
Fast Failure Detection of OpenFlow Channels

Daisuke Kotani
Kyoto University

Yoshida-Honmachi, Sakyo, Kyoto, Japan
kotani@net.ist.i.kyoto-u.ac.jp

Yasuo Okabe
Kyoto University

Yoshida-Honmachi, Sakyo, Kyoto, Japan
okabe@i.kyoto-u.ac.jp

ABSTRACT
We propose a mechanism to detect OpenFlow channel fail-
ures quickly in switches and controllers where multiple con-
trollers are running. In OpenFlow networks, it is impor-
tant to maintain OpenFlow channels between controllers and
switches are up and to detect channel failures immediately,
so that messages to notify events such as port down and mod-
ification of flow tables are always delivered to the other side
surely and quickly. Exchanging keep-alive messages fre-
quently is undesirable for controllers because the controllers
should handle many keep-alive messages from switches. This
would be a significant overhead when the rate of other mes-
sages than keep-alive ones is low, because the controllers are
forced to handle many keep-alive messages although such
keep-alive messages do not affect network control directly.
Our proposed mechanism adaptively sends keep-alive mes-
sages to detect quickly that a message is not reached to the
other side, instead of checking whether a channel is up. A
controller shares a message received from a switch with other
controllers in a timely manner, and the controller regards a
channel has been unavailable if the message notified by other
controllers has not arrived via the channel. A switch sends
keep-alive messages to all channels just after sending an im-
portant asynchronous message such as a port status message,
and regards all channels have been gone down if the switch
does not receive any response. The evaluation shows that
our proposed mechanism reduces failure detection delay to
timeout until receiving a response, and that overhead on la-
tency is negligible.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work Operations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AINTEC’15 November 18–20,2015,Bangkok, Thailand.
Copyright 2015 ACM TBA ...$5.00.

General Terms
Management

Keywords
Software-Defined Networking, OpenFlow, Failure De-
tection

1. INTRODUCTION
Computer networks mainly consist of two planes, the

data plane that forwards packets, and the control plane
that decides where to forward packets. To continue to
deliver packets to destinations, networks should reroute
traffic quickly at the time of failures; failures occurred in
the data plane must be detected and notified to the con-
trol plane immediately, and the control plane must up-
date packet forwarding rules quickly if necessary. The
first and important step is to detect failures, and some
mechanisms are proposed to make the detection faster
like Bidirectional Forwarding Detection (BFD)[3].
We hardly need to care for connectivity between the

data plane and the control plane in traditional net-
working devices because these planes are in the same
device, but things are different with Software-Defined
Networking. Software-Defined Networking[11] is an ar-
chitecture to control a network with a global network
view by a centralized controller for simple and flexi-
ble network control, and OpenFlow[9] is one of major
protocols used for communication between controllers
and switches. In OpenFlow, network events including
failures are detected at switches (the data plane) and
notified to external controllers (the control plane). The
controllers calculate new packet forwarding rules and
update them in the switches if necessary. A switch and a
controller communicate with each other through a TCP
connection (called an OpenFlow channel) via multiple
links and devices, and such links and devices are also
a part of the control plane. When a failure occurs to
the data plane, a failure may also occur to the control
plane because sometimes the control plane and the data
plane are not physically separated, use the same power
source, pathway, etc. An OpenFlow channel may also
be disconnected temporarily at the same time with a

1

data plane failure, and a failure in the data plane is
not notified to the controller in a timely manner. As a
result, there may be a significant delay until new rules
are installed in the switches. Therefore, detection of
OpenFlow channel failures is very important.
Reliability in OpenFlow controllers has been stud-

ied in various perspective, such as high performance
for large scale networks[16, 1], controller fault toler-
ance[2, 7, 6], and path recovery from switches to a con-
troller via the data plane[13], but no work tries to detect
an OpenFlow channel failure directly. OpenFlow pro-
tocols define keep-alive messages (echo request/reply)
and multi-controller support for fault tolerance. It is
not desirable to exchange keep-alive messages between
switches and multiple controllers in a short interval be-
cause the controllers should respond to many keep-alive
messages from many switches. This is a significant over-
head when the rate of messages other than keep-alive
ones is low and the message processing performance in
the controllers is not high.
To reduce the number of the keep-alive messages while

