Contributions

The thesis presented three contributions toward a policy-aware parallel ex-

ecution control system for enhancing parallel execution efficiency of com-

posite services. The first is the proposal of policy model which is used to

capture parallel execution policies of web services. The second is a predic-

tion model to predict performance of composite services with regard to all

atomic services’ policies. The last is a policy-aware parallel execution con-

trol architecture that serves as a middle-ware for SOA platforms to support

and control parallel execution of composite services to attain optimal exe-

cution time reduction. Moreover, we have integrated this architecture as an

extended component for the Language Grid platform. We, in this section,

review these contributions. After that, we will describe few areas for future

research.

96

1. In web service environments, services are provided to users by var-

ious service providers. When invoking services with parallel execu-

tion, service users may observe different performance improvement

behaviors (patterns) of different services. The reasons for the per-

formance improvement patterns may vary such as providers’ com-

puting resources, the services’ implementation or policies of service

providers. However, service users normally have no clear image about

the reasons causing the performance improvement patterns. To be

simple, from the view of service users, we regarded the performance

improvement behavior of a service as the service’s policy. We pro-

posed a policy model to capture different service policies. Three poli-

cies have been observed and modelled: Slow-down policy, restriction

policy and penalty policy. The model is designed to be simple to be

used in predicting parallel execution performance of composite ser-

vices. The evaluation results revealed that our model can accurately

capture parallel execution policies of web services.

2. In service composition, many works have been proposed to optimize

QoS of composite services, no studies considered parallel execution

policies of atomic services to find optimal parallelism for a compos-

ite service. We proposed an novel prediction model which embeds

parallel execution policies of atomic services into formula to calcu-

late performance of composite services under parallel execution. We

also considered different workflow structures of composite services

in creating the formulae. From the calculation, we can estimate the

optimal parallelism of a composite service, where the service attain

the best performance improvement. The experiment results showed

97

that our prediction model has good accuracy in predicting the optimal

parallelism of composite services.

3. To enhance the efficiency of parallelism in SOA platforms, regard-

ing parallel execution policies of services, we need to control paral-

lel execution of services to gain optimal performance improvement.

We designed a policy-aware parallel execution control architecture

to support and control parallel execution of composite services. By

integrating a pipeline engine and a workflow engine, our proposed ar-

chitecture able to support parallel and pipelined execution to speed-up

execution of composite services. As atomic services can be dynam-

ically bound to a composite service, from the binding information

our architecture analyzes policies of atomic services and dynamical-

ly adjust the optimal degree of parallelism of the composite service

based on the prediction. To deal with multiple uses of one atomic

service in different workflows, to maintain the optimal gain of ex-

ecution time reduction, the architecture use the prediction model to

allocate suitable parallel processes for each workflows. As the imple-

mentation, we integrated this architecture as an middle-ware for the

Language Grid platform1. Experiment results show that this parallel

execution control architecture significantly improve efficiency paral-

lelism of composite services in the Language Grid.

1The Language Grid: http://langrid.org/

98

6.2 Future Direction

With the new idea on using parallel execution policies in web service com-

position as presented in this thesis, following future research directions are

suggested:

• Extending coverage of the policy model

In this thesis, we defined three types of parallel execution policies

of web services which are slow-down policy, restriction policy and

penalty policy. However these three types of policies may not cor-

rectly cover all types of web service policies. There is possibility of

having a scale-out policy if we use paid services, if user pay more

they will get higher performance improvement when using parallel

execution. Or there is also a policy specify limitation of number of

concurrent requests on a certain amount of time. To make our model

more rigorous, more analyses on larger number of web services and

more parameters for parallel execution such as number of concurrent

requests per second are needed.

• Parallel execution policies on multiple QoS criteria

In this thesis, we mainly focus on analysing execution time of ser-

vices in modeling the parallel execution policies. However, there are

also changing behaviors of different QoS criteria such as cost, and

reputation when we invoke a service with parallel execution. One

typical example is that, if a user invoke the service with high num-

ber of concurrent requests then user need to pay more. There is also

trade-off between execution time and cost when using parallel exe-

99

cution. Consider multiple QoS criteria in modeling parallel execution

policies makes the model more accurate and useful for composing and

optimizing composite services.

• Dynamic parallel execution policies

In designing the proposed model, we assumed that parallel execu-

tion policy of one service is static. This means that, the limit on the

number of concurrent process for the service does not change even

the input data size is changed. However, in cloud environments, it

seems highly likely that service providers will dynamically change

their policies in response to requests with different sizes. To capture

the policies more correctly, the model need to consider the dynamic

changes of the service policies.

