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Abstract. We investigate the minimal theory of massive gravity (MTMG) recently intro-
duced. After reviewing the original construction based on its Hamiltonian in the vielbein
formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the met-
ric formalisms. It then becomes obvious that, unlike previous attempts in the literature of
Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the
action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We
confirm that the number of physical degrees of freedom in MTMG is two at fully nonlin-
ear level. This proves the absence of various possible pathologies such as superluminality,
acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the
presence of a dust fluid. We find that on a flat homogeneous and isotropic background we
have two branches. One of them (self-accelerating branch) naturally leads to acceleration
without the genuine cosmological constant or dark energy. For this branch both the scalar
and the vector modes behave exactly as in general relativity (GR). The phenomenology of
this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-
zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating
cosmological solution found originally in dRGT theory. The other branch (normal branch)
has a dynamics which depends on the time-dependent fiducial metric. For the normal branch,
the scalar mode sector, even though as in GR only one scalar mode is present (due to the
dust fluid), differs from the one in GR, and, in general, structure formation will follow a
different phenomenology. The tensor modes will be massive, whereas the vector modes, for
both branches, will have the same phenomenology as in GR.
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1 Introduction

The idea that a spin-2 field such as the graviton might have a mass has been first put forwards
in 1939 by Fierz and Pauli [1]. However, the idea had to be put aside for some time due to
the presence of a ghost, the so-called Boulware-Deser (BD) ghost found in 1972 [2]. On top
of that, the theory of a massless graviton was so successful that it seemed unnecessary to
explore this exotic possibility.

However, thanks to the pioneering work by de Rham, Gabadadze and Tolly (dRGT)
in 2010 [3, 4], it became clear that not all the theories of massive gravity would suffer from
the presence of the BD ghost. Indeed, the dRGT theory has only five degrees of freedom,
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two tensor, two vector and one scalar modes. While the original theory does not allow
for a flat or closed Friedmann-Lemâıtre-Robertson-Walker (FLRW) solution [5], there exists
an open FLRW solution with self-acceleration [6]. If the fiducial metric is modified from
Minkowski to either de Sitter or more general FLRW one then all types of FLRW solutions
become possible [7]. However, it was soon realized that at the level of linear perturbation
on the FLRW background, only the gravitational waves are propagating, whereas the other
modes are merely Lagrange multipliers [7]. In fact, it was shown that for the same theory all
homogeneous and isotropic backgrounds are unstable, either due to the presence of a ghost at
nonlinear level which cannot be set to be massive enough [8] or due to the so called Higuchi
ghost at the linear level [9, 10], depending on the branch of solutions.

Therefore the dRGT massive gravity leads to non-trivial phenomenologies, as one has
to abandon the hypothesis of a homogeneous and isotropic space to describe our universe at
sufficiently large scales [5, 11, 12]. Another possibility to avoid the ghost instability consists
of extending the simplest model of the dRGT massive gravity by adding extra degrees of
freedom such as a scalar field [13–15], or studying its bigravity counterpart [16–18].

Recently the present authors have proposed a new theory of Lorentz-violating massive
gravity, which was constructed so that: 1) the number of physical degrees of freedom is
two at fully nonlinear level; 2) the FLRW background equations of motion are identical
to the dRGT theory [19]. These two conditions are sufficient to allow for stable FLRW
backgrounds: there is no BD ghost, no Higuchi ghost, no nonlinear ghost. Hence the new
theory serves as a stable nonlinear completion of the self-accelerating cosmological solution
of [6]. The two physical degrees freedom in this theory are simply two tensor modes, whose
quadratic Lagrangian on FLRW backgrounds is the same as that of the dRGT theory. In
particular, the kinetic term of the two modes are essentially given by the Einstein-Hilbert
term and thus its coefficient is always of order unity. In addition, the propagation speed of
the tensor modes are not modified. Therefore, this theory automatically avoids pathologies
known in the literature, such as superluminality, acausality and the above mentioned ghost
instabilities. While in the literature there have been classes of massive gravity theories with
modifications in the potential part of the action, the MTMG modifies the kinetic part as well
(see section 3). Thus, as far as the present authors know, this theory does not fall into any
one of the classes of theories considered in the past. We call this theory the minimal theory

of massive gravity (MTMG).

In Lorentz-invariant massive gravity theories (without the BD ghost), one scalar, two
vector and two tensor modes form a multiplet of 5 degrees of freedom. Therefore the first
of the two requirements imposed on the MTMG implies that Lorentz invariance should be
broken. In Lorentz violating theories, on the other hand, scalar, vector and tensor parts can
be independent from each other. This is the reason why it is possible to realize a theory
of massive gravity with only two physical degrees of freedom. Needless to say, the Lorentz
violation is in the gravity sector and disappears in the massless limit. Hence the Lorentz
violation induced on the matter sector via graviton loops should be suppressed by a minuscule
factor m2/M2

P, where m is the graviton mass.

There have been classes of Lorentz-violating massive gravity theories in the litera-
ture [20–25]. As mentioned above, however, previous attempts modify only the potential
part of the action and leave the kinetic part unchanged.1 More importantly, none of them
fulfills the two requirements that we impose on the MTMG. The MTMG differs from the

1In the context of Lorentz-invariant massive gravity there have been some attempts to modify the kinetic
structure but all of them failed [26].
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earlier attempts because it fulfills the two requirements stated above. The four-dimensional
Lagrangian for the MTMG is fully nonlinear, only has two degrees of freedom and, as we
shall see later on, it contains non-trivial constraints which modify not only the potential term
for the graviton but also the kinetic structure of the Lagrangian.