detecting a channel failure quickly when necessary, we
propose a mechanism to detect an OpenFlow channel
failure in switches and controllers when network events
that should be notified to controllers occur. The reason
to maintain OpenFlow channels is to be always ready to
deliver important messages in real-time. The proposed
mechanism quickly detects that an OpenFlow message
does not arrive at the other side of the channel, instead
of checking a channel is always up.
We assume that, for redundancy, multiple controllers

are running and a switch has channels to two or more
controllers. From a switch’s perspective, a message by
events in the data plane such as port down is sent over
all channels at the same time, and the message arrives
at the controllers if at least one channel is not failed.
Therefore, the switch should detect that no controller
receives the message. From a controller’s perspective, a
controller can detect that a message does not arrive at
a switch by a synchronous message that uses a request-
reply pattern, for example, a message that changes a
state or a configuration of a switch. In this case, the
controller sets the timeout for receiving a reply message
from the switch and waits until the timeout has expired,
then the controller tries to use another channel. If the
controller can detect channel failures by other means,
the controller avoids using the failed channels, and the
opposite switch can receive the message faster.
In the switch side, a switch sends a keep-alive mes-

sage (echo request) to all channels just after sending a
message by a event occurred in the data plane. If the
switch receives a reply message (echo reply) from one or
more channels, the switch expects that all the previous
messages including one by the event have arrived at one
or more controllers. When the switch does not receive

the reply message within a certain period (timeout), the
switch regards all channels are failed, and enters the fail
secure or standalone mode according to the switch con-
figuration.
In the controller side, controllers detect channel fail-

ures by sharing received messages among them. When
a controller receives a message that is sent to multiple
channels such as a port status message, the controller
notifies the arrival of the message to other controllers.
When a controller receives a notification of the arrival
of a message from other controllers and the controller
has not received the notified message from the switch,
the controller waits for a certain period (timeout). If the
message has not arrived at the controller until the time-
out has been expired, the controller regards the chan-
nel to the switch from the controller has been lost, and
avoids using the channel.
We have implemented the proposed mechanism in an

OpenFlow channel proxy. We have evaluated failure
detection delay and overhead on latency and through-
put, and show that the failure detection delay becomes
shorter than using the standard keep-alive mechanism,
and overhead on latency is negligible.
Our contributions are summarized as follows:

• We categorize OpenFlow channel failure patterns,
and point out that failures of all channels at switches
and failures of both all and some channel failures
at controllers should be detected.

• We design a fast failure detection mechanism by
adaptively sending keep-alive messages and by shar-
ing arrivals of messages among controllers.

• We implement the proposed mechanism into an
OpenFlow channel proxy, and show that the pro-
posed mechanism can shorten failure detection de-
lay with negligible overhead on latency.

2. RELATED WORK

2.1 Multi-Controller Support and Message
Types in OpenFlow

OpenFlow protocols[10] are used to manage packet
forwarding rules stored in a flow table of OpenFlow
switches. Each entry in the flow table includes a tu-
ple of values of header fields as a matching condition
and actions applied to matched packets.
A connection between a switch and a controller is

called an OpenFlow channel, and the channel is estab-
lished via the data plane (called in-band control) or
the control plane that is logically separated from the
data plane (called out-of-band control). Each switch
that supports OpenFlow Switch Specification 1.2 and
later can establish channels to multiple controllers. A
channel has a role, MASTER, SLAVE or EQUAL. In

2

OpenFlow	 Switch	

OpenFlow	
Controller	

Asy
nc

 m
es

sa
ge

	Request	
Reply	

OpenFlow	
Controller	

OpenFlow	
Controller	

Controller-to-Switch/ 

 Symmetric message	

Figure 1: OpenFlow Messages over Multiple
Channels

EQUAL, a controller can read and write a state of a
switch as well as other controllers. In MASTER, a con-
troller can read and write a state of a switch, and the
role of other controllers are set to SLAVE, which allows
only to read a state from a switch.
There are three types in OpenFlow messages: controller-

to-switch, asynchronous, and symmetric. The controller-
to-switch messages are used to get and set a state of a
switch by a controller (a request message), and the con-
troller expects that the switch responds to these mes-
sages (a reply message). A switch informs controllers
of a state change with an asynchronous message. Al-
though the OpenFlow protocol does not require a con-
troller to respond to asynchronous messages, the con-
troller may update a state of the switch in response to
some asynchronous messages like port status messages.
The symmetric messages are similar to controller-to-
switch messages, but a request message can be sent
not only from controllers but also from switches. A
keep-alive message (echo request/reply) is an example
of symmetric messages.
Figure 1 shows how these types of messages are trans-

ferred over multiple channels. Asynchronous messages
are sent over all channels other than ones where the
messages are filtered out, and other messages are sent
over one of channels. A reply message is sent over the
channel where a request has been received.

