Title
Neofunction of ACVR1 in fibrodysplasia ossificans progressiva

Author(s)
Hino, Kyosuke

Citation
Kyoto University (京都大学)

Issue Date
2016-05-23

URL
https://doi.org/10.14989/doctor.r13031

Right

Type
Thesis or Dissertation

Textversion
ETD

Kyoto University
Neofunction of ACVR1 in fibrodysplasia ossificans progressiva

Kyosuke Hino,a,b, Makoto Ikaya,a,1 Kazuhiko Horigome,b, Yoshihisa Matsumotoa,c,d, Hayao Ebise, Megumi Nishioa, Kazuya Sekiguchi,e,f, Mitsuaki Shibataa, Sanae Nagataa, Shuichi Matsuda,f and Junya Toguchida,a,c,f,1

*Department of Cell Growth and Differentiation, Center for iPSC Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; bIPS Cell-Based Drug Discovery Group, Innovative Drug Discovery Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, 554-0022, Japan; cDepartment of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; dDepartment of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan; eOmics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, 554-0022, Japan; and fDepartment of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.

Significance

By utilizing patient-specific induced pluripotent stem cells (iPSCs) of fibrodysplasia ossificans progressiva (FOP) and gene-corrected (rescued) iPSCs, we discovered a novel mechanism in ectopic bone formation: The disease-causing mutation endows ACVR1 with the ability to transmit the signal of an unexpected ligand, Activin-A. We believe this is a milestone study for FOP research and provides a novel platform for searching therapeutic targets of this intractable disease.

Conflict of interest statement: K. Hino, K. Horigome, and H.E. are employees of Sumitomo Dainippon Pharma Co., Ltd. and M.I. and J.T. are supported by a research fund from Sumitomo Dainippon Pharma Co., Ltd.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

Data deposition: The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession nos. GSE62873 and GSE64549)

1To whom correspondence may be addressed. Email: mikeya@ci-ra.kyoto-u.ac.jp or togush@frontier.kyoto-u.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510540112/-/DCSupplemental.
Actin-A treatment significantly increased the luciferase activity in FOP-iMSCs, but not in resFOP-iMSCs (Fig. 1 B and C and SI Appendix, Fig. S1). This result was confirmed in another rescue clone and another patient-derived FOP- and resFOP-iMSCs (SI Appendix, Fig. S2). The phosphorylation of SMAD1/5/8; cytoplasmic BMP signaling transducers, and the expression of downstream genes of BMP signaling were also induced specifically in FOP-iMSCs (Fig. 1 D–F). Global gene-expression profiling revealed that Actin-A treatment substantially transduced BMP-like signaling in FOP-iMSCs, but not in resFOP-iMSCs (Fig. 1 G–J). These results indicated that Actin-A abnormally transduced BMP signaling in FOP-iMSCs.

Molecular Mechanisms of Abnormal BMP Signaling Evoked by Actin-A.

Next, to check the necessity and sufficiency of FOP-ACVR1 on BMP signaling, loss-of-function and gain-of-function studies were performed. Treatment of siRNAs specific for type I receptors in FOP-iMSCs revealed a critical requirement of FOP-ACVR1 in Abnormal BMP signaling (Fig. 2A; knockdown efficiencies are shown in SI Appendix, Fig. S3). Treatment of siRNAs specific for type II receptors showed the involvement of both ACVR1B and BMPR2 in this abnormal activation (SI Appendix, Fig. S3). Conversely, overexpression of the mutant ACVR1 found in FOP patients conferred Actin-A responsiveness in U2OS cells (Fig. 2C). This neofunction of FOP-ACVR1 was also confirmed in HEK293 and HepG2 cells (SI Appendix, Fig. S4). These results indicated that Actin-A activates abnormal BMP signaling through FOP-ACVR1.

Because Actin-A normally transduces TGF-β–SMAD2/3 signaling (10, 32–34), the phosphorylation of SMAD2/3 and activation of a TGF-β–responsive luciferase reporter construct (CAGA-Luc) were analyzed. The levels of phosphorylation and activation in FOP-iMSCs were similar to those in resFOP-iMSCs (SI Appendix, Fig. S5). Knockdown experiments revealed the involvement of ACVR1B and ACVR2A in this signaling (SI Appendix, Fig. S6). These results indicated that Actin-A transduces TGF-β–SMAD2/3 signaling through ACVR1B/ACVR2A in FOP-iMSCs.

To dissect the molecular mechanism of how FOP-ACVR1 transduces abnormal BMP signaling, we assessed to which receptors Actin-A was potentially bound. Treatment of the soluble extracellular region of FOP-ACVR1 (ACVR1-Fc; same as WT-ACVR1) did not affect the Activin-A–dependent activation of BRE-Luc in FOP-iMSCs (Fig. 2D), whereas treatment of ACVR2A-Fc and ACVR2B-Fc strongly and BMPR2-Fc weakly decreased the activity (Fig. 2E). Because knockdown experiments indicated signal transduction of Actin-A on BMP signaling through FOP-ACVR1, these results suggested that Actin-A is indirectly bound to FOP-ACVR1. Next, we checked whether the binding affinity of FOP-ACVR1 to Actin-A with or without type II receptors is altered. Cross-linking experiments revealed that the binding affinity was slightly enhanced when either ACVR2A or ACVR2B was coexpressed (Fig. 2F). FOP mutations are found in the intracellular region of ACVR1 around the regulatory GS domain and protein kinase domain, and thought to destabilize the inactive state of ACVR1 through the binding of inhibitory protein FKBP12 (12, 15, 17, 37). Thus, we checked whether treatment of FK506, an inhibitor of FKBP12, conferred Actin-A–dependent activation of BMP signaling in resFOP-iMSCs. As expected, treatment of FK506 rendered the responsiveness of Actin-A in resFOP-iMSCs (Fig. 2G), although FK506 enhanced the constitutive activity in FOP-iMSCs (SI Appendix, Fig. S7). Taken together, the abnormal reactivity of FOP-ACVR1 to Actin-A could be caused, at least partially, by differential affinity for Actin-A and the dysregulation of inhibitory mechanisms. However, further investigation is required for more detailed understanding of the aberrant activation of BMP signaling by Actin-A.

Enhanced Chondrogenesis of FOP-iMSCs via BMP and TGF-β Signaling by Actin-A Stimulation.