In general, one should expect that the phenomenology of the MTMG would be easier
with respect to the one of dRGT, because, being the scalar mode absent (as well as the vector
ones), one does not need to implement the Vainshtein mechanism at the solar system scale,
because no extra scalar force is present. On the other hand, it is of interest to explore the
phenomenology of this theory and try to find its differences from GR. In this paper we do
address this issue.

In the present paper we first review the MTMG introduced in [19] in the vielbein
formalism, and count the number of physical degrees of freedom. Afterwards, we find the
Lagrangian of MTMG by using the three-dimensional vielbeins. Third, we also write this
same Lagrangian in the metric formalism. This shows that the MTMG, which was introduced
in [19] by means of its Hamiltonian, so as to make sure that only two degrees of freedom
were propagating on any background, can be equally described in the Lagrangian formalism.

On using the Lagrangian of the theory written in the metric formalism, we discuss the
phenomenology of MTMG on a flat FLRW background in the presence of a dust matter fluid.
We confirm the existence of two branches: the normal branch and the self-accelerating one.
As already mentioned, the background equations of motion are, by construction, identical to
the ones in dRGT theory.

Furthermore, we study the behavior of the linear perturbations, and find: i) the self-
accelerating branch has a phenomenology which is identical to GR both for scalar and vec-
tor perturbations, however, the tensor modes, being massive, have a different propagation
dynamics; ii) the normal branch, on the other hand, has a different phenomenology with
respect to GR both in the scalar and tensor sectors. This makes this branch ready to be
tested against contributions to structure formation. In particular we find that, depending on
the dynamics of the fiducial metric, it is possible to have non-trivial values at late times for
the linear-perturbation observables, e.g. Geff , η.

2 Construction

In this section we review the construction of the minimal theory of massive gravity (MTMG)
proposed in [19]. The construction consists of the following three steps: (i) to define a
precursor theory by substituting the ADM vielbein to the dRGT action (subsection 2.1); (ii)
to switch to Hamiltonian (subsection 2.2); and (iii) to add two additional constraints to define
the minimal theory (subsection 2.3). We then confirm that the number of physical degrees
of freedom in the minimal theory is indeed two at fully nonlinear level (subsection 2.4).

2.1 Precursor theory

The basic variables of the theory are the lapse function N , the shift vector N i and the spatial
vielbein eIj . The theory also contains the fiducial lapse function M , the fiducial shift vector

M i and the fiducial spatial vielbein EI
j . While the first set of variables (N , N i, eIj) is

dynamical, the second set (M , M i, EI
j) is fixed by the theory as a part of the definition of

the theory. It is convenient to introduce dual basis e j
I and E j

I so that

eIke
k
J = δIJ , eKi e

j
K = δji , (2.1)
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and
EI

kE
k

J = δIJ , EK
iE

j
K = δji . (2.2)

Out of the lapse functions, the shift vectors and the spatial vielbeins, one can construct
the spacetime vielbeins eAµ and EA

µ in the so called ADM form, or in the triangular form, as

eAµ =

(

N 0
NkeIk eIj

)

, (2.3)

and

EA
µ =

(

M 0
MkEI

k EI
j

)

. (2.4)

The corresponding dual basis e µ
A

and E µ
A

are

e µ
A

=

(

1
N

−Nj

N

0 e j
I

)

, (2.5)

and

E µ
A

=

(

1
M

−Mj

M

0 E j
I

)

. (2.6)

They satisfy
eAµe

µ
B

= δAB , eAµe
ν
A = δνµ, (2.7)

and
EA

µE
µ

B
= δAB , EA

µE
ν

A = δνµ. (2.8)

One can also construct the two spatial metrics γij and γ̃ij , and the two spacetime metrics
gµν and fµν as

γij = δIJe
I
ie

J
j , γ̃ij = δIJE

I
iE

J
j , (2.9)

gµνdx
µdxν = −N2dt2 + γij(dx

i +N idt)(dxj +N jdt),

fµνdx
µdxν = −M2dt2 + γ̃ij(dx

i +M idt)(dxj +M jdt). (2.10)

We define the precursor theory by simply substituting the ADM vielbeins (2.4) to the
dRGT action,

SdRGT =
M2

P

2

∫

d4x
√−gR[gµν ] +

M2
P

2
m2

4
∑

n=0

∫

d4x cnLn , (2.11)

where R[gµν ] is the four-dimensional Ricci scalar for the metric gµν ,

L0 =
1

24
ǫµνρσǫABCDE

A
µE

B
νE

C
ρE

D
σ,

L1 =
1

6
ǫµνρσǫABCDE

A
µE

B
νE

C
ρe

D
σ,

L2 =
1

4
ǫµνρσǫABCDE

A
µE

B
νe

C
ρe

D
σ,

L3 =
1

6
ǫµνρσǫABCDE

A
µe

B
νe

C
ρe

D
σ,

L4 =
1

24
ǫµνρσǫABCDe

A
µe

B
νe

C
ρe

D
σ, (2.12)
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and the Levi-Civita symbol is normalized as ǫ0123 = 1 = −ǫ0123. By choosing the ADM
form of the vielbeins, we have fixed the local Lorentz boost, have picked up a preferred local
Lorentz frame and thus have already modified the original dRGT theory. The precursor
action can be rewritten as

Spre =
M2

P

2

∫

d4x

{

N
√
γ (R[γij ] +KijK

ij −K2
)

−c0m
2
√

γ̃M − c1m
2
√

γ̃(N +MY I
I)

−c2m
2
√

γ̃

[

NY I
I +

M

2
(Y I

IY J
J − Y I

JY J
I)

]

−c3m
2√γ(M +NXI

I)− c4m
2N

√
γ

}

, (2.13)

where we have defined XI
J and YI

J as

XI
J = eI

jEJ
j , YI

J = EI
jeJ j . (2.14)

One can easily see that the graviton mass term in the precursor action is manifestly linear
in the lapses and does not depend on the shift variables. This is in sharp contrast to the
original dRGT theory.

