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Abstract. We investigate the possibility that the inflationary period in the early universe was
preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest
model of this kind, where the spacetime is described by a non-singular Kasner solution that
quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The
initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension
of this metric to the region behind the horizon contains a timelike singularity which will be
visible by cosmological observers. This makes it impossible to have a reliable prediction
of the quantum state of the cosmological perturbations in the region of interest. In this
paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result
of a quantum tunneling process effectively substituting the region behind the horizon by an
anisotropic parent vacuum state, namely a 1 + 1 dimensional spacetime compactified over an
internal flat torus, T2, which we take it to be of the form de Sitter2×T2 or Minkowski2×T2. As
a first approximation to understand the effects of this anisotropic initial state, we compute the
power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum
converges at small scales to the isotropic scale invariant form and only present important
deviations from it at the largest possible scales. We find that the decompactification scenario
from M2 × T2 leads to a suppressed and slightly anisotropic power spectrum at large scales
which could be related to some of the anomalies present in the current CMB data. On
the other hand, the spectrum of the universe with a dS2 × T2 parent vacuum presents an
enhancement in power at large scales not consistent with observations.
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1 Introduction

The latest results from the WMAP and Planck collaborations fit beautifully within a very
simple model of inflation [1, 2]. On the other hand, there are a number of intriguing large
scale anomalies in the cosmic microwave background (CMB) data that clearly deserve some
attention. These anomalies include the low power of the quadrupole [3], the alignment of
the quadrupole and octopole [4, 5], the oscillation in the power of low ` < 10 multiples with
Podd < Peven [6], as well as the so-called dipolar modulation [7, 8]. Although the statistical
significance of some of these effects is still under debate, it is particularly interesting to think
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that they might be related. Here we explore the possibility that they may be due to a
particular state of the universe at the onset of inflation.

Several authors have investigated the idea that some of these anomalies could be due to
a period of anisotropic inflation [9–14]. These models require the existence of some kind of
matter during inflation that sustains an anisotropic energy momentum tensor and bypass the
no-hair theorems for a spacetime with a positive cosmological constant [15]. It is interesting
to see that some of these models lead to an attractor behavior for this anisotropic period
making their predictions more robust (See, for example [16]).

There is however another way to explain these large scale anomalies without invoking the
presence of new anisotropic energy sources. The idea is to assume that inflation only lasted
for a relatively short number of e-foldings, in fact, just enough to solve the horizon, flatness
and isotropy problems. In a situation like this one could be seeing the effects of the initial
state of inflation at the largest possible scales of the CMB today. This obviously requires
a degree of fine-tuning of the number of e-foldings, but taking into account the number of
suspicious effects at those scales one is tempted to consider this possibility seriously. In
particular one would like to explain the apparent violation of rotational symmetry at the
largest scales by a initial period of anisotropic evolution. Considering a universe dominated
by a pure cosmological constant, one would find (in agreement with the no-hair theorems) a
rapid approach to isotropic expansion. In other words, there is only a primordial anisotropic
stage of inflation. This is the kind of scenario we are contemplating in this paper.

Such period of primordial anisotropic inflation was first considered in [17] and [18]. One
of the crucial points of this scenario is that, of course, one does not have a long period of
inflation that would settle the quantum state to a Bunch-Davis vacuum, as one has for a
regular inflationary model with a large number of e-folds. This makes the initial state of the
vacuum before inflation potentially observable. Here we would like to explore this possibility
in more detail by looking at some of the simple models that have been proposed for primordial
anisotropic inflation.

The rest of the paper is organized as follows. We show in section II that the models
studied in the literature can be extended past their apparent Big Bang hypersurface to a
spacelike region that has a timelike singularity. Furthermore, the quantum state for pertur-
bations in these models could not be specified without some knowledge about the conditions
on the singularity. This makes it impossible to make precise predictions on these scenarios.
We present in section III a different scenario where we replace the region with the singularity
with a lower dimensional compactified spacetime. This gives a new interpretation to the
background geometry for anisotropic inflation as an anisotropic bubble created by the de-
compactification of the lower dimensional state and allows us to obtain a consistent quantum
initial state for the cosmological perturbations in this model. We discuss the way to find this
quantum state in section IV. Finally in section V we study the observational consequences
of such model and demonstrate that in some cases the new quantum state alleviates some
of the pathologies found in the power spectrum of perturbations. We end in section VI with
some discussion and conclusions.
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2 The background anisotropic geometry

2.1 A cosmological background

In this paper, we consider the possibility that the geometry of our universe is described by
the Bianchi I metric of the form,

ds2 = −dt2 +
3∑
i=1

ai(t)
2dx2

i , (2.1)

where ai(t) (i = 1, 2, 3) are the scale factors in the three different spatial directions. If the
existence of matter is ignored in the primordial stage of the universe, the initial metric can
be approximated by the Kasner solution,

ds2 = −dt2 +
3∑
i=1

t2pidx2
i , (2.2)

the vacuum solution of Einstein’s equations, where the three exponents satisfy the relations∑
i

pi =
∑
i

p2
i = 1. (2.3)

In the presence of a positive cosmological constant Λ > 0 (or the equivalent potential energy),
one can find solutions of Einstein’s equations whose geometries interpolate between the initial
Kasner (2.2) solution and a late-time isotropic de Sitter phase. These solutions are given by
the so-called Kasner-de Sitter solution [17–26],

ds2 = −dt2 +

3∑
i=1

sinh
2
3 (3Ht)

{
tanh

(
3Ht

2

)}2(pi− 1
3

)

dx2
i , (2.4)

where H :=
√

Λ
3 is the Hubble rate of the de Sitter in the late-time limit and the pi parameters

satisfy the same conditions as before, namely, eq. (2.3).
These spacetimes are initially anisotropic but this phase is short lived and within a

period of t ∼ (a few)×H−1 the universe becomes isotropic in agreement with the expectation
of the cosmic no-hair theorem [15]. The curvature invariant RµνρσRµνρσ at t = 0 diverges for
a generic Kasner spacetime (2.2), and thus the geometry is initially singular except for the
particular branch where p1 = 1 and p2 = p3 = 0 of the Kasner-de Sitter solution (2.4) that
takes the form

ds2 = −dt2 +

(
2

3
H−1 sinh

3Ht

2

(
cosh

3Ht

2

)− 1
3

)2

dr2 +

(
cosh

3Ht

2

) 4
3

dx2
⊥ , (2.5)

where 0 < t < ∞ and x⊥ represents the coordinates of the 2d symmetric plane.1 This is

1This is a Bianchi I spacetime with an extra rotational symmetry in the x⊥ plane. The authors of [17]
found two different solutions of this form for a universe with a pure cosmological constant. By choosing
p1 = − 1

3
and p2 = p3 = 2

3
in (2.4), the other planar branch of the Kasner-de Sitter solution can be found in

this gauge to be,

ds2 = −dt2 +

(
2

3
H−1 cosh

3Ht

2

(
sinh

3Ht

2

)− 1
3

)2

dr2 +

(
sinh

3Ht

2

) 4
3

dx2
⊥, (2.6)

However, this spacetime is singular at t = 0.
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indeed a very anisotropic spacetime near t = 0 where the r direction grows linearly with time
while the expansion rate in the x⊥ plane goes to zero, in other words, it becomes static.

The authors in [17] noted that t = 0 is not a real singularity in this case, but just
a coordinate singularity and the universe near this point is represented by a non-singular
Kasner solution of the form,

ds2 ≈ −dt2 + t2dr2 + dx2
⊥. (2.7)

This is in fact a piece of the 4d Minkkowski space. Looking at the t−r subspace one identifies
a 2d Milne space, which covers the interior of the future lightcone of any point in the 2d
Minkowski spacetime so one can perform a change of variables that brings this metric into the
usual 4d Minkowski space metric form. This means that the hypersurface of t = 0 is not the
real Big Bang singularity but there is a part of spacetime that lies behind it. One could be
tempted to set the initial state of the vacuum at t = 0 [17, 18, 23–26], but it is clear that in this
geometry one should go beyond this hypersurface since any disturbances can propagate freely
through this null hypersurface all the way to us. We will show this in the following section.