Because HO occurs through endochondral ossification in FOP patients (1–6) and pathway analysis of FOP-iMSCs revealed that Actin-A induces chondrogenic pathways in FOP-iMSCs (Fig. 1H), the impact of Actin-A on chondrogenesis was assessed. After treatment of chondrogenic basal medium with TGF-β3 for 7 d, we found the glycosaminoglycan (GAG) production/DNA ratio (GAG/DNA) in 2D micromass of FOP-iMSCs was comparable to that of resFOP-iMSCs (Fig. 3A and B).
Treatment of BMP-7 induced slightly higher GAG/DNA in FOP-iMSCs compared with resFOP-iMSCs, consistent with the idea that cells expressing FOP-ACVR1 have higher sensitivity for BMP ligands. These results also indicated that both TGF-β and BMP signaling play critical roles for chondrogenesis in the 2D micromass assay of both FOP-iMSCs and resFOP-iMSCs. In sharp contrast, treatment of Activin-A induced significantly higher GAG/DNA in FOP-iMSCs cultured with Activin-A, and which was inhibited by 1 μM SB431542 (SB) treatment. TGF, 1 ng/mL TGF-β3. (C) Treatment of BMP-7 induced slightly higher GAG/DNA in FOP-iMSCs compared with resFOP-iMSCs, consistent with the idea that cells expressing FOP-ACVR1 have higher sensitivity for BMP ligands. These results also indicated that both TGF-β and BMP signaling play critical roles for chondrogenesis in the 2D micromass assay of both FOP-iMSCs and resFOP-iMSCs. In sharp contrast, treatment of Activin-A induced significantly higher GAG/DNA in FOP-iMSCs cultured with Activin-A, and which was inhibited by 1 μM SB431542 (SB) treatment. TGF, 1 ng/mL TGF-β3. (C) Higher expression levels of early chondrogenic markers (ACAN, COL2A1, and SOX9) in the micromass of FOP-iMSCs cultured with Activin-A. (D) Upstream analysis using genes up- or down-regulated at least twofold after chondrogenic differentiation with or without Activin-A. (E) DMH1 (1 μM), but not SB (1 μM) inhibit the expression of BMP downstream target genes 16 h after stimulation by Activin-A. (F and G) Activin-A-triggered enhanced chondrogenesis of 2D chondrogenic micromass of FOP-iMSCs by Activin-A stimulation, which was suppressed by Activin-A inhibitors. Results are the mean ± SD, n = 4–8.

Fig. 3. Enhanced chondrogenesis of 2D chondrogenic micromass of FOP-iMSCs by Activin-A stimulation, which was suppressed by Activin-A inhibitors. (A–G) Two-dimensional chondrogenic micromass assay of FOP- and resFOP-iMSCs at day 7. (A) Representative images of Alcian blue staining. (Scale bar, 200 μm.) (B) Enhanced GAG/DNA in the micromass of FOP-iMSCs cultured with Activin-A, and which was inhibited by 1 μM DMH1 or 1 μM SB431542 (SB) treatment. TGF, 1 ng/mL TGF-β3. (C) Higher expression levels of early chondrogenic markers (ACAN, COL2A1, and SOX9) in the micromass of FOP-iMSCs cultured with Activin-A. (D) Upstream analysis using genes up- or down-regulated at least twofold after chondrogenic differentiation with or without Activin-A. (E) DMH1 (1 μM), but not SB (1 μM) inhibit the expression of BMP downstream target genes 16 h after stimulation by Activin-A. (F and G) Activin-A-triggered enhanced chondrogenesis of 2D chondrogenic micromass of FOP-iMSCs by Activin-A stimulation, which was suppressed by Activin-A inhibitors. Results are the mean ± SD, n = 4–8.

CD437 and R667 (38, 39) and confirmed reduction of GAG/DNA in a concentration-dependent manner (SI Appendix, Fig. S8).

To gain molecular insights underlying the enhanced chondrogenesis, unbiased transcriptome analysis of FOP-iMSCs and resFOP-iMSC with or without Activin-A treatment was performed. We identified two BMP signaling components, BMP4 and BMP9, as upstream regulators in FOP-iMSCs (Fig. 3D, Right), consistent with the fact that Activin-A abnormally transduces BMP signaling in FOP-iMSCs. This analysis also identified TGF-β1 and BMPR1A as upstream regulators in FOP-iMSCs and resFOP-iMSCs treated with Activin-A (Fig. 3D, Left and Center), indicating that BMP signaling as well as TGF-β signaling were activated not only in FOP-iMSCs, but also resFOP-iMSCs during chondrogenesis, even though short-term administration of Activin-A did not induce BMP-SMAD1/5/8 signaling in resFOP-iMSCs (Fig. 1 C–F).
Because our data indicated that both BMP and TGF-β signaling were activated in Activin-A-treated FOP-iMSCs during chondrogenesis (Fig. 3D, Center), a specific inhibitor of either BMP signaling (DMH1) or TGF-β signaling (SB431542) was administrated to discriminate the involvement of these two signaling pathways in the observed enhanced chondrogenesis. Treatment of DMH1 diminished enhanced GAG/DNA in FOP-iMSCs (Fig. 3A and B), consistent with Activin-A abnormally transducing BMP signaling in FOP-iMSCs. Intriguingly, treatment of SB431542 also abrogated enhanced GAG/DNA in FOP-iMSC, but did not decrease the level of two downstream BMP signaling targets, ID1 and ID3 (Fig. 3E), suggesting that the abrogation was not caused by a side effect of SB431542 on BMP signaling. Taken together, these results strongly suggest that the enhanced chondrogenesis in FOP-iMSCs is caused by the dual activation of BMP and TGF-β signaling via the administration of Activin-A.

Enhanced Chondrogenesis of FOP-3DCI Pellets in Vivo. Although the 2D micromass assay is suitable for the verification of exogenous factors, the 3D chondrogenic induction (3DCI) pellet assay enables the analysis of more mature chondrocytes in vitro and also allows the transplantation of the pellets in vivo. After culture in chondrogenic basal medium with TGF-β3, BMP-7, or Activin-A for 17 d, GAG/DNA of 3DCI pellets from FOP-iMSCs (FOP-3DCI pellets) were observed as comparable, slightly higher, and markedly higher than those from resFOP-iMSCs (resFOP-3DCI pellets), respectively (Fig. 4A), consistent with the results from the 2D micromass culture (Fig. 3A and B). Histological analyses revealed that the FOP-3DCI pellets cultured with Activin-A contained more mature chondrocytes than did resFOP-3DCI pellets (Fig. 4B). Quantitative PCR analysis revealed that markers for mature chondrocytes (40), such as COL10A1, VEGFA, RUNX2, and MMP13, were induced stronger in FOP-3DCI pellets than in resFOP-3DCI pellets (Fig. 4C and SI Appendix, Fig. S9). In addition, we observed that FKS06 treatment enhanced chondrogenesis in resFOP-3DCI pellets treated with Activin-A (SI Appendix, Fig. S10). These results indicated that Activin-A treatment enhanced chondrogenic differentiation in FOP-3DCI pellets in vitro.