2.2 Failure Detection and Recovery in Open-
Flow networks

The failure detection and recovery in the data plane is
one of the main issues for failure tolerance of OpenFlow
networks. Controllers periodically check the liveness of
many links and devices in the data plane, and reroute
the traffic if necessary. Kempf et al.[4] proposed a scal-
able topology monitoring architecture by implementing
a monitoring function on switches. Sharma et al.[14]
added a recovery action in switches to recover from fail-
ures in the data plane within 50 msec, which meets a
carrier-grade requirement.
There are works to make in-band control practical,

including failure detection and recovery for the path
between switches and controllers. Sharma et al.[13] pro-
posed a mechanism to recover in-band OpenFlow chan-
nels from failures using fast failover actions. In their

evaluation, BFD[3] is used to detect a path failure be-
tween a switch and a controller, instead of detecting a
channel failure.
In out-of-band control, OpenFlow channels are es-

tablished over control networks that use conventional
networking technologies. For example, link aggregation
(IEEE802.3ad) is used for link level redundancy, and
BFD[3] and Ethernet OAM are configured for moni-
toring a path. These technologies improve the relia-
bility of control networks, but controllers and switches
should also have a fast failure detection mechanism, be-
cause unrecoverable failures detected by these technolo-
gies cannot be notified to controllers and switches in
principle.
The fault management of controllers is also important

because we cannot control OpenFlow networks without
controllers. One of the purposes of distributed con-
trollers[5, 16, 1] is to make controllers fault tolerant.
The controllers monitor each other to check whether
each controller is running, and failover to running con-
trollers when one of controllers has been down. Kuroki
et al.[6] shows the procedure to detect and recover from
controller failures by monitoring controllers each other
in a very short interval. Unlike these works, we try
to detect failures in OpenFlow channels between the
switches and the controllers. An OpenFlow channel is
failed not only because a controller and a switch be-
come down, but also because networking devices that
connect switches to controllers are failed, cables that
connect such devices are cut, etc.

3. OPENFLOW CHANNEL FAILURES
In this section, we describe patterns of OpenFlow

channel failures, and which patterns controllers and switches
should detect.
An OpenFlow channel becomes useless due to various

reasons. One is a fault in the control plane, such as con-
trollers, switches, or networking devices in the control
plane become down, or a cable is cut. The other is a
large delay of delivering messages. From the viewpoint
of controlling the data plane, the controllers and the
switches avoid using such useless channels, and we do
not distinguish between faults and large delay.
We assume that, for redundancy, multiple controllers

are running and each switch is connected to more than
one controller. We can categorize a state of OpenFlow
channel failures in a switch as follows.
All failure: All channels are failed, and no channel

to any controller is available.
Partial failure: Some, not all, channels are failed.
Switches need to detect only the All failure quickly,

and switches must enter a preconfigured fail secure or
standalone mode according to OpenFlow specifications[10]
when detected. Switches do not have to detect the
Partial failure, because switches mainly create asyn-

3

chronous messages, which are flooded to all channels,
and at least one controller can receive and handle the
asynchronous messages.
Controllers need to detect both the All and Partial

failures quickly. In the Partial failure, the controllers
should avoid using failed channels. In the All failure,
the controllers should stop using a switch that the con-
trollers cannot control, and reroute the traffic so that
the traffic does not get through the switch.
However, detecting the All failure in controllers is

almost impossible without request-reply messages like
echo request/reply messages, because the controllers
cannot get a trigger to start checking a state of a chan-
nel like sending an echo request message and starting a
timer for a timeout. The controllers may have many
chances to start checking a state of a channel, such
as confirming that previous messages are processed by
barrier request/reply messages. In this paper, the con-
trollers will detect the All failure by setting a proper
timeout of receiving a reply messages and by trying to
send a request message to all channels one by one.