2.2 Hamiltonian analysis of precursor theory

2.2.1 Primary constraints

Since the graviton mass term is manifestly linear in the lapses and shifts, we consider N and
N i as Lagrange multipliers. We then have 9 components of eIj as basic variables. We define
canonical momenta conjugate to them in the standard way as

Π j
I ≡ δSpre

δėIj
= 2πjkδIJe

J
k, (2.15)

where

πij ≡ M2
P

2

√
γ(Kij −Kγij) , Kij =

1

2N
(γ̇ij −DiNj −DjNi) . (2.16)

The fact that Kij is symmetric leads to the following 3 primary constraints

P[IJ ] ≈ 0 , (2.17)

where

P[IJ ] ≡ Π k
[I δJ ]KeKk , (2.18)

and indices between the square brackets are anti-symmetrized as A[ab] = Aab − Aba. The
remaining 9− 3 = 6 relations between the canonical momenta and the time derivative of the
basic variables can be inverted as

δIJ ė
I
(ie

J
j) = NKij+

1

2
(DiNj+DjNi) , Kij =

1

M2
P

√
γ

[

γk(iγj)lΠ
k
I δIJe l

J − 1

2
γklΠ

k
K δKLe l

Lγij

]

.

(2.19)
Thus there are no more primary constraints associated with (2.15).

– 5 –
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The Hamiltonian of the precursor theory, together with the primary constraints, is

H̄(1)
pre =

∫

d3x [−NR0 −N iRi +m2MH1 + αMNP [MN ]] , (2.20)

where

R0 = RGR
0 −m2H0 ,

RGR
0 =

√
γ R[γ]− 1√

γ

(

γnlγmk −
1

2
γnmγkl

)

πnmπkl ,

Ri = RGR
i = 2γikDjπ

kj ,

H0 =
√

γ̃(c1 + c2 Y I
I) +

√
γ(c3XI

I + c4) ,

H1 =
√

γ̃
[

c1Y I
I +

c2
2
(Y I

IY J
J − Y I

JY J
I)
]

+ c3
√
γ ,

P [MN ] = eMj Π
j
Iδ

IN − eNj Π
j
I δ

IM ,

Dj is the spatial covariant derivative compatible with γij ,
√
γ =

√

det γij , and αMN (anti-
symmetric) are 3 Lagrange multipliers. Here and in the following we work in units for which
M2

P = 2.
The Hamiltonian is manifestly linear in the lapse N and the shift N i and does not

contain their time derivatives. Thus, as already stated, we consider N and N i as Lagrange
multipliers. Correspondingly, we have the following primary constraints in addition to (2.17):

R0 ≈ 0 , Ri ≈ 0 . (2.21)

2.2.2 Secondary constraints and total Hamiltonian

In order to implement the conservation in time of the primary constraints, we need the
following Poisson brackets to vanish

Ṗ [MN ] = {P [MN ], H̄(1)
pre} ≈ 0 , (2.22)

Ṙ0 = {R0, H̄
(1)
pre}+

∂R0

∂t
≈ 0 , (2.23)

Ṙi = {Ri, H̄
(1)
pre} . (2.24)

The partial time derivative in eq. (2.23) appears because of the choice of the unitary gauge,
so that R0 explicitly depends on time through the fiducial vielbein. Then eq. (2.22) leads to
three new secondary constraints, namely

Y [MN ] ≈ 0 , (2.25)

where we have defined
Y MN = δMLYL

N . (2.26)

This secondary constraints fixes Y MN to be symmetric.
Since

{R0(x),R0(y)} ≈ 0 , (2.27)

{Ri(x),Rj(y)} ≈ 0 , (2.28)

{R0(x),Ri(y)} 6≈ 0 , (2.29)

– 6 –
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then we can use eq. (2.23) to find the expression of one of the components of N i (say N i=3)
in terms of the other variables. For the same reason we can solve one of the three eqs. (2.24)
(say for i = 3) for the lapse variable N . Therefore the remaining two eqs. (2.24) give rise to
two secondary constraints, (say Ṙ1 ≈ 0 and Ṙ2 ≈ 0 after solving Ṙ3 ≈ 0 with respect to one
of Lagrange multipliers). On naming these two constraints as C̃τ (τ = 1, 2), then we have
the total Hamiltonian

H̄(2)
pre =

∫

d3x
[

−NR0 −N iRi +m2MH1 + αMNP [MN ] + βMNZ [MN ] + λ̃τ C̃τ
]

. (2.30)

Any further time-derivative of the constraints does not lead to any new (tertiary) constraints,
therefore eq. (2.30) represents the total Hamiltonian.

2.2.3 Number of physical degrees of freedom in precursor theory

It is straightforward to show that the determinant of the 12× 12 matrix made of the Poisson
brackets among 12 constraints is non-vanishing. This implies that the 12 constraints are
independent second class constraints and that the consistency of them with the time evolution
uniquely determines all Lagrange multipliers without generating additional constraints. Since
each of these 12 second class constraints removes one single degree of freedom in the phase
space, we finally have 1

2(9× 2− 12) = 3 physical degrees of freedom on a generic background
at nonlinear level. This is consistent with the analysis of [23].