Chondrogenesis is a critical step in endochondral ossification through which ectopic bones are formed in FOP patients. To further characterize the FOP-3DCI pellets, we subcutaneously transplanted the pellets into the backs of immunodeficient mice and observed whether calcification without stimulus occurred. Before transplantation, no calcification was observed in 3DCI pellets (SI Appendix, Fig. S11). Four weeks after transplantation, X-ray photos showed a dense radiopaque mass in 9 of 10 mice transplanted with FOP-3DCI pellets, but only 1 in 10 mice transplanted with resFOP-3DCI pellets (Fig. 4D and SI Appendix, Fig. S12A). Microcomputed tomography (μCT) images showed multiple calcified nodules in the entire mass (Fig. 4E and SI Appendix, Fig. S12B). Histological analyses revealed enlarged chondrocytes surrounded by a calcified matrix (Fig. 4F), which closely resembled the calcified zone in growth plates. Contribution of transplanted cells to the central cartilaginous zone was confirmed by immunostaining with anti-human nuclei antibody (HNA), whereas HNA-positive and -negative cells were detected in the surface calcified zone, indicating the contribution of both transplanted human cells and host mouse cells. Because 3DCI pellets were no longer exposed to exogenous Activin-A after transplantation, these results indicated that FOP-3DCI pellets spontaneously proceeded to the last step of differentiation of growth plate chondrocytes in vivo.
tracellular matrix-rich cartilage in resFOP-iMSCs, hypertrophic
demonstrating the contribution of Activin-A to endochondral ossi-
SCID mice showed bone and cartilage formation (Fig. 5), clearly
cotransplanted with Activin-A
here present a novel in vivo model of FOP to evaluate the role
Discussion
These results suggest that Activin-A-suppressed HO in R206H-ACVR1 knock-in mice by
Hatsell et al. (41). This finding supports our study, which suggests
Activin-A is a crucial trigger for HO in both FOP model mice and
FOP patients, and modulating Activin-A-FOP-ACVR1 signaling is
a promising drug target for FOP. In the Hatsel et al. report, however,
FK506 did not endow Activin-A responsiveness in WT-
ACVR1 overexpressing cells, whereas we show that FK506
confirmed Activin-A-dependent activation of BMP signaling in
resFOP-iMSCs and enhanced 3D chondrogenesis (Fig. 2G and SI
Appendix, Fig. S10). This discrepancy might be because of the
different concentrations of FK506 tested.

The current prevailing concept of the FOP pathology is that
missense mutations endow ACVR1 with constitutive activity or hy-
peractivity after ACVR1 binds to BMP. In the present report, we
demonstrated a novel third mechanism, where FOP-ACVR1 transduces BMP signaling in response to Activin-A. In FOP-iMSCs,
Activin-A transduced both TGF-β and BMP signaling through
ACVR1B and FOP-ACVR1, respectively. This conclusion was
supported by unbiased transcriptome analyses, which suggested that
during chondrogenesis, Activin-A stimulation induced the dual ac-
tivation of BMP and TGF-β signaling in FOP-iMSCs. Consistently,
we found administration of either SB431542 or DMH1, specific
inhibitors of TGF-β and BMP, respectively, abrogated the enhanced
chondrogenesis in FOP-iMSCs. Based on these observations, we
propose that enhanced chondrogenesis in FOP-iMSCs by Activin-A
is a result of abnormal activation of BMP signaling along
with normal TGF-β signaling. More intriguingly, this neofunction
could disrupt tissue homeostasis by dysregulating BMP signaling
intensity. This intensity is stabilized via transcriptional negative
feedback loops (33). For example, GREM1 is known to be a
downstream gene of BMP signaling, and its protein functions as a
BMP ligand antagonist (32, 33, 42). Consistent with our findings,
Activin-A stimulation in FOP-iMSCs induced stronger expression of
GREM1 than that in resFOP-iMSCs (SI Appendix, Fig. S16). Im-
portantly, GREM1 does not antagonize Activin-A signaling (42).
These results suggest that Activin-A-stimulated BMP signaling in
FOP-iMSCs is outside the negative feedback regulation loops net-
work. Therefore, aberrant induction and escaping from negative
feedback regulation should be hallmarks of BMP signaling in FOP,
which stimulates the formation of ectopic bones. Understanding how
canonical ligands and noncanonical ligands, as demonstrated in this
report, are involved in the activation of BMP signaling in the clinical
situation, remains an important issue awaiting future clarification.

Materials and Methods
Full experimental procedures and associated references are available in SI
Appendix, SI Materials and Methods.

Cell Culture. The induction and maintenance of induced neural crest cells (iNCCs)
and iMSCs derived from iPSCs were previously described (43). FOP-iPSCs used in
this study [FOP-iPSCs from patient 1 and 2, previously described as vFOP4-1 and
vFOP5-22 (25), respectively] harbor the R206H heterozygous mutation in ACVR1,
and gene-corrected resFOP-iPSCs were generated by BAC-based homologous
recombination (26). All experiments shown in Figs. 1–5 were performed using
FOP-iPSCs from patient 1 and resFOP-iPSCs (cl1) (26).

FOP-ACVR1 Specific Ligand Screening.
FOP- and resFOP-iMSCs transiently transfected with BRE-Luc and CMV-Renilla were seeded into 384-well plates
and treated with TGF-β superfamily ligands. After 16-h incubation, relative luciferase units (RLU) were measured. In Fig. 18, the highest concentrations tested in SI Appendix, Fig. S1 are shown.

Two-Dimensional Chondrogenic Induction. iMSCs (1.5 × 10^5) were suspended in 5 mL of chondrogenic basal medium and subsequently transferred to fibronectin-coated 24-well plates (BD Biosciences). After 1 h, a total of 1 mL of the chondrogenic basal medium supplemented with several ligands or inhibitors was added. Micromass cultures were maintained at 37 °C under 5% (vol/vol) CO_2 for 7 days.

Three-Dimensional Chondrogenic Induction. iMSCs (2.5 × 10^5) were suspended in chondrogenic basal medium supplemented with 100 ng/mL Activin-A, 100 ng/mL BMP-7, or 10 ng/mL TGF-β3, and subsequently transferred to PrimeSurface 96U (Sumitomo Bakelite) (Fig. 4A) or 15-mL tubes (Corning). Cells were centrifuged to form pellets and maintained at 37 °C under 5% (vol/vol) CO_2. The culture medium was changed every 2–3 d.

In Vivo Calcification of 3DCI Pellets. The 3DCI pellets cultured with 100 ng/mL Activin-A for 21 d in vitro were wrapped in 0.5 cm × 1 cm Gelfoam (Pfizer) and transplanted beneath the dorsal skin of immunodeficient NOD/SCID mice (CLEA Japan) (44). Four weeks later, transplanted 3DCI pellets were harvested and analyzed.

Supporting Information (SI Appendix)

Neofunction of ACVR1 in fibrodysplasia ossificans progressiva

Kyosuke Hino, Makoto Ikeya, Kazuhiko Horigome, Yoshihisa Matsumoto, Hayao Ebise, Megumi Nishio, Kazuya Sekiguchi, Mitsuaki Shibata, Sanae Nagata, Shuichi Matsuda, and Junya Toguchida

SI Materials and Methods

SI References

SI Figures

Fig. S1. Detailed data of FOP-ACVR1 specific ligand screening.