4. OPENFLOW CHANNEL FAILURE
DETECTION

We can easily assume that an OpenFlow channel fail-
ure can be detected by exchanging keep-alive (echo re-
quest/reply) messages. If each switch sends an echo
request message in a short interval, a controller will suf-
fer from responding to many echo request messages sent
by many switches. In addition, load balancing for pro-
cessing keep-alive messages with multiple controllers is
impossible unlike other messages, because each switch
should check availability of each controller.
It is not desirable that many keep-alive messages are

exchanged when the rate of other messages are low.
Controllers are often designed to insert flow entries into
switches proactively so that controllers and switches do
not need to communicate with each other frequently.
Moreover, according to the results of a recent study
by Shalimov et al.[12], message processing performance
in some controllers is not so high. This is because
some controllers place high importance on productiv-
ity of controller development rather than performance,
and use a scripting language with inefficient interpreters
like CPython. If a controller need to handle many keep-
alive messages, such controllers cannot be used due to
many keep-alive messages although other messages will
be exchanged not so frequently.
Our approach is that, instead of checking an Open-

Flow channel directly, a switch and a controller detect
that a message has not arrived at the other side. When
neither controller nor switch generate a message, the
liveness of an OpenFlow channel does not matter be-
cause the switches can forward packets only with exist-
ing configurations.

4.1 Detection at Switches
A switch mainly sends asynchronous messages, and

does not expect a controller to respond to the messages.
Therefore, we cannot set a timeout until a switch re-
ceives a reply, and the switch cannot confirm that a mes-
sage has arrived at one or more controllers. An excep-
tion is symmetric messages including echo request/reply
messages, and we use them for failure detection.
Each switch holds a channel state, active when one or

more channels are available, checking when executing
a keep-alive procedure, or inactive when all channels
are unavailable. When the channel state is active or
inactive, a switch sends an echo request message over
every channel and sets the channel state to checking just
after sending an important asynchronous message such
as a Port Status message, a Role Status message, and a
selected Packet-In message. When the switch receives
an echo reply message via one or more channels, the
switch sets the channel state to active, and regards that
previous messages have arrived at least one controller
because TCP delivers data in order. If the switch does
not receive the reply until the timeout is expired, the
switch may lose contact with all controllers, and sets
the channel state to inactive.
By triggering a keep-alive procedure just after send-

ing an asynchronous message, we can reduce failure de-
tection delay to an echo reply timeout value. We can
avoid that a controller is busy to handle many echo re-
quest messages by sending them only when the channel
state is not checking.

4.2 Detection at Controllers
A limitation in controllers is that a message initiated

by a controller is sent over one channel, not multiple
channels, at the same time. This means that the con-
troller should try to exchange request/reply messages
over one channel, and when the timeout has expired,
the controller should retry to send over another chan-
nel. This is a time-wasted behavior, and we want to
reduce the number of trials.
One of triggers when a controller sends a request mes-

sage is an asynchronous message from a switch. For
example, a controller receives a message that informs
a port becomes down, the controller may update Flow
Tables to reroute traffic. If controllers share what mes-
sages arrive at which controllers, the controllers can use
such data for failure detection of each channel, and the
controllers can avoid trials over channels that might be
failed.
The detail is as follows. Each controller has a per-

switch state that records the maximum sequence ID
in messages that the controller has received, which is
called the Latest Sequence ID (see Sec. 4.3 for the se-
quence ID). As with switches, each controller holds a
channel state, active, checking, or inactive, and prefer

4

active channels for sending messages.
When a controller receives a message from a switch

and a sequence ID in the received message is more than
the Latest Sequence ID, the controller notifies the mes-
sage including the sequence ID and the DPID of the
switch to other controllers, and sets the Latest Sequence
ID to the sequence ID in the message.
When a controller receives a message from another

controller and a sequence ID in the received message is
more than the Latest Sequence ID, the controller sets
a state of a channel to the switch to checking, starts a
timer, and sets the Latest Sequence ID to the received
one. If the channel state has already been checking,
the controller does not start the timer. When the con-
troller receives the same message from the channel to
the switch, the controller cancels the timer, and returns
the channel state to active. When the timer has ex-
pired, which means that the controller cannot receive
the same message from the switch, the controller re-
gards the channel state is changed to inactive.
When a sequence ID in a message received from an-

other controller is less than the Latest Sequence ID,
such message is ignored.
We can obtain the followings about the state of Open-

