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Abstract
We consider the one-dimensional (1D) quasiperiodic Anderson-lattice model, which has
quasiperiodically ordered impurities. The sites with an f-orbital are ordered as a “Fibonacci
word”, one way to form 1D quasiperiodic orderings. To treat the correlation effect precisely, we
use the density matrix renormalization group (DMRG) method. We show that the spin correla-
tion function in the quasiperiodic system gives a characteristic pattern. Also, by analyzing the
f-electron number and its fluctuation, we find that a valence transition, which usually occurs in
the periodic Anderson model when the on-site interorbital interaction is large, is not sharp in the
quasiperiodic system. Finally, we discuss the properties of the quasiperiodic Anderson-lattice
model, comparing them against the Anderson-lattice model with randomly located f-orbitals.
We find that the quasiperiodic Anderson-lattice model has a similar property to the periodic
Anderson model for spin correlation, but also has a similar property to the Anderson-lattice
model with randomly located f-orbitals for the valence fluctuation.
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1 Introduction

Quasicrystals are solids which have a long-range order called quasiperiodicity but do not possess
lattice periodicity. Since the discovery of quasicrystals in alloys[1], numerous researches have
been conducted for quasicrystals, and many intriguing properties of quasicrystals have been
found[2, 3, 4]. A question comes up naturally: Are there any properties which are peculiar to
quasicrystals?

Recently, one answer to this question has been suggested. Deguchi et al.[5] have argued that
they observed quantum critical phenomena of the Au-Al-Yb quasicrystal. In this quasicrystal,
the magnetic susceptibility and the electronic specific heat coefficient diverge as T → 0 due to
the strongly correlated 4f electrons of the Yb atoms. Interestingly, this quantum critical phe-
nomenon is robust against hydrostatic pressure. Moreover, quantum criticality has not been
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observed in the crystalline approximant of the quasicrystal material. The effects of quasiperi-
odicity in this system are still being discussed[6, 7, 8], so it is necessary to reveal the effects of
quasiperiodicity in heavy fermion systems.

Besides such rapid progress in research of heavy-fermion quasicrystals, one dimensional
(1D) quasiperiodic systems have also attracted a lot of attention. 1D quasiperiodic systems
can be realized in various platforms, for instance, optical waveguides[9], ultracold atoms in
optical lattices[10, 11], and so on. In the recent studies of ultracold atoms, the Anderson-lattice
model, which have c-orbital and f-orbital in each sites, has been proposed[12, 13]. Thus, we
naturally expect that 1D correlated quasiperiodic systems would provide some insights for a
deeper understanding of the correlated quasicrystal systems.

As described above, there are several studies on 2D or 3D heavy-fermion quasicrystals,
but no previous work about them in 1D to the best of our knowledge. In this paper, in
order to understand the effects of quasiperiodicity in heavy fermion systems, we construct and
analyze the minimal model for heavy-fermion based quasicrystals which we call 1D quasiperiodic
Anderson lattice model (QPALM). In this model, the sites with an f-orbital are ordered as
“Fibonacci word”, which is known as a method to construct 1D quasiperiodic orderings. To
treat the correlation effect precisely, we use the density matrix renormalization group (DMRG)
method. We calculate the spin correlation of f-orbital fermions, and show that characteristic
patterns appear in the spin correlation plot of the QPALM induced by the RKKY interaction.
Also, we show that a valence transition in the QPALM is not as sharp as in the periodic
Anderson model (PAM) when the on-site interorbital interaction is large. Finally, we compare
the properties of the QPALM and the Anderson lattice model with randomly located f-orbitals
(RfALM).

2 Model and Method

2.1 Model

We consider a quasiperiodic Anderson lattice model described by the Hamiltonian

Ĥ =
∑

jσ

εf f̂
†
jσ f̂jσ +

∑

<i,i′>σ

tĉ†iσ ĉi′σ +
∑

jσ

(V f̂†
jσ ĉjσ + V ∗ĉ†jσ f̂jσ) (1)