Fig. S2. Clone 2 of patient 1- and clone 1 and 2 of patient 2-derived FOP-iMSCs also transduced abnormal BMP signaling, but resFOP-iMSCs did not.

Fig. S3. Knock-down efficiencies of siRNAs.

Fig. S4. Overexpression of the FOP-ACVR1 (R206H) conferred Activin-A responsiveness in HEK293 and HepG2.

Fig. S5. Activin-A transduced TGF-β-SMAD2/3 signaling similarly in FOP- and resFOP-iMSCs.

Fig. S6. Activin-A transduces TGF-β-SMAD2/3 signaling through ACVR1B and ACVR2A in FOP-iMSCs.

Fig. S7. FK506 enhanced the constitutive activity of FOP-iMSCs.

Fig. S8. GAG/DNA in the micromass of FOP-iMSCs cultured with Activin-A was inhibited by RARγ agonists.
Fig. S9. Expression levels of chondrogenic markers in FOP and resFOP-3DCI pellets cultured with Activin-A.

Fig. S10. FK506 treatment enhanced 3D chondrogenesis of resFOP-iMSCs treated with Activin-A.

Fig. S11. Histology of 3DCI pellets from FOP- and resFOP-iMSCs cultured with Activin-A (100 ng/ml).

Fig. S12. X-ray images and sectioned μCT image of FOP-3DCI pellets spontaneously calcified in vivo.

Fig. S13. X-ray images of transplanted FOP- and resFOP-iMSCs with Dox-inducible Activin-A expressing cells 6 weeks after transplantation.

Fig. S14. Administration of Activin-A with transplants did not accelerate the calcification.

Fig. S15. GAG value (A) and GAG/DNA (C), but not DNA content (B) were enhanced in FOP-3DCI pellets cultured with Activin-A for 21 days.

Fig. S16. Activin-A stimulation induced the expression of \textit{GREM1} in FOP-iMSCs higher than in resFOP-iMSCs.

Fig. S17. Dox concentration-dependent Activin-A production by C3H-DoxOn-hINHBA cells.

SI Tables

Table S1. siRNA sequences.

Table S2. Antibodies for western blotting and immunostaining.

Table S3. Primers for RT-qPCR.
SI Materials and Methods

TGF-β superfamily ligands and related reagents. All TGF-β superfamily ligands with the exception of Inhibin-A (Raybiotech Inc., Norcross, GA, USA), growth differentiation factor-15 (GDF-15; Abnova Corporation, Taipei, Taiwan) and GDF-6 and -7 (GeneTex Inc., Irvine, CA, USA) were purchased from R&D Systems Inc. (Minneapolis, KA, USA). FLRG, FST, Anti-Activin-A antibody, ACVR1-Fc, BMPR1-Fc, ACVR2A-Fc, ACVR2B-Fc and BMPR2-Fc were purchased from R&D Systems. DMH1 and CD437 were purchased from Tocris Bioscience (Bristol, UK). SB-431542, FK506, and R667 were purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO, USA), Apollo Scientific Ltd. (Cheshire, UK) and Toronto Research Chemicals Inc. (Ontario, Canada), respectively. Activin-A and BMP-7 were used at 100 ng/ml, and TGF-β3 at 10 ng/ml unless otherwise noted.

Cell culture. iPSCs were maintained in primate ES cell medium (ReproCELL Incorporated, Tokyo, Japan) supplemented with 4 ng/mL recombinant human FGF2 (Wako Pure Chemical Industries, Ltd., Osaka, Japan). The induction and maintenance of iNCCs and iMSCs were previously described (1). Briefly, iNCCs were maintained in chemically defined medium (CDM) supplemented with FGF2 and recombinant human EGF (R&D Systems), and we used up to 20 passages in this study. iMSCs were induced and maintained in αMEM (Invitrogen Co., Carlsbad, CA, USA) supplemented with 10% (v/v) FBS (Nichirei Inc., Tokyo, Japan), 5 ng/mL FGF2 and 0.5% penicillin and streptomycin (Invitrogen). FOP-iPSCs used in this study (FOP-iPSCs from patient 1 and 2, previously described as vFOP4-1 and vFOP5-22 (2), respectively) harbor the R206H heterozygous mutation in ACVR1, and gene-corrected resFOP-iPSCs were generated by
BAC-based homologous recombination (3). All experiments shown in Fig. 1-5 were performed using FOP-iPSCs from patient 1 and resFOP-iPSCs (cl1) (3). Other clones’ data are shown in SI Appendix, Fig. S2. COS (monkey kidney cells), C3H10T1/2 (murine multipotent mesenchymal cells), U2OS (human osteosarcoma cells), HEK293 (human embryonic kidney cells) and HepG2 (human Hepatocellular carcinoma cells) were obtained from ATCC, and LentiX293T was obtained from Takara Bio Inc. (Shiga, Japan). Cells were maintained in DMEM (Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% (v/v) FBS and 1 mM Na-pyruvate (Invitrogen) (COS and C3H10T1/2) or in DMEM (Sigma-Aldrich) supplemented with 10% (v/v) FBS (U2OS, HEK293, HepG2 and LentiX293). To prepare C3H10T1/2-expressing Dox-inducible hINHBA (C3H-DoxOn-hINHBA), we inserted hINHBA cDNA into PB-TAC-ERN (KW111), which constitutively expresses the neomycin (G418) resistance gene along with the rtTA transactivator element and mediates doxycycline (Dox)-dependent activation of hINHBA controlled by tetO promoter (PB-TAC-ERN-hINHBA) (4, 5). After transfecting PB-TAC-ERN-hINHBA vector into C3H10T1/2, the neomycin-resistant population was selected. Activin-A production in vitro was confirmed by ELISA (SI Appendix, Fig. S17).

Luciferase assay. The BRE-Luc reporter was purchased from Addgene (Cambridge, MA, USA) (6). The CAGA-Luc reporter was constructed as previously described (7). The pRL-CMV renilla luciferase reporter (Promega Corporation, Madison, WI, USA) was transiently transfected and used for normalization. Expression vectors for FOP mutant receptors were constructed using the KOD-Plus-Mutagenesis Kit (TOYOBO CO., LTD., Osaka, Japan) and inserted into a pcDNA™-DEST40 vector. For transient expression,
FuGene® HD (Promega) or Lipofectamine® 2000 (Invitrogen, for RNAi experiments) were used according to the manufacturer's instructions. Luciferase activity was measured using the dual luciferase reporter assay system (Promega), and the luminescence signal was measured on EnVision® Multilabel Reader (PerkinElmer Co., Ltd, Waltham, MA, USA) according to the manufacturer's instructions. siRNAs specific for type I or II receptors were purchased from Thermo Fisher Scientific Inc. (Silencer® Select Pre-designed siRNA, Waltham, MA, USA). Sequence information is shown in Table S1. For inhibition assay with Fc-fusion receptors, Activin-A (final 30 ng/mL) was incubated with Fc-fusion receptors (final concentrations of 0.1, 1 and 10 µg/mL) for 2 hours at 37 °C under 5% CO₂, and Activin-A and Fc-fusion receptors were added to FOP-iMSCs transiently transfected with BRE-Luc and CMV-Renilla.