Flow channels. If a channel from a controller to a switch
is active, the controller knows that its channel is active.
If a channel from a controller to a switch is inactive but
another controller has an active channel to the switch,
the controller knows that at least one channel from an-
other controller is active. If the latter situation occurs,
the controller will send messages to the switch via an-
other controller. The selection of another controller de-
pends on the design of controllers. For example, some
controllers may elect a backup controller in advance,
and another controller may run a leader election algo-
rithm among controllers that have active channels.

4.3 Sequence Message ID for Duplicate Filter-
ing and Reordering

A switch floods asynchronous messages to all chan-
nels, and the messages arrive at controllers at different
timing. For example, when some channels are unavail-
able for a short time and a port in a switch becomes
down and up, some controllers receive a port down mes-
sage after another controller receives a port up message.
It is difficult that controllers reorder messages according
to the time when events occur.
This is so called out-of-order problem. OpenFlow

specifications[10] considers this problem only in the case
of OpenFlow channel role transition, but the same prob-
lem occurs when reordering asynchronous messages in
the multiple controller environments.
We can easily solve this problem by assigning a switch-

local sequence ID to each asynchronous message. A
switch assigns the same sequence ID for messages that

OpenFlow	 Switch	

OpenFlow	 Controller	

Switch	
Proxy	

Controller	
Proxy	

Encap	 Failure	
Detector	 Decap	

Encap	 &	
Dispatch	Decap	

Failure	
Detector	

Controller	
Proxy	

Failure	
Detector	

Figure 2: Overview of Prototype OpenFlow
Channel Proxy. The gray dotted lines are flow
of OpenFlow messages, and the black solid lines
are flow of messages in our own format.

point to the same event, such as port status changed.
A controller should ignore messages whose sequence ID
is less than the ID of messages that have previously
processed.

5. PROTOTYPE IMPLEMENTATION AS
OPENFLOW CHANNEL PROXY

We have implemented the proposed mechanism in an
OpenFlow channel proxy. The OpenFlow channel proxy
is our own implementation by Python and Tornado li-
brary1. The proxy forwards OpenFlow messages, and
we allow the proxy to intercept the messages.
Figure 2 shows an overview of the design of our pro-

totype OpenFlow channel proxy. The prototype proxy
consists of two parts. A switch-side proxy (Switch Proxy
in Fig. 2) runs near or on a switch. It accepts a con-
nection from a switch, and connects to controller-side
proxies. A controller-side proxy (Controller Proxy in
Fig. 2) runs near or on a controller. It accepts a con-
nection from Switch Proxies, and exchanges messages
with other Controller Proxies. One of Controller Prox-
ies connects to an OpenFlow controller.
In order that the prototype proxy is transparent to an

OpenFlow channel, the proxy encapsulates OpenFlow
messages in our own format and exchanges the encapsu-
lated messages between Switch Proxies and Controller
Proxies. The headers of our format consists of a se-
quence ID as described in Sec. 4.3, a datapath ID of a
switch, and a message type such as echo request/reply
used in Sec. 4.1 for failure detection, notification for ar-
rival of a message, and request for sending a message to
a switch in Sec. 4.2.
When a Switch Proxy receives an OpenFlow message

from a switch, the Encap module assigns a sequence ID
1http://www.tornadoweb.org/

5

to the message, encapsulates it into our own format,
and sends to Controller Proxies. At the same time,
the Failure Detector module monitors messages received
from the switch, and sends an echo request in our own
format to Controller Proxies if necessary. The Failure
Detector closes the channel to the switch if the channel
state is inactive. The Decap module filters out duplicate
messages, decapsulates messages, and sends OpenFlow
messages to the switch.
In a Controller Proxy, the Failure Detector module

has two roles. One is to respond to echo request mes-
sages from the Failure Detector in the Switch Proxies.
The other is to share messages received from Switch
Proxies with other Controller Proxies. The Failure De-
tector module monitors connections to Switch Prox-
ies as described in Sec. 4.2. The Encap & Dispatch
module assigns a sequence ID to a message received
from the controller, and encapsulates the message into
our own format. Then, the module sends the message
to a Switch Proxy if a connection state to the Switch
Proxy is active, or to other Controller Proxies if the
connection state is checking or inactive. We employ a
publish-subscribe pattern for communication between
Controller Proxies, and use ØMQ2 for implementation.
The Decap module works for duplicate filtering, decap-
sulation, and sending OpenFlow messages.