+Uc

∑
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i↑ − 1/2)(n̂c
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where ĉiσ(ĉ
†
iσ) annihilates (creates) a fermion at c-orbital of site i ∈ I(≡ {1, 2, . . . , N}) with

spin σ =↑ or ↓, f̂jσ(f̂†
jσ) annihilates (creates) a fermion at f-orbital of site j ∈ J(⊂ I) with

spin σ =↑ or ↓, and n̂c
iσ = ĉ†iσ ĉiσ, n̂

f
jσ = f̂†

jσ f̂jσ, n̂
c
i = n̂c

i↑ + n̂c
i↓, n̂

f
j = n̂f

j↑ + n̂f
j↓ are number

operators. Here, t denotes the hopping integral between c-orbitals of nearest-neighbor sites,
which we take it as a unit of other parameters. V is the hybridization of the c-orbital and the
f-orbital, Uc and Uf respectively represent the on-site interaction of c-orbital and f-orbital, and
Ufc represents the Coulomb repulsion between the f-orbital and the c-orbital on the same site.
In our model, only a part of sites have an f-orbital, and these sites are ordered as “Fibonacci
word”, the sequence of binary digits formed by repeated concatenation.
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Figure 1: Sketch of our lattice system. Filled circles correspond to c-orbitals and open circles
correspond to f-orbitals.

2.2 Method

Fibonacci words can be generated as follows: Let S0 = A, S1 = AB. Now Sn = Sn−1Sn−2

(the concatenation of two strings) for n = 2, 3, . . .. Then we have S2 = ABA, S3 = ABAAB,
S4 = ABAABABA, and so on. The length of each Fibonacci word is a Fibonacci number. We
take the total site number as a Fibonacci number, and only sites corresponding to the letter A
have an f-orbital. For example, for L = 8, J = {1, 3, 4, 6, 8}.

In 1D systems, the density-matrix renormalization group (DMRG) method is known as
an excellent tool to analyze the ground-state properties. In this study, we calculate the spin
correlation

〈
Ŝf
z,jŜ

f
z,j′

〉
, the number of f-fermions

〈
n̂f
j

〉
, and the f-orbital density correlation〈

n̂f
j n̂

f
j′
〉
of each site using the ALPS application [14, 15]. From these results, we plot the

average of f-electrons 〈nf〉 and the nf fluctuation 〈nf〉2 −
〈
n2
f

〉
.

3 Results

In this section, we present the numerical results for the ground state. First, we consider the
Ufc = 0 case, and show that a characteristic pattern appears in the spin correlations plot.
Next, we analyze the effect of a non-zero Ufc, which is important for a valence transition of the
extended periodic Anderson model, pointed out by Watanabe et al. in previous researches[16].
Finally, we compare the properties of QPALM and RfALM.

3.1 Spin Correlations

First, we consider the spin correlations for the Ufc = 0 case. In the usual PAM, the RKKY
interaction makes the spin correlations strong when the repulsive interaction Uf is sufficiently
large. In the case of half-filling, the system has antiferromagnetic order. In the PAM which is
under the condition of εf 
 0 
 εf + Uf , the system would be in an antiferromagnetic phase.
However, in the QPALM, the system is not in an antiferromagnetic phase, but it is expected
that the spin correlation is most important for low energy region because of RKKY interaction.
In our calculation, we take εf = −5, V = 1, Uc = 1, Uf = 10, Ufc = 0, and parameters satisfy
the above condition. Our results in Fig. 2 shows a typical example for the system in the above
condition. Figure 2 (left) shows the spin correlation function of the QPALM, whose filling is
near half-filling. Unlike the PAM, the system is not in an antiferromagnetic phase, but there
are locally ferromagnetic blocks in the system, with antiferromagnetic interaction with their
neighboring blocks. When the c-band is half-filled, the RKKY interaction is antiferromagnetic
for neighboring f-sites, and ferromagnetic for every other f-sites. This interaction makes the
above-mentioned block structure.

Since QPALM is almost periodic, we can tune the Fermi wavelength and make the QPALM
antiferromagnetic by changing the filling. Figure 2 (right) shows such an example with π/kF
almost equal to the average distance between neighboring f-orbital sites. We can check the
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Figure 2: (Color online) Spin correlation function of f-electrons
〈
Ŝf
z,jŜ

f
z,j′

〉
of quasiperiodic

Anderson-lattice model. Ŝf
z,j is defined by Ŝf

z,j = (n̂f
j↑ − n̂f

j↓)/2. Here, the system size is L = 55
which includes 34 c-sites and 21 f-sites, εf = −5, V = 1, Uc = 1, Uf = 10, Ufc = 0. Spin
correlation function for N↑ = N↓ = 28(� L/2) (N↑ = N↓ = 21) is plotted in the left (right)
panel, respectively.

antiferromagnetic phase from its checkered pattern. We note that this kind of pattern cannot
be observed if the f-sites are randomly located.