2.2 Maximally extended spacetime

Taking into account the considerations made above regarding the t = 0 hypersurface, it
is clear that one would like to know how to extend the spacetime beyond this point. As
shown in the appendix B, there are several different gauges to describe the Kasner-de Sitter
spacetime (2.5). In order to do this it will prove convenient to rewrite the metric given above
in a different gauge, namely,

ds2 = − dT 2

f(T )
+ f(T )dr2 + T 2dx2

⊥ (2.8)

where

f(T ) := H2T 2 − R0

T
. (2.9)

In order for T to be the timelike coordinate, and f(T ) > 0, we take L < T <∞, where

L := H−2/3R
1/3
0 , (2.10)

such that f(L) = 0. In this form, the metric resembles the solution of a de Sitter black hole
written in Schwarzschild coordinates, but there are several important differences. The first
one is that the x⊥ part of the metric represents a plane and it does not have a spherical
symmetry as in the usual black hole geometries. This explains why there is no constant
term in (2.9). Furthermore this is a time-dependent solution so, as it is, it only describes a
region similar to the Schwarzschild-de Sitter (SdS) solutions beyond the cosmological horizon.
Finally, let us look at the relative sign of each of the terms on the function f(T ). The first term
describes the existence of a positive cosmological constant in our energy-momentum tensor
as we should since we want our metric to approach de Sitter space asymptotically but the
factor R0 seems to represents a negative mass term.2 In this new coordinate system, the t = 0
region is mapped into a finite time T = L,3 which in this language corresponds to the horizon
of this geometry. In fact, it is the analog of the cosmological horizon in the SdS geometry.

2The case with positive mass term R0 does not have any horizon but only the singularity at T = 0. This
is in fact, the negative branch solution mentioned earlier.

3We can also set the value of R0 to exactly match the solution found in the previous form.
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Figure 1. Kruskal diagram for the maximally extended Kasner-de Sitter solution. The shaded region
is covered by the original Bianchi I metric (2.5) (and also by (2.8)). The lightlike lines at R = L
and the thick solid timelike curves at R = 0 correspond to the cosmological horizon and the timelike
singularity, respectively. The red curve denotes the constant time hypersurface in the metric given by
eq. (2.5). Each point in this diagram corresponds to a 2d plane.

In summary, this metric can be thought of as describing the region behind a cosmological
horizon of a planar black hole of negative mass embedded in de Sitter space. The detailed
coordinate transformations between the two descriptions of the Kasner-de Sitter metric (2.5)
and (2.8) are explained in the appendix B.

The important point of having this representation for our spacetime is that it becomes
now clear how to interpret the region before t = 0. One should do what is normally done in
the black hole geometries to obtain the part of the spacetime beyond the horizon so that T
becomes spacelike and r becomes timelike in the region where T < L. Replacing T and r
with the new coordinates R and τ , respectively, we can write the metric in the form,

ds2 = −f̃(R)dτ2 +
dR2

f̃(R)
+R2dx2

⊥ (2.11)

where 0 < R < L, so that

f̃(R) := H2

(
L3

R
−R2

)
> 0. (2.12)

The other difference with the black hole case is that f̃(R) does not have another horizon, there
is no other root of this function so the metric plunges directly into a singularity at R = 0.

The relevant question for us is to what extent this singularity could affect the initial
conditions in our universe; the initial conditions for our anisotropic inflation. This is a
question about the causal structure of this spacetime which is better addressed in a Kruskal
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diagram. In order to do this we introduce the new coordinate system given by,4

ds2 = −F(R)dUdV +R2dx2
⊥, (2.13)

where

F(R) :=

(
2

3HL

)2

exp

[
−
√

3arctan

(
L+ 2R√

3L

)] (
R2 + LR+ L2

) 3
2

R
, (2.14)

and the coordinates U and V read

V := exp

(
− 3H2L

2
τ

)
H(R)

1
2 , U := −exp

(
3H2L

2
τ

)
H(R)

1
2 , (2.15)

with

H(R) := exp

[√
3arctan

(
L+ 2R√

3L

)](
L−R√

R2 + LR+ L2

)
, (2.16)

and where R is obtained from the relation,

UV = H(R). (2.17)

Using this coordinate system we see that nothing special happens at the horizon where
R = L. On the other hand, there is a real singularity that appears at R = 0, a timelike
singularity that lies on a hyperbolic line on the U − V plane. Finally, hypersurfaces of
constant T (or constant t in the original metric (2.8)) in the time-dependent part of the
spacetime are given by hyperbolas in the interior of the lightcone.

Following a similar procedure as one does in the Schwarzschild case one can find the
maximal extension of this geometry. We show in figure 1 the Kruskal diagram of this maximal
extension. Its structure is similar to the Schwarzschild diagram rotated by 90 degrees.

We show in red a typical hypersurface of constant time in the cosmological part of the
spacetime described by eq. (2.5). This can be thought of a constant time hypersurface at the
beginning of inflation. It is clear that the past lightcone of any point in this hypersurface
would intersect the timeline singularity (the thick black curves in the spacelike part of the
geometry) and therefore one cannot disregard its possible effect on the quantum state of the
perturbations in our current universe.

2.3 Quantum initial state

The study of cosmological perturbations in our background is complicated by the fact that
we are evolving not in an FRW universe but in an anisotropic Bianchi I universe. This brings
the additional complication of the mixing of scalar- and tensor-type perturbations during the
initial anisotropic stage of the universe [17, 18]. In the following we will concentrate on the
study of the perturbations of a massless scalar field and its evolution on this background as a
simplified model for perturbations. This is of course an approximation and one should really
perform the correct evolution of perturbations along the lines of [17, 18]. We leave this for
future work.

The lesson drawn from the previous section is that to study the quantum state of the
universe in the cosmological region (the shaded region in figure 1), one should first understand
the form of the metric in the spacelike region outside of the horizon. In order to do that let

4Look at the appendix A for the details of this coordinate transformation.
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us start by writing the extension of the solution given by eq. (2.5) beyond the horizon in a
similar gauge, namely,

ds2 = −
(

2

3
H−1 sin

3Hρ

2

(
cos

3Hρ

2

)− 1
3

)2

dτ2 + dρ2 +

(
cos

3Hρ

2

) 4
3

dx2
⊥. (2.18)

There are two relevant regions in this metric. The near horizon part of the geometry where
ρ ≈ 0 and the metric approaches the Minkowski space in a Rindler form,

ds2 = −ρ2dτ2 + dρ2 + dx2
⊥ (2.19)

and the singularity region at ρ = ρmax := π
3H where the metric approaches the Taub geome-

try [27]
ds2 = −(ρmax − ρ)−2/3dτ2 + dρ2 + (ρmax − ρ)4/3dx2

⊥. (2.20)

Not all timelike singularities are harmful and the quantization of a scalar field in this
background could be possible if the information of the singularity were to be shielded from the
actual cosmological observers inside of the horizon. In order to investigate this possibility
we study the quantization of a massless scalar field in the vicinity of this Taub timelike
singularity. Following [28], it would be useful to write this metric in the following gauge
ξ := (ρmax − ρ)4/3

ds2 = −ξ−1/2
(
dτ2 − dξ2

)
+ ξdx2

⊥ (2.21)

where the singularity occurs at ξ → 0. To understand the behavior of the massless scalar
field modes in this background, we start by decomposing the scalar field as

φk⊥,E = ξ−1/2ψk⊥,E(ξ)e−ik⊥x⊥e−iEτ (2.22)

so the equation for the field ψk⊥,E takes the form,[
− d2

dξ2
+ Vk⊥(ξ)

]
ψk⊥,E = E2ψk⊥,E (2.23)

where

Vk⊥(ξ) := −1

4
ξ−2 + k2

⊥ξ
−3/2. (2.24)

This is a Schrödinger type equation for the field ψ with a divergent potential near ξ = 0 where
Vk⊥(ξ) ≈ −(2ξ)−2. Potentials of this type have been discussed in the literature in [28, 29]
where it was argued that this potential would lead to 2 normalizable solutions near the singu-
larity. This means that we would have to impose some sort of boundary condition at the singu-
larity, making the solution for the scalar field and, in turn, our quantum state unpredictable.