6. EVALUATION
We have measured how much failure detection delay

becomes short, and the overhead on the throughput and
latency caused by our proposed mechanism.
The evaluation environment is in Fig. 3. One Switch

Proxy and two Controller Proxies (Main and Sub) are
connected via a Packet Filter. The OpenFlow Switch
is connected to the Switch Proxy, and the Controller
Proxy Main establishes a channel to the OpenFlow Con-
troller. The Controller, the Switch Proxy, and the Con-
troller Proxies have Intel Core 2 Duo T7400 CPU. The
Controller has 4GB RAM, the Switch Proxy has 1GB
RAM, and each Controller Proxy have 512MB RAM.
The Packet Filter has Intel Atom C2358 CPU, and 4GB
RAM. The above PCs other than the Controller run
Ubuntu 14.04.2, and the Controller runs Ubuntu 12.04.
The switch has Intel Xeon X5255 CPU, 8GB RAM, and
runs CentOS 6.2. All links are directly connected by
1Gbps, and the latency between them is less than one
msec. To simulate channel failures between the Switch
Proxy and the Controller Proxies, we set filter rules to
the Packet Filter to discard packets from the Switch
Proxy to the Controller Proxies if necessary.

6.1 Failure Detection Delay
To confirm that our proposed mechanism shortens

failure detection delay, we have measured the time to
2http://zeromq.org/

OpenFlow	 Switch	

Switch	 Proxy	Packet	
Filter	

Controller	 Proxy	 Main	

Controller	 Proxy	 Sub	

OpenFlow	 Controller	

Figure 3: Connections for Evaluation

Table 1: Keep-alive Intervals and Timeouts
Interval Timeout

Switch For evaluation 5 sec 5 sec
Open vSwitch 2.3.1 5 sec 5 sec
NEC PF5240 3 sec 9 sec

Controller For evaluation 60 sec 2 sec
Trema 0.4.6 60 sec 2 sec
Ryu None None
ONOS 20 sec 10 sec
Floodlight 2 sec 30 sec

detect a channel failure between the Switch Proxy and a
Controller Proxy since we have installed a packet filter
rule on the Packet Filter. An interval of sending an echo
request and a timeout value of waiting an echo reply
are summarized in Tab. 1. Table 1 also include default
values of the intervals and the timeout values in some
controllers and switches3. A Controller Proxy sets a
timeout for one second until receiving the same message
from a Switch Proxy when the Controller Proxy receives
a message from other Controller Proxies.
The procedure of the measurement is as follows. A

measurement server collects and monitors logs from prox-
ies, and controls the switch and the packet filter rules
when necessary.

1. The Switch Proxy intercepts an echo reply mes-
sage, and notifies to the management server.

2. One second later, the management server installs
filter rules on the Packet Filter to discard packets
from the Switch Proxy to the Controller Proxies.

3. The Packet Filter notifies the completion of the
installation to the management server.

4. The management server asks the switch to send a
port status message.

5. The proxies detect channel failures between them,
and notify the failures to the management server.
When the controller or the switch closes a channel,
the proxies notify the termination of the channel
to the management server.

A measurement server appends timestamp to all logs.
We measured the detection delay as duration between
4 and 5, and executed the above procedure 10 times.

3We cannnot find the keep-alive procedure in the Ryu source
code. We cannot confirm that Ryu transmits echo requests
periodically by running Ryu.

6

Table 2: Average Failure Detection Delay
Delay

Switch With our proposed mechanism 5.0 sec
Without our proposed mechanism 9.0 sec

Controller With our proposed mechanism 1.0 sec
Without our proposed mechanism 61.0 sec

For the evaluation of the Partial failure at the Con-
troller Proxies, the Packet Filter discards only packets
from the Switch Proxy to the Controller Proxy Main.
For the evaluation of the All failure at the Switch Proxy,
the Packet Filter discards packets from the Switch Proxy
to both the Controller Proxy Main and Sub.
The results are summarized in Tab. 2. Without our

proposed mechanism, delay includes the duration until
next echo request is sent in addition to timeout values.
We can see that the delay is reduced to timeout values
with our proposed mechanism.

