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1 Introduction

The existence of a graviton mass is an unavoidable fundamental question from a theoretical
perspective. The pioneering work of Fierz and Pauli marked an important progress [1]. It
is the unique mass term at the linear level, which does not lead to the presence of ghosts at
the classical level in the theory. Even though theoretically completely consistent, this theory
of massive gravity suffers unfortunately from the vDVZ discontinuity [2, 3], i.e., General
Relativity predictions are not recovered in the limit of massless gravitons. The main reason for
this is the existence of an additional scalar degree of freedom in massive gravity that couples
to the trace of the energy momentum tensor. Obviously the vDVZ discontinuity is just an
artifact of the linear approximation. The effects of massive gravity might be cloaked by the
Vainshtein mechanism, where the helicity-0 mode interactions become appreciable to freeze
out the field fluctuations on small scales. Nevertheless, such non-linear extensions usually
have the Boulware-Deser ghost instability [4], when non-trivial backgrounds are considered.
Recently, a ghost-free non-linear theory of massive gravity was pushed forward [5–9], which
has sparked a renewed interest in massive gravity, specially for its possible application in
cosmology.

The phenomenological exploration of the theory has triggered a knock-on effect for
extensions of the standard formulation. First of all a theoretically well expected no-go result
was faced soon [10]. The same condition to remove the Boulware-Deser ghost enforces the
absence of flat FLRW solutions in the case of flat fiducial metric. Although a self-accelerating
open FLRW solution exists [11], it suffers from non-linear ghost instability [12, 13]. Trying to
bypass this difficulty has initiated considerations of more general fiducial metrics, which sadly
was soon doomed to have Higuchi type instabilities in the case of dS reference metric [14, 15]
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and to protect against acceleration in the case of AdS reference metric [16]. Moreover,
the self-accelerating branch solutions are not affected by the choice of the reference metric
and they all behave like the open solutions above [17, 18]. This on the other hand has
launched extensions of the theory by adding new degrees of freedom [19–21]. The study
of quantum properties of the potential interactions has motivated a new branch of research
for consistent matter couplings in the theory. The requirement of maintaining the special
structure of the potential interactions intact at the quantum level yields severe restrictions on
the possible couplings. The phenomenological consequences of massive (bi-)gravity depend
highly non-trivially on the way how matter fields couple to the massive graviton [22–43].
The above mentioned difficulties in the cosmological setup arise only in the case of the
minimal coupling to one of the metrics, which can be avoided by considering a matter coupling
through a very specific admixture of the dynamical and fiducial metric [27]. Considerations
of this direction usually reintroduce the Boulware-Deser ghost. The important question
there is at what scale this ghostly degree of freedom enters. In the context of the special
composite effective metric proposed in [27], the first non-trivial non-vanishing leading order
vector-scalar-matter interactions typically reintroduce the Boulware-Deser ghost assuming
full local Lorentz symmetry [44]. However, this does not preclude us from considering these
interactions as a consistent effective field theory with a cut-off equal to or lower than the
mass of the ghost. Not only avoids this specific coupling the no-go result for the flat FLRW
solutions, it does it so in a very specific way. The mass of the Boulware-Deser ghost on the
FLRW background is infinite. This is because the ghostly vector-scalar-matter interactions
do not contribute to the background due to the symmetry of FLRW.

Of course it would be more tempting to construct matter couplings in which the absence
of the Boulware-Deser ghost is realised fully non-linearly. Not only would this enable the
viability of the Vainshtein mechanism, but also enlarge the scale of applicability. A possible
way out was argued in [45] by switching to the unconstrained vielbein formulation. The
argumentation is simple and elegant. In the case of non-derivative coupling the resulting
Hamiltonian is linear in the effective lapse and shift. In the boosted ADM decomposition
of the vielbein one can easily express the effective lapse and shift in terms of the lapses and
shifts of the two vielbeins. After using the equations of motion for the shift one can integrate
out the boost parameters resulting in effective lapse and shift that depends only linearly on
the lapses and shifts of the two vielbeins. Hence, the linearity in the lapse and shift enforce
the first class primary constraints that remove the Boulware-Deser ghost. So far so good,
this argumentation has however an unfortunate loophole. The existence of the secondary
constraints is taken for granted. Nevertheless, this turns out to be not the case. In [46], it
was shown explicitly that the Hamiltonian becomes highly non-linear in the lapses once the
rotations are integrated out as well, which reflects the absence of the secondary constraints
along the line of the analysis performed in [45]. Thus, also in the unconstrained vielbein
formulation the Boulware-Deser ghost remains persistent in the non-minimal coupling.

In this work we will consider yet another formulation of the coupling, which we call
partially constrained vielbein formulation. For this purpose we shall go along the lines
of a recent study in [47], where the goal was to remove the unwanted, unstable degrees of
freedom of dRGT theory, by only keeping its tensor modes. The advantage of this formulation
is the absence of the Boulware-Deser ghost to all orders beyond the decoupling limit. Any
general vielbein can be decomposed into a Lorentz boost and rotation of a triangular vielbein.
In [45], the integration of the (D − 1) boost parameters in D dimensions yields a linear
Hamiltonian, however the integrations of the additional (D−1)(D−2)/2 rotation parameters
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yields a Hamiltonian highly non-linear in the lapses [46]. Our partially constrained vielbeins
are constructed such that the rotation parameters do not reintroduce the non-linearities
in the lapses. Hence, the argumentation of [45] applies exactly and the loophole found
in [46] is removed. This is achieved by treating the spatial and temporal components of the
vielbein differently and hence violating local Lorentz invariance in the gravity sector. We
shall further study the cosmological consequences of the partially constrained formulation
of the matter coupling. For this we will assume the same background evolution as for the
metric perturbations with vanishing boost parameters. However, important differences arise
at the level of the perturbations. We shall first present the dRGT theory in the partially
constrained formulation in section 2 and state our convenient conventions and notations. We
then prove the absence of the Boulware-Deser ghost related to the non-minimal coupling in
this new formulation in section 3. As next we study the background equations of motion on
FLRW space-time in section 4 with the presence of two branches of solutions. Similarly as in
the previous studies of the effective coupling the new coupling enables us to avoid the no-go
theorem for flat FLRW solutions. Finally, we shall investigate in detail the stability of the
perturbations in the two branches in section 5.