Western Blotting. SDS-PAGE and blotting with whole-cell lysates were performed by standard procedures. Protein bands were detected with ECL Prime Western Blotting Detection Reagent (GE Healthcare, Little Chalfont, UK) and visualized using BIO-RAD Molecular Imager® Chemi-Doc™ XRS+ with Image Lab™ software (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The antibodies used in this study are described in Table S2.

Quantitative PCR analysis. Total RNA was purified with the RNeasy Kit (Qiagen Inc., Valencia, CA, USA) and treated with the DNase-one Kit (Qiagen) to remove genomic DNA. Total RNA (0.3 µg) was reverse transcribed for single-stranded cDNA using random primers and Superscript III reverse transcriptase (Invitrogen) according to the manufacturer’s instructions. Quantitative PCR was performed with Thunderbird SYBR
qPCR Mix (TOYOBO) and analyzed with the StepOne real-time PCR system (Applied Biosystems, Waltham, MA, USA). Primer sequences are described in Table S3. 3D chondrogenic differentiated pellets were homogenized by Multi-Beads Shocker (Yasui Kikai Corporation, Osaka, Japan) according to the manufacturer's instructions.

Microarray experiments. To show the general activation of BMP downstream genes in FOP-iMSCs by Activin-A treatment, FOP- and resFOP-iMSCs were stimulated with 100 ng/mL Activin-A, 100 ng/mL BMP-7 or 10 ng/mL TGF-β3, and after 16 hours incubation, mRNA was extracted. To analyze the enhanced chondrogenesis in FOP-iMSCs by Activin-A treatment at the molecular level, 2D chondrogenic induction was performed in FOP- and resFOP-iMSCs stimulated with or without 100 ng/mL Activin-A. After 7 days incubation, mRNA was extracted. RNA was reverse transcribed, biotin-labeled and hybridized to Human Genome U133 Plus 2.0 Array (Fig. 1F-I) or GeneChip Human Gene 1.0 ST Expression Array (Fig. 3D), which were subsequently washed and scanned according to the manufacturer’s instructions (Affymetrix, Inc., Santa Clara, CA, USA). Raw CEL files were imported into GeneSpring GX 12.6.1 software (Agilent Technologies, Santa Clara, CA, USA), and expression values were calculated with the MAS 5.0 algorithm (Fig. 1F-I) or RMA16 algorithm (Fig. 3D). PCA and hierarchical clustering were analyzed by GeneSpring GX. Pathway analysis and upstream analysis were performed by Ingenuity pathway analysis (Qiagen).

Binding and Affinity Cross-linking. A SNAP-tag (New England Biolabs, Ipswich, MA, USA) or V5-tag was fused in-frame to the N terminus of hACVR2A and hACVR2B or C terminus of hACVR1, respectively, and inserted into a pLentiTO vector (Thermo Fisher Scientific). Recombinant human Activin-A was iodinated using Pierce Pre-Coated
Iodination Tubes (Thermo Fisher Scientific) according to the manufacturer’s instructions. Receptors were transiently transfected into LentiX293T cells by TransIT®-293 Transfection Reagent (Mirus Bio LLC., Madison, WI, USA). After 48 h incubation, cells were washed with PBS and incubated with 125I-Activin-A in PBS for 1 h at room temperature. After washes with PBS, cells were incubated with 0.5 mM disuccinimidyl suberate in HBSS for 1 h at room temperature, with TBS for 30 min at 4 °C and solubilized in 1% (v/v) TritonX100 in TBS. Protein bands were visualized using Typhoon FLA 7000 (GE Healthcare).

2D chondrogenic induction. 2D chondrogenic induction was performed using a previously described protocol with modification (8). Briefly, iMSCs (1.5×10^5) were suspended in 5 µL of chondrogenic basal medium (DMEM: F12 (Invitrogen), 1% (v/v) ITS + Premix (BD Biosciences), 0.1 µM dexamethasone (WAKO), 0.17 mM AA2P (Sigma-Aldrich), 0.35 mM Proline (Sigma-Aldrich), 0.15% (v/v) glucose (Sigma-Aldrich), 1 mM Na-pyruvate, 2 mM GlutaMax-I (Invitrogen) and 1% (v/v) FBS) and subsequently transferred to fibronectin-coated 24-well plates (BD Biosciences). After 1 h, a total of 1 mL of the chondrogenic basal medium supplemented with several ligands or inhibitors was added. Micromass cultures were maintained at 37 °C under 5% CO$_2$ for 7 days. Differentiation properties were assayed by qPCR analysis, GAG quantification and Alcian Blue staining (9). Briefly, induced cells were fixed for 30 minutes with 4% paraformaldehyde (WAKO) and rinsed with PBS. These cells were then stained overnight with Alcian Blue solution (1% Alcian Blue, pH 1 (MUTO PURE CHEMICAL CO., LTD, Tokyo, Japan) and destained with acetic acid solution.
3D chondrogenic induction. 3D chondrogenic induction (3DCI) was performed using a previously described protocol with modification (8). Briefly, iMSCs (2.5 x 10^5) were suspended in 0.5 mL of chondrogenic basal medium supplemented with 100 ng/mL Activin-A, 100 ng/mL BMP-7 (BMP) or 10 ng/mL TGF-β3 (TGF), and subsequently transferred to PrimeSurface 96U (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) (Fig. 4A) or 15 mL tubes (Corning Inc., Corning, NY, USA). Cells were centrifuged to form pellets and maintained at 37 °C under 5% CO₂. The culture medium was changed every 2-3 days. Fixation and staining of the 3DCI pellet cultures were performed as previously described (8).

GAG value. The GAG content was quantified in pellets with the Blyscan Glycosaminoglycan Assay Kit (Biocolor Ltd., Belfast, UK). The DNA content was quantified using the PicoGreen dsDNA Quantitation Kit (Invitrogen).

Immunohistochemistry. Paraffin-embedded sections were deparaffinized, and for human specific Anti-Nuclei Antibody, antigen retrieval was performed by microwave (300 W, 20 min). Samples were blocked with Blocking One (Nacalai Tesque, Inc.) for 60 min and then incubated with human specific Anti-Nuclei Antibody (EMD Millipore Corporation, Billerica, MA, USA) or Collagen I Antibody (Novus Biologicals, Littleton, CO, USA) diluted in Can Get Signal ® immunostain solution B (TOYOBO) for 16-18 h at 4 °C. Next, samples were washed several times in 0.2% tween20 (Sigma-Aldrich) in PBS and incubated with Goat anti-Mouse IgG1 Secondary Antibody Alexa Fluor® 568 conjugate (Invitrogen) or Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate (Invitrogen) diluted in Can Get Signal ® immunostain solution B for 1 h at room temperature. DAPI (10 μg/mL) was used to counterstain nuclei. Samples
were observed by BZ-9000E (KEYENCE CORPORATION, Osaka, Japan).