6.2 Overhead on Throughput and Latency
We have evaluated overhead on controller message

processing performance and latency caused by our pro-
posed mechanism. We run cbench[15] that fakes one
switch on the switch, and the cbench controller in Trema
at the controller. An RTT between two Controller Prox-
ies is about 0.2 msec.
Table 3 shows average throughput and latency for 10

seconds. Failure Detection Disabled means we disabled
our proposed mechanism. No Channel Failure means
both connections between Switch Proxy and Controller
Proxy Main and Sub are available. In Failure cases, a
connection to a controller proxy noted is unavailable.
In terms of latency, the case “Failure: Controller

Proxy Main” takes 1 msec longer than other cases. This
is because the messages are transferred via Switch Proxy
- Controller Proxy Sub - Controller Proxy Main. In
other cases, the messages are transferred only via Switch
Proxy and Controller Proxy Main.
In terms of throughput, we measured 30 percent de-

crease for “No Channel Failure” case from “Failure De-
tection Disabled” case, and 5 to 10 percent decrease
from Failure Channel cases. In “No Channel Failure”
case, Controller Proxy Main receives 1.5 times more
messages than in “Failure Detection Disabled” case, in-
cluding the messages from Switch Proxy, Controller,
and Controller Proxy Sub. Overhead on processing our
own failure detection mechanism can be measured by
comparing “Failure Detection Disabled” case and Fail-
ure cases, and the overhead seems 10 to 15 percent.

7. DISCUSSION
We have confirmed that our proposed mechanism can

reduce failure detection delay to timeout values because
our proposed mechanism quickly starts checking a chan-
nel state. By properly reducing a timeout value, we can

Table 3: Average Throughput and Latency
Throughput Latency

Failure Detection Disabled 2491.5 flows/sec 1.2 msec
(Controller Proxy Main only)
No Channel Failure 1845.0 flows/sec 1.2 msec
Failure: Controller Proxy Main 2097.6 flows/sec 2.1 msec
Failure: Controller Proxy Sub 2201.7 flows/sec 1.3 msec

detect a channel failure within an acceptable delay, re-
gardless of intervals of exchanging keep-alive messages.
We cannot see any overhead on latency when a Switch

Proxy and a Controller Proxy connected to a controller
directly establish a connection. When a connection
between Switch Proxy and Controller Proxy Main is
failed, the latency is increased because messages are
transferred via Controller Proxy Sub. This route adds
two kinds of delay to the overall latency, a message en-
code/decode delay in Controller Proxy Sub, and latency
between two Controller Proxies. If the latency between
the Switch Proxy and the Controller Proxies is large
and the processing time in the controller is long, this
overhead on latency will be negligible.
In terms of the overhead on throughput, the increase

of the number of received messages at Controller Proxy
Main reduces the overall throughput. However, the dif-
ference between the cases “No Channel Failure” and
“Failure” shows that the Controller Proxy Main takes
less time to process additional messages in the case of
“No Channel Failure”, which is ones notified by Con-
troller Proxy Sub. This is because the difference is
around 10 to 15 percent, although the number of re-
ceived messages is 1.5 times bigger.
One of problems to shorten intervals of executing a

keep-alive procedure is the number of messages that
controllers process. If switches and controllers try to
shorten failure detection delay to the timeout values
without our proposed mechanism, the switches and the
controllers should always exchange keep-alive messages.
If the switches generate messages other than ones for
the keep-alive mechanism at a low rate, our proposed
mechanism works well without significantly increasing
the number of messages that the controllers process,
because our proposed mechanism generates additional
messages only when a message is sent or received. Our
proposed mechanism is not suitable to networks where
the switches and the controllers generate message at
high rate. In such cases, the switches and the controllers
sometimes generate more messages than the cases of
shortening the intervals of the keep-alive messages. We
will need to address the problem in a different approach,
such as adaptively sending keep-alive messages accord-
ing to intervals of messages arrived.
Controllers exchange a lot of messages with other con-

trollers to detect the Partial failure if switches establish
channels to many controllers. It is better to reduce