2 Partially constrained vielbein formulation

The original formulation of de Rham-Gabadadze-Tolley (dRGT) massive gravity in the metric
language is mathematically cumbersome due to the presence of matrix square roots. Not only
is the Hamiltonian analysis hindered but also the cosmological perturbations. For instance
to prove the existence of the primary constraint one has to perform a highly non-trivial field
redefinition of the shift. Since the vielbein is like the square root of the metric, the study
of the potential interactions simplify drastically when one uses the vielbein formulation. We
can express the two metrics by the corresponding vielbeins as

gµν = ηABe
A
µe
B
ν and fµν = ηABE

A
µE
B
ν . (2.1)

Hereafter, indices A,B, C,D and µ, ν, ρ, σ run from 0 to 3, but indices I, J,K,L and i, j, k, l
run from 1 to 3. In terms of this Einstein-Cartan formulation, the potential interactions
simply correspond to all possible wedge products of the vielbein of the dynamical metric
with the vielbein of the second metric

L0 =
1

24
εµνρσεABCDE

A
µE
B
νE
C
ρE
D
σ ,

L1 =
1

6
εµνρσεABCDE

A
µE
B
νE
C
ρe
D
σ ,

L2 =
1

4
εµνρσεABCDE

A
µE
B
νe
C
ρe
D
σ ,

L3 =
1

6
εµνρσεABCDE

A
µe
B
νe
C
ρe
D
σ ,

L4 =
1

24
εµνρσεABCDe

A
µe
B
νe
C
ρe
D
σ , (2.2)

with the Levi-Civita symbol normalized as ε0123 = −ε0123 = 1. The Einstein-Hilbert term
in pure General Relativity written in the vielbein formulation is trivial in the sense, that it
corresponds to introducing new non-dynamical fields together with gauge invariances, exactly
in the same philosophy as the Stückelberg trick. It admits four diffeomorphisms and six local
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Lorentz transformations. Introducing the potential interactions breaks these symmetries. In
bigravity, the two copies of local Lorentz transformations and diffeomorphisms are broken
down to a single copy [48]. Of course one can introduce Stückelberg fields in order to restore
the broken Lorentz and diffeomorphism invariance. The vielbein formulation of the bi-gravity
theory is dynamically equivalent to the metric formulation if one imposes the symmetric
vielbein condition, which is a direct consequence of the equations of motion for the Lorentz
Stückelberg field.

In this work we will be concentrating on massive gravity, i.e. the case with non-dynamical
fiducial vielbein EAµ together with its dual basis EA

µ satisfying

EAµEA
ν = δνµ, EAµEB

µ = δAB . (2.3)

We also introduce the dual basis e µ
A for the dynamical physical vielbein eAµ as

eAµeA
ν = δνµ , eAµeB

µ = δAB . (2.4)

As already stated, the graviton mass term as well as the Einstein-Hilbert action are invariant
under the overall local Lorentz transformation of the two vielbeins. We can fix the gauge free-
dom associated with the boost part of the overall local Lorentz transformation by demanding
that the fiducial vielbein is of the so called Arnowitt-Deser-Misner (ADM) form:

EAµ =

(
M 0

MkẼIk ẼIj

)
. (2.5)

Here, M , M i and ẼIj are the fiducial lapse, the fiducial shift and the fiducial spatial vielbein
since the corresponding 4-dimensional fiducial metric fµν becomes

fµνdx
µdxν = −M2dt2 + fij(dx

i +M idt)(dxj +M jdt), fij = δIJ Ẽ
I
iẼ

J
j . (2.6)

On the other hand, after setting the fiducial vielbein to be of the ADM form (2.5), in general
the physical vielbein cannot be cast into the ADM form simultaneously. Instead, by using
the known fact that any vielbein can be written in the so called boosted ADM form, we
parametrize eAµ by the physical lapse N , the physical shift N i, the physical spatial vielbein

ẽIj and the boost parameter bI as

eAµ =

 Nγ +NkbLẽ
L
k bLẽ

L
j

NbI +NkẽLk

(
δIL + bIbL

γ+1

)
ẽLj

(
δIL + bIbL

γ+1

)
 , (2.7)

where bI = δIJbJ and γ =
√

1 + bIbI . This is not a gauge choice nor a physical condition
but simply a reprametrization of a general vielbein. In terms of these variables the physical
metric is written as

gµνdx
µdxν = −N2dt2 + gij(dx

i +N idt)(dxj +N jdt), gij = δIJ ẽ
I
iẽ
J
j . (2.8)

After fixing the boost part of the overall local Lorentz transformation as (2.5), we further
impose the following symmetric condition on the 3-dimensional spatial vielbein:

YIJ = YJI , (2.9)
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where YIJ ≡ Ẽ l
I δJK ẽ

K
l . The condition (2.9) is not a gauge condition but is a physical

condition since it is invariant under the spatial rotational part of the overall local Lorentz
transformation. Imposing (2.9) thus modifies the original formulation and defines a differ-
ent formulation. Since the physical condition (2.9) treats the spatial components and the
temporal component of the vielbein in a different way, this formulation potentially violates
local Lorentz invariance in the gravity sector. We call massive gravity with the symmetric
condition (2.9) a partially constrained vielbein formulation of massive gravity.

We thus have (at least) four formulations of the dRGT massive gravity: the metric
formulation, the constrained vielbein formulation, the unconstrained vielbein formulation
and the partially constrained vielbein formulation. All of the four formulations of the dRGT
theory are equivalent on shell, i.e. after imposing equations of motion. This is because in the
unconstrained or partially constrained vielbein formulation, the equations of motion set the
4-dimensional vielbein to be symmetric on shell. As we shall see in the following sections, this
is no longer the case if we introduce composite coupling to matter fields. The advantage of the
partially constrained vielbein formulation is that, unlike other formulations, matter fields can
consistently couple to a composite vielbein without turning on a (would-be) Boulware-Deser
ghost at all scales.

We have already fixed the boost part of the overall Lorentz transformation by demanding
the ADM form as in (2.5). On the other hand, we have not fixed the spatial rotational part
of the overall Lorentz transformation. While it is not necessary, for practical purposes it is
sometimes convenient to fix the spatial rotational part as well, e.g. by introducing a fixed
non-singular 3× 3 matrix EJk and imposing the condition

ẼIkEJk = ẼJkEIk. (2.10)

Because of the standard polar decomposition (applied to the 3× 3 matrix ẼIkEJk), different
choices of EJk simply correspond to different choices of the spatial rotational part of the overall
local Lorentz transformation, on which the graviton mass term and the Einstein-Hilbert
action (as well as the matter action, even with the composite coupling discussed below) do
not depend. For example, for the analysis of perturbations around a particular background,
it is probably most convenient to choose EJk to be the background value of δJLẼ k

L .
On introducing the variables YB

A and XB
A as

YB
A ≡ E µ

B e
A
µ, XB

A ≡ e µ
B E

A
µ, (2.11)

we can rewrite the potential interactions (2.2) simply as

L0 = −
√
−f ,

L1 = −
√
−fYAA ,

L2 = −1

2

√
−f
(
YA
AYB

B − YABYBA
)
,

L3 = −
√
−gXAA ,

L4 = −
√
−g . (2.12)