It can be proven that these degrees of freedom on FLRW cosmological backgrounds in
the so called normal branch reduce to the two tensor modes and an extra scalar degree of
freedom. In the self-accelerating branch, on the other hand, the scalar mode has a vanishing
kinetic term at the quadratic order and acquires its kinetic term only at higher order, meaning
that the scalar degree of freedom is strongly coupled in the self-accelerating branch.

So far, breaking Lorentz symmetry with the precursor Hamiltonian has removed the
vector modes present in the dRGT theory, but we should expect the remaining scalar degree
of freedom to be strongly coupled on some backgrounds such as the FLRW background in
the self-accelerating branch. Since our aims is to heal the dRGT theory, we then further try
to remove this unwanted degree of freedom, while keeping the same background equation of
motion of the dRGT theory.

2.3 Minimal theory

We have seen that, besides Y [MN ] ≈ 0, the precursor theory possesses the two secondary
constraints C̃τ (τ = 1, 2), which are two linear combinations of the three quantities Ci (i =
1, 2, 3) defined as follows

{RGR
i , H1} ≈ Ci ,

where

H1 =

∫

d3xm2MH1 , (2.31)

and ∂H0/∂t is the partial derivative of H0 as a function of (t, eI j) with respect to t. The
explicit t dependence of H0 is through the fiducial vielbein.

The minimal theory of massive gravity is defined by imposing the four constraints

C0 ≈ 0, Ci ≈ 0 , (2.32)

– 7 –
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where

{RGR
0 , H1} −m2 ∂

∂t
H0 ≈ C0 .

Since C̃τ (τ = 1, 2) are linear combinations of Ci, only two constraints among the four in (2.32)
are independent new constraints. Therefore, the minimal theory is defined by the Hamiltonian

H =

∫

d3xH, (2.33)

H = −NRGR
0 −N iRGR

i +m2(NH0 +MH1) + λC0 + λiCi
+ αMNPMN + βMNY [MN ] , (2.34)

where

RGR
0 =

√
γ R− 1√

γ

(

γikγjl −
1

2
γijγkl

)

πijπkl ,

RGR
i = 2

√
γγikDj

(

πjk

√
γ

)

,

H0 =
√

γ̃(c1 + c2 Y I
I) +

√
γ(c3XI

I + c4) ,

H1 =
√

γ̃
[

c1Y I
I +

c2
2
(Y I

IY J
J − Y I

JY J
I)
]

+ c3
√
γ ,

PMN = eMjΠI
jδIN − eNjΠI

jδIM ,

Y [MN ] = δMIYI
N − δNIYI

M ,

and

C0 = m2MWI
J

[

1

2
(γikEJ

keI j + γjkEJ
keI i − γijYJ

I)πij −√
γH

(f)
J

I

]

,

Ci = m2√γDj
(

MWI
JYJ

KδKLe
I
ie

L
j

)

. (2.35)

Here we have defined

WI
J =

√
γ̃√
γ

[

c1δ
J
I + c2(YK

KδJI − YI
J)
]

+ c3XI
J ,

H
(f)
J

I =
1

M
EJ

l ∂

∂t
EI

l. (2.36)

The main difference between the two Hamiltonians in eqs. (2.33) and (2.30) consists of
the presence of the four constraints C0, Ci rather the two constraints C̃τ . Furthermore the
constraints C0, Ci are the time-derivative of the primary constraints with respect to H1 (and
not H, although H ≈ H1).

2.4 Number of physical degrees of freedom in minimal theory

Having added the extra two constraints, we now have 14 constraints in the 9 × 2 = 18
dimensional phase space. Thus the number of dimensions of the physical phase space is less
than or equal to 18 − 14 = 4, where the equality holds if all 14 constraints are second class
and if there is no more constraint. Therefore, we conclude that (number of d.o.f.) ≤ 1

2 ·4 = 2
at the fully nonlinear level. On the other hand, in section 8 we shall explicitly show that
cosmological perturbations around FLRW backgrounds contain two tensor modes at the
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linear level, meaning that (number of d.o.f.) ≥ 2 at the nonlinear level. Combining the two
inequalities we conclude that (number of d.o.f.) = 2.

One can reach the same conclusion also in a more formal way. Since the actual calcula-
tion is somehow cumbersome, we shall simply give a brief outline. What we need to show is
that the consistency of the 14 constraints with the time evolution does not lead to additional
constraints but simply determines all Lagrange multipliers. For this purpose it is necessary
and sufficient to show that the determinant of the matrix {Zσ1(x),Zσ2(y)} is non-vanishing,
where Zσ1(x) (σ = 1, · · · , 14) represents the 14 constraints. In other words, we need to show
that, for a vector field vσ, the equation

∫

dy{Zσ1(x),Zσ2(y)}vσ2(y) ≈ 0 , (2.37)

has the unique solution vσ = 0. Once this proposition is proved, we can conclude that all
the 14 constraints are independent second class constraints and that the consistency of them
with the time evolution does not lead to additional constraints. Since we have 14 second-class
constraints in the 9 × 2 = 18 dimensional phase space, the number of physical degrees of
freedom in this theory is 1

2 · (9× 2− 14) = 2 at fully nonlinear level.

