<table>
<thead>
<tr>
<th>Title</th>
<th>Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sadakane, Osamu; Masamizu, Yoshito; Watakabe, Akiya; Terada, Shin Ichiro; Ohtsuka, Masanari; Takaji, Masafumi; Mizukami, Hiroaki; Ozawa, Keiya; Kawasaki, Hiroshi; Matsuzaki, Masanori; Yamamori, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Cell Reports (2015), 13(9): -1989</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-12-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/216326</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
</tbody>
</table>

Kyoto University
Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates

Graphical Abstract

Highlights

- An AAV vector system for enhanced and controllable expression of GCaMP6f is developed
- This system allows long-term two-photon neuronal imaging in the marmoset brain
- The same neuronal populations can be followed over 100 days
- Neuronal responses to tactile stimulation can be imaged at subcellular resolution

Authors
Osamu Sadakane, Yoshito Masamizu, Akiya Watakabe, ..., Hiroshi Kawasaki, Masanori Matsuzaki, Tetsuo Yamamori

Correspondence
mzakim@nibb.ac.jp (M.M.), tetsuo.yamamori@riken.jp (T.Y.)

In Brief
Long-term two-photon calcium imaging has been challenging in non-human primates. Sadakane et al. use an inducible expression system to visualize cortical neurons in adult marmosets. They show that the same neuronal population can be followed over 100 days and neuronal responses to tactile stimulation can be imaged at subcellular resolution.
Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates

Osamu Sadakane,1,2,3 Yoshito Masamizu,2,4,8 Akiya Watakabe,1,2,3,8 Shin-Ichiro Terada,3,5,8 Masanari Ohtsuka,1,3 Masafumi Takaji,1,3 Hiroki Mizukami,6 Keiya Ozawa,6,9 Hiroshi Kawasaki,7 Masanori Matsuzaki,2,4,* and Tetsuo Yamamori1,2,3,*

1Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan
2Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan
3Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
4Division of Brain Circuits, National Institute for Basic Biology, Aichi 444-8585, Japan
5Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
6Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
7Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-8640, Japan
8Co-first author
9Present address: IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
*Correspondence: mzakim@nibb.ac.jp (M.M.), tetsuo.yamamori@riken.jp (T.Y.)
http://dx.doi.org/10.1016/j.celrep.2015.10.050
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY

Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.

INTRODUCTION

Two-photon imaging using genetically encoded calcium indicators (GECIs) has been applied to a variety of invertebrates and vertebrates including flies, fish, and rodents and has provided deep insight into the neural circuits in live animals. For example, studies on mice have revealed the organization of neocortical neurons at single-cell resolution in the sensory cortex (Andermann et al., 2011; O’Connor et al., 2010). Others have studied the reorganization of cortical circuits during behavioral training in sensorimotor (Huber et al., 2012; Masamizu et al., 2014; Peters et al., 2014) and cognitive tasks (Chen et al., 2013a; Harvey et al., 2012). Two-photon imaging with GECIs can also be applied to detect neuronal activities in fine structures such as dendrites and axons. For example, in the mouse visual cortex, stimulus-tuned inputs to dendrites were observed to persist stably for weeks (Chen et al., 2013b). Other studies have clarified the stimulus selectivity of cortical axonal outputs to adjacent areas (Glickfeld et al., 2013; Matsui and Ohki, 2013; Petreanu et al., 2012). Thus, applications of GECIs to mice have had a large impact on investigations of the organization and plasticity of neuronal circuits.

In contrast to the mouse studies, studies on functional imaging with GECIs using non-human primates are very scarce. In one pioneering study of a GECI applied to macaques, the activities of visual cortical neurons were imaged for months through a chronically implanted window (Heider et al., 2010). However, only several neurons were simultaneously imaged in the same field and the same neurons were not followed over the imaging period. Although synthetic calcium indicator dyes have been successfully used in two-photon imaging to detect the highly organized structures of the primary visual cortex of macaque monkeys (Ikezoe et al., 2013; Nauhaus et al., 2012), they cannot be used for long-term recording of population activity or imaging of subcellular activity. Considering the importance of primate studies in understanding higher cognitive abilities of the human cerebral cortex, one should challenge the improvement of GECI technology so that it can be applied to non-human primates. Among non-human primates, the common marmoset has a much-smaller brain than the macaque. Nonetheless, it exhibits essential
features of primate cortical organization (Krubitzer and Kaas, 1990; Roberts et al., 2007). Considering that two-photon imaging of the mouse brain can image the morphology of the neuronal somata up to a depth of 1.4 mm from the cortical surface (Kawakami et al., 2013) and neuronal activity up to a depth of 0.6 mm (Glickfeld et al., 2013; Masamizu et al., 2014), the relatively thin (approximately 1.5- to 2-mm thickness) and smooth cerebral cortex of marmosets should have a big advantage over cerebral cortex of larger primates when it comes to three-dimensionally detecting cortical neuronal activity by two-photon imaging.

Here, we developed an adeno-associated virus (AAV)-based system for long-term calcium imaging of adult common marmosets. To amplify the transgene expression from AAV vectors, we adapted the tetracycline-inducible gene expression system (TET-inducible system) that we have been using to amplify transgene expression from lentiviral vectors (Hioki et al., 2009; Watakabe et al., 2012). We found that the signal amplification in the TET-inducible system in the marmoset was so effective that GCaMP6f signals could be detected only 10 days postinjection.