In the absence of the composite matter coupling introduced in (2.13) below, i.e. if matter fields
minimally couple to the physical metric gµν then the symmetric vielbein (Y AB = Y BA) is a
solution to the equations of motion (as in the unconstrained vielbein formulation) and thus
the partially constrained vielbein formulation agrees with the symmetric vielbein formulation
and the metric formulation.
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Concerning the coupling to the matter fields, we will only allow non-derivative couplings
through a specific composite effective metric proposed in [27, 30]. In terms of the composite
effective vielbein

eAeffµ = αeAµ + βEAµ , (2.13)

it is constructed as
geff
µν = ηABe

A
effµe

B
effν , (2.14)

with constants α and β. Hence, the action that we will be considering in this work is

S =

∫
d4x

[
M2

Pl

2
det eR[e] +M2

Plm
2
∑
n

βnLn + det eeff Lφ(eeff , φ)

]
, (2.15)

where φ represents the matter field. With the composite matter coupling, the partially
constrained vielbein formulation results in physical consequences different from those in other
formulations, as we shall see in the next section. For the specific homogeneous and isotropic
background of interest we will be concentrating on solutions in which Y AB is symmetric.
Nonetheless, perturbations around it introduce the antisymmetric part of Y AB in different
ways in different formulations.

3 Absence of the Boulware-Deser ghost

The Einstein-Hilbert kinetic term for the physical metric is invariant under two separate local
Lorentz transformations,

eAµ → λABe
B
µ, EAµ → ΛABE

B
µ. (3.1)

However, the inclusion of the graviton mass terms breaks the two independent copies of local
Lorentz transformations to a diagonal combination. Hence the action depends on Λ−1λ, while
it is independent of the overall local Lorentz transformation. Without loss of generality it is
thus possible to make use of the overall Lorentz transformation to set the fiducial vielbein EAµ
to the ADM form (2.5). Moreover, any general vielbein can be written in the boosted ADM
form. We thus reparametrize the physical vielbein eAµ as (2.7). Similarly, we reparametrize

the effective vielbein eAeffµ by the lapse Neff , the shift N i
eff , the spatial vielbein ẽIeffj and the

boost parameter beff
I as

eAeffµ =

 Neffγeff +Nk
effb

eff
L ẽ

L
effk beff

L ẽ
L
effj

Neffb
I
eff +Nk

eff ẽ
L
effk

(
δIL +

bIeffb
eff
L

γeff+1

)
ẽLeffj

(
δIL +

bIeffb
eff
L

γeff+1

)
 , (3.2)

where bIeff = δIJbeff
J and γeff =

√
1 + bIeffb

eff
I . In the following we will closely follow the

argument presented in [45] to show that Neff and N i
eff are linear in N , N i, M and M i.

Substitution of the above decompositions of the two vielbeins eAµ, EAµ and the effective

vielbein eAeffµ into the relation eAeffµ = αeAµ + βEAµ results in

beff
L ẽ

L
effj = αbLẽ

L
j ,

ẽLeffj

(
δIL +

bIeffb
eff
L

γeff + 1

)
= αẽLj

(
δIL +

bIbL
γ + 1

)
+ βẼIj , (3.3)
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and

Neffγeff +Nk
effb

eff
L ẽ

L
effk = α(Nγ +NkbLẽ

L
k) + βM,

Neffb
I
eff +Nk

eff ẽ
L
effk

(
δIL +

bIeffb
eff
L

γeff + 1

)
= α

[
NbI +NkẽLk

(
δIL +

bIbL
γ + 1

)]
+ βMkẼIk . (3.4)

Since the right hand sides of (3.3) do not depend on N , N i, M and M i, by solving these
equations with respect to ẽIeffµ and beff

I , gives rise to expressions of ẽIeffµ and beff
I in terms of

ẽLρ, Ẽ
L
ρ and bL. By substituting these solutions to (3.4), one obtains a set of linear equations

for Neff and N i
eff . The right hand sides of these linear equations are still linear in N , N i, M

and M i. Therefore, by solving them with respect to Neff and N i
eff , one sees that Neff and

N i
eff are linear in N , N i, M and M i. Furthermore, the Hamiltonian density of the matter

fields propagating on geff
µν is linear in Neff and N i

eff . Thus, it is linear in N , N i, M and M i.
Needless to say, the Hamiltonian density of the matter fields propagating on gµν is linear in
N and N i and independent of M and M i. Also, each term in the graviton mass terms (2.2)
includes only one factor of eA0 or EA0. Since eA0 and EA0 are linear in N , N i, M and M i

and other components of vielbeins are independent of N , N i, M and M i, the graviton mass
terms are linear in N , N i, M and M i. Therefore, the Hamiltonian of the system is linear in
N , N i, M and M i. Following [49], one can thus show that there is a primary constraint that
removes the Boulware-Deser ghost as follows: the equations of motion for N i (i = 1, 2, 3) do
not depend on N , M and M j but depend on the boost parameters bL (L = 1, 2, 3). Thus
one can solve these 3 equations with respect to the 3 parameters bL and the solutions are
independent of N , N i, M and M i. Therefore, after substituting them, the Hamiltonian is
independent of N i and linear in N , M and M i. The equation of motion for N is thus a
constraint. This is the primary constraint that removes the Boulware-Deser ghost, with the
help of the associated secondary constraint.1

In the case studied in [45], this argumentation unfortunately had a loophole. This loop-
hole was due to the fact that the structure of the Hamiltonian drastically changes after solving
the equations of motion for the spatial rotational part of the local Lorentz transformation.
This fact was not appreciated in [45] but was later noticed in [46]. In the metric formula-
tion (or equivalently the constrained vielbein formulation) of the dRGT theory without the
composite matter coupling, the (would-be) Boulware-Deser ghost is removed by a primary
constraint and the associated secondary constraint in the phase space spanned by gij and
their canonical momenta. The presence of such a primary constraint is equivalent to the fact
that the Hamiltonian density is linear in the lapse after integrating out the shift vector. The
unconstrained vielbein formulation (after fixing the overall local Lorentz transformation), on
the other hand, includes not only gij , the lapse and the shift but also the boost parameters
and the spatial rotation parameters as basic variables. One thus needs to show that the
Hamiltonian density is linear in the lapse after integrating out not only the shift but also
the boost and spatial rotation parameters. This is indeed the case in dRGT theory without
the composite matter coupling. In the presence of the composite matter coupling, the ar-
gument [45] proves that the Hamiltonian density is linear in the lapse after integrating out
the shift and the boost parameters. However, there still remain the spatial rotation param-
eters. However, as pointed out in [46], the Hamiltonian density becomes highly non-linear

1For the absence of the Boulware-Deser ghost in the standard formulation of massive gravity see [8, 50]
and [49].
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in the lapse after integrating out the spatial rotation parameters as well. Thus the uncon-
strained vielbein formulation of the effective coupling reintroduces the Boulware-Deser ghost
in analogy to the metric formulation. Conversely, in the case of partially constrained vielbein
formulation that we study here, the argumentation of [45] is solid. The spatial rotational
part of the local Lorentz transformation is already fixed by the symmetric condition (2.9)
at the level of the theory and thus there are no spatial rotation parameters in the set of
basic variables. After using the equations of motion for the shift, we can integrate out the
shift and the boost parameters all together, and the Hamiltonian density remains linear in
the lapse as explained above. Hence the loophole of the argumentation in [45] is removed
by the symmetric condition (2.9), at the price of losing local Lorentz symmetry. Our setup
illustrates a correct realization of the argument given in [45].