3 Lagrangian

The Hamiltonian equation of motion for eI j can be inverted to express πij and ΠI
j in terms

of the extrinsic curvature as

πij

√
γ
= Kij −Kγij − m2

4

M

N
λΘij , (3.1)

and

ΠI
j = 2πjkδIJe

J
k, (3.2)

where

Θij = WI
JδIK(eK

iEJ
j + eK

jEJ
i). (3.3)

Equivalently,

Θi
j = W J

I (δIKe i
KY L

J δLMeMj + eIjE
i

J ). (3.4)

What is important here is that the relation (3.1) in MTMG differs from the corresponding
relation (2.16) in the precursor theory. This difference stems from the fact that the additional
constraints depend on the canonical momenta.

Hence the action of the theory is

S =

∫

d4x
[

ΠI
j ėI j − (H with αMN = βMN = 0)

]

, (3.5)

where we have dropped αMNPMN and βMNY [MN ] from the Hamiltonian as they will auto-
matically come out (since Θij is defined as a symmetric tensor, and as we shall explicitly see
below) and it is understood that πij and ΠI

j are expressed in terms of the extrinsic curvature
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using the above formulas. Explicitly,

S = Spre −
∫

d4xN
√
γ

(

m2

4

M

N
λ

)2(

γikγjl −
1

2
γijγkl

)

ΘijΘkl

−
∫

d4x
(

λC0 + λiCi
)

= Spre +

∫

d4xN
√
γ

(

m2

4

M

N
λ

)2(

γikγjl −
1

2
γijγkl

)

ΘijΘkl

−
∫

d4x
(

λC̄0 + λiCi
)

, (3.6)

where Spre is the action for the precursor theory. It is understood that C0 is now defined as

C0 = m2M
√
γWI

J

[(

γikEJ
keI j −

1

2
γijYJ

I

)(

Kij −Kγij − m2

4

M

N
λΘij

)

−H
(f)
J

I

]

, (3.7)

while Ci, PMN and Y [MN ] are defined as before. Finally, C̄0 is defined as

C̄0 ≡ C0|λ=0 = m2M
√
γWI

J

[(

γikEJ
keI j −

1

2
γijYJ

I

)

(

Kij −Kγij
)

−H
(f)
J

I

]

. (3.8)

As a consistency check, let us calculate the Hamiltonian of the system defined by the
action and compare it with the Hamiltonian defined in the previous section. The system has
the following primary constraints

πN = 0 , πi = 0 , πλ = 0 , πλ
i = 0 , P [MN ] = 0 , (3.9)

where πN , πi, π
λ and πλ

i are canonical momenta conjugate to N , N i, λ and λi, respectively,
and P [MN ] is defined in the previous section. The canonical momenta conjugate to eI j is
then given precisely by (3.2). The Hamiltonian is then

H̃ = H +

∫

d3x
(

ΛNπN + Λiπi + Λλπ
λ + Λi

λπ
λ
i

)

, (3.10)

where H (with αMNP [MN ] and βMNY [MN ] included) was defined in the previous section
and Y [MN ] has been added to the Hamiltonian as a solution to the secondary constraint
associated with the primary constraint P [MN ] = 0. Since H depends linearly on N , N i, λ
and λi, it is obvious that πN = 0, πi = 0, πλ = 0 and πλ

i = 0 are first class. We can then
safely downgrade N , N i, λ and λi to Lagrange multipliers, and drop πN , πi, π

λ and πλ
i

from the phase space variables. After that, the Hamiltonian H̃ in (3.10) becomes manifestly
equivalent to H defined in the previous section.

4 Metric formulation

Let us introduce the Lagrangian of the theory in the metric formulation. In order to define
the theory in unitary gauge we need to introduce two explicitly time dependent external fields

γ̃ij , ζ̃ij . (4.1)
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The meaning of these two fields can be better understood in the language of the fiducial
vielbein EM

j as being

γ̃ij = δIJE
I
iE

J
j , (4.2)

ζ̃ij =
1

M
EL

iĖL
j , (4.3)

where EL
i is the inverse vielbein. These two quantities are given functions of time (and

possibly of space).
Consider the tensor Km

n, such that

Km
lKl

n = γ̃msγsn , (4.4)

and we define its inverse, Km
j , as

K
m

jKj
n = δmn . (4.5)

In terms of the vielbein we can write

Kk
n = EM

keMn , (4.6)

K
k
n = eM

kEM
n . (4.7)

In the metric formalism, provided that YI
J = EI

ieJ i is symmetric, we have

Kk
n ≡

(

√

γ̃−1γ
)k

n , (4.8)

K
k
n ≡

(

√

γ−1γ̃
)k

n , (4.9)

K
k
nKn

m = δkm = Kk
nK

n
m . (4.10)

Let us build the following tensor

Θij =

[√
γ̃√
γ
{c1(γilKj

l + γjlKi
l) + c2[K(γilKj

l + γjlKi
l)− 2γ̃ij ]}+ 2c3γ

ij

]

, (4.11)

then we further define the four constrained imposed into the action in order to reduce the
degrees of freedom:

C̄0 =
1

2
m2M

(

γikγjl −
1

2
γijγkl

)

Θkl
(

Kij −Kγij
)

−m2M

(√
γ̃√
γ
[c1ζ̃ + c2(Kζ̃ −Km

nζ̃
n
m)] + c3K

m
nζ̃

n
m

)

, (4.12)

Cn
i = m2M

(√
γ̃√
γ
[c1Kn

i + c2(KKn
i −Kn

lKl
i)] + c3δ

n
i

)

, (4.13)

where Kij is the extrinsic curvature, K and ζ̃ represent Kn
n and ζ̃nn, respectively. The fol-

lowing is the action of the minimal theory of massive gravity written in the metric formalism:

S = Spre +
M2

P

2

∫

d4xN
√
γ

(

m2

4

M

N
λ

)2(

γikγjl −
1

2
γijγkl

)