RESULTS

Two-Photon Calcium Imaging of the Marmoset Brain with a TET-Inducible System

To construct a TET-inducible system for AAV (AAV TET-inducible system), we first cloned two components of the TET-Off system, namely, the tetracycline-controlled transactivator (tTA) under the control of the Thy1S promoter (Ako et al., 2011; a modified version of Thy1 promoter, described in Experimental Procedures in detail) and GCaMP6f under the control of the tetracycline response element (TRE3) promoter, into separate AAV vectors (Figure 1A). In the absence of Dox, tTA constitutively activates expression of a transgene under the TRE3 promoter. Dox prevents the binding of the tTA to the TRE3 and inhibits transgene expression (Figure 1A).

For AAV injection into the marmoset neocortex, a hole (~4 mm in diameter) was created in the skull. The exposed dura mater...
was removed because it became opaque after exposure, unlike the dura mater of mouse brains (Stettler et al., 2006). Then, AAVs carrying Thy1S-tTA and TRE3-GCaMP6f were injected together into the cerebral cortices of two adult marmosets: into the parietal cortex of one animal and the somatosensory cortex of another. The imaging window should remain transparent for a long time to allow good two-photon imaging in vivo. In addition, it should be stably attached to the cortical surface to reduce motion artifacts induced by pulsation and breathing even under anesthesia. To tightly fill the space between the top skull surface and the cortical surface with the imaging window, we devised an assembly that consists of cover glasses that are bonded together with optical adhesives (Figures 1B and 1C; see Experimental Procedures for more details). Immediately after the AAV injection, the glass assembly was inserted into the hole and gently pushed on the cortical tissue to reduce brain motion during imaging. The blood vessel patterns were clearly observed through the imaging window immediately after the surgery and did not substantially change for more than 4 months (Figure 1C). This indicates that the imaging window did not cause any apparent damage to the cortical surface.

For fluorescence imaging after AAV injection, marmosets were placed under the microscope and lightly anesthetized by isoflurane inhalation. The plane of the imaging window was adjusted to be nearly perpendicular to the optical axis by changing the angle of tilt of the marmoset chair stage (~5–10 degrees). As expected from the high-level transgene expression obtainable with the TET-inducible system (Hioki et al., 2009), we detected strong epifluorescence signals around the injection site through the imaging window after only 10 days of AAV injection (Figure 1D). When we performed two-photon imaging near the injection site at an excitation wavelength of 940 nm (Chen et al., 2013b), bright signals of GCaMP6f were observed from individual cell bodies in layer 2 (L2), located at depths of >90 μm from the cortical surface (Hardman and Ashwell, 2012; Figure 1E). After motion correction (Thévenaz et al., 1998), a region of interest (ROI) was determined for each fluorescently detected neuronal soma. The relative change in fluorescence (∆F/F) in each ROI did not exhibit fast up and down deflections (Figure 1F), indicating that the imaging window effectively reduced the motion artifact along the optical axis that cannot be digitally corrected. In many neurons, spontaneous calcium transients were clearly detected (Figure 1F), as reported for other animals (Chen et al., 2013b). The ∆F/F trace in each ROI did not show any photobleaching for at least 10 min.

The effectiveness of the GCAV “TET-Off” vectors was obvious when we compared this result with the conventional AAV2/1 encoding GCaMP6f under the control of the Synapsin I promoter. Even 2 months after injection, the fluorescence signals of GCaMP6f from the conventional AAV were too weak to be detected in vivo. In the fixed cortical tissue, GCaMP6f signals were immunohistochemically detected in many neurons, albeit at a low level (Figure S1). Interestingly, injection of the same batch of Synapsin I-GCaMP6f AAV into the mouse neocortex led to bright fluorescence of GCaMP6f during two-photon imaging in vivo (Chen et al., 2013b). We concluded that the marmoset brain requires high amplification of the GCaMP6f signals (e.g., by the TET-Off system) for successful in vivo two-photon calcium imaging.

In addition to the TET-Off system, we also tested a TET-On system to see whether we could induce GCaMP6f expression by Dox administration to the marmoset. For this purpose, we injected AAVs carrying Synapsin I-tTA (Watakabe et al., 2014; Figure S2A) and TRE3-GCaMP6f into the somatosensory cortex and performed in vivo imaging. Without Dox administration, epifluorescence was not detected (Figure S2B) after 3 weeks of AAV injection. However, after only 3 days of Dox administration, epifluorescence was clearly detected around the injection sites and GCaMP6f signals were detected from many neurons at higher magnification (Figures S2C–S2E). The induced epifluorescence returned to the baseline level 2 to 3 weeks after the removal of Dox (Figures S2F and S2G). Thus, both TET-Off and TET-On systems can be used for two-photon imaging of the adult marmoset and the system best suited to the experimental design can be selected.