4 Cosmological background evolution

The no-go result for flat FLRW solutions in the standard formulation of massive gravity [10]
has motivated to consider non-minimal matter couplings. In the standard coupling the
Stückelberg field equation of motion imposes a non-dynamical scale factor. Non-minimal
matter coupling through a consistent composite effective metric softens the restrictions on the
scale factor and one can easily construct exact FLRW solutions with flat reference metric [27].
In the vielbein formulation this effective composite metric corresponds to a linear effective
vielbein built additively out of the two vielbeins. In the metric formulation this non-minimal
coupling reintroduces the Boulware-Deser ghost, however, this does not prevent one to view
this coupling as effective field theories below some cutoff scale. It was argued that the
Boulware-Deser ghost might remain absent in the unconstrained vielbein formulation, but
unfortunately the absence of the secondary constraints was proven very soon. The setup that
we are using here corresponds to the correct realisation of the argument given in [45]. In
the previous section we have explicitly shown the ghost absence in the partially constrained
vielbein formulation. This motivates us to investigate the cosmological implications of this
model further. For this purpose, we shall assume a background with Y[AB] = 0. Note that
from the graviton mass terms one only obtains non-linear contributions in Y[AB]. Thus, in the
absence of the matter coupling through the linear effective vielbein one consistent solution
would be Y[AB] = 0. Even in the presence of the matter coupling we shall concentrate on the
background with symmetric YAB for the FLRW background. Let us consider the following
homogeneous and isotropic co-diagonal backgrounds for the dynamical and fiducial metric.
In other words both metrics have a FLRW form in the same coordinate system2

ds2
g = −N2dt2 + a2δijdx

idxj ,

ds2
f = −N2

f dt
2 + a2

fδijdx
idxj . (4.1)

The corresponding tetrads read

e0
µ = δ0

µN , ẽIµ = δIµa , E0
µ = δ0

µNf , ẼIµ = δIµaf , (4.2)

2Although we use a generic FLRW form for the fiducial metric, the geometry of the fiducial space in massive
gravity should be specified at a fundamental level. This connection with a fundamental geometry might then
impose further restrictions on Nf and af . For a list of FLRW charts of maximally symmetric space-times, see
e.g. ref. [18].
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and similarly the diagonal symmetric matrix YAB takes the form

YAB = diag

(
− N

Nf
,
a

af
,
a

af
,
a

af

)
. (4.3)

Accordingly, the composite effective metric on this background corresponds to the line element

ds2
eff = −N2

effdt
2 + a2

effδijdx
idxj , (4.4)

where Neff is the effective lapse function and aeff stands for the effective scale factor

Neff ≡ αN + β Nf , aeff ≡ αa+ β af . (4.5)

As for the matter sector, we will only consider a generic scalar field φ minimally coupled to
the effective metric

Sφ =

∫
d4x det eeff Lφ(eeff , φ) =

∫
d4x det eeff P (χ, φ) , (4.6)

with χ = −1
2g
µν
eff ∂µφ∂νφ. Since the scalar field has to be compatible with our above homo-

geneous and isotropic Ansaetze, we will impose that the scalar field depends only on time
φ = φ(t) at the background level. For later convenience let us also introduce the following
quantities

H ≡ ȧ

aN
,Hf ≡

ȧf
af Nf

, (4.7)

r ≡
Nf/af
N/a

, (4.8)

U(A) ≡ β14A3 + 6β2A
2 + 4β3A , (4.9)

with H denoting the expansion rate, A ≡ a0/a the ratio of the scale factors and r the speed of
light propagating in the fiducial metric with respect to the one propagating in the dynamical
g metric. The action on the homogeneous and isotropic background simplifies to

S

V
= M2

Pl

∫
dt a3N

{
− Λ− 3H2 −m2β4 −m2 [ρm + rAQ]

}
−m2M2

Pl

∫
dt β0a

3
fNf +

∫
dt a3

effNeffP (χ, φ) , (4.10)

where we introduced the shortcut notations for manageability

ρm(A) ≡ U(A)− A

4
U,A , Q(A) ≡ 1

4
U,A , (4.11)

with U,A = ∂AU . After varying the mini-superspace action (4.10) with respect to the lapse
N we obtain the Friedmann equation

3H2 = Λ +m2β4 +m2ρm +
αa3

eff

M2
Pl a

3
ρ , (4.12)

where it becomes clear that ρm denotes a dimensionless effective energy density from the
mass term and ρ ≡ 2 ∂χP (χ, φ)χ − P (χ, φ) is the associated energy density of the matter
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field. The acceleration equation results from combining the equation of motion for the scale
factor a with the Friedmann equation

2 Ḣ

N
= m2 J A (r − 1)−

αa3
eff

M2
Pla

3

[
ρ+

aNeff

aeffN
P

]
, (4.13)

with J(A) ≡ 1
3 ∂Aρm(A) and the pressure of the matter field P = P (χ, φ). Similarly, the

variation of the mini-superspace action with respect to the scalar field yields

1

Neff
ρ̇+ 3

ȧeff

aeffNeff
(ρ+ P ) = 0 , (4.14)

which just correspond to the standard conservation equation for a field minimally coupled to
the geff metric. Finally, the contracted Bianchi identity gives the constraint equation

(H −HfA)

[
m2M2

PlJ −
αβ a2

eff

a2
P

]
= 0 . (4.15)

Generically, this equation defines two branches of solutions: Branch-I H = HfA and Branch-
II J ∝ P . When we study the perturbations, we will consider both branches of solutions
separately. At this stage, it is worth to mention that for Minkowski fiducial metric af = a0

and Hf = 0, only the second branch gives an expanding solution. In fact integrating the
above equation for the case of Minkowski fiducial metric yields [51]

m2M2
Pl a

3Q+ βa3
effρ = a3

0m
2M2

Plκ , (4.16)

where κ is a dimensionless integration constant, independent of the normalization of the
scale factor. The contracted Bianchi identity together with its integrated version in the case
of Minkowski fiducial metric permit to relate the kinetic and potential energy density of
the matter field to the graviton mass terms. The Friedmann equation can thus be brought
into the form

3H2 = Λ +m2β4 +m2

[
ρm −

α

β

(
Q− κA3

)]
. (4.17)

Similarly, one can also remove the explicit χ dependence in the acceleration equation (4.13),
yielding

2 Ḣ

N
= −m2

[
J A− α

β

(
Q− κA3 − J

)]
, (4.18)

which is nothing else but the time derivative of the previous equation (4.17). In the present
study, we will not make use of this fact, and we will keep the fiducial metric arbitrary.