Note that the coefficient in front of the 1/ξ2 term in the potential is rather special
since a slightly more negative value would lead to a much more serious problem with an ill-
defined quantum mechanical problem [30]. We would of course like to have a different type
of singularity where the potential is not attractive but repulsive so that the perturbations
are uniquely specified by their asymptotic value far away from the singularity. Taking into
account the backreaction of the scalar field in this background may improve the behavior of
the fluctuations near the singularity and achieve such a repulsive potential. This is precisely
what one finds in another closely related singular instanton, the so-called Hawking-Turok
instanton [31]. In this case one can show that the situation improves dramatically taking
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into account backreaction. See the discussion in [32]. On the other hand, to study this in our
case would require a careful treatment of the anisotropic nature of the scalar perturbations
in this part of the geometry using a decomposition of the form described in [17, 18]. We leave
the investigation of this point for future work.

3 Anisotropic inflation as a result of quantum tunneling

The arguments presented in the previous section show that one should take into account the
spacelike region of the geometry in order to describe the quantum state of the cosmological
fluctuations in the timelike region. On the other hand, the extension of the simple Kasner-de
Sitter geometry across the horizon yields a timelike singularity that is “visible” from our
universe, spoiling the predictability of this spacetime. One could think of different ways to
improve on this situation, either by introducing some regulating procedure, by cutting out
entirely the singularity from the spacetime5 or making it “invisible” by adding some other
form of matter that dominates near the singularity.6

In this paper we would like to take a different approach and give a new interpretation
to the anisotropic Kasner-de Sitter solution as the outcome of a quantum tunneling process
of a previously compactified space. In order to make the connection to this interpretation we
should first imagine that the coordinates x⊥ are not infinite but compact such that collectively
represent a 2d torus, T2. This does not change anything in terms of the solutions presented
earlier, they are still solutions of Einstein’s equations with a pure cosmological constant. The
difference is that we should think of the spatial topology of the universe as R × T2 instead
of R3. This does not suppose a radical change at least for the timelike part of the geometry
where these directions are expanding and this new view will only impose a minor restriction
on the size of these extra dimensions over our past cosmological history in order for them
to be compatible with phenomenology. Looking at the form of the solution near the t = 0
we see that these extra dimensions approach a static configuration. This suggests a possible
modification of the region of the space across the horizon that considers this spacelike region
as a part of the universe where the extra-dimensions were static. These two regions together
would therefore describe a decompactification transition.

These type of transdimensional transitions were first discussed in models of flux com-
pactification in [36, 37] in the context of a higher-dimensional landscape of multiple vacua.
In [38–40] the authors discussed another example of decompactification from a lower di-
mensional spacetime very similar to the one we have now. The difference between those
models and the present work is the symmetry of the space. In their case, the spacetime had
anisotropic spatial curvature (it had either open or closed subspaces) that led to a lower
bound in the number of e-foldings after the anisotropic initial expansion of the transition.7

This requirement made it difficult to get an observational effect in the spectrum of cosmo-
logical perturbations since, as we explained earlier, a large number of e-foldings would move
all the effects from primordial anisotropic inflation out of our present horizon. Here on the
other hand, we do not have this problem since both sections of spacetime are spatially flat
and the number of e-folds could be as low as 60.

5Similarly what is done for the Hawking-Turok instanton in [32, 33].
6Another possibility would be to allow the spacetime to end similarly to what happens in the “bubble from

nothing” geometry [34, 35].
7This is due to the limits on the induced quadrupole generated by the late time anisotropic expansion due

to curvature. See [38–41] for details.
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Figure 2. The Penrose diagram for the Kasner-de Sitter bubble nucleation from a de Sitter2 × T2
parent vacuum. Each point in this figure corresponds to a 2d torus, the T2. The region of the
spacetime shaded in gray is the part of the metric described by eq. (2.5). The white region corresponds
to compactified parent vacuum described by the metric in (3.1). The asymptotic constant time slices
represented in red rapidly approach an isotropic de Sitter space in 4d.

The decompactification solutions presented in [38, 40] were described by instantons that
also mediated the creation of black objects in de Sitter space similar to the ones presented
in [37, 42]. In those cases the solutions had two different horizons, a cosmological horizon
that led to the anisotropic universe dominated by the cosmological constant and the “black
hole” horizon that would lead to a spacetime resembling a lower dimensional compactified
universe. In our case, we only have one horizon, the cosmological horizon. The difference is
again the lack of curvature in our spacetime, so we need to supply the solution with some
extra ingredient that allows for this other horizon that would substitute and regularize the
geometry in the spacelike region. One can try to do this by adding an electric charge to this
solution. This can be accomplished easily in the Schwarzschild-like gauge by introducing a
new term in the solution for f(T ) proportional to Q2/T 2. We discuss this possibility in the
appendix C where we show that this geometry also leads to a single horizon and an again a
visible singularity. The timelike continuation of this spacetime has been considered recently
in [43, 44]. Much of our discussion in this paper applies to these solutions as well.

It is interesting to note that one could, in principle, obtain an exact solution with the
properties we are looking for by changing the sign of the coefficient in front of the kinetic
term for the Maxwell field. This is a rather exotic possibility and we will not consider it
further in this paper.

A much more interesting possibility was discussed in [45] where the authors found the
instanton transitions we are interested in considering the contribution to the geometry from
the Casimir type of calculation. It is temped to think of this geometry as the quantum
corrected geometry of the singular classical toroidal black hole in de Sitter space we have
been discussing.
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Figure 3. The Penrose diagram for the Kasner-de Sitter bubble nucleation from a Minkowski2 × T2
parent vacuum. Each point in this figure corresponds to a 2d torus, the T2.

The Penrose diagram of this type of solution is shown in figure 2 where we denote by
Σ the Cauchy surface for this geometry. In the following we will approximate the geometry
in this spacelike region by the simpler dS2 × T2 solution. This corresponds, in fact, to the
Hawking-Moss limit of the instanton transition, where the size of the extra dimension does
not change in the region between the horizons. Written in this gauge the solution becomes,

ds2 =

[
− 1

H2
2d

sin(H2d r)
2dτ2 + dr2

]
+ dx2

⊥, (3.1)

which clearly takes the correct Rindler form given by eq. (2.19) to match to the cosmological
Kasner-de Sitter solution across the lightcone.

Another possibility is to assume that the initial state of the universe was in a static
M2 × T2 configuration right before its decompactification transition. The metric outside of
horizon will now be given by M2 × T2 in Rindler coordinates,

ds2 = −r2dτ2 + dr2 + dx2
⊥. (3.2)

This initial state is also compatible with the boundary conditions of the cosmological evo-
lution inside of our bubble and it is therefore worth considering even if its interpretation as
a tunneling process is not so clear in this case. A diagram of such a transition is given by
figure 3.

Here we do not specify the matter content that could give rise to these parent compact-
ified states and simply assume that they exist. It is also important to stress that in order to
identify a model for this setup one would also have to study its perturbative stability which
in many simple models would not be easy to achieve either for dS2 × T2 or M2 × T2.

Finally there is one more appealing point for this new interpretation of the non-singular
Kasner-de Sitter solution. From the point of view of a generic Kasner solution the spacetime
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we discussed seems to be fine-tuned to avoid the initial Big-Bang singularity. On the other
hand, the interpretation of the metric as a tunneling transition gives an explanation for this
rather unnatural initial conditions. The regularity of the instanton enforces the form of the
solution around the lightcone and therefore its regularity is necessary in order to be able to
have a transition.

This new interpretation of the spacelike region of our solution will allow us to set up
the initial quantum state on the Σ hypersurfaces. This is what we do next.

4 Quantization of a scalar field

We are interested in understanding the spectrum of perturbations in this background geome-
try. As a first approximation we will study the spectrum of fluctuations for a massless scalar
field ϕ minimally coupled to gravity:

Sϕ =

∫
d4x
√−g

(
−1

2
gµν∂µϕ∂νϕ

)
. (4.1)

Although we do not specify a concrete origin of this massless scalar field, one can imagine
that this is a simplified analog of the fluctuation of the inflaton field in this anisotropic
background [17, 18] or the isocurvature fluctuation of a subdominant light degree of freedom
during inflation which could be converted into the adiabatic perturbation after inflation [38].