Long-Term Two-Photon Calcium Imaging of Multiple Neurons

Having succeeded with the initial imaging, we went on to test whether long-term imaging experiments were possible. It has been reported that transgene expression from AAV gradually increases over a period of up to 2 months (Diester et al., 2011), and this could result in toxicity in experiments that last for several weeks or months (Chen et al., 2013b; Tian et al., 2009). In this regard, the AAV TET-inducible system offers the advantage of controlling transgene expression by Dox administration. To test the effectiveness of Dox control in marmosets injected with AAV-TET-Off vectors, we administered Dox in drinking water to the animals for several days and examined an image of the same area repeatedly over time. The imaging fields in the two marmosets with the AAV-TET-Off vectors as well as the schedules of the imaging and Dox administration are shown in Figure S3. In a representative experiment in marmoset A, 5 days of Dox administration resulted in a gradual decrease of fluorescence signals, and this decrease lasted even after Dox administration was stopped (Figure 2A). The fluorescence signals did not start to increase until approximately 10 days after Dox had been removed from the drinking water and then gradually increased to the original level by approximately 20–30 days after the termination of Dox administration (Figures 2A and 2B). A similar time course was observed in the imaged fields from marmoset B (Figure 2B).

Importantly, 28 days after the start of the 5-day Dox administration, we were able to identify the same population of neurons that we observed before Dox administration (Figure 2A). Spontaneous calcium transients were detected from the same neuron both before and after Dox administration (Figure 2C). In marmoset B, after a 1-month recovery from 7-day Dox administration, the activity of many neuronal somata were clearly detected within a relatively broad field of 625 × 625 μm in L2 (Figures 2D and 2E). The half-decay time of calcium transients was 0.311 ± 0.040 s (mean ± SEM; n = 28 from Figure 2D; Figures 2F and 2G), which was comparable with that of the original report for GCaMP6f (Chen et al., 2013b). We observed a set of neurons with very similar configurations at an interval of more than 100 days after three trials of Dox administration, which are most likely to represent identical neuronal populations (Figure S4).
To test the integrity of the tissue around the injection site after long-term imaging, we sacrificed marmoset A for immunohistochemical examination more than 100 days after AAV injection. Figure 3A shows the native fluorescence of GCaMP6f (green) counterstained with NeuN (red). Except for a small needle scar at the center of the injection site (shown by an asterisk), we observed no sign of tissue damage despite strong GCaMP6f expression. In this particular injection site, AAV had spread approximately 700–1,000 μm horizontally and covered the depth of layer 1 (L1) through to layer 5 (Figure 3A). At higher magnification, we saw relatively few pyramidal cells with strong positive GCaMP6f expression and numerous neurons with moderate-to-low GCaMP6f expression (Figure 3B), which is consistent with the in vivo imaging data.

The fluorescently labeled neurons included parvalbumin-positive neurons in addition to pyramidal neurons (Figures 3C and 3D). These results indicate that appropriate Dox administration can achieve sufficiently high expression of GCaMP6f in many excitatory and inhibitory neurons at imaging time points over more than 100 days and can prevent the cell damage that is associated with extremely high transgene expression.

One characteristic feature of the marmoset brain that we observed was the presence of granule-like fluorescent structures in the imaging regions (e.g., Figures 2A, 2D, S2D, and S4). Most of them had strong fluorescence in both red and green channels, and they were detected not only at the AAV injection site but also in the contralateral side (non-injection site) in cortical slices (Figure S5). Based on the spectral features and prevalent distribution in both injected and non-injected regions, we considered these granule-like fluorescent structures to be tissue autofluorescent (most likely lipofuscin; Eichhoff et al., 2008; Honavar and Lantos, 1987; Mochizuki et al., 1995) and not the aggregation of overexpressed GCaMP6f. In addition, we observed bright green spots with no fluorescence in the red channel in vivo imaging (Figure S4). These spots were detected at similar horizontal locations over a depth of >20 μm, and we therefore considered these to be the cross-section of apical dendrites of neurons with expression of GCaMP6f. Although we cannot exclude the possibility that a minor subset of granule-like fluorescent structures came from the accumulation of GCaMP6f, here we note the existence of granular tissue autofluorescence as a characteristic feature of the adult marmoset brain, of which origin should be identified in the future.
we were able to monitor the activity of neuronal somata located
Due to a high signal-to-noise ratio of the fluorescence signals,
Three-Dimensional Two-Photon Calcium Imaging of
vidual dendrites and axons in the adult marmoset brain.
performed two-photon imaging of the neuronal activity of indi-
et al., 2012). Thus, the AAV TET-inducible system successfully
(Figure 3A). Using a piezoelectric objective mount, we continu-
ously recorded the activity of multiple neurons with single-cell
occurred throughout single dendritic branches (e.g., Figures 4A
and 4B; d1), including dendritic spines (e.g., Figures 4A and
and Axons
rof the marmoset cortical microcircuits.
Robust Sensory Selectivity of Neuronal Somata,
Dendrites, and Axons
One strength of calcium imaging is its ability to investigate the
spatial and functional relations between large numbers of neu-
rons dispersed in three dimensions. For example, for pairs of active neurons
located at the same depth, the pairwise correlation in the time
series of $\Delta F/F$ was negatively associated with the cellular dis-
tance between the two neurons (Pearson’s correlation coeffi-
cient $= -0.14$; $p < 2.88 \times 10^{-5}$; Spearman’s rank correlation co-
efficient test; $n = 1,120$ pairs; Figure 5D). This is consistent with a
previous report in the mouse visual cortex (Hofer et al., 2011). We
also found this relation between active neuron pairs located at
different depths (Pearson’s correlation coefficient $= -0.13$; $p <
4.25 \times 10^{-7}$; Spearman’s rank correlation coefficient test; $n =
1,508$ pairs; Figure 5E). These examples underscore the effec-
tiveness of our method for investigating the three-dimensional
organization of the marmoset cortical microcircuits.