3.2 Valence Transition

Next, we consider the PAM. If εf is low enough energetically, the ground state becomes Kondo
state, and nf becomes unity. On the contrary, if εf is high enough, all of fermions flow out to
the c-band, and no fermion is left in the f-orbital. From these considerations, there must be an
crossover of nf when we change the value of εf . However, finite Ufc stabilises the intermediate
phase, which is called the mixed valence state. When Ufc is sufficiently large, a first-order valence
transition occurs between the Kondo state and the mixed valence state, which is shown in
previous studies[16]. Figure 3 (left) shows the f-electron number 〈nf〉 and the valence fluctuation

〈nf〉2−
〈
n2
f

〉
as a function of εf for the periodic Anderson model for Ufc = 8. Under the condition

of εf 
 0 
 εf + Uf , each f-site must have exactly one electron. In the case of εf � Ufc, the
mixed-valence state will be stabilized. We choose other parameters to investigate the phase
transition between these two phases by taking V = 0.1, Uc = 0, Uf = 100, Ufc = 8. We note that
our calculation is focused on the parameter region around this phase transition, so we show the
results as a typical example by fixing the parameters except εf . There are two sharp peaks in
the valence fluctuation plot, and the left peak corresponds to the first-order valence transition.
The result is consistent with the above discussion.

Now, we discuss the result for the QPALM. Figure 3 (middle) shows 〈nf〉 and 〈nf〉2 −
〈
n2
f

〉
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Figure 3: (Color online) The f-electron number and the valence fluctuation as a function of
εf for the periodic Anderson model (left), the quasiperiodic Anderson-lattice model (middle),
and the Anderson-lattice model with randomly located f-sites (right) for V = 0.1, Uc = 0,
Uf = 100, Ufc = 8. System size and particle number are (left) L = 32 (16 c-sites, 16 f-sites),
N↑ = N↓ = 16, (middle) and (right) L = 34 (21 c-sites, 13 f-sites), N↑ = N↓ = 17, respectively.

as a function of εf of the QPALM for Ufc = 8. The results of PAM is consistent with previous
studies[16], which showed a sharp peak in valence fluctuation. Compared with the results of
the PAM, the first-order valence transition in the QPALM is not as sharp, and the peak of the
valence fluctuation is wider. This is consistent with the previous research, which showed that
the robustness of the quantum criticality comes from the overlap of critical regimes at each
site[6].

3.3 Comparison between quasiperiodic model and random model

In order to discuss the effect of quasiperiodicity on the valence transition, we analyze the
RfALM. The results are shown in Fig. 3 (right). In this system, the first-order valence transition
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point is unsharpened, and the peak of the valence fluctuation is widened compared with PAM.
It is hard to distinguish between QPALM and RfALM from these results. This suggests that
the quasiperiodicity does not play an important role in the context of the valence transition and
the valence fluctuation. However, we note that it is possible that the quasiperiodicity causes
unexpected effects from other types of fluctuations.

4 Summary and Discussion

In this paper, we have analyzed the QPALM by DMRG calculation. The system shows the
characteristic pattern in the plot of the spin correlation function, and its structure depends
on the filling of the system. The appearance of the repeated pattern of the spin correlation
function in the QPALM bears similarity to the behavior of periodic systems. We have studied
the f-electron number and the valence fluctuation as a function of εf in the PAM, QPALM,
and RfALM. The behaviour obtained for the PAM is consistent with previous studies[16]. The
novelty of our study is the precise calculation of QPALM and RfALM using DMRG. We have
found that a valence transition in the QPALM is not sharp as in the PAM. Finally, we have
compared properties of the QPALM and the RfALM. The properties of the valence transition in
the QPALM resembles that in the RfALM. Consequently, the QPALM has a similar property
to the PAM for spin correlation, but also has a similar property to RfALM for the valence
fluctuation. This characteristic nature of QPALM may lead to novel intriguing phenomena
inherent in quasiperiodic systems. This issue is under consideration.
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