100

Publications

Journal

1. Mai Xuan Trang, Yohei Murakami, and Toru Ishida. Policy-Aware

Service Composition: Predicting Parallel Execution Performance of

Composite Services. IEEE Transactions on Services Computing
(TSC), special issue on Cloud Services Meet Big Data, 2015.

International Conferences

1. Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida.

Interoperability between Service Composition and Processing

Pipeline: Case Study on the Language Grid and UIMA. In Proceed-
ings of the 6th International Joint Conference on Natural Language
Processing (IJCNLP), pp. 1052-1056, Nagoya, 2013. (short paper).

2. Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida.

Integration of Workflow and Pipeline for Language Service Compo-

sition. In Proceedings of the 9th Language Resources and Evaluation
Conference (LREC 2014), pp. 3829-3836, Iceland, 2014.

3. Mai Xuan Trang, Yohei Murakami, and Toru Ishida. Policy-Aware

Optimization of Parallel Execution of Composite Service. In Pro-
ceedings of the 12th IEEE International Conference on Services Com-
puting (SCC), pp. 106-113, New York, 2015. (Best Paper Award)

4. Mai Xuan Trang, Yohei Murakami, and Toru Ishida. Modeling Par-

allel Execution Policies of Web Services. In Proceedings of the 6th

EAI International Conference on Cloud Computing, Korea, 2015.

101

Workshops

1. Mai Xuan Trang, Yohei Murakami, Taketo Sasaki and Toru Ishi-

da. Language Mashup: Personalized Platform for Language Service

Composition. In Proceedings of the IEICE Technical Report. Artifi-
cial Intelligence and Knowledge Processing, IEICE Tech. Rep., vol.

113, no. 441, AI2013-44, pp. 41-46, Osaka, 2014.

2. Mai Xuan Trang, Yohei Murakami, and Toru Ishida. A Policy-

Aware Parallel Execution Control Mechanism for Language Appli-

cation. The Second International Workshop on Worldwide Language
Service Infrastructure, Kyoto, 2015.

Other Publications

1. Visit Hirankitti and Mai Xuan Trang. A Meta-reasoning Approach

for Reasoning with SWRL Ontologies. In Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists, pp.

112-117, Hong Kong, 2011.

2. Visit Hirankitti and Mai Xuan Trang. A Meta-logical Approach for

Reasoning with an OWL 2 Ontology. Journal of Ambient Intelligence
and Humanized Computing, 3(4), pp. 293-303, 2012.

3. Visit Hirankitti and Mai Xuan Trang. Reasoning on OWL2 Ontolo-

gies with Rules Using Metalogic. In Electrical Engineering and In-
telligent Systems, pp. 95-108, Springer New York, 2013.

102

Bibliography

[Al-Moayed and Hollunder, 2010] Al-Moayed, A. and Hollunder, B.

(2010). Quality of service attributes in web services. In Proceedings

of the Fifth International Conference on Software Engineering Advances

(ICSEA 2010), pages 367–372. IEEE.

[Allen et al., 2003] Allen, G., Goodale, T., Radke, T., Russell, M., Sei-

del, E., Davis, K., Dolkas, K. N., Doulamis, N. D., Kielmann, T.,

Merzky, A., et al. (2003). Enabling applications on the grid: A grid-

lab overview. International Journal of High Performance Computing

Applications, 17(4):449–466.

[Altintas et al., 2005] Altintas, I., Birnbaum, A., Baldridge, K. K., Sudholt,

W., Miller, M., Amoreira, C., Potier, Y., and Ludaescher, B. (2005). A

framework for the design and reuse of grid workflows. In Scientific Ap-

plications of Grid Computing, pages 120–133. Springer.

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor

approach to achieving large scale computing capabilities. In Proceedings

of the spring joint computer conference, pages 483–485. ACM.

103

[Andrews et al., 2003] Andrews, T., Curbera, F., Dholakia, H., Goland, Y.,

Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., et al.

(2003). Business process execution language for web services.

[Ardagna and Pernici, 2007] Ardagna, D. and Pernici, B. (2007). Adaptive

service composition in flexible processes. IEEE Transactions on Soft-

ware Engineering, 33(6):369–384.

[Bel, 2010] Bel, N. (2010). Platform for automatic, normalized annotation

and cost-effective acquisition of language resources for human language

technologies. panacea. Procesamiento del Lenguaje Natural, 45:327–

328.