Two-Photon Calcium Imaging of Individual Dendrites
and Axons
Next, we determined whether neuronal activity in subcellular
compartments that include dendrites and axons can be detected
using AAV-TET-Off vectors. To image the subcellular activity, we
decreased the size of the scanning field in L1 and digitally
increased the pixel size. We could clearly detect some dendrites
with spontaneous calcium transients with a high signal-to-noise
(Figures 4A and 4B). In many cases, calcium transients
ocurred throughout single dendritic branches (e.g., Figures 4A
and 4B; d1), including dendritic spines (e.g., Figures 4A and
and 4B; s1), indicating that the calcium transients reflected backpropagation of action potentials and/or dendritic spiking (Chen
et al., 2013b; Xu et al., 2012). We also detected some axonal
boutons with synchronous calcium transients within a scanning
field (Figures 4C and 4D; ROI 3–7), indicating that these boutons
originated from the same axon and that the calcium transients
reflected action potentials (Glickfeld et al., 2013; Petreanu
et al., 2012). Thus, the AAV TET-inducible system successfully
performed two-photon imaging of the neuronal activity of individ-
ual dendrites and axons in the adult marmoset brain.

Three-Dimensional Two-Photon Calcium Imaging of
Multiple Neurons
Due to a high signal-to-noise ratio of the fluorescence signals,
we were able to monitor the activity of neuronal somata located
up to 400 μm from the cortical surface. This depth range is sup-
posed to cover L1 and L2, as well as the upper part of layer 3 (L3)
(Figure 3A). Using a piezoelectric objective mount, we continu-
ously recorded the activity of multiple neurons with single-cell
resolution from a relatively broad area ($625 \times 625 \mu$m) at three
depths: 150 μm; 275 μm; and 400 μm (from L2 to L3; Figure 5A).
The frame rate was 4.17 Hz for each plane. In this experiment,
445 putative neuronal somata were identified at 81 of them
were spontaneously active neurons (18/146, 29/168, and 34/131 with a skewness of $\Delta F/F > 0.5$ at a depth of 150 μm,

275 μm, and 400 μm, respectively; Figures 5B and 5C). These data can be
used to analyze the spatial and functional relations between large numbers of neu-
rons dispersed in three dimensions. For example, for pairs of active neurons
located at the same depth, the pairwise correlation in the time
series of $\Delta F/F$ was negatively associated with the cellular dis-
tance between the two neurons (Pearson’s correlation coeffi-
cient $= -0.14$; $p < 2.88 \times 10^{-5}$; Spearman’s rank correlation co-
efficient test; $n = 1,120$ pairs; Figure 5D). This is consistent with a
previous report in the mouse visual cortex (Hofer et al., 2011). We
also found this relation between active neuron pairs located at
different depths (Pearson’s correlation coefficient $= -0.13$; $p <
4.25 \times 10^{-7}$; Spearman’s rank correlation coefficient test; $n =
1,508$ pairs; Figure 5E). These examples underscore the effec-
tiveness of our method for investigating the three-dimensional
organization of the marmoset cortical microcircuits.

Robust Sensory Selectivity of Neuronal Somata,
Dendrites, and Axons
One strength of calcium imaging is its ability to investigate the
spatial and temporal profiles of populations of neurons respond-
ing to various types of sensory stimuli. To demonstrate the feas-
ibility of such an approach using our system, we tested whether
neuronal responses evoked by tactile stimulation could be de-
tected in the somatosensory cortex. For tactile stimulation, we
attached vibrators to the arm and leg of marmoset B that were
contralateral to the hemisphere with the imaging window and
stimulated each body part alternately for 1 s with an interval of
7.5 s. We found some neurons that responded to the tactile stimu-
lation. Figure 6A shows two examples of neuronal soma in L3,
whose fluorescence changes were clearly time locked to the
stimuli. Interestingly, responses of these two cells were highly
selective to either arm or leg stimuli despite their spatial prox-
imity to each other (Figure 6A). The response was robust in every
trial for both neurons. The calcium transient occurred immedi-
ately after the onset of the stimulus.

Consistent with the existence of stimulus-selective neurons,
we also observed stimulus-selective responses from dendrites
in L1 (Figure 6B; Movie S1) and axonal boutons in L1 (Figure 6C).