The background metric in the shaded region of figure 1 can be written in several different
gauges as we described earlier. For our purposes in this section it will be useful to express it
in the following form8

ds2 = − dη2

sinh2(−H2dη)
+ α4 e4H2dη/3

sinh2/3(−H2dη)
dr2 + α−2 e−2H2dη/3

sinh2/3(−H2dη)
dx2
⊥ (4.2)

where −∞ < η < 0 and we have introduced the definitions, α = 21/3 and H2d = 3H.
The expansion of the quantized scalar field in this region of spacetime can be given in

general by,

φ(η, r, x⊥) =

∫
dk
∑
k⊥

[
1

(2π)3/2
ãk⊥,k fk⊥,k(η)eik⊥x⊥e−ikr + h.c

]
, (4.3)

where the evolution equations of each mode functions are,[
d2

dη2
+ Ω2(k⊥, k, η)

]
fk⊥,k(η) = 0 (4.4)

with,
Ω2(k⊥, k, η) = α−4 sinh−4/3(−H2dη) e2H2dη/3

(
α6k2

⊥ + e−2H2dηk2
)
. (4.5)

We have not been able to solve these equations analytically so we will integrate them numer-
ically for each value of k as well as k⊥. This will allow us to compute the power spectrum
of the perturbations outside of the horizon. In order to do that we need to set up a vacuum
state or an initial form of the mode functions fk⊥,k(η) in the limit of η → −∞.

8Look at the appendix B for a detailed explanation of the change of coordinates among the different gauges
used throughout this paper.
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4.1 Choice of a parent vacuum

Several groups have tackled the quantization of a scalar field in this geometry using numer-
ical [17] as well as analytic techniques [23–26, 46–48]. The important difference with our
present work is the choice of the vacuum state which is now dictated by the parent vac-
uum before decompactification. Previous computations followed the conventional approach
of most inflationary models and assume that one could set the initial vacuum state by looking
at the form of the metric at η → −∞. Taking the η → −∞ limit in eq. (4.2) one arrives at,

ds2 =
4

e−2H2dη

(
−dη2 + dr2

)
+ dx2

⊥ (4.6)

which is nothing more that our metric near the horizon given by eq. (2.7) but written in
a conformal gauge. In other words this is the conformal form of the spacetime given by
Milne2 × T2. This is just a confirmation that indeed our metric becomes very anisotropic as
one goes far into the past as it is supposed to.

The use of H2d in this metric is arbitrary in this limit and can be reabsorbed in the
definition of the coordinates. We use the 2d subscript to make the connection to the other
possible parent vacua, namely the dS2×T2 case whose open slicing metric would take exactly
the same form as the Milne case near the horizon, namely,

ds2 =
1

sinh2(−H2dη)

(
−dη2 + dr2

)
+ dx2

⊥ →
4

e−2H2dη

(
−dη2 + dr2

)
+ dx2

⊥. (4.7)

This is again nothing surprising, we are just saying that an open universe slicing of dS2

should not know about the cosmological constant at early times, so it should behave as a
spatially-flat universe dominated by curvature, a Milne universe in 2 dimensions in this case.

Let us discuss the two different vacua separately and identify the correct mode functions
for each case.

4.1.1 M2 × T2

One can write the equations of motion for the perturbations near the lightcone to obtain[
d2

dη2
+
(
4e2H2dηk2

⊥ + k2
)]
fk⊥,k(η) = 0 , (4.8)

which can be thought of as the equations for a massive scalar field in 1 + 1 Milne spacetime
where the mass scale is given by mode number along the internal dimensions, k⊥. The
general solution of this equation can be written in terms of a combination of the Bessel

functions of the form, J±ik̃

(
2k̃⊥e

H2dη
)

, where we have introduced the definitions, k̃ := k
H2d

and k̃⊥ := k⊥
H2d

. Imposing that the mode functions behave as,

lim
η→−∞

fk⊥,k(η) ∝ 1√
2k
e−ikη (4.9)

as one approaches η → −∞ (in other words t → 0) and normalizing them on any constant
time slice inside of the lightcone,9 one arrives at the following form for the mode functions,

f
(c)
k⊥,k

(η) =

√
π

2H2d sinh(πk̃)
J−ik̃

(
2k̃⊥e

H2dη
)
, (4.10)

9One can see by looking at figure 3 that these constant time slices are, in this case, Cauchy surfaces for
the whole spacetime.
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where the superscript (c) refers to the fact that one can identify this choice of mode functions
as the usual conformal vacua of a Milne spacetime [49]. The authors in [23, 46–48] found that
this vacuum leads to a divergent behavior in the limit of k � k⊥, the so-called planar regime.
Furthermore it has also been shown that this vacuum induces a severe backreaction problem
in this limit as well [26]. All these constraints make it difficult to consider this vacuum state
as the relevant one for our period of primordial anisotropic inflation.

It is also clear that one cannot consider this vacuum as the one arising from a tunneling
transition where the universe decompactifies from M2 × T2 since things would blow up at
the horizon [49] preventing the existence of the instanton itself. In fact, our interpretation of
the anisotropic geometry in eq. (2.5) as the interior of a bubble created within a previously
existing spacetime forces us to take the vacuum state of the parent vacuum as the correct
state for scalar perturbations. In our case, this is nothing more than the usual Minkowski
two-dimensional vacuum written in this Milne coordinate system. This corresponds to the
mode functions of the form,

f
(M)
k⊥,k

(η) =
1

2

√
π

H2d
eπk̃/2 H

(2)

ik̃

(
2k̃⊥e

H2dη
)

(4.11)

where H
(2)

ik̃
denotes the Hankel functions of the second kind. One can show that these mode

functions are related to the previous ones by a Bogoliubov transformation of the form,

f
(M)
k⊥,k

= αkf
(c)
k⊥,k

+ βk

(
f

(c)
k⊥,k

)∗
(4.12)

where

αk̃ =
eπk̃/2√

eπk̃ − e−πk̃
βk̃ = − e−πk̃/2√

eπk̃ − e−πk̃
. (4.13)

We show in the appendix D how one can obtain the explicit form of this vacuum state
by studying the behavior of the mode functions on a Cauchy surface (Σ) on the previous
vacuum and propagating them to the interior of the bubble.

4.1.2 dS2 × T2

We will also consider the possibility that our parent vacuum was dS2 × T2. Following tech-
niques similar to the ones used in open inflation [50, 51] one can show that the correct vacuum
state inside of our bubble is given by the analytic continuation of the appropriate solutions
in the spacelike region of the dS2 × T2 geometry.10 We show the details of the calculation in
the appendix E. The resulting vacuum is given by,

φ(η, r, x⊥) =

∫
dk
∑
k⊥,i

[
1

(2π)3/2
ãk⊥,k,i f

(i)
k⊥,k

(η)eik⊥x⊥e−ikr + h.c

]
, (4.14)

where

f
(1)
k⊥,k

(η) =
1√
2k

eπk/2H2d√
2 sinh(πk/H2d)

N(k, k⊥) f̃
(1)
k⊥,k

(η) (4.15)

f
(2)
k⊥,k

(η) =
1√
2k

eπk/2H2d√
2 sinh(πk/H2d)

(
L(k, k⊥) f̃

(1)
k⊥,k

(η) + e−πk/H2d f̃
(2)
k⊥,k

(η)
)

(4.16)

10This is 1+1 dimensional analogue of the Bunch-Davies vacuum in the open chart of de Sitter found in [52].

– 13 –



J
C
A
P
0
6
(
2
0
1
5
)
0
2
4

and we have introduced the functions,

f̃
(1)
k⊥,k

(η) = e−ikηF

[
−ν, ν + 1, 1− µ, 1 + ξi

2

]
(4.17)

f̃
(2)
k⊥,k

(η) = eikηF

[
−ν, ν + 1, 1 + µ,

1 + ξi
2

]
(4.18)

with

ξi = coth(H2dη) ; µ = i

(
k

H2d

)
; ν(ν + 1) = −

(
k⊥
H2d

)2

(4.19)

and F denotes the generalized hypergeometric function so that F [a, b, c, x] = 2F1[a, b, c, x].
Finally the normalization factors are given by,

N(k, k⊥) =
Γ(1 + ν − µ)Γ(−µ− ν)

Γ(1− µ)Γ(−µ)
(4.20)

L(k, k⊥) = −Γ(1 + µ)Γ(1 + ν − µ)Γ(−µ− ν)

Γ(1− µ)Γ(−ν)Γ(1 + ν)
. (4.21)

5 The power spectrum

The results of the previous section give us the initial state of the scalar field modes right inside
of the lightcone at the beginning of the bubble. One can then take these mode functions and
evolve them forward in time numerically using eq. (4.4).