As expected, the background evolution is exactly the same as in the metric formula-
tion. Note that this is not surprising since we considered here background solutions with
symmetric YAB. There could be other interesting background evolution with a non-zero
Y[AB] background values. Even in our case with the vanishing Y[AB] we expect non-trivial
differences to the metric formulation at the level of the perturbations.

For later convenience in the study of perturbations we introduce the quantity

Γ ≡ AJ +
(r − 1)A2

2
∂AJ , (4.19)
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and the following relations that hold

1

N
ρ̇m = 3 J A (Hf r A−H) ,

1

N
J̇ =

2 (Hf r A−H)

A (r − 1)
(Γ− J A) ,

Γ̇

N
= (Hf r A−H)

[
(r − 1)ρm +

5 r − 3

r − 1
Γ− 3 r2 − 2 r + 1

r − 1
J A

]
+

Γ− J A
(r − 1)

ṙ

N
. (4.20)

5 Stability of the perturbations

As we have seen in the previous section, the coupling of the matter fields through a very
specific admixture of the dynamical and fiducial vielbeins avoids the no-go result for flat
FLRW solutions in massive gravity. In the metric formulation it was explicitly shown, that
the Boulware-Deser ghost is absent around FLRW solutions [27]. In our partially constrained
vielbein formulation this is true in general for any background. The ghost is maintained
absent non-linearly by breaking explicitly the local Lorentz invariance. Even if the Boulware-
Deser ghost is removed, it is important to investigate how the remaining physical degrees of
freedom behave on top of the background that we are interested in. For this purpose we shall
adopt the boosted ADM formulation where the physical tetrad can be written as

eAµ =
(
e−ω

)A
B ε
B
µ , (5.1)

where ωAB are the Lorentz transformations and εB µ corresponds to the ADM tetrad

εAµ =

(
N(1 + Φ) 0j
ε̃IkN

k ε̃Ij

)
, (5.2)

with the lapse perturbation Φ. For the partially constrained tetrad formalism, only the boost
part of the Lorentz transformations are kept, i.e. ωIJ = 0. The perturbations of the boost
parameters are decomposed into

ω0I = ∂Iv + vI , (5.3)

where δIJ∂JvI = 0. The induced 3-metric can be built out of the triads ε̃Ij as hij = ε̃Iiε̃
I
jδIJ .

The shift vector is decomposed as

Ni = hijN
j = aN (Bk + ∂kB) , (5.4)

while the triads are decomposed through

ε̃Ii = a (1 + ψ)δIi +
a δIj

2

[
γij + ∂(iEj) +

(
δki δ

l
j −

1

3
δijδ

kl

)
∂k∂lE

]
, (5.5)

where δij∂iBj = δij∂iEj = δij∂iγjk = δijγij = 0. Notice that the decomposition of the metric
perturbations coincide with the ones in [51] at linear order. Finally, the perturbation to the
scalar field is introduced by

φ = φ0 + δφ . (5.6)
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In the following we study in detail the stability of tensor, vector and scalar perturbations in
the two branches of solutions and exploit the conditions to avoid ghost and Laplace instabil-
ities. For this purpose we will further decompose the perturbations in Fourier modes with
respect to the spatial coordinates

F =

∫
d3k

(2π)3/2
F~k(t) exp(i~k · ~x) + c.c. , (5.7)

where F represents the perturbations (Φ, ψ, E, B, δφ, v) and (BI , EI , vI , hIJ) respectively.
In the remainder of the paper, we will omit the subscript ~k associated with the mode functions
for the sake of clarity of notation. We shall perform the stability analysis of the perturbations
for each sector separately in what follows.

5.1 Branch-I

As we mentioned above from the constraint equation (4.15) one obtains two branches of
solutions. Let us first investigate the perturbations on top of the Branch-I solutions with H =
AHf and analyse the parameter space that is free from the ghost and Laplace instabilities.

5.1.1 Tensor perturbations

We start the stability analysis with the transverse-traceless fluctuations. Our action (2.15)
perturbed to second order in tensor perturbations has the form

S(2)
tensor =

M2
Pl

8

∫
d3k dtN a3

[
1

N2
ḣ?IJ ḣ

IJ −
(
k2

a2
+m2

T

)
h?IJh

IJ

]
, (5.8)

with the mass term defined as

m2
T ≡ m2Γ− αβ aeffNeffP A

M2
PlaN

. (5.9)

First of all the tensor perturbations have the right sign for the kinetic term and also the right
condition for absence of gradient instabilities. The only condition comes from the requirement
to avoid tachyonic instability mT > 0.

5.1.2 Vector perturbations

As next we can compute our action perturbed to second order in vector perturbations:

S(2)
vector =

M2
Pl

16

∫
d3kN dt k2a3

[
1

N2
Ė?I Ė

I − 2

aN

(
Ė?IB

I +B?
I Ė

I
)
−m2

TE
?
IE

I

+
4

a2
B?
IB

I − 8

k2
m2
v v

?
Iv
I +

8

k2
m2
vB

(
v?IB

I +B?
I v
I
)]

, (5.10)

where we have introduced the following definitions for convenience

m2
v ≡ m2J A (r + 1) +

αβ Aa2
eff

M2
Pla

2

[
(r + 1) ρ− aNeff

aeffN
(ρ+ P )

]
,

m2
vB ≡ m2J A+

αβ Aa2
effρ

a2M2
Pl

. (5.11)
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Note that the vector fields vI and BI are non-dynamical degrees of freedom. We can therefore
compute their equations of motion and integrate them out. Solving the equations of motion
for vI and BI , we obtain

vI =
m2
vB

m2
v

BI , BI =
a

2N

(
1 +

2 a2

k2

m4
vB

m2
v

)−1

ĖI . (5.12)

We can plug back these solutions in the quadratic action (5.10) and obtain

S(2)
vector =

M2
Pl

16

∫
d3kN dt k2a3

[
K2
V

1

N2
Ė?I Ė

I −m2
TE

?
IE

I

]
, (5.13)

with K2
V =

(
1 + k2 m2

v

2 a2m4
vB

)−1
. We have to impose that the vector perturbations have the right

sign for the kinetic term K2
V > 0 in order to avoid ghost instabilities. We can rewrite the

kinetic term explicitly as

K2
V =

1 +
k2

2Aa2

 r + 1

m2J +
αβ a2

effρ

a2 M2
Pl

− aeffNeff

aN M2
Pl

αβ (ρ+ P )(
m2J +

αβ a2
effρ

a2M2
Pl

)2



−1

. (5.14)

At high momenta, the condition is rather cumbersome. At low momenta in the regime where
M2