Figure 3. Histological Identification of
GCaMP6f-Transduced Neurons
(A) A sample injected with AAV-TET-Off vectors and immunostained with the antibody to NeuN.
(B) High-power views of the dotted rectangle in (A).
(C) A sample injected with AAV-TET-Off vectors and immunostained with the antibody to parval-
bumin (PV). The right panel is the high-power views of the dotted rectangle in the left panel. The arrows in the right panel indicate examples of
PV-positive interneurons expressing GCaMP6f.
(D) The magnified views around the arrows in the right panel of (C).
(A)–(D) are representative images from a total of three different slices.
FIGURE 4. Two-Photon Imaging of GCaMP6f in a Single Dendrite and Two Putative Axons in L1

(A) Images of a dendritic region showing spontaneous calcium transients. The depth of the images is 30 μm from the cortical surface. (Top) ΔF/F images averaged across 30 continuous frames (denoted by a gray box i in B) with a calcium transient are shown. (Bottom) ROIs of the dendritic shaft (d1) and dendritic spine (s1) are shown.

(B) Representative ΔF/F traces of the dendritic shaft and spine surrounded by yellow contours in (A). The calcium transients were synchronous in d1 and s1 (i).

(C) Images of axonal boutons showing spontaneous calcium transients. The depth of the images is 20 μm from the cortical surface. (Top and middle) ΔF/F images averaged across ten continuous frames (denoted by gray boxes i and ii in D) with a calcium transient are shown. Orange and red arrowheads indicate putative axonal boutons. (Bottom) ROIs of the axonal boutons are shown.

(D) Representative ΔF/F traces of seven axonal ROIs indicated by yellow contours in (C). Note that the same color ROIs showed synchronous calcium transients, but the timing of the calcium transients was different between orange and red ROIs (i and ii).

The responses of these dendrites and axons to each stimulus were as robust as those of the somata. Thus, our results demonstrate that the spatial and temporal profile of each neuron, dendrite, and axon in the marmoset cerebral cortex can be correlated with a variety of sensory stimuli.

DISCUSSION

In this study, we demonstrated the quality of two-photon calcium imaging with GCaMP6f in non-human primate brains. The key to our technique was the adaptation of an AAV TET-inducible system that enabled high amplification of the GCaMP6f signal as well as control of this signal by Dox administration. We also improved the assembly setup of the imaging window so that it retains clear and stable paths for two-photon imaging that can last for months. We showed that it is possible to (1) simultaneously record hundreds of neurons, (2) repeatedly image the same neuronal populations over weeks and months, and (3) reliably detect calcium transients in dendrites and axonal boutons.

Transgene control by the TET-inducible system has previously been effectively used to fixate memory engrams in mice (Liu et al., 2012) and for pathway-specific blockage of neurotransmission in mice and macaques (Kinoshita et al., 2012; Sookswate et al., 2013). We proved the usefulness of this system for calcium imaging in marmosets. Our system could also be useful in mice to prevent the adverse effect of GECI overexpression (Chen et al., 2013b; Tian et al., 2009), although we have yet to establish the optimal protocol for Dox control to reduce the time lag between Dox manipulation and transgene up- and downregulation (Figure 2). To enhance the utility of the current method, it is also important to develop cell-type-specific labeling for non-mouse species. For example, two-point viral injection approaches, in which retrograde and anterograde viral vectors are injected into the target and origin of projection, are a promising method for labeling specific cortical projection neurons such as corticospinal, corticocortical, and corticothalamic neurons (Masamizu et al., 2011, 2014; Watakabe et al., 2014). The AAV TET-inducible system would also be useful for achieving sufficiently high expression of Channelrhodopsin-2 to induce hand and/or arm behaviors in the primate, which have not yet been reported (Gerits and Vanduffel, 2013). Generally speaking, the purity of the virus vector can affect infectivity, especially in cases where a large amount is used. In this regard, amplification by the TET-inducible system has merit in that it allows us to induce robust transgene expression at a relatively low titer.

Two-photon imaging with GECIs is a powerful tool to compensate for a variety of electrical recording methods. Whereas two-photon imaging lacks the high temporal resolution of electrical recording (>10 ms versus <1 ms for electrical recording), it can record many neurons with precisely identified locations. With the current technique, we were able to record the activities of 445 neurons distributed in three different planes of marmoset L2 and L3. Furthermore, a recent development now allows simultaneous observation of distant locations by two-photon imaging (Lecoq et al., 2014), which partly compensates for the limited area of coverage provided by subdural grid electrodes (Khdagholy et al., 2015). One big advantage of two-photon imaging is that it is possible to resolve images at the level of the individual dendrite and axon. Thus, the two-photon calcium-imaging technique that we have developed in this report should greatly expand our ability to investigate non-human primate brains beyond what can be achieved by relying on electrical recording techniques. This should especially be the case for the study of long-term cortical reorganization.