In vivo calcification of 3DCI pellets. 3DCI pellets cultured with 100 ng/mL Activin-A for 21 days in vitro were wrapped in 0.5 cm x 1 cm Gelfoam® (Pfizer Inc., New York, NY, USA) and transplanted beneath the dorsal skin of immunodeficient NOD/ShiJie-scid Jcl (NOD/SCID) mice (CLEA Japan, Inc., Tokyo, Japan) (10). Four weeks later, transplanted 3DCI pellets were harvested, fixed with 4% paraformaldehyde for 24 h, embedded in paraffin, sectioned and stained with HE, von Kossa, Alcian blue, as previously reported (8), and human specific Anti-Nuclei Antibody. For X-ray images, mice were anesthetized with isoflurane (Abbvie Limited, Berkshire, UK), immobilized and X-rayed using µFX-1000 (Fujifilm Corporation, Tokyo, Japan) at 50 kV, 100 µA. Transplanted 3DCI pellets were scanned using X-ray CT systems (Fig. 4E: Latheta LCT-200, Hitachi Aloka Medical, Ltd., Tokyo, Japan; SI Appendix, Fig. S12B: inspeXio SMX-100CT, Shimadzu Corporation, Kyoto, Japan) and analyzed by VGStudio MAX 2.0 (Volume Graphics GmbH, Heidelberg, Germany) according to the manufacturer's instructions.

iMSCs transplantation with Activin-A producing cells. FOP- (right leg) and resFOP-iMSCs (left leg) (4 x 10^6 respectively) were transplanted into the gastrocnemius muscle of NOD/SCID mice with C3H-DoxOn-hINHBA (5 x 10^5), which can achieve continuous exposure of Activin-A on transplanted iMSCs in vivo. In the Dox-induced group, 1 mg/mL Dox (Sigma-Aldrich) was administered via drinking water with 10 mg/mL sucrose (Nacalai Tesque, Inc.) for two weeks following transplantation. Six weeks after transplantation, transplanted cells were analyzed. µCT images were scanned
using inspeXio SMX-100CT, and bone volume was analyzed by TRI/3D-BON (Ratoc System Engineering Co., Ltd., Tokyo, Japan) according to the manufacturer's instructions. Transplanted cells were harvested, fixed with 4% paraformaldehyde for 24 h, embedded in paraffin, and sectioned and stained with HE, von Kossa, Safranin O, human specific Anti-Nuclei Antibody and Collagen I Antibody. Safranin O staining was performed using the Safranin O Stain Kit (IHC WORLD, LLC., Ellicott, MD, USA) according to the manufacturer's instructions.

Statistics. The statistical significance of all experiments was calculated by Prism 6 (GraphPad Software, Inc., La Jolla, CA, USA). P values less than 0.05 were considered statistically significant.
SI References

Fig. S1. Detailed data of FOP-ACVR1 specific ligand screening. FOP- and resFOP-iMSCs transiently transfected with BRE-Luc and CMV-Renilla were seeded into 384 well plates, and stimulated by ligands. After 16 hours incubation, luciferase activity was measured. Results are the mean ± standard error (SE). N = 3-4.
Fig. S2. Clone 2 of patient 1- and clones 1 and 2 of patient 2-derived FOP-iMSCs transduced abnormal BMP signaling, but resFOP-iMSCs did not. (A) BRE-Luc activity in FOP- and resFOP-iMSCs from clone 2 of patient 1 stimulated by Activin-A or 10 ng/mL BMP-4. (B) BRE-Luc activity in FOP- and resFOP-iMSCs from patient 2 stimulated by Activin-A or BMP-7. Results are the mean ± standard error (SE). N = 4. n.s., no significant difference; *, P < 0.05; ***, P < 0.001 by Dunnett’s multiple comparisons t-test compared to the no ligand treatment control. Note all experiments in Fig. 1-5 were performed using FOP- and resFOP clone 1 from patient 1.
Fig. S3. Knock-down efficiencies of siRNAs. FOP-iMSCs transiently transfected with siRNAs specific for type I receptors or type II receptors were incubated for 16 hours, and RNA was extracted. N = 1.
Fig. S4. Overexpression of the FOP-ACVR1 (R206H) conferred Activin-A responsiveness in HEK293 and HepG2. Cells transiently transfected with BRE-Luc, CMV-Renilla and WT- or FOP-ACVR1 were stimulated with 50 ng/mL Activin-A or 100 ng/mL BMP-7 in HEK293 (A) or 50 ng/mL BMP-7 in HepG2 (B). Results are the mean ± standard error (SE). N = 2.
Fig. S5. Activin-A transduced TGF-β-SMAD2/3 signaling similarly in FOP- and resFOP-iMSCs.

(A) Representative image of western blot analysis. Activin-A induced phosphorylation of SMAD2/3 similarly in FOP- and resFOP-iMSCs. ActA, 100 ng/mL Activin-A; TGF, TGF-β3 10 ng/mL. (B) Quantification of phosphorylation levels. Activin-A, 100 ng/mL; TGF-β3, 10 ng/mL. (C) Activin-A increased CAGA-Luc activity similarly in FOP- and resFOP-iMSCs. Cells were stimulated with ligands for 3 hours at 37 °C under 5% CO₂. Results are the mean ± standard error (SE). N = 3 (Western blot) or N = 4 (CAGA-Luc). n.s., no significant difference; *, P < 0.05; **, P < 0.01 by Student’s t-test compared to the value of resFOP treated with the same condition.

<table>
<thead>
<tr>
<th></th>
<th>resFOP</th>
<th>FOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) ActA TGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-SMAD2/3 (60/52k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SMAD2/3 (60/52k)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>resFOP</th>
<th>FOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) ActA TGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-SMAD2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative intensity (p-SMAD2/3/Total SMAD2/3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-)</th>
<th>Activin-A</th>
<th>TGF-β3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-)</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activin-A</td>
<td></td>
<td>n.s</td>
<td>n.s</td>
<td></td>
</tr>
<tr>
<td>TGF-β3</td>
<td>**</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activin-A</td>
<td>n.s</td>
</tr>
<tr>
<td>TGF-β3</td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-)</th>
<th>1 (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activin-A</td>
<td>1</td>
</tr>
<tr>
<td>TGF-β3</td>
<td>100</td>
</tr>
</tbody>
</table>