Here we present the results for the two cases we have studied, the M2 × T2 and the
dS2 × T2 parent vacua. For each case we give the power spectrum

P =
1

2π2

(
α−4k2 + α2k2

⊥
) 3

2 ×
{∣∣f (M)

k⊥,k
(η → 0)

∣∣2 (M2 × T2)∑2
i=1

∣∣f (i)
k⊥,k

(η → 0)
∣∣2 (dS2 × T2)

(5.1)

for several different values of the angle θ as the function of k̄, which we define by the pre-
scription, k = k̄ cos θ and k⊥ = k̄ sin θ in the momentum space.

We see that, as expected, the power spectrum becomes scale invariant and isotropic when
k̄ becomes a few times larger than the corresponding comoving wavenumber associated with
the comoving Hubble radius at the onset of the inflationary regime. These roughly correspond
to the comoving momentum of the modes that leave the horizon when the universe starts to
become isotropic and inflationary. To simplify our notation, in the following, we normalize
the comoving wavenumbers simply dividing them by H.

This is basically due to the fact that the large k̄ modes leave the horizon when the uni-
verse is already expanding isotropically so one should recover in this case the usual isotropic
scale invariant spectrum of dS4.11 Furthermore, the power in this case is not divergent as
one approaches the planar limit, k � k⊥, as it is the case in the conformal vacuum.

In case of M2 × T 2 parent vacuum, it is interesting to note that the power spectrum is
suppressed at large scales, low k̄ and at the same time is slightly anisotropic in this regime,
where the spectrum is more sensitive to the initial anisotropic state as well as the anisotropic
evolution.

11In a realistic model one should include a potential energy instead of a pure cosmological constant. That
would introduce to a small tilt in the scalar power spectrum.
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Figure 4. Power Spectrum for the M2×T2. We plot the ratio of the power spectrum to the power in
the isotropic limit as the function of k̄. We plot the following angles, θ = π/8, π/4, 3π/8, π/2, which
correspond to the solid, dashed, dotted and dot-dashed lines respectively.

The situation for the dS2×T2 parent vacuum is different and one finds a diverging power
in the planar regime for low k̄. This does not signal the presence of any singularity behavior
at the lightcone, since the power spectrum is exactly the one that we will get for a set of
massive scalar fields in a pure dS2 background. On the other hand, from the observational
point of view this type of spectrum with a large enhancement of power at low k̄ seems to be
in contradiction with the CMB observations. This suggests that we should take the log k̄ ≈ 0
point in the figure to be associated with the largest observable scales pushing all the extra
power outside of our horizon today. Unfortunately this also means that it would be very
challenging to distinguish between this decompactification model from any other model of
nearly scale invariant isotropic spectrum in 4d.

6 Conclusions

We have investigated the power spectrum of a massless scalar field in a model of primordial
anisotropic inflation given by the Kasner-de Sitter solution of Einstein’s equations in the
presence of a pure cosmological constant. At early times, this geometry approaches a state of
high anisotropy where part of the metric is described by a 1 + 1 dimensional Milne universe
while the other two spatial directions remain static. Without any other sources present to
preserve the anisotropy, the spacetime quickly becomes the isotropic dS4 making this metric
a good candidate for a primordial anisotropic stage in the early universe before inflation. Any
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Figure 5. Power Spectrum for the dS2× T2. We use the same set of angles as in the previous figure.

observable effect that one can obtain from this initial period would therefore be encoded in
the large scale today, the scales that leave the horizon during the anisotropic era. This means
that these observables would be really sensitive to the initial vacuum state of the fluctuations.

Previous attempts to study the fluctuations in this geometry rely on the idea of identi-
fying a vacuum state as the positive frequency modes for the initial Milne2 state. This led to
several divergences on the power spectrum that make this choice of initial state questionable.

Here we present an alternative view on this Kasner-de Sitter geometry that comes from
the realization that the surface of the Big Bang for this spacetime is in fact a coordinate
singularity and nothing more than the lightcone of the Milne slicing of Minkowski space.
Extending the geometry beyond this t = 0 surface one encounters a timelike singularity that
would be visible for observers in our cosmological spacetime making necessary to regulate
the spacetime somehow before we can identify a vacuum state for our perturbations.

We propose to give a different interpretation to the Kasner-de Sitter metric as the
outcome of a decompactification transition. We assume that our parent vacuum state was
described by a cosmological 1 + 1 dimensional spacetime compactified over a 2d internal
space that we take to be a flat torus, T2. For simplicity we take the parent vacua to be either
de Sitter2 × T2 or Minkowski2 × T2 such that they can be matched to the Kasner-de Sitter
metric along the lightcone. Taking into account the full geometry of the decay process, one
can identify a global Cauchy surface for these spacetimes and obtain a suitable vacuum state
for the scalar field perturbations.

We calculated the power spectrum for a massless scalar field for different orientations of
the wavevector of the perturbation. We find that, as expected, the power spectrum is isotropic
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and scale invariant at small scales, since by the time that these modes leave the horizon the
universe is pretty much isotropic. On the other hand, the spectra vary substantially from
these results for the large scales. We find that the spectrum for dS2×T2 presents an important
enhancement of its power at large scales. This seems to be in contradiction with current CMB
observations that do not see this increase in power at large scales but the opposite. One can
of course assume that the number of e-folds inside of our bubble was larger than 60, which
will push the cosmological wavelengths associated with these modes outside of the current
horizon making their effects almost irrelevant for us.

We have also computed the power spectrum for a transition from M2 × T2. The results
in this case are much more encouraging. We find that a transition of this kind leads to a
suppression in the power spectrum at large scales as well a small variation on the power with
the angle, a small anisotropic effect. These features could be related to some of the low-`
anomalies recently reported by the CMB collaborations.

In order to make a more precise comparison with the data, and test the presence of
detectable anisotropy in the power spectrum one would have to compute the multiple cor-
relators, the C``′mm′ , looking in particular for signals that could set this model apart from
other similar scenarios. Furthermore one should also include the proper treatment of metric
perturbations in these backgrounds using the results in [17, 18] and study the effect of con-
sidering new vacuum states coming from decompactification. We leave these considerations
for future research.
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A Kruskal extension of the Kasner-de Sitter universe

Starting from the original metric

ds2 = −H2

(
L3

R
−R2

)
dτ2 +H−2

(
L3

R
−R2

)−1

dR2 +R2dx2
⊥, (A.1)

where L was defined in (2.10), we can introduce the following tortoise coordinate

dR∗ =
dR

H2
(
L3

R −R2
) , (A.2)

to arrive to the metric of the form,

ds2 = H2

(
L3

R
−R2

)(
− dτ2 + dR2

∗
)

+R2dx2
⊥, (A.3)
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where the relation between R and R∗ can be written explicitly as

R∗ =
1

3LH2

[
−
√

3arctan

(
1 + 2R

L√
3

)
+ ln

{√
R2 + LR+ L2

L−R

}]
. (A.4)

The Kruskal extension can be obtained as follows: define new null coordinates

V = ek(τ+R∗), U = −e−k(τ−R∗) → −dUdV = k2(−dτ2 + dR2
∗)e

2kR∗ . (A.5)

Choosing k so that
2k

3LH2
= −1,

then

k2e2kR∗ =

(
3H2L

2

)2

exp

[
√

3arctan

(
1 + 2R

L√
3

)]
L−R√

R2 + LR+ L2
. (A.6)

which brings the metric (A.3) to its final form, (2.13)–(2.16).

ds2 = −F(R)dUdV +R2dx2
⊥, (A.7)

where

F(R) :=

(
2

3HL

)2

exp

[
−
√

3arctan

(
L+ 2R√

3L

)] (
R2 + LR+ L2

) 3
2

R
, (A.8)

and the coordinates U and V satisfy,

UV = H(R). (A.9)

with

H(R) := exp

[√
3arctan

(
L+ 2R√

3L

)](
L−R√

R2 + LR+ L2

)
, (A.10)

B The Kasner-de Sitter metric in several gauges

As we discussed in the main part of the text, perhaps the simplest version of the Kasner-de
Sitter solution can be written in a Schwarzschild-like metric of the form,

ds2 = − dT 2

f(T )
+ f(T )dr̃2 + T 2dx̃2

⊥ (B.1)

where,

f(T ) = H2

(
T 2 − L3

T

)
, (B.2)

and L was introduced in (2.10).