Plasticity of the cortical circuit is an important feature of the primate brain, although it is not unique to primates. For example, there are somatosensory map changes following digit or limb amputation in adult macaques and humans (Flor et al., 1995; Merzenich et al., 1984). Injury to the primary motor cortex of the macaque also leads to extensive reorganization involving premotor areas over a period of 5 months (Dancause et al., 2005). Visuomotor learning also reorganizes the neuronal activity in the macaque premotor cortex (Mitz et al., 1991). Long-term calcium imaging of the structure and function of axons and dendritic spines should be useful to investigate the mechanisms by which such cortical reorganization occurs in primates.
The importance of research on marmosets to biomedical and neuroscience research has recently increased (Kishi et al., 2014). The germline transmittable transgenic marmoset technique (Sasaki et al., 2009) offers an opportunity to generate genetically engineered primate models for studies on normal neuronal function and neurological disorders. Marmosets live as families in the wild and can be housed as a group in laboratory cages, which offers the opportunity to investigate social behaviors and their underlying neural mechanisms. There are already precedents of such studies in which vocal and cognitive behaviors were examined under free-moving conditions (Miller et al., 2010; Takemoto et al., 2011; Yamazaki et al., 2011). Of critical importance for two-photon imaging studies, it was recently shown that head-restrained marmosets can perform simple tasks (Mitchell et al., 2014; Remington et al., 2012). Combined with our technique, GECIs with red fluorescence at an excitation wavelength >1,000 nm may eventually allow the observation of neuronal activity in the deep layers (i.e., >1.2 mm depth) of the marmoset cortex (Akerboom et al., 2013; Inoue et al., 2015; Ohkura et al., 2012).

In conclusion, our technique removes a major obstacle to studying the non-human primate cortex using calcium imaging. In future studies, the technique, combined with various cognitive tasks, should shed light on the organization and plasticity of the primate cerebral cortex.

EXPERIMENTAL PROCEDURES

Animals

The Institutional Animal Care and Use Committee of National Institutes of Natural Sciences, Japan, approved all experiments. Five laboratory-bred adult common marmosets (Callithrix jacchus; one male and four females) were used. The marmosets were 46–52 months old (weight: 310–433 g). All marmosets were in a 12:12 hr light-dark cycle and were not used for other experiments prior to the present study.

Vector Production

The plasmid AAV:Thy1S-tTA was constructed by subcloning the DNA fragments containing the truncated Thy1S promoter (2.9 kb) and tTA into pAAV-MCS (Agilent Technologies). Thy1S promoter contains the 5′ region of the original Thy1 promoter and lacks its exon 4 and 3′ UTR (Ako et al., 2011). We further truncated its 5′ end for use in the AAV vector. The original Thy1 promoter (6.5 kb) may drive expression in GABAergic neurons (Lee et al., 2006). The plasmid AAV:SynI-rtTA (Watakabe et al., 2014) contains rTET-On activator connected to the human Synapsin I promoter. The plasmid AAV:TRE3-GCaMP6f was constructed by subcloning TRE3 from TRE3-ZsGreen1 (Clontech), GCaMP6f from pGP-CMV-GCaMP6 (Addgene plasmid 40755), and WPRE from pAAV-E1a-DIO hChR2 (E123T/T159C)-EYFP (Addgene plasmid 35509). Thy1S-tTA and TRE3-GCaMP6f of the AAV vectors have capsids of serotype 1. SynI-rtTA of the AAV vector has capsids of serotype 9. They were produced in HEK293 cells using a helper-virus-free system, purified twice by...
See also Movie S1.

Selectivity of Sensory Responses to Tactile Stimulation from Neuronal Somata, Dendrites, and Axonal Boutons

(A) Sensory responses to tactile stimulation from soma regions in the right somatosensory cortex. The depth of the image is 210 μm. *(A1)* Representative two-photon images on which colored stimulus selectivity (green, left arm; red, left leg) is overlaid are shown. In each stimulation condition, the stimulus selectivity for each pixel was defined by dividing ∆F during the stimulation averaged across all trials by the maximum value of the averaged ∆F of all pixels in each field in both conditions. *(A2)* Representative ∆F/F traces from two neurons indicated in A1 (soma 1 and soma 2) are shown. The green and red lines indicate the timing of tactile stimulation to the left arm and the left leg, respectively. *(A3)* Averaged ∆F/F traces from soma 1 and soma 2 aligned to the left arm (green) and the left leg (red) stimulation are shown. The responses to nine stimuli to each body part were averaged. The gray band indicates the timing of the left arm and the left leg stimulation.

(B) Sensory responses to tactile stimulation from dendrites in the right somatosensory cortex. The depth of the image is 15 μm. *(B1)* Representative two-photon images on which colored stimulus selectivity (green, left arm; red, left leg) is overlaid are shown. *(B2)* Representative ∆F/F traces from two dendrites indicated in B1 (dendrite 1 and dendrite 2) are shown. *(B3)* Averaged ∆F/F traces from dendrite 1 and dendrite 2 aligned to the left arm (green) and the left leg (red) stimulation are shown. See also Movie S1.

CsCl density gradient centrifugation, and titrated by qPCR, as described previously (Konishi et al., 2008). The final preparations were dialyzed against PBS and diluted as described below. To prevent adhesion of the AAV vector to glass micropipettes, 0.001% Pluronic-F68 (Sigma-Aldrich) was included in the vector solution. rAAV2/1-SynI-GCaMP6f was obtained from the University of Pennsylvania Gene Therapy Program Vector Core.

Vector Injection

All surgical procedures and AAV vector injections were performed under aseptic conditions. At first, ketamine (20 mg kg⁻¹) as an anesthetic agent, medetomidine (60 μg kg⁻¹) as a sedative and analgesic, ampicillin (40 mg kg⁻¹) as an antibiotic, and carprofen (5 mg kg⁻¹) as an anti-inflammatory agent were administered intramuscularly. Marmosets were then placed in a stereotaxic apparatus with anesthesia maintained using inhaled isoflurane (1.5%–2.5% in oxygen). Pulse oxygen (SpO₂), heart rate, and rectal temperature were continuously monitored to judge the marmoset’s condition.