[Berthold et al., 2008] Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R.,

Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., and Wiswedel, B.

(2008). Knime: The konstanz information miner. In Data analysis, ma-

chine learning and applications, pages 319–326. Springer.

[Bramantoro and Ishida, 2009] Bramantoro, A. and Ishida, T. (2009). User-

centered qos in combining web services for interactive domain. In Pro-

ceedings of the Fifth International Conference on Semantics, Knowledge

and Grid (SKG 2009), pages 41–48. IEEE.

[Bray et al., 1998] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,

and Yergeau, F. (1998). Extensible markup language (xml). World Wide

Web Consortium Recommendation REC-xml-19980210. http://www. w3.

org/TR/1998/REC-xml-19980210, 16.

[Canfora et al., 2008] Canfora, G., Di Penta, M., Esposito, R., and Villani,

M. L. (2008). A framework for qos-aware binding and re-binding of

104

composite web services. Journal of Systems and Software, 81(10):1754–

1769.

[Cardoso et al., 2004] Cardoso, J., Sheth, A., Miller, J., Arnold, J., and

Kochut, K. (2004). Quality of service for workflows and web service

processes. Web Semantics: Science, Services and Agents on the World

Wide Web, 1(3):281–308.

[Chinnici et al., 2007] Chinnici, R., Moreau, J.-J., Ryman, A., and Weer-

awarana, S. (2007). Web services description language (wsdl) version

2.0 part 1: Core language. W3C recommendation, 26:19.

[Deelman et al., 2005] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil,

Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G. B., Good, J., et al.

(2005). Pegasus: A framework for mapping complex scientific work-

flows onto distributed systems. Scientific Programming, 13(3):219–237.

[Ferrucci et al., 2010] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J.,

Gondek, D., Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E.,

Prager, J., et al. (2010). Building watson: An overview of the deepqa

project. AI magazine, 31(3):59–79.

[Ferrucci and Lally, 2004] Ferrucci, D. and Lally, A. Uima: an architec-

tural approach to unstructured information processing in the corporate

research environment. Natural Language Engineering, 10(3-4):327–348.

[Goecks et al., 2010] Goecks, J., Nekrutenko, A., Taylor, J., et al. (2010).

Galaxy: a comprehensive approach for supporting accessible, repro-

ducible, and transparent computational research in the life sciences.

Genome Biol, 11(8):R86.

105

[Gordon et al., 2006] Gordon, M. I., Thies, W., and Amarasinghe, S.

(2006). Exploiting coarse-grained task, data, and pipeline parallelism

in stream programs. In ACM SIGOPS Operating Systems Review, vol-

ume 40, pages 151–162. ACM.

[Goto et al., 2011] Goto, S., Murakami, Y., and Ishida, T. (2011).

Reputation-based selection of language services. In Proceedings of

the 2011 IEEE International Conference on Services Computing (SCC),

pages 330–337. IEEE.

[Guan et al., 2006] Guan, Y., Ghose, A. K., and Lu, Z. (2006). Using con-

straint hierarchies to support qos-guided service composition. In Pro-

ceedings of the 2006 IEEE International Conference on Web Services

(ICWS’06), pages 743–752. IEEE.

[Gudgin et al., 2003] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau,

J.-J., Nielsen, H. F., Karmarkar, A., and Lafon, Y. (2003). Simple object

access protocol (soap) 1.2. World Wide Web Consortium.

[Hassine et al., 2006] Hassine, A. B., Matsubara, S., and Ishida, T. (2006).

A constraint-based approach to horizontal web service composition. In

The Semantic Web-ISWC 2006, pages 130–143. Springer.

[Hassine et al., 2011] Hassine, A. B., Matsubara, S., and Ishida, T. (2011).

Horizontal service composition for language services. In The Language

Grid, pages 53–67. Springer.

[Humbetov, 2012] Humbetov, S. (2012). Data-intensive computing with

map-reduce and hadoop. In Proceedings of the 6th International Con-

106

ference on Application of Information and Communication Technologies

(AICT 2012), pages 1–5. IEEE.

[Ide and Romary, 2009] Ide, N. and Romary, L. (2009). Standards for lan-

guage resources. arXiv preprint arXiv:0911.1842.

[Ishida, 2011] Ishida, T. (2011). The language grid: Service-oriented col-

lective intelligence for language resource interoperability. Springer Sci-

ence & Business Media.