Plm
2J � ρ, P , the kinetic term is positive if m2 J > 0. In the other regime, where the

matter is parametrically dominant over the mass terms, i.e. M2
Plm

2J � ρ, P , we get the
condition

ρ >
P

aeffN (r+1)
aNeff

− 1
. (5.15)

5.1.3 Scalar perturbations

As next we will study the stability of the scalar perturbations in our partially constrained
vielbein formulation of the dRGT theory with the effective coupling. As we mentioned above,
five dof appear in form of a scalar field Φ, B, v, ψ, E, δφ, from which three (Φ, B and v)
are non-dynamical and will be integrated out. The equations of motion for Φ, B and v are,
respectively

H

(
k2B

a
− 3H Φ +

3 ψ̇

N

)
+
α2 a3

effN (ρ+ P )

2M2
Pla

3Neffc2
s

Φ +
3A

2

(
m2J +

αβ a2
effρ

a2M2
Pl

)
ψ

+
k2

a2

(
ψ +

k2

6
E

)
−
αa3

eff(ρ+ P )

2M2
Pl a

3c2
sφ̇0

δφ̇+
αa3

eff

2M2
Pla

3

(
P,φ − P,φχ

φ̇2
0

N2
eff

)
δφ = 0 ,

1

N

(
ψ̇ +

k2

6
Ė

)
−H Φ +

αa2
eff(ρ+ P )

2M2
Pl a

2

δφ

φ̇0/Neff

− aA

2

(
m2J +

αβ a2
effρ

a2M2
Pl

)
v = 0 ,(

m2J +
αβ a2

effρ

a2M2
Pl

)
B −

[
(r + 1)

(
m2J +

αβ a2
effρ

a2M2
Pl

)
− αβ aeffNeff(ρ+ P )

M2
PlaN

]
v

− αβ aeff(r − 1)(ρ+ P )

M2
Pla

2φ̇0/Neff

δφ = 0 , (5.16)
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where we made use of the sound speed of the matter field

c2
s ≡

P,χ
ρ,χ

=
∂χP (χ, φ)

2 ∂2
χP (χ, φ)χ+ ∂χP (χ, φ)

. (5.17)

Using the solutions of these equations reduces the action to contain three degrees of freedom
only. We find that a convenient basis to remove the would-be Boulware-Deser degree is

Y1 = δφ− α φ̇0

H Neff

(
ψ +

k2

6
E

)
, Y2 =

1

2
E . (5.18)

This choice of basis is just convenience since the subhorizon limit of the kinetic term turns
out to be of order k0. The basis used for Branch-II will be a different one. In this basis the
mode ψ becomes non-dynamical. Integrating it out, we end up with two dynamical modes,
with action

S(2)
scalar =

M2
Pl

2

∫
d3kN dt a3

[
Ẏ †

N
·K · Ẏ

N
+
Ẏ †

N
·M · Y − Y † ·M · Ẏ

N
− Y † · Ω2 · Y

]
.

(5.19)
The exact form of the 2 × 2 matrices KT = K, (Ω2)T = Ω2 and MT = −M are very
cumbersome, although the subhorizon expansion yields relatively manageable expressions.
The components of the kinetic matrix at leading order in this expansion (O(k0)) gives

K11 =
a3

effN Neff(ρ+ P )

M2
Pla

3c2
s φ̇

2
0

+O(k−1) ,

K22 =
3
(
m2J +

αβ a2
effρ

a2M2
Pl

)2
a4A

2


(
m2J +

αβ a2
effρ

a2M2
Pl

)
A+

α2a2
eff(ρ+P )

a2M2
Pl

− 2H2

r
(
m2J +

αβ a2
effρ

a2M2
Pl
− αβ a2

eff(ρ+P )

a2M2
Pl

)

+
α2a3

effN A (ρ+ P )

6M2
Pla

3c2
sH

2Neff

+O(k−1) ,

K12 =
αa3

effN A (ρ+ P )

2M2
Pla c

2
sH φ̇0

(
m2J +

αβ a2
effρ

a2M2
Pl

)
+O(k−1) . (5.20)

One can rotate the basis such that the eigenvalues become

κ1 = K11 =
a3

effN Neff(ρ+ P )

M2
Pla

3c2
s φ̇

2
0

+O(k−1) ,

κ2 =
detK

K11
=

3 a4A

2 r β

(
m2J +

αβ a2
effρ

a2M2
Pl

)2
 aeff

a

(
m2J +

αβ a2
effρ

a2M2
Pl

)
− 2β H2(

m2J +
αβ a2

effρ

a2M2
Pl
− αβ a2

eff(ρ+P )

a2M2
Pl

) − α
 . (5.21)

In the regime where the matter sector is parametrically subdominant under the mass term,
the second eigenvalue gives a condition reminiscent of Higuchi bound, i.e. m2J(m2J A −
2H2)/r > 0. In massive gravity, Hf itself is determined by the geometry of the fiducial
metric, which is a fundamental quantity. Therefore, keeping Hf generic implicitly neglects
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some necessary information. For instance, if the fiducial metric is maximally symmetric, this
gives a new relation between J and the matter components. For this example, the second
kinetic eigenvalue is simply

κ2

∣∣∣∣∣
Ḣf=0

=
3αa3

eff(ρ+ P )
(

2M2
PlH

2(r − 1) +
αa2

effNeff(ρ+P )

a2N

)2

2M4
Pl(r − 1)2

(
2M2

PlH
2(r − 1) +

αa3
eff(ρ+P )

a3

) +O(k−1) , (5.22)

which is positive if the sufficient conditions α > 0 and r > 1 are satisfied. This example can
also be applied to the vector mode and the vector kinetic term can be found to be positive
if these conditions, along with β > 0 are satisfied. The anti-symmetric mixing-matrix is
of order M12 = O(k0), so it does not contribute to the speed of propagation. Finally, the
components of the mass matrix are

(Ω2)11 =
aeff N

3
eff(ρ+ P )

a3M2
PlN φ̇2

0

k2 +O(k) ,

(Ω2)22 =

−2H2m2
T +

A
(
m2J +

αβ a2
effρ

a2M2
Pl

)
2

(
4m2

T +
αa2

eff Neff(ρ+ P )

M2
Pla

2N
− 2H2

)

+
A2
(
m2J +

αβ a2
effρ

a2M2
Pl

)2

4

(
α2aeffNeff(ρ+ P )

M2
PlaH

2N
− 2 r

) a2k2 +O(k) ,

(Ω2)12 =
αaeffN

2
effA (ρ+ P )

2M2
PlaH N φ̇0

(
m2J +

αβ a2
effρ

a2M2
Pl

)
k2 +O(k) . (5.23)

For a mode with subhorizon frequency ω = CS
k
a +O(k0), and taking into account the leading

order expressions of the above matrices, we can obtain the propagation speeds of the modes
C2
S by solving

det
[
−ω2K + Ω2

]
= 0 , (5.24)

or
k4

a4
det[K]C4

S +
k2

a2

(
Tr[Ω2 ·K]− Tr[Ω2]Tr[K]

)
C2
S + det[Ω2] = 0 . (5.25)

5.2 Branch-II

We would like now study also the behaviour of perturbations on top of the Branch-II solutions

with the constraint equation J =
αβ a2

eff

m2M2
Pla

2P . Similarly as in the previous section we will

perform the stability analysis of the perturbations for each sector separately.