A 4-mm-diameter circular craniotomy was made over the right parietal or somatosensory cortex (Hardman and Ashwell, 2012; Yuasa et al., 2010), and the underlying dura mater was removed. Vector injections were performed using a pulled glass pipette (70 μm outer diameter) attached to a nanoject 2000 injector connected to Micro4 controller (World Precision Instrument). The viral preparations were adjusted to the final concentration of 0.04–1 x 10⁻⁵ vg ml⁻¹ for rAAV2/1-Thy1S-rtTA and 1–5 x 10⁻⁵ vg ml⁻¹ for rAAV2/1-TRE3-GCaMP6f (n = 2 marmosets), 5 x 10⁻⁵ vg ml⁻¹ for rAAV2/9-SynI-rtTA and 1 x 10⁻⁵ vg ml⁻¹ for rAAV2/1-TRE3-GCaMP6f (n = 1 marmoset), and 0.2–1 x 10⁻⁵ vg ml⁻¹ for rAAV2/1-SynI-GCaMP6f (n = 2 marmosets). The mixture of these AAVs was injected at 0.1 μl min⁻¹ for 5 min at a depth of 0.5 mm from the cortical surface. A window, which was composed of a 5.5-mm circular glass coverslip (approximately 100 μm thickness; Matsunami Glass) cemented to four sheets of 3-mm circular glass coverslips (approximately 300 μm thickness; Matsunami Glass) with UV-curing optical adhesives (NOR-61; Norland Products), was pressed onto the brain surface, and the edge was sealed with dental cement (Fuji Lute BC; GC) and dental adhesive resin cement (Super bond; Sun Medical). Finally, a head plate (CFR-1; Narishige) was attached to the skull using quick self-curing acrylic resin (UNIFAST II; GC) and four small screws. After that, marmosets were single caged to avoid damaging the head plate and the glass window.

Administration of Dox

For TET-Off and TET-On systems, oral administration of Dox was initiated 10 days, 58 days, and 104 days after the virus injection (marmoset A for TET-Off); 13 days after the virus injection (marmoset B for TET-Off); and 25 days after the virus injection (another marmoset for TET-On). Dox was administered orally in drinking water (0.1–0.2 mg ml⁻¹ in a 1.25%–2.5% sucrose solution) for 1–17 days (Figure S3).

Two-Photon Imaging

The anesthetized marmoset was head restrained to a custom-made marmoset chair (O’Hara & Co.) with head holders (SR-10R-HT; Narishige) under a multi-photon laser scanning microscope equipped with a gantry frame system (FVMPE-RS; Olympus). Inhaled isoflurane was 0.5%–1% in oxygen during imaging of spontaneous neural activity, 0.25%–0.5% in oxygen during imaging of sensory-evoked neural activity, and 1%–1.5% in oxygen during chronic imaging. During imaging of sensory-evoked neural activity, medetomidine (20 μg kg⁻¹)
as a sedative and analgesic was also administered intramuscularly. SpO₂ and heart rate were continuously monitored to check the marmoset’s condition, and the marmoset’s body was warmed by a heating pad.

Two-photon imaging was conducted with FVMPE-RS equipped with a broadly tunable ultrafast laser (InSight DeepSee; Spectra Physics) at a wavelength of 940 nm. In each imaging session, the plane of the imaging window was adjusted to be nearly perpendicular to the optical axis (± 5–10 degrees) by tilting the Goniometer Rotation Stage (Olympus) attached to the marmoset chair. During imaging of spontaneous neural activity and sensory-evoked neural activity, fluorescence emissions were divided using a 570-nm dichroic mirror and the short-wavelength side of the emissions was directly collected with a GaAsP photomultiplier tube (Hamamatsu Photonics). During chronic imaging, fluorescence emissions were collected without the dichroic mirror and the bright-field image of blood vessels on the brain’s surface and the intrinsic fluorescence of blood vessels in the brain at a wavelength of 940 nm were used to orient to the same imaging location.

For all experiments, a 10x objective (XLPLN10XSVMP; numerical aperture of 0.6; working distance of 8 mm; Olympus) was used. Because of the size limit of the scanning mirrors, the back aperture of the objective was underfilled with a laser beam with a diameter of 15.1 μm. The practical numerical aperture of the objective was calculated as 0.42. The laser power to image the marmoset cortical tissue was typically 38–69 mW after the objective (max 120 mW at 400 μm depth from the cortical surface). For imaging of neural activity, images were acquired at a frame rate of 30 Hz with a resonant scanner and a galvano scanner in somata (512 × 512 pixels, with a spatial resolution of 0.828 μm pixel⁻¹ or 1.241 × 1.241 μm pixel⁻²) and dendrites (512 × 512 pixels, with a spatial resolution of 0.310 × 0.310 μm pixel⁻²) and at a frame rate of 16.6 Hz with a galvano scanner in axons (124 × 44 pixels, with a spatial resolution of 0.653 × 0.653 μm pixel⁻¹) For chronic imaging, images were acquired at a frame rate of 0.25 Hz with two galvano scanners (1,024 × 1,024 pixels, with a spatial resolution of 1.24 × 1.24 μm pixel⁻¹ or 0.620 × 0.620 μm pixel⁻²). To minimize the effect of spontaneous changes in the baseline fluorescence intensity that was compared across imaging days, five consecutive frames were averaged.