n.s., no significant difference; *, P < 0.05; **, P < 0.01 by Student’s t-test compared to the value of resFOP treated with the same condition.
Fig. S6. Activin-A transduces TGF-β-SMAD2/3 signaling through ACVR1B and ACVR2A in FOP-iMSCs. FOP-iMSCs transiently transfected with CAGA-Luc, CMV-Renilla and siRNAs specific for type I receptors (A) or type II receptors (B) were stimulated with Activin-A for 3 hours at 37 °C under 5% CO₂. Results are the mean ± standard error (SE). N = 4, n.s., no significant difference; *, P < 0.05; ***, P < 0.001 by Dunnett’s multiple comparisons t-test compared to control siRNA transfected FOP-iMSCs.
Fig. S7. FK506 enhanced the constitutive activity of FOP-iMSCs. FOP-iMSCs transiently transfected with BRE-Luc and CMV-Renilla were treated with 1 μM FK506 and/or Activin-A for 16 hours. Results are the mean ± standard error (SE). N = 4, ***, P < 0.001 by Turkey’s multiple comparisons t-test.
Fig. S8. GAG/DNA in the micromass of FOP-iMSCs cultured with Activin-A was inhibited by RAR\(\gamma\) agonists. Results are the mean ± standard error (SE). \(N = 3\). n.s., no significant difference; ***, \(P < 0.001\) by Dunnett’s multiple comparisons \(t\)-test compared to Activin-A-treated micromass without RAR\(\gamma\) agonists.
Fig. S9. Expression levels of chondrogenic markers in FOP and resFOP-3DCI pellets cultured with Activin-A. Results are the mean ± standard error (SE). N = 4. n.s., no significant difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001 by Student’s t-test compared to resFOP. resFOP (day8) was normalized to 1.
Fig. S10. FK506 treatment enhanced 3D chondrogenesis of resFOP-iMSCs treated with Activin-A. resFOP-3DCI pellets were cultured with FK506 and/or Activin-A for 21 days. Results are the mean ± standard error (SE). N = 4, n.s., no significant difference; **, P < 0.01; ***, P < 0.001 by Dunnett’s multiple comparisons compared to the value of no FK506 treatment control of resFOP with the same Activin-A treatment.
Fig. S11. Histology of 3DCI pellets from FOP- and resFOP-iMSCs cultured with Activin-A (100 ng/ml). Each pellet was cultured for 21 days and examined with HE (A) or von Kossa (B) staining. Scale bars, 100 μm.
Fig. S12. X-ray images and sectioned μCT image of FOP-3DCI pellets spontaneously calcified in vivo. (A) X-ray image of mice transplanted with FOP- and resFOP-3DCI pellets 4 weeks after transplantation. Red arrows show transplanted FOP-3DCI pellets, and the blue arrow shows transplanted resFOP-3DCI pellets. (B) The sectioned μCT image shows a transplanted FOP-3DCI pellet.
Fig. S13. X-ray images of transplanted FOP- and resFOP-iMSCs with Dox-inducible Activin-A expressing cells 6 weeks after transplantation. Red arrows show FOP-iMSCs derived bone. N = 3.
Fig. S14. Administration of Activin-A with transplants did not accelerate the calcification. FOP- or resFOP-3DCI pellets cultured for 21 days with Activin-A (100 ng/ml) were mixed with PBS- or Activin-A (10 μg/mL)-soaked Gelfoam® and then transplanted subcutaneously in the same NOD/ShiJic-scid Jcl (NOD/SCID) mice (N=5) at the right and left sides, respectively. (A) X-ray images of mice transplanted with FOP- and resFOP-3DCI pellets. Red arrows show transplanted FOP-3DCI pellets. (B) Number of calcified samples in FOP- or resFOP-3DCI pellets with either PBS- or Activin-A-soaked Gelfoam®. Calcification of pellets was assessed by X-ray imaging.
Fig. S15. GAG values (A) and GAG/DNA (C), but not DNA content (B) were enhanced in FOP-3DCI pellets cultured with Activin-A for 21 days. Results are the mean ± standard error (SE). N = 3. *** $P < 0.001$ by Dunnett’s multiple comparisons t-test compared to resFOP.
Fig. S16. Activin-A stimulation induced the expression of *GREM1* in FOP-iMSCs higher than in resFOP-iMSCs. FOP- and resFOP-iMSCs were stimulated with 100 ng/mL Activin-A. After 16 hours incubation, mRNA was extracted and qPCR analysis was performed. Results are the mean ± standard error (SE). N =3. *, P < 0.05; ***, P < 0.001 by Student’s t-test compared to the value of resFOP treated with the same condition.
Fig. S17. Dox concentration-dependent Activin-A production by C3H-DoxOn-hINHBA cells. Cells (5x10^5 cells in 12-well plates) were stimulated with Dox for 24 hours, and cultured supernatants were collected. The amount of Activin-A was analyzed by ELISA. Results are the mean ± standard error (SE). N = 3. n.s., no significant difference; ***, P < 0.001 by Dunnett’s multiple comparisons t-test compared to Dox (-).
<table>
<thead>
<tr>
<th>Gene</th>
<th>siRNA ID</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACVRL1</td>
<td>s987</td>
<td>GGAUCAAGAAGACACUACAtt</td>
<td>UGUAGUGUCUUUCUUGAUCCgc</td>
</tr>
<tr>
<td>ACVR1</td>
<td>s976</td>
<td>GUUGCUCUCGGAAAAUUUAtt</td>
<td>UAAAUUUUCGGAGAGCAACUtc</td>
</tr>
<tr>
<td>BMPR1A</td>
<td>s282</td>
<td>GAAUCUGGAUAGUAUGCUUtt</td>
<td>AAGCAUACUAUCCAGAUUgt</td>
</tr>
<tr>
<td>ACVR1B</td>
<td>s977</td>
<td>AGUACUUGAUGAAAACAUUtt</td>
<td>AAUGGUUUCAUCAAGUACUtc</td>
</tr>
<tr>
<td>TGFBR1</td>
<td>s229438</td>
<td>GGUCUGUGACUACAACAUAtt</td>
<td>UAUGUUGUGUCACAGACCa</td>
</tr>
<tr>
<td>BMPR1B</td>
<td>s2041</td>
<td>GGACGAGAGCUUGAACAGAtt</td>
<td>UCUGUUCAAGCGUCUCUCCaa</td>
</tr>
<tr>
<td>ACVR2A</td>
<td>s981</td>
<td>GGAUGAUUAUCACUGCUUAtt</td>
<td>AUAGCAGUUGAUCAUCag</td>
</tr>
<tr>
<td>ACVR2B</td>
<td>s985</td>
<td>GCUCACCCUCCGAUAGGAAtt</td>
<td>UCUACUUCGAGGUUGGAGCct</td>
</tr>
<tr>
<td>BMPR2</td>
<td>s2046</td>
<td>GGACAAUAUUAUGCGCAAtt</td>
<td>UUCGACUAAUAAUUGUCCca</td>
</tr>
<tr>
<td>TGFBR2</td>
<td>s14078</td>
<td>GGAGAAAGAAUGACGAAAtt</td>
<td>UUCUGCACUAUUCUUCUCCat</td>
</tr>
</tbody>
</table>
Table S2. Antibodies for western blotting and immunostaining.