5.2.1 Tensor perturbations

We shall again start our stability analysis with the transverse-traceless part of fluctuations.
The action (2.15) perturbed to second order in tensor perturbations is this time

S(2)
tensor =

M2
Pl

8

∫
d3k dtN a3

[
1

N2
ḣ?IJ ḣ

IJ −
(
k2

a2
+ m̄2

T

)
h?IJh

IJ

]
, (5.26)
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with the different mass term defined now as

m̄2
T ≡ m2

(
Γ− αβ aeffNeffP A

M2
PlaN

)
. (5.27)

Again the tensor perturbations on top of the Branch-II solutions have already the right
sign for the kinetic term and also for the absence of gradient instabilities. The condition for
absence of tachyonic instability this time becomes m̄T > 0. Actually, the tensor perturbations
coincide exactly with the tensor perturbations obtained in [51] for the metric formulation.
This is no surprise, since the boost parameters ωAB contribute only to the vector and scalar
perturbations (5.3) in our partially constrained formulation of the vielbein. Even if the mass
term m̄2

T has a very different form at first sight, it is actually the same as in ref. [51]. This
becomes clear after using the following identification of the parameters between the two
formulations:

β1 → −
3

2
(α3 + 4α4) , β2 → α2 + 3α3 + 6α4 , β3 → −

3

2
(2α2 + 3α3 + 4α4) . (5.28)

With this identification, we observe that J does not get modified from one construction to
the other, while

Γ =
A

(A− 1)3

[
(A− 1)2[(2 r − 1)A+ r − 2]J − (r − 1)(Q+A2ρm)

]
. (5.29)

Using these relations, equation (5.27) reduces in fact to the one in ref. [51].

5.2.2 Vector perturbations

As in the previous section our vector modes consist of the non-dynamical degrees BI , vI and
the dynamical degrees EI . The action quadratic in vector modes reads:

S(2)
vector =

M2
Pl

16

∫
d3kN dt k2a3

[
1

N2
Ė?I Ė

I − 2

aN

(
Ė?IB

I +B?
I Ė

I
)
− m̄2

TE
?
IE

I

+
4

a2
B?
IB

I − 8

k2
m̄2
v v

?
Iv
I +

8

k2
m̄2
vB

(
v?IB

I +B?
I v
I
)]

, (5.30)

where this time

m̄2
v ≡

αβ Aaeff(α r + β A) (ρ+ P )

aM2
Pl

, m̄2
vB ≡

αβ Aa2
eff (ρ+ P )

a2M2
Pl

. (5.31)

We remark that the metric formulation corresponds to vI = BI/(1 + r), reducing to the
action in [51] at this stage. This can be verified by looking at the mass terms Ln quadratic
in perturbations. In the boosted ADM formulation, one has

δLn
δvI

∣∣∣∣
vI=NI/(1+r)

= 0 . (5.32)

In other words, the fully constrained tetrad formalism, which is equivalent to the metric
formulation, requires ωIJ = 0 and ω0I = NI/(1 + r) at linear order around FLRW. This
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is nothing but the symmetric vielbein condition, i.e. Y[AB] = 0. We again depart from the
metric formulation by solving the equations of motion for vI , together with BI , obtaining

vI =
m̄2
vB

m̄2
v

BI , BI =
a

2N

(
1 +

2 a2

k2

m̄4
vB

m̄2
v

)−1

ĖI . (5.33)

Using these solutions back in the action, we obtain:

S
(2)
vector =

M2
p

16

∫
d3kN dt k2a3

[
K̄2
V

1

N2
Ė?I Ė

I − m̄2
TE

?
IE

I

]
. (5.34)

The kinetic term for the vector mode can be written explicitly as

K̄2
V ≡

(
1 +

k2 m̄2
v

2 a2 m̄4
vB

)−1

=

(
1 +

k2M2
Pl(α r + β A)

2αβa2A (α+ β A)3 (P + ρ)

)−1

. (5.35)

At high momenta, assuming ρ + P > 0, the no-ghost condition corresponds simply to
α > 0, β > 0.

5.2.3 Scalar Perturbations

As we introduced in the previous section the scalar sector contains six degrees of freedom in
total: Φ, B, ψ, E, v and δφ. Out of these Φ, B, v and a linear combination of the remaining
ones are non-dynamical. Again, the metric formulation corresponds to fixing the boosts with
v = B/(1+ r). The action, as usual, is not suitable for presentation. However, we quote here
some of the intermediate steps. The equations of motion for Φ, B and v are, respectively

H

(
k2B

a
− 3H Φ +

3 ψ̇

N

)
+
αa3

eff(ρ+ P )

2M2
Pla

3

(
αN Φ

c2
sNeff

+
3β aAψ

aeff

)

+
αa3

eff Neff

2M2
Pla

3 φ̇0

[
2 a (H −Hfr A)

c2
s a

2
eff(r − 1)A

(
P A−

m2M2
Pl aN Γ

αβ aeffNeff

)
+ 3Heff(ρ+ P )−

P,φ φ̇0

c2
s Neff

]
δφ

+
k2

a2

(
ψ +

k2

6
E

)
−
αa3

eff(ρ+ P )

2M2
Pl a

3c2
sφ̇0

δφ̇ = 0 ,

1

N

(
ψ̇ +

k2

6
Ė

)
−H Φ +

αa2
eff(ρ+ P )

2M2
Pl a

2

(
δφ

φ̇0/Neff

− β aAv
)

= 0 ,

aeff B − a (α r + β A) v − (r − 1)δφ

φ̇0/Neff

= 0 . (5.36)

Using the solutions of these equations reduces the action to contain three degrees of freedom
only. The convenient basis to remove the would-be Boulware-Deser ghost on top of Branch-II
solutions is this time

Y1 = δφ− α φ̇0

H Neff

(
ψ +

k2

6
E

)
, Y2 =

k

2
E . (5.37)
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Once δφ and E are expressed in terms of Y1 and Y2, the mode ψ becomes non-dynamical.
Integrating it out, we end up with two dynamical modes, with action

S(2)
scalar =

M2
Pl

2

∫
d3kN dt a3

[
Ẏ †

N
· K̄ · Ẏ

N
+
Ẏ †

N
· M̄ · Y − Y † · M̄ · Ẏ

N
− Y † · Ω̄2 · Y

]
,

(5.38)
with 2× 2 matrices K̄T = K̄, (Ω̄2)T = Ω̄2 and M̄T = −M̄ .