To evaluate the validity of the usage of the relatively thick (approximately 1.3 mm) glass coverslips for the imaging window, fluorescent yellow-green beads with a diameter of 2 μm (Fluoresbrite YG Plain Microspheres; Polysciences) were imaged with and without the glass coverslips. The beads were diluted to 100 times by 2% agarose gel in water (agarose L; Nippon Gene), and the glass coverslip was placed on the agarose surface. The beads were <50 μm from the bottom of the glass window. The optical resolution of the two-photon imaging through the glass window was slightly lower than that without the glass window (mean ± SD lateral resolution: 1.49 ± 0.042 μm versus 1.99 ± 0.21 μm; axial resolution: 7.66 ± 0.2 μm versus 8.53 ± 0.66 μm; n = 5 beads) but was comparable to that obtained by two-photon imaging using a GRIN lens that could detect the activity not only in the cell body but also in the dendrite (Lecq et al., 2014). Thus, the usage of the glass window developed in the present study was valid for two-photon imaging of the marmoset neocortex.

Sensory Stimulation

The left arm and the leg were alternatively stimulated for 1 s by a flat coreless vibration motor (FM34c; Tokyo Parts Industrial) at an interval of 7.5 s. A program written with LabVIEW (2013SP1; National Instruments) was used to regulate the timing of the sensory stimulation.

Image Processing

Analyses of images were performed using ImageJ software (1.49d; NIH) and MATLAB software (R2013b; MathWorks). Image sequences were corrected for focal plane displacements with the ImageJ plug-in, TurboReg (Thévenaz et al., 1998). ROIs were determined manually to surround the putative neuronal soma. The ΔF/F in each ROI was calculated, and the baseline fluorescence intensity was set to be the eighth percentile value of the fluorescence distribution of each consecutive recording. To calculate the half-decay time of calcium transients in Figures 2F and 2G, calcium transients with a peak of greater than four SDs of ΔF/F traces that had no other peak from 0.5 s before to 1 s after the identified peak were selected and averaged for each ROI.

Immunohistochemistry

Immunohistochemistry was performed as previously described (Watakabe et al., 2015). Briefly, the marmoset was deeply anesthetized by an intraperitoneal injection of sodium pentobarbital and perfused transcardially with 0.9% NaCl, followed by fixation with 4% paraformaldehyde in 0.1 M PBS (pH 7.4). The cryoprotected marmoset brain was sliced with a thickness of 40–50 μm. For immunostaining of the marmoset that received the rAAV2/1-Synl-GCaMP6f injection, the antibody to GFP (rabbit IgG; 1:20,000; Tamamaki et al., 2003) was used as the primary antibody. For immunostaining of the marmoset that received the AAV-TET-Off vectors injection, the native fluorescence of GCaMP6f was counterstained with anti-NeuN (mouse IgG; 1:2,000; cat. no. MAB377; Millipore) or with anti-parvalbumin antibody (rabbit IgG; 1:2,000; Swant), followed by visualization by staining with Cy3-conjugated anti-mouse or anti-rabbit secondary antibodies (1:1,000; Jackson Immunoresearch). The fluorescent images were captured by an Olympus DP71 digital camera attached to a BX51 microscope (Olympus). The confocal images were taken using the Nikon confocal laser microscopy system A1 (Nikon). Maximum intensity projection images for the confocal data were created by NIS-Elements imaging software (Nikon). All images were processed by Adobe Photoshop CS6 to achieve the proper contrast for presentation.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and one movie and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.10.050.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank V. Jayaraman, R. Kerr, D. Kim, L. Looger, and K. Svoboda of the GENIE Project Janelia Farm Research Campus (HHMI) for providing rAAV2/1-Synl-GCaMP6f and pGP-CMV-GCaMP6 and K. Deisseroth of Stanford University for providing pAAV-Ef1a-DIO hChR2 (E1237/1595C)-EYFP. We thank R. Hira and Y. Isomura for the development of the custom-made marmoset chair. We thank E. Sasaki for helpful advice for handling marmosets as well as for providing two of our experimental animals. We thank S. Ohsawa and J. Wang for help with histology and Y. Takeda, R. Hirakawa, Y. Takahashi, E. Imoto, E. Iwase, and K. Kotani for animal handling. Confocal images were acquired at Spectrography and Bioimaging Facility, NIBB Core Research Facilities. The research was supported by Scientific Research on Innovative Areas to T.Y. (22123009), a grant from JSPS to A.W. (KAKENHI 40290910 and 22500300), Grants-in-Aid for Scientific Research A to T.Y. (20240030), a JSPS Research Fellowship for Young Scientists to S.-I.T., the Strategic Research Program for Brain Sciences to M.M. and T.Y., and the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from MEXT and AMED, Japan, to M.M. and T.Y.

Received: June 18, 2015

Revised: August 28, 2015

Accepted: October 15, 2015

Published: November 19, 2015

REFERENCES