ΘklΘij

− M2
P

2

∫

d4x
√
γ
[

λC̄0 − (Dnλ
i) Cn

i

]

+ Smat , (4.14)
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where we have explicitly re-inserted standard units for the Planck mass, MP, and integrated
by parts the constraint in λi. As it is well known, in the 1+3 formalism, it is possible to
write the action of General Relativity as

SGR =
M2

P

2

∫

d4xN
√
γ [(3)R+KijKij −K2] , (4.15)

where

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (4.16)

K = γijKij . (4.17)

Therefore, we have

Spre = SGR +
M2

P

2

4
∑

i=1

∫

d4xSi , (4.18)

S1 = −m2c1 ã
3 (N +MK) , (4.19)

S2 = −1

2
m2c2 ã

3 (2NK +MK2 −MKi
jKj

i) , (4.20)

S3 = −m2c3
√
γ (M +N K) , (4.21)

S4 = −m2c4
√
γ . (4.22)

The contribution from S4 gives rise to a cosmological constant term. Furthermore, it is clear,
as expected, that also in the metric formalism the graviton mass term in the action,

∑4
i=1 Si,

is linear in the lapses and does not depend on the shift variables. This is a consequence of
the Lorentz violations in the gravity sector.

The action for the minimal theory of massive gravity introduces four constraints associ-
ated with the four Lagrange multipliers λ and λi, in addition to those associated with N and
N i. It is possible, in principle, to integrate out these Lagrange multipliers, e.g. the field λ,
leading to a non-standard contribution to the action since the dependence of the scalar C̄0 on
the extrinsic curvature. Therefore the action of minimal massive gravity cannot be written
as the sum of the Einstein-Hilbert term plus a general potential term.

As for the matter fields we will consider a pure dust component (see e.g. [27, 28]) as in

Smat = −
∫

d4x[
√−g ρ(n) + Jα∂αϕ] , (4.23)

ρm = µ0n , (4.24)

n =

√

JαJβgαβ
g

=

√

(J0)2(NiN i −N2) + 2J0J iNi + J iJ jγij
−N2γ

, (4.25)

where Jα is a vector with weight 1, that is under a coordinate transformation it transforms as

Jα′

= J ∂xα′

∂xβ Jβ, and J = det
(

∂xβ

∂xα
′

)

. Instead, ρm, n and ϕ are scalar fields. The numerical

constant µ0 represents instead the mass of one dust particle. The 4-vector of the dust fluid,
uα, is defined via

Jα = n
√−g uα , (4.26)
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as this vector is normalized, uαuα = −1. On taking variation of the action with respect to
Jα, one finds

uα =
1

µ0
∂αϕ . (4.27)

As for dimensions of the new introduced quantities, we have [λ] = M−1 = [λi], and [C0] =
[Ci] = M3.

5 Friedmann background

From the Lagrangian approach, the Friedmann equation reads

E0
.
= 3M2

PH
2 − ρm − ρg − ρλ = 0 , (5.1)

where

ρg
.
=

m2M2
P

2
(c4 + 3c3X + 3c2X

2 + c1X
3) , (5.2)

ρλ
.
= −3M2

Pm
4(c1X

2 + 2c2X + c3)
2M2λ2

16N2
− 3M2

Pm
2H(c1X

2 + 2c2X + c3)Mλ

2N
. (5.3)

The second Einstein equation reads

E1
.
=

2Ḣ

N
+ 3H2 +

Pg + Pλ

M2
P

= 0 .

where

Pg
.
=− [M(c1X

2 + 2c2X + c3) +N(c2X
2 + 2c3X + c4)]m

2M2
P

2N
. (5.4)

Pλ
.
=

m2M2
PM(c1X

2+2c2X+c3)λ̇

2N2
+

m4M2
PM

2(c1X
2+2c2X+c3)(c1X

2−2c2X−3 c3)λ
2

16N2

+





XM (c1MX + c2NX + c2M + c3N)Hf

N2
+

(

c1X
2 + 2c2X + c3

)

(

ṀN −MṄ
)

2N3





×m2M2
Pλ . (5.5)

We also have introduced the quantity

H
.
=

ȧ

Na
, (5.6)

Hf
.
=

˙̃a

Mã
, (5.7)

X
.
=

ã

a
. (5.8)

We also have the equation of motion coming from variations of the Lagrangian with respect
to λ, as in

Eλ
.
= m2(c1X

2 + 2c2X + c3)

[

2M (XHf −H)

N
− (c1X

2 + 2c2X + c3)M
2m2λ

2N2

]

= 0 . (5.9)

From this last equation, we can notice the existence of two branches.
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The matter satisfies the usual conservation equation

Eρ
.
=

ρ̇m
N

+ 3Hρm = 0 . (5.10)

We can build a convenient non-trivial linear combination of equations as in

EB
.
=

Ė0

N
+ 3HE0 −

3M2
P

4N
[4NH +m2Mλ(c1X

2 + 2c2X + c3)]E1 +
3M2

P

4
Eλ + Eρ = 0 .

Then we find that EB can be written as a polynomial expression in λ, given by

EB = ζ3λ
3 + ζ2λ

2 + ζ1λ = 0 ,

where

ζ3 = −3M2
PM

3m6(c1X
2 + 2c2X + c3)

2
(

X2c1 − 2Xc2 − 3 c3
)

64N3
, (5.11)

ζ2 = −3M2
P(c1X

2 + 2c2X+c3)M
2m4

(

HX2c1 + 2X2Hfc2 − 2HXc2+2XHfc3 − 3Hc3
)

8N2
,

(5.12)

ζ1 =
3m2M(X2c1 + 2Xc2 + c3)[M

2
Pm

2(X2c2 + 2Xc3 + c4)− 2P ]

8N

− 3M2
PXMm2 (Xc2 + c3)HHf

N
− 3M2

PMm2
(

X2c1 − 2Xc2 − 3 c3
)

H2

4N
. (5.13)

This equation should be used in order to find the background value for λ in the Lagrangian
formalism.