[Jaeger et al., 2004] Jaeger, M. C., Rojec-Goldmann, G., and Mühl, G.

(2004). Qos aggregation for web service composition using workflow

patterns. In Proceedings of the 8th International Enterprise distributed

object computing conference (EDOC 2004), pages 149–159. IEEE.

[Leymann et al., 2001] Leymann, F. et al. (2001). Web services flow lan-

guage (wsfl 1.0).

[Lin et al., 2012] Lin, D., Shi, C., and Ishida, T. (2012). Dynamic service

selection based on context-aware qos. In Proceedings of the Ninth In-

ternational Conference on Services Computing (SCC 2012), pages 641–

648. IEEE.

[Martin et al., 1997] Martin, R. P., Vahdat, A. M., Culler, D. E., and An-

derson, T. E. (1997). Effects of communication latency, overhead, and

bandwidth in a cluster architecture, volume 25. ACM.

[Missier et al., 2010] Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Ne-

nadic, A., Dunlop, I., Williams, A., Oinn, T., and Goble, C. (2010). Tav-

erna, reloaded. In Scientific and Statistical Database Management, pages

471–481. Springer.

107

[Murakami et al., 2011] Murakami, Y., Lin, D., Tanaka, M., Nakaguchi, T.,

and Ishida, T. (2011). Service grid architecture. In The Language Grid,

pages 19–34. Springer.

[Oliveira et al., 2012] Oliveira, D., Ogasawara, E., Ocaña, K., Baião, F.,

and Mattoso, M. (2012). An adaptive parallel execution strategy for

cloud-based scientific workflows. Concurrency and Computation: Prac-

tice and Experience, 24(13):1531–1550.

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service-oriented comput-

ing: Concepts, characteristics and directions. In Proceedings of the

Fourth International Conference on Web Information Systems Engineer-

ing (WISE 2003), pages 3–12. IEEE.

[Pautasso and Alonso, 2006] Pautasso, C. and Alonso, G. (2006). Parallel

computing patterns for grid workflows. In Workshop on Workflows in

Support of Large-Scale Science, pages 1–10. IEEE.

[Preist, 2004] Preist, C. (2004). A conceptual architecture for semantic web

services. In The Semantic Web–ISWC 2004, pages 395–409. Springer.

[Raicu et al., 2012] Raicu, I., Foster, I., Zhao, Y., Szalay, A., Little, P.,

Moretti, C. M., Chaudhary, A., and Thain, D. (2012). Towards data in-

tensive many-task computing.

[Sun and Chen, 2010] Sun, X.-H. and Chen, Y. (2010). Reevaluating am-

dahl’s law in the multicore era. Journal of Parallel and Distributed Com-

puting, 70(2):183–188.

[Tallent and Mellor-Crummey, 2009] Tallent, N. R. and Mellor-Crummey,

J. M. (2009). Effective performance measurement and analysis of multi-

108

threaded applications. In ACM Sigplan Notices, volume 44, pages 229–

240. ACM.

[Taylor et al., 2014] Taylor, I. J., Deelman, E., Gannon, D. B., and Shield-

s, M. (2014). Workflows for e-Science: scientific workflows for grids.

Springer Publishing Company, Incorporated.

[van Der Aalst et al., 2003] van Der Aalst, W. M., Ter Hofstede, A. H., Kie-

puszewski, B., and Barros, A. P. (2003). Workflow patterns. Distributed

and parallel databases, 14(1):5–51.

[Vanhoutte, 2004] Vanhoutte, E. (2004). An introduction to the tei and the

tei consortium. Literary and linguistic computing, 19(1):9–16.

[Yu and Bouguettaya, 2008] Yu, Q. and Bouguettaya, A. (2008). Frame-

work for web service query algebra and optimization. ACM Transactions

on the Web (TWEB), 2(1):6.

[Yu et al., 2007] Yu, T., Zhang, Y., and Lin, K.-J. (2007). Efficient algo-

rithms for web services selection with end-to-end qos constraints. ACM

Transactions on the Web (TWEB), 1(1):6.

[Zeng et al., 2003] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J.,

and Sheng, Q. Z. (2003). Quality driven web services composition. In

Proceedings of the 12th international conference on World Wide Web,

pages 411–421. ACM.

[Zeng et al., 2004] Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M.,

Kalagnanam, J., and Chang, H. (2004). Qos-aware middleware for we-

b services composition. IEEE Transactions on Software Engineering,

30(5):311–327.

109