We can now go to a proper time coordinate by defining,

t =
2

3
H−1 log

(T
L

)3/2

+

√(
T

L

)3

− 1

 (B.3)
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to arrive at the metric,

ds2 = −dt2 + (HL)2

(
sinh

3Ht

2

(
cosh

3Ht

2

)− 1
3

)2

dr̃2 + L2

(
cosh

3Ht

2

) 4
3

dx̃2
⊥ . (B.4)

Rescaling the spacelike coordinates we arrive to the desired form of the metric, given in the
main text, namely

ds2 = −dt2 +

(
2

3
H−1 sinh

3Ht

2

(
cosh

3Ht

2

)− 1
3

)2

dr2 +

(
cosh

3Ht

2

) 4
3

dx2
⊥ . (B.5)

Finally we can also introduce another form of the metric by changing the time coordinate
according to the identification,

sinh (3Ht) =
1

sinh(−3Hη)
(B.6)

which brings the metric to the form,

ds2 = − dη2

sinh2(−3Hη)
+ α4 e4Hη

sinh2/3(−3Hη)
dr2 + α−2 e−2Hη

sinh2/3(−3Hη)
dx2
⊥. (B.7)

C Adding an electric field

The form of our anisotropic metric in its Schwarzschild gauge suggests an extension of this
family of solutions that includes the possibility of an electromagnetic field, in other words,
there may be solutions of the following action

S =

∫
d4x
√−g

[
1

2
R− 1

4
FµνF

µν − Λ

]
(C.1)

that respect our Bianchi I form and that have some sort of electromagnetic field turned on in
its background. Similarly to what one does in the case of black holes with spherical horizon
we take the ansatz

ds2 = −f(T )−1dT 2 + f(T )dr2 + T 2dx2
⊥ (C.2)

where the solution we are looking for looks like,

f(T ) = H2T 2 − R0

T
− Q2

T 2
. (C.3)

This is indeed a solution of Einstein’s equations for a configuration with a cosmological
constant, Λ = 3H2 and an electric field along the r direction, namely

FTr =
Q

T 2
. (C.4)

The solutions of this family have many similarities to the ones presented in the main
part of the text and lead to the same kind of observational signatures. It is easy to see that
this is indeed the case if we take the particular case where R0 = 0 and bring the metric on a
more cosmological form, namely,

ds2 = −dt2 + a2(t)dr2 + b2(t)dx2
⊥ (C.5)
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where in this case we have the scale factors,

a(t) = 2
1
2 eHtb sinh

(
2H(t− tb)

)[
cosh

(
2H(t− tb)

)]− 1
2 , b(t) = 2

1
2 eHtb

[
cosh(2H(t− tb))

] 1
2 .

where tb = 1
2H log

(
Q

2H

)
. We can bring the metric to a form much closer to the Kasner-de

Sitter metric used in the text by shifting the time as well as rescaling the coordinates to
arrive to:

ds2 = −dt2 +

(
1

2H
sinh(2Ht) [cosh(2Ht)]−

1
2

)2

dr2 + cosh(2Ht)dx2
⊥ , (C.6)

which clearly has the same qualitative behavior as one approaches the lightcone, at t = 0, as
our Kasner-de Sitter geometry. In this regard, this metric is another example of a primordial
stage of anisotropic inflation.

Note that this is the same metric as the one that has recently been discussed in the
context of anisotropic inflation in [43, 44] where the form of the scale factors in this case were
given in a slightly different form,

a(t) = A(t)
1− Q2

4A(t)4H2√
1 + Q2

4A(t)4H2

, b(t) = A(t)

√
1 +

Q2

4A(t)4H2
, (C.7)

with A(t) = eHt. One can investigate the Kruskal diagram for this metric following exactly
the same steps as we have done in this paper and see that the structure for this metric is
identical to the Kasner-de Sitter case (See figure 1). This also implies that one should look
beyond the lightcone to set the initial quantum state of the perturbations.

Studying the perturbations of a scalar field near the singularity one can check that the
coefficient of the ξ−2 term in (2.24) is now replaced with −2

9 . This again admits the existence
of 2 normalizable solutions near the singularity which implies that this is a visible singularity
for observers in our anisotropic universe.

We can include both effects in the metric, namely a mass and an electric field but the
conclusions would be unchanged so it does not seem possible to regularize this singularity
adding just an electromagnetic field. One should therefore think about a consistent way to
specify the vacuum state in these kinds of models [43, 44] as well.

D The M2 × T2 parent vacuum

D.1 Rindler and Milne spaces

The full Minkowski space in 1 + 1 dimensions can be split into 4 regions, 2 Rindler wedges
and 2 Milne wedges. In this section we present the metric appropriate for each region, their
relation to the usual Minkowski metric and the analytic continuations that allow us to go
between the different wedges.

The two Rindler wedges can be found by the embedding in Minkowski space by the
following expressions,

T =
2

H2d
eH2dηR sinh(H2drR), X =

2

H2d
eH2dηR cosh(H2drR) (D.1)
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Figure 6. The full Minkowski space in 1 + 1 dimensions split into 4 regions, 2 Rindler (R and L)
wedges and 2 Milne wedges (the future wedge is M). We also show the Cauchy surface Σ where we
will quantize the field.

where −∞ < ηR <∞ and −∞ < rR <∞.

T = − 2

H2d
eH2dηL sinh(H2drL), X = − 2

H2d
eH2dηL cosh(H2drL) (D.2)

where −∞ < ηL <∞ and −∞ < rL <∞.
Furthermore the Milne part can also be found by the expression,

T =
2

H2d
eH2dηM cosh(H2drM ), X =

2

H2d
eH2dηM sinh(H2drM ) (D.3)

where −∞ < ηM <∞ and −∞ < rM <∞.
We can go from the R region to the M region by the following analytic continuation,

ηR = ηM +
π

2H2d
i, rR = rM −

π

2H2d
i, (D.4)

similarly for the L region we have,

ηL = ηM +
π

2H2d
i, rL = rM +

π

2H2d
i. (D.5)

D.2 Scalar field quantization in M2 × T2

The form of the metric for the M2 × T2 parent vacuum state can be written for the region
outside of the lightcone as the so-called Rindler wedge,

ds2 = 4e2H2dηR
(
dη2

R − dr2
R

)
+ dx2

⊥ . (D.6)
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This metric however only covers half of the spacetime outside of the bubble, and one needs
to supplement it with the analogous left wedge (L). We will see shortly the relevance of these
2 different parts of the spacetime, but for the time being let us discuss the quantization of a
massless scalar field on the right wedge.

Using the same expansion for the scalar field as before,

φ(ηR, rR, x⊥) =

∫
dk
∑
k⊥

[
1

(2π)3/2
c̃k⊥,k hk⊥,k(ηR)eik⊥x⊥e−ikrR + h.c

]
, (D.7)

we get,

h′′k⊥,k +
(
k2 − 4e2H2dηRk2

⊥
)
hk⊥,k = 0. (D.8)

One can think of this equation as the Schrödinger equation for an exponential potential and
an energy state denoted by k2. The solutions of these mode functions are therefore suppressed
for η →∞. One can show that the solutions that fulfill this requirement are given by,

h
(R)
k⊥,k

(ηR) =

√
2 sinh(πk/H2d)

πH2d
Kik/H2d

(
2k⊥e

H2dηR

H2d

)
, (D.9)

where we have fixed the normalization so that the functions are normalized on the Rindler
wedge. Putting this together with the rest of the spatial dependence one arrives at,

φ(R)(ηR, rR, k, k⊥) =

√
2 sinh(πk/H2d)

πH2d
Kik/H2d

(
2k⊥e

H2dηR

H2d

)
e−ikrR . (D.10)

One can also define the corresponding functions on the left wedge by making the substitution
R → L with e−ikrR → eikrL , as in the left wedge time runs in the opposite way and so the
positive frequency mode functions have the opposite sign in the exponent. Each of these
functions only has support on their respective wedge but one can define a new mode function
defined over the entire Cauchy surface, Σ, that one obtains by merging the rR = 0 and rL = 0
hypersurfaces (See figure 6). These new functions are given by [53],

h
(M)
k⊥,k

=
1√

2 sinh(πk/H2d)

[
eπk/2H2dφR(ηR, rR, k, k⊥) + e−πk/2H2d(φL(ηL, rL, k, k⊥))∗

]
.