We can introduce an effective equation of state parameter for the massive-gravity com-
ponent, as

wg
.
=

Pg

ρg
= −M(c1X

2 + 2c2X + c3) +N(c2X
2 + 2c3X + c4)

N (c4 + 3c3X + 3c2X2 + c1X3)
. (5.14)

5.1 Self-accelerating branch

In this case we consider the case

c1X
2 + 2c2X + c3 = 0 , (5.15)

which implies that X = constant. In this case we find

ρλ = 0 , (5.16)

ρg =
m2M2

P

2
(c4 − 3c2X

2 − 2c1X
3) = constant , (5.17)

Pg = −ρg , (5.18)

wg = −1 , (5.19)

Pλ =
XM

N
(c1X + c2)

[

M

N
−X

]

m2M2
PλHf . (5.20)
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Furthermore, we have

EB = 3m2M2
PλH (c2X + c3)

M

N
[H −XHf ] = 0 , (5.21)

for which we find for λ the solution
λ = 0 , (5.22)

which also implies
Pλ = 0 . (5.23)

In this branch, we have that at the level of the background we have a pure cosmological
constant. In this case we can summarize the equations of motion as

Ḣ

N
= − ρm

2M2
P

, 3M2
PH

2 = ρm + ρg . (5.24)

5.2 Normal branch

In this case we have the solution

λ =
4(HfX −H)N

m2 (c1X2 + 2c2X + c3)M
. (5.25)

Then we find that

EB = −3

2
[M2

Pm
2(c2X

2 + 2c3X + c4)− 2M2
PX

2H2
f − 2P ](H −HfX) = 0 . (5.26)

We now show that the first factor on the right hand side is non-vanishing and that

H = XHf ,

is enforced. To prove this by contradiction is easy. For this purpose, let us suppose that
H 6= XHf , then we find

3M2
PE1 −

3M

XN
E0 +

(NX −M)

NX (XHf −H)
EB =

3[2M2
PX

2Ḣf +M(P + ρ)]

NX
= 0 . (5.27)

This condition would introduce a would-be extra dynamical constraint, in addition to the
Friedmann equation, which will not be in general satisfied. Therefore the only physical
solutions to EB = 0 are those satisfying (5.2), which, in turn, leads to

λ = 0 .

Therefore, no matter which branch we are in, we will always find:

ρλ = 0 , Pλ = 0 . (5.28)

However, if the self accelerating branch was leading to a pure cosmological constant, for the
normal branch, we have the possibility of a non-trivial dynamics for the background.

In fact, the Friedmann equation reads

3M2
PH

2 = ρΛ + ρX + ρm,
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where we have found it convenient to split the total gravitational energy density ρg into a
pure cosmological constant term (proportional to c4) and in a (non-trivially) dynamical term
ρX as in:

ρX ≡ m2M2
P

2
(3c3X + 3c2X

2 + c1X
3) , (5.29)

ρΛ ≡ c4m
2M2

P

2
, (5.30)

ρg = ρΛ + ρX . (5.31)

Indeed at the level of the background, there would be a dark component whose effective
equation of state would be given by:

wX = −M(c1X
2 + 2c2X + c3) +N(c2X

2 + 2c3X)

N (3c3X + 3c2X2 + c1X3)
. (5.32)

which is, in general, a time-dependent quantity. We notice here that in the case the dynamics
leads to

X → X0 = constant, and M = X0N , then wX → −1, (5.33)

In other words, after choosing a specific dynamics for the fiducial metric, it is possible to
have also ρX behave as a cosmological constant component.

6 Scalar perturbations

Let us consider perturbing the metric in the following form

ds23 = a2[(1 + 2ζ)δij + 2∂i∂js] dx
idxj , (6.1)

N = N(t) (1 + α) , (6.2)

Ni = N(t) ∂iχ , (6.3)

and let us perturb the dust components as follows

J0 = N0 + δj0 , (6.4)

J i =
δik

a2
∂k(δj) , (6.5)

ϕ = −µ0

∫ t

N(τ)dτ − µ0 vm , (6.6)

where N0 is a constant resulting from integrating the background equation of motion for
ϕ, which satisfies the relation ρ = µ0N0/a

3, and corresponds to the total number of dust
particles. We can also verify that combining eq. (4.27) with eq. (6.6) leads to δui = −vm.

We also need to perturb the Lagrange multipliers as follows

λ = δλ , (6.7)

λi =
δij

a2
∂jδℓ . (6.8)
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In the following, it will be useful to introduce the following gauge invariant variables

Ψ = α+
χ̇

N
− 1

N

d

dt

(

a2ṡ

N

)

, (6.9)

Φ = −ζ −H χ+ a2H
ṡ

N
, (6.10)

δm =
δρm
ρm

+ 3Hvm . (6.11)

The two potentials Ψ, Φ reduce to the Bardeen potentials in the Newtonian gauge.
Since we have that ρm = ρm(n), on expanding it up to first order, we find that

δρm
ρm(t)

=
δj0
N0

− 3ζ − ∂2s , (6.12)

so that, on using eq. (6.11), we can substitute δj0 in the Lagrangian for δm.