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Cat. No</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospho-Smad1 (Ser463/465)/Smad5 (Ser463/465)/Smad8 (Ser426/428) Antibody</td>
<td>Cell Signaling Technology</td>
<td>#9511L</td>
<td>1:1000</td>
</tr>
<tr>
<td>Smad1/5/8 Antibody (N-18)-R</td>
<td>Santa Cruz Biotechnology</td>
<td>sc-6031-R</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (D27F4) Rabbit mAb</td>
<td>Cell Signaling Technology</td>
<td>#8828</td>
<td>1:1000</td>
</tr>
<tr>
<td>Smad2/3 (D7G7) XP® Rabbit mAb</td>
<td>Cell Signaling Technology</td>
<td>#8685</td>
<td>1:1000</td>
</tr>
<tr>
<td>Anti-Nuclei Antibody, clone 235-1</td>
<td>EMD Millipore</td>
<td>MAB1281</td>
<td>1:30</td>
</tr>
<tr>
<td>Collagen I Antibody</td>
<td>Novus Biologicals</td>
<td>NB600-408</td>
<td>1:100</td>
</tr>
<tr>
<td>Anti-rabbit IgG, HRP-linked Antibody</td>
<td>Cell Signaling Technology</td>
<td>#7074</td>
<td>1:100000</td>
</tr>
<tr>
<td>Goat anti-Mouse IgG1 Secondary Antibody, Alexa Fluor® 568 conjugate</td>
<td>Invitrogen</td>
<td>A-21124</td>
<td>1:500</td>
</tr>
<tr>
<td>Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate</td>
<td>Invitrogen</td>
<td>A-11008</td>
<td>1:500</td>
</tr>
<tr>
<td>Name</td>
<td>Forward</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>CACCATTGGCAATGAGCGGTTC</td>
<td>AGGTCTTTTCGGATGTCCACGT</td>
<td></td>
</tr>
<tr>
<td>ACAN</td>
<td>TCGAGGACACGAGAGCCC</td>
<td>TCGAGGGGTAGTGATAGAGA</td>
<td></td>
</tr>
<tr>
<td>COL2</td>
<td>GCGAAATAGGCACTGGTGATA</td>
<td>CGATAAAGCTTCAGTCCCACCT</td>
<td></td>
</tr>
<tr>
<td>SOX9</td>
<td>GACTTCCGCAGCTGGAC</td>
<td>GTGGGCGCCAGGTACTG</td>
<td></td>
</tr>
<tr>
<td>NKX3-2</td>
<td>GCCGCTTCTCAAGACTAGAGA</td>
<td>CCAACACGGTGTCCTCCG</td>
<td></td>
</tr>
<tr>
<td>FGFR3</td>
<td>CAACTCTCCAGAGAGC</td>
<td>TCTCAGGTTGGGAC</td>
<td></td>
</tr>
<tr>
<td>IHH</td>
<td>CGGGGTCTTTTGTAGCGT</td>
<td>CGTGGGCTTTTGTAGCGT</td>
<td></td>
</tr>
<tr>
<td>COMP</td>
<td>CAACTGTCCCCAGAGACAGA</td>
<td>TGGTACCAAAGATGAAGGCC</td>
<td></td>
</tr>
<tr>
<td>SP7</td>
<td>ATCCAGCCCTTTACAGAGC</td>
<td>TACGATAACGCTTGGGATG</td>
<td></td>
</tr>
<tr>
<td>COL10A1</td>
<td>CCCAGACCCAGAGAATCCATC</td>
<td>AGTGGGCTTTTATGCTGT</td>
<td></td>
</tr>
<tr>
<td>VEGFA</td>
<td>CAATCTGAGACCTGGTGAGC</td>
<td>TCTCTCCTATGTGCTGGCCT</td>
<td></td>
</tr>
<tr>
<td>RUNX2</td>
<td>TTACCTAACCACCCAGGTC</td>
<td>TATGGGATGCTGGTCTG</td>
<td></td>
</tr>
<tr>
<td>MMP13</td>
<td>CATGAGTTCGCCACTCCTTTA</td>
<td>CCTGAGCATAGAGAGACTGGA</td>
<td></td>
</tr>
<tr>
<td>ID1</td>
<td>CCAACGGGGTCTGGGATG</td>
<td>CTCTCTGGCAGTCCGAGGAC</td>
<td></td>
</tr>
<tr>
<td>ID3</td>
<td>CTGGACGAATGAGACCAGACTG</td>
<td>GTAGTGGATGACGGC</td>
<td></td>
</tr>
<tr>
<td>GREM1</td>
<td>CTGCTTCAGCAGCCAGAGAGA</td>
<td>CAACAGACACTGCTCAGCAG</td>
<td></td>
</tr>
<tr>
<td>ACVR1L</td>
<td>CAGCACTGCTTTGAGCTCTG</td>
<td>TCTGCTGATCACAACACACC</td>
<td></td>
</tr>
<tr>
<td>ACVR1</td>
<td>GCGGTAATGAGGACCAGACTG</td>
<td>CGGCTTACAAACCTCAG</td>
<td></td>
</tr>
<tr>
<td>BMPR1A</td>
<td>AGCTACGCGGCGAAATAGGAA</td>
<td>AATGAGCAAAACACAGGACTC</td>
<td></td>
</tr>
<tr>
<td>ACVR1B</td>
<td>TGTCGAAAGATCAGATCTCAG</td>
<td>AACCTTCCGATTTCCTCAA</td>
<td></td>
</tr>
<tr>
<td>TGFBR1</td>
<td>GTGAAATGATCATCAGCTTCAG</td>
<td>ATGTTGAATGACAGTGGC</td>
<td></td>
</tr>
<tr>
<td>BMPR1B</td>
<td>GTCCTCCTATGATTAGCTGAGTC</td>
<td>TTAGACACTACATCAGTGGT</td>
<td></td>
</tr>
<tr>
<td>ACVR1C</td>
<td>GGGTCGACAGTGCTTCCAGAG</td>
<td>TCTCCCTGAGGGACTCCACTC</td>
<td></td>
</tr>
<tr>
<td>ACVR2A</td>
<td>ACAGACGGCCAATCCTCCATCC</td>
<td>AGGAGGTCGCTGGC</td>
<td></td>
</tr>
<tr>
<td>ACVR2B</td>
<td>GATCTTCCACTCCAGGAGCA</td>
<td>CTCCAGGAGAATGAGTGGG</td>
<td></td>
</tr>
<tr>
<td>BMPR2</td>
<td>GCTGTGGGACAGGACTAGT</td>
<td>TTTGCGTCATCCCTGAAGCA</td>
<td></td>
</tr>
<tr>
<td>TGFBR2</td>
<td>AGACAGTTCGGACTGAGTGGCTG</td>
<td>TTAGGGAGGCGTCTCAGAGG</td>
<td></td>
</tr>
<tr>
<td>AMHR2</td>
<td>GCCCTGATGACCAGAACCTGG</td>
<td>CTCTTGAGAGATTGGGCAAGG</td>
<td></td>
</tr>
</tbody>
</table>