(D.11)

Where the overall factor has been chosen so that the new modes are properly normal-
ized on Σ. Furthermore due to the nice analytic properties of these new functions one can
analytically continue them into the interior of the lightcone to obtain the final form of our
mode functions, namely,

f
(M)
k⊥,k

(ηM ) =
1

2

√
π

H2d
eπk/2H2d H

(2)
ik/H2d

(
2k⊥e

H2dηM

H2d

)
. (D.12)

These are in fact the mode functions that describe the usual Minkowski vacuum in the
Milne coordinates so the expression for the initial state near the lightcone should be given by,

φ(ηM , rM , x⊥) =

∫
dk
∑
k⊥

[
1

(2π)3/2
ãk⊥,k f

(M)
k⊥,k

(ηM )eik⊥x⊥e−ikrM + h.c

]
. (D.13)
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Figure 7. The Penrose diagram for the full de Sitter space in 1 + 1 dimensions split into the different
regions discussed in the text.

E The dS2 × T2 parent vacuum

E.1 dS2 metrics

The Euclidean description of dS2 is given by a 2 sphere which can be embedded in 3d by the
equation X2

0 +X2
1 +X2

2 = H−2
2d , which we can parametrize by,

X0 = H−1
2d cos τ cos ρ, X1 = H−1

2d sin τ, X2 = H−1
2d cos τ sin ρ, (E.1)

giving the metric

ds2
E = H−2

2d

(
dτ2 + cos2 τ dρ2

)
. (E.2)

We can do the following Wick rotation,

τ = −iH2dtM +
π

2
, ρ = −iH2drM (E.3)

to obtain the embedding of part of dS2 in 3d Minkowski space given by,

X0 = H−1
2d cosh(H2drM ) sinh(H2dtM ), X1 = H−1

2d cosh(H2dtM ),

X2 = H−1
2d sinh(H2dtM ) sinh(H2drM ), (E.4)

so the induced metric becomes,

ds2
M = −dt2M + sinh2(H2dtM ) dr2

M . (E.5)

This slicing of dS2 covers the region that we denote by M in figure 712

12The label of this region as M comes from the fact that indeed this metric approaches the Milne one in
the limit of tM → 0.
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On the other hand, we can also do another Wick rotation,

τ = H2dtR, ρ = −iH2drR +
π

2
(E.6)

to obtain,

X0 = H−1
2d cos(H2dtR) sinh(H2drR), X1 = H−1

2d sin(H2dtR),

X2 = H−1
2d cos(H2dtR) cosh(H2drR), (E.7)

that gives the metric
ds2
R = dt2R − cos2(H2dtR) dr2

R. (E.8)

which covers the region R in figure 7. We can also find the analogue of this coordinate system
for the L part as well.

One can change from one chart to the other by doing,

tR = −itM +
π

2H2d
, rR = rM − i

π

2H2d
. (E.9)

Also, we can introduce the a new coordinate system, by the following change of variables

sinh(H2dtM ) =
1

sinh(−H2dηM )
(E.10)

with 0 ≤ tR ≤ ∞ being mapped to −∞ ≤ ηR ≤ 0, to get,

ds2
M =

1

sinh2(−H2dηM )
(−dη2

M + dr2
M ) (E.11)

which is the metric induced by the following embedding,

X0 = H−1
2d cosh(H2drM ) csch(−H2dηM ) (E.12)

X1 = H−1
2d cosh(H2dtM ) (E.13)

X2 = H−1
2d sinh(H2dtM ) csch(−H2dηM ) . (E.14)

Similarly, one can change coordinates outside of the horizon using the following relation,

cos(H2dtR) =
1

cosh(H2dηR)
(E.15)

with − π
2H2d

≤ tR ≤ π
2H2d

being mapped to −∞ ≤ ηR ≤ ∞, so we get,

ds2
R =

1

cosh2(H2dηR)
(dη2

R − dr2
R). (E.16)

This form of the metric is given by the embedding,

X0 = H−1
2d sech(H2dηR) sinh(H2drR) (E.17)

X1 = H−1
2d tanh(H2dηR) (E.18)

X2 = H−1
2d sech(H2dηR) cosh(H2drR). (E.19)

We can relate both charts by the following analytic continuation,

rR = rM − i
π

2H2d
, ηR = −ηM − i

π

2H2d
. (E.20)
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E.2 Scalar field quantization in dS2 × T2

E.2.1 Outside of the horizon

As we described in the main part of the text, we will define our vacuum state on the Cauchy
surface Σ outside of the horizon of the bubble that describes the tunneling process (See
figure 2). Our assumption is that the spacetime in this region is well approximated by the
R and L patches of dS2 × T 2 where one can identify the analogous Cauchy surface. (See
figure 7.) Following the description in the previous appendix E.1. one can write the metric
of this part of dS2 in the following way,

ds2 =
1

cosh2(H2dηR)
(−dr2

R + dη2
R) + dx2

⊥. (E.21)

In order to describe the vacuum state for a massless scalar field in this geometry, we
expand the field in the following form,

φ(ηR, rR, x⊥) =

∫
dk
∑
k⊥,i

[
1

(2π)3/2
c̃k⊥,k,i h

(i)
k⊥,k

(ηR)eik⊥x⊥e−ikrR + h.c

]
, (E.22)

so the equations of motion for the mode functions become,13[
− d2

dη2
R

+

(
k2
⊥

cosh2(H2dηR)
− k2

)]
h

(i)
k⊥,k

(ηR) = 0 . (E.23)

We can write two independent solutions of this equation in terms of Hypergeometric functions
of the form,

h̃
(1)
k⊥,k

=

(
ξo + 1

1− ξo

)µ/2
F

[
−ν, ν + 1, 1− µ, 1− ξo

2

]
(E.24)

h̃
(2)
k⊥,k

=

(
ξo + 1

1− ξo

)−µ/2
F

[
−ν, ν + 1, 1 + µ,

1− ξo
2

]
(E.25)

where we have defined,

ξo = tanh(H2dηR), µ = i

(
k

H2d

)
, ν(ν + 1) = −

(
k⊥
H2d

)2

, (E.26)

and we have simplified the notation by defining the generalized hypergeometric function
simply by F [a, b, c, x] = 2F1[a, b, c, x]. One now needs to find the correct combination of
these functions that are Klein-Gordon normalized on our Cauchy surface. As a first step in
this direction, we identify the asymptotic form for each of the mode functions.