6.1 Self accelerating branch

After expanding at second order the action, one finds that the perturbation field δℓ gives the
constraint ζ = 0. Furthermore, the field δλ gives the extra constraint s = 0. Therefore the
Lagrangian reduces to

L =
k2µ0δj

2

2Na2N0
+ (χ+ vm)

µ0k
2

a2
δj + (v̇m −Nα)µ0N0δm +

Nk2µ0N0χ
2

2a2

+ 2M2
PHNak2αχ− 3M2

PH
2Na3α2 + 3NHvmµ0N0α− 3Nρmµ0N0v

2
m

4M2
P

. (6.13)

Let us first integrate out the field δj, as

δj = −N0N (vm + χ) . (6.14)

Then the Lagrangian reduces to

L = (v̇m −Nα)µ0N0δm +

(

2M2
PHNaα− Nµ0N0vm

a2

)

k2χ− 3M2
PH

2Na3α2

+ 3NHµ0N0αvm − N (2M2
P k2 + 3 ρma2)µ0N0v

2
m

4a2M2
P

. (6.15)

Next let us use the equation of motion for χ to integrate out α. Then we find

L =

(

v̇m − Nρmvm
2M2

PH

)

ρma3 δm − 1

2
Naρmk2v2m . (6.16)

Finally, we can integrate by parts v̇m, so that vm becomes a Lagrange multiplier which can
be easily integrated out. In fact, we find

L =
a5ρmδ̇2m
2Nk2

+
a5ρ2mNδ2m
4M2

Pk
2

, (6.17)

and the no-ghost condition reduces to ρm > 0. The equation of motion for δm reads

1

N

d

dt

(

δ̇m
N

)

+ 2H
δ̇m
N

− 4πGN ρm δm = 0 . (6.18)

which corresponds to the standard GR equation of motion. Therefore the phenomenology of
this branch coincides with the one in General Relativity. In particular, this mode has c2s = 0,
as expected.
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6.1.1 Phenomenology

Let us consider the equations of motion for the gauge invariant fields. Since ζ, s vanish, we
find that

Ψ = α+
χ̇

N
, (6.19)

Φ = −H χ , (6.20)

On combining several equations of motion we find, without any approximation,

η ≡ Ψ

Φ
= 1 , (6.21)

−k2

a2
Ψ = 4πGN ρm δm , (6.22)

which describes exactly the phenomenology of the dust fluid in General Relativity. Therefore
we conclude that, regarding the scalar sector, we should not see any difference between the
minimal theory of massive gravity and General Relativity. The difference only appears, as
we shall see later on, in the tensor sector, since the gravitational waves acquire in general a
non-zero mass.

6.2 Normal branch

Here we discuss the behavior of the perturbations and their phenomenology for the normal
branch of the background solutions, namely the ones defined by

Ẋ

N
= H (r − 1) , (6.23)

where we have introduced the quantity

r ≡ M

N X
. (6.24)

Therefore for r = 1, X is constant and its contribution reduces to a cosmological constant.
After expanding the equation of motion at second order in the fields, the Lagrange multiplier
δℓ gives the following constraint

ζ = 0 . (6.25)

We then integrate out the fields δj and δλ (using their own equations of motion), and replace
δj0 in terms of

δj0 = N0 (δm − 3Hvm − k2s) . (6.26)

Then one can solve the linear constraint of α for the field vm. After this step we can integrate
out the field χ, so that the Lagrangian takes the form

L = M2
PN a3

[

−C1 k
4s2 +

(

C2
δ̇m
N

+ C3 δm

)

k2s− C4δ
2
m

]

, (6.27)
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where

C1 =
2M2

P(m
2Γ1 +H2)2k2

9a2H2ρm
+

2m2Γ1 (m
2Γ1 +H2)

3H2
+

2M2
Pm

2Γ1 (m
2Γ1 +H2)2 (r − 1)

3H2ρm
,

(6.28)

C2 =
2
(

m2Γ1 +H2
)

3H
, (6.29)

C3 =
2
(

m2Γ1 +H2
)

k2

9a2H2
+

(2m2Γ1 +H2)ρm
3M2

PH
2

+
2m2Γ1 (r − 1)

(

m2Γ1 +H2
)

3H2
, (6.30)

C4 =
ρm k2

18M2
Pa

2H2
+

ρ2m
12M4

PH
2
, (6.31)

where we have defined

Γ1 ≡ −X

4
(c1X

2 + 2c2X + c3) . (6.32)

After integrating out the auxiliary field s, we find

L = M2
PN a3Q

[

1

N2
δ̇2m + 4πGeff ρm δ2m

]

, (6.33)

where

Q =
C2
2

4C1
, (6.34)

4πGeffρm =
C2
3 − 4C4C1

C2
2 − C3 (3− ǫ1 + ǫ2 + ǫ3)H

C2
, (6.35)

ǫ1 =
Ċ1

NHC1
, ǫ2 =

Ċ2

NHC2
, ǫ3 =

Ċ3

NHC3
, (6.36)

so that the no-ghost condition for the field δm is equivalent to setting

C1 > 0 . (6.37)

6.2.1 Phenomenology

Let us consider the equation of motion for the variable δm. The time-evolution of the variable
δm describes, at linear order, the growth of structures in our universe. It can be written as

1

N

d

dt

(

δ̇m
N

)

+ 2H C5(t, k
2)

δ̇m
N

− 4πGeff(t, k
2) ρm δm = 0 , (6.38)

where

C5 =
1

2

(

3 +
Q̇

NHQ

)

. (6.39)

In the large k-limit, the coefficients of