K̄12 = −2 kNeff H

α φ̇0

1−
c2
s

[
k2(α r + β A)− 3β a2A Ḣ

N

]
αβ a2A Ḣ2

H2N Neff

G

−1

,

K̄11 = − K̄12H

k αβ a2A φ̇0

Neff

Ḣ
N

[
k2(α r + β A)− 3β a2A Ḣ

N

]
,

K̄22 =
K̄12

K̄11

K̄12 +
2 kH

α φ̇0

Neff

 = −
k β a2A Ḣ

N

(
2 kH + K̄12 α

φ̇0

Neff

)
H
[
k2(α r + β A)− 3β a2A Ḣ

N

] . (5.39)

where we have defined

G =

(
1 +

3αβ a2 c2
s(H −HfA)(r − 1)A Ḣ

N

a2
eff(β H + αHf ) m̄2

T

)−1

. (5.40)

One can rotate the basis such that the eigenvalues are:

κ̄1 = K̄11 =
2
(
k2

a2 (α r + β A)− 3β A Ḣ
N

)
α2β A

(
Ḣ

N H2

)(
φ̇0

Neff

)2

1−
c2
s

[
k2(α r + β A)− 3β a2A Ḣ

N

]
αβ a2A Ḣ2

H2N Neff

G

−1

,

κ̄2 =
det K̄

K̄11
= 2 k2

[
3− k2

a2

N

Ḣ β A
(α r + β A)

]−1

. (5.41)

The full no-ghost conditions are quite opaque, so we consider the subhorizon limit of the
action. In this limit the kinetic matrix is diagonal, with K̄12 = O(k−1) and

K̄11 =
a3

eff(ρ+ P )

M2
pa

3c2
s

φ̇2
0

N Neff

[
1 +

3 aeff α
2β2c2

s(1− r)A
2 a

H −HfA

βH + αHf

ρ+ P

M2
Plm̄

2
T

]
+O(k−1) ,

K̄22 =
αβ a3

effA (ρ+ P )

M2
Pla(α r + β A)

+O(k−1) . (5.42)

The mixing matrix already has one independent component, which is, at leading order:

M̄12 =
αβ a3

eff(H r −HfA)(ρ+ P )

2M2
Pl a

3(β H + αHf )(α r + β A) φ̇0

Neff

k +O(k0) . (5.43)
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Finally, the mass matrix is also diagonal at leading order, with

(Ω̄2)11 =
a3

effr (ρ+ P )

a5M2
p (α r + β A)

φ̇2
0

N2
eff

k2 +O(k) ,

(Ω̄2)22 =
2 m̄2

T (H −Hf A)Neff

3N A(r − 1)(β H + αHf )
k2 +O(k) . (5.44)

Then, for a mode with subhorizon frequency ω2 = C2
S
k2

a2 + O(k), we can obtain the
propagation speeds of the modes C2

S by solving

det

[
−ω2 K̄ +

(
1

N
˙̄K + 3H K̄ + 2 M̄

)
(−i ω) +

(
3H M̄ +

1

N
˙̄M + Ω̄2

)]
= 0 . (5.45)

Considering the leading order terms of the matrices, the equation can be simplified as

det
[
−ω2 K̄ + 2 M̄(−i ω) + Ω̄2

]
= 0 , (5.46)

or
k4

a4
K̄11K̄22C

4
S −

k2

a2

(
4 M̄2

12 + K̄11Ω̄2
22 + K̄22Ω̄2

11

)
C2
S + Ω̄2

11Ω̄2
22 = 0 (5.47)

This is a quadratic equation for C2
S and the solutions can be easily found, although they

are not very instructive. An interesting limit is β → 0, which corresponds to the minimally-
coupled matter limit:

C2
S,1 = c2

s +O(β) , C2
S,2 =

2M2
Pl r (H −HfA)m̄2

T

3α3Hf (r − 1)A2(ρ+ P )β
+O(β0) . (5.48)

In other words, for vanishing β one of the modes becomes instantaneous, while the other one
is the matter degree as it propagates with the sound speed of the fluid. This is the standard
“vanishing kinetic terms” issue of dRGT in self-accelerating branch with minimally coupled
matter [17].

6 Conclusions

The question of consistent matter couplings within the framework of massive gravity is crucial
for maintaining the ghost freedom. The specific quantum properties of the theory have
motivated the consideration of an effective matter coupling [27, 52]. This matter coupling
through a very specific admixture of the dynamical and fiducial metric avoids further the No-
go result for flat FLRW solutions. However, this coupling reintroduces the Boulware-Deser
ghost. It is an indispensable question to address at what scale this ghostly degree of freedom
enters. Of course these interactions can be still considered as a consistent effective field theory
with the cut-off scale dictated by the mass of the ghost. On top of a FLRW background the
corresponding Boulware-Deser ghost remains absent at second order of perturbations at the
level of the action and its mass on this background is infinite. A crucial step would be to
study the perturbations on top of an anisotropic background and investigate in detail the
mass of the ghost.

Even if one can use the matter coupling through the composite effective metric in the
sense of effective field theory, it would be more appealing to find consistent matter coupling
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in which the absence of the Boulware-Deser ghost is realised fully non-linearly. It was argued
that this might indeed be possible in the unconstrained vielbein formulation of the theory [45].
Using the boosted ADM decomposition of the vielbein one can easily show that the effective
lapse and shift functions remain linear in the lapses and shifts of the two vielbeins after
integrating out the boost parameters resulting in first class primary constraints. With the
help of the associated secondary constraints the Boulware-Deser ghost can be eliminated.
Unfortunately, the absence of the secondary constraints was shown very soon [46]. In other
words the integration of the rotations gives rise to a highly non-linear dependence on the
lapses. This means that also in the unconstrained vielbein formulation it is not possible to
avoid consistently the Boulware-Deser ghost.

In this present paper we exhausted yet another formulation of the theory, the so called
partially constrained vielbein formulation (along the lines of [47]), with the attempt to remove
the Boulware-Deser ghost fully non-linearly at the price of loosing local Lorentz symmetry.
This formulation guarantees the absence of the ghost to all orders beyond the decoupling
limit. For this purpose we also adapted to the boosted ADM decomposition. After proving
the ghost absence, we studied the cosmological application of this formulation within the
context of the non-minimal matter coupling in form of a k-essence model. Even if the
background evolution is the same as in the metric formulation for vanishing background
boost parameters, the dynamics of the perturbations is crucially different. This allowed us
to put different constraints on the parameters of the theory coming from the requirement
of ghost and Laplacian instabilities absence. An important question to further investigate
would be whether or not the ghost absence can be maintained in a different decomposition of
the vielbein rather than the boosted ADM decomposition. It would be also very interesting
to apply the partially constrained vielbein formulation to the new quasi dilaton extension of
massive gravity or similarly to bigravity and investigate their cosmological implications.
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[11] A.E. Gümrükçüoğlu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration
from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].
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