7

the number of controllers where switches connect. If
this solution is impossible, the controllers may be able
to reduce the number of messages exchanged between
them by flooding the messages to other controllers only
when a controller has not received the messages from
other controllers, like an idea of Trickle algorithm[8].
We do not note anything about the design of con-

trollers. Some controllers has a function to elect a mas-
ter controller for each switch, such as ONOS[1], or other
controllers may have another coordination function. We
assume that some parameters for using our proposed
mechanism, such as which controllers have channels to a
switch, each channel state, or which channel controllers
use for sending request messages, are provided by con-
troller platforms. The controllers may run their coordi-
nation algorithm to choose such parameters.

8. CONCLUSION
We have proposed a mechanism to detect OpenFlow

channel failures quickly with fewer messages, compared
to a simple keep-alive mechanism. It is important to de-
tect channel failures both in switches and in controllers.
Switches need to detect only the All failure, and the
switches send a keep-alive message to each channel just
after sending important asynchronous messages. Con-
trollers can detect which channel is inactive by sharing
which messages have arrived at which controllers. To
filter out duplicate messages and reorder messages, we
assign a switch-local sequence ID to each asynchronous
message at switches. Our evaluation shows that failure
detection delay is reduced to timeout values and over-
head on latency is negligible. The overhead on through-
put cannot be negligible, but this is due to the increased
number of messages at controllers.
Future works includes minimizing overhead on through-

put by restricting messages shared among controllers,
detecting failures of all channels to a switch at con-
trollers, etc.

9. REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an Open, Distributed SDN OS.
HotSDN ’14, pages 1–6, Aug. 2014.

[2] N. Katta, H. Zhang, M. Freedman, and
J. Rexford. Ravana: Controller fault-tolerance in
software-defined networking. SOSR ’15, pages
4:1–4:12, Jun. 2015.

[3] D. Katz and D. Ward. Bidirectional Forwarding
Detection (BFD). RFC 5880 (Proposed
Standard), Jun. 2010.

[4] J. Kempf, E. Bellagamba, A. Kern, D. Jocha,
A. Takacs, and P. Skoldstrom. Scalable fault

management for openflow. IEEE ICC 2012, pages
6606–6610, Jun. 2012.

[5] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale
Production Networks. OSDI ’10, pages 1–6, Oct.
2010.

[6] K. Kuroki, M. Fukushima, and M. Hayashi.
Redundancy Method for Highly Available
OpenFlow Controller. International Journal on
Advances in Internet Technology, 7(1):114–123,
Jun. 2014.

[7] K. Kuroki, N. Matsumoto, and M. Hayashi.
Scalable OpenFlow Controller Redundancy
Tackling Local and Global Recoveries. In The
Fifth International Conference on Advances in
Future Internet, pages 61–66, Aug. 2013.

[8] P. Levis, N. Patel, D. Culler, and S. Shenker.
Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor
networks. NSDI ’04, pages 15–28, Mar. 2004.

[9] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM Comput.
Commun. Rev., 38:69–74, Mar. 2008.

[10] Open Networking Foundation. OpenFlow Switch
Specification Version 1.5.1. Mar. 2015.

[11] Open Networking Foundation. Software-Defined
Networking: The New Norm for Networks.
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/white-papers/wp-sdn-
newnorm.pdf, Apr. 2012.

[12] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov,
and R. Smeliansky. Advanced Study of
SDN/OpenFlow Controllers. CEE-SECR ’13,
pages 1:1–1:6, 2013.

[13] S. Sharma, D. Staessens, D. Colle, M. Pickavet,
and P. Demeester. Fast failure recovery for
in-band OpenFlow networks. DRCN 2013, pages
52–59, Mar. 2013.

[14] S. Sharma, D. Staessens, D. Colle, M. Pickavet,
and P. Demeester. OpenFlow: Meeting
carrier-grade recovery requirements. Computer
Communications, 36(6):656 – 665, 2013.

[15] R. Sherwood and K.-K. Yap. Cbench: Controller
Benchmarker,
http://www.openflow.org/wk/index.php/Oflops,
Sep. 2011.

[16] A. Tootoonchian and Y. Ganjali. HyperFlow: A
Distributed Control Plane for OpenFlow.
INM/WREN 2010, pages 1–6, 2010.

8