In the ηR →∞ limit, the ξo → 1 one simply finds,

h̃
(1)
k⊥,k
→
(
ξo + 1

1− ξo

)µ/2
= eikηR , h̃

(2)
k⊥,k
→
(
ξo + 1

1− ξo

)−µ/2
= e−ikηR . (E.27)

To calculate the ξo → −1 limit we use the relation of the hypergeometric functions,

F [a, b, c, x] =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F [a, b, a+ b− c+ 1, 1− x]

+(1− x)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F [c− a, c− b, c− a− b+ 1, 1− x].(E.28)

13Note that this is analogous to the Schrödinger equation for a k2
⊥/ cosh2(x) potential.
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so the mode functions in the ηR → −∞ (ξo → −1) limit become,

h̃
(1)
k⊥,k

→
(
ξo + 1

1− ξo

)µ/2 [ Γ(1− µ)Γ(−µ)

Γ(1 + ν − µ)Γ(−µ− ν)
+

Γ(1− µ)Γ(µ)

Γ(−ν)Γ(1 + ν)

(
1 + ξo

2

)−µ]

≈ Γ(1− µ)Γ(−µ)

Γ(1 + ν − µ)Γ(−µ− ν)
eikηR +

Γ(1− µ)Γ(µ)

Γ(−ν)Γ(1 + ν)
e−ikηR (E.29)

as well as,

h̃
(2)
k⊥,k

→
(
ξo + 1

1− ξo

)−µ/2 [ Γ(µ)Γ(1 + µ)

Γ(1 + ν + µ)Γ(µ− ν)
+

Γ(1 + µ)Γ(−µ)

Γ(−ν)Γ(1 + ν)

(
1 + ξo

2

)µ]
≈ Γ(µ)Γ(1 + µ)

Γ(1 + ν + µ)Γ(µ− ν)
e−ikηR +

Γ(1 + µ)Γ(−µ)

Γ(−ν)Γ(1 + ν)
eikηR . (E.30)

Looking at these asymptotic expansions one can then identify the correct combination
of the mode functions that are normalized in other words that satisfy the conditions,∫ ∞

−∞
dη h

(i)
k⊥,k

(
h

(i′)
k′⊥,k

′

)∗
= 2π δ(k − k′)δi,i′ . (E.31)

Using techniques borrowed from the 1d quantum mechanics problems [50, 51] one can find
the correct combination to be,14

h
(1)
k⊥,k

= N(k, k⊥) h̃
(1)
k⊥,k

, h
(2)
k⊥,k

= L(k, k⊥) h̃
(1)
k⊥,k

+ h̃
(2)
k⊥,k

(E.32)

where we have introduced the coefficients,

N(k, k⊥) =
Γ(1 + ν − µ)Γ(−µ− ν)

Γ(1− µ)Γ(−µ)
(E.33)

L(k, k⊥) = −Γ(1 + µ)Γ(1 + ν − µ)Γ(−µ− ν)

Γ(1− µ)Γ(−ν)Γ(1 + ν)
. (E.34)

E.2.2 Normalizing the mode functions

The general expression for the mode decomposition in the R-region, outside of the bubble,
is given by,

φ(ηR, rR, x⊥) =

∫
dk
∑
k⊥,i

[
c̃k⊥,k,i φ

(i)
k⊥,k

(ηR, rR, x⊥) + h.c
]

=

∫
dk
∑
k⊥,i

[
c̃k⊥,k,i N

(i)
k⊥,k

h
(i)
k⊥,k

(ηR)e−ikrReik⊥x⊥ + h.c
]

(E.35)

in order to quantize this model we need to normalize these modes using the Klein-Gordon
normalization given by,(

φ
(i)
k⊥,k

, φ
(i′)
k′⊥,k

′

)
= −i

∫
dΣµg

µν
(
φ

(i)
k⊥,k

∂ν

(
φ

(i′)
k′⊥,k

′

)∗
− ∂νφ(i)

k⊥,k

(
φ

(i′)
k′⊥,k

′

)∗)
. (E.36)

14In particular, one can find this solution for the 1/ cosh2(x) potential in [30].
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Taking the Cauchy surface as the hypersurface of nucleation Σ with normal vector in
the R-region

nµ = cosh(H2dηR) (1, 0, 0, 0) (E.37)

we find that dΣµ = cosh(H2dηR)δµ0 dΣ = d3xδµ0 . Inserting this into the normalization
expression, we get(
φ

(i)
k⊥,k

, φ
(i′)
k′⊥,k

′

)
= −i

∫
d3x

(
φ

(i)
k⊥,k

∂rR

(
φ

(i′)
k′⊥,k

′

)∗
− ∂rRφ

(i)
k⊥,k

(
φ

(i′)
k′⊥,k

′

)∗)
= −i N (i)

k⊥,k
N (i′)∗
k′⊥,k

′

[
2ik

(∫
d2x⊥e

i(k⊥−k′⊥)x⊥

) (∫
dηR h

(i)
k⊥,k

(
h

(i′)
k′⊥,k

′

)∗)]
= 2k (2π)3

∣∣∣N (i)
k⊥,k

∣∣∣2δ(k⊥ − k′⊥)δ(k − k′)δi,i′ , (E.38)

where to get to the last line, we use,∫
d2x⊥e

i(k⊥−k′⊥)x⊥ = (2π)2 δ(k′⊥ − k⊥) (E.39)

as well as, ∫ ∞
−∞

dηC h
(i)
k⊥,k

(
h

(i′)
k′⊥,k

′

)∗
= 2π δ(k − k′)δi,i′ . (E.40)

This means that we should take N (i)
k⊥,k

=
(

(2π)3/2
√

2k
)−1

, so that our normalized

functions become,

φ
(i)
k⊥,k

=
1

(2π)3/2
√

2k
h

(i)
k⊥,k

(ηR)e−ikrReik⊥x⊥ . (E.41)

This calculation shows that the final expansion of the quantized field in the R region should
be of the form,

φ(ηR, rR, x⊥) =

∫
dk
∑
k⊥,i

[
1

(2π)3/2
√

2k
c̃k⊥,k,i h

(i)
k⊥,k

(ηR)e−ikrReik⊥x⊥ + h.c

]
(E.42)

where h
(i)
k⊥,k

(ηR) are given by eqs. (E.32).
One can carry out the same type of computations in the L-wedge of the space-time

arriving to the analogous normalized mode functions in the L section of the Σ surface.

E.2.3 Constructing the vacuum state inside of the lightcone

Following [54] one can define similarly to what we did in the Minkowski case, a new set of
mode functions that are analytic over the whole Cauchy surface, Σ. To do that, we introduce
the following normalized functions,

h
(i)
k⊥,k

=
1√

2 sinh(πk/H2d)

[
eπk/2H2d

(
h

(i)
k⊥,k

(ηR)e−ikrR
)

+ e−πk/2H2d
(
(h

(i)
k⊥,−k(ηL))∗e−ikrL

)]
where i = 1, 2 run over the 2 independent solutions previously found in each (dS2)R,L wedges.

One can find the form of the vacuum state inside of the light cone, in region M, by the
following analytic continuations of the coordinates,

rR = rM − i
π

2H2d
, ηR = −ηM − i

π

2H2d
, (E.43)

as well as the analogous one for the L coordinates.
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Performing this analytic continuation we arrive at

φ(ηM , rM , x⊥) =

∫
dk
∑
k⊥,i

[
1

(2π)3/2
ãk⊥,k,i f

(i)
k⊥,k

(ηM )e−ikrM eik⊥x⊥ + h.c

]
, (E.44)

where

f
(1)
k⊥,k

(ηM ) =
1√
2k

eπk/2H2d√
2 sinh(πk/H2d)

N(k, k⊥) f̃
(1)
k⊥,k

(ηM ) (E.45)

f
(2)
k⊥,k

(ηM ) =
1√
2k

eπk/2H2d√
2 sinh(πk/H2d)

(
L(k, k⊥) f̃

(1)
k⊥,k

(ηM ) + e−πk/H2d f̃
(2)
k⊥,k

(ηM )
)

(E.46)

where we have defined,

f̃
(1)
k⊥,k

(ηM ) = e−ikηMF

[
−ν, ν + 1, 1− µ, 1 + ξi

2

]
, (E.47)

f̃
(2)
k⊥,k

(ηM ) = eikηMF

[
−ν, ν + 1, 1 + µ,

1 + ξi
2

]
, (E.48)

with

ξi = coth(H2dηM ) ; µ = i

(
k

H2d

)
; ν(ν + 1) = −

(
k⊥
H2d

)2

. (E.49)

and where we have simplified the notation by denoting, F [a, b, c, x] = 2F1[a, b, c, x].

As we explained in the previous section of this appendix doing this analytic continuation
to our metric bring us to the other patch of dS2, the one inside of the lightcone, namely,

ds2
M =

1

sinh2(−H2dηM )
(−dη2

M + dr2
M ). (E.50)

On the other hand, this metric has the same asymtotic behavior in the ηM → −∞ limit as
the 2d part of our anisotropic de Sitter (Kasner-de Sitter) metric so we can take the analytic
continuation of our vacuum as the right initial conditions for the mode functions inside of
the decompatification bubble. This is what we do in the main part of the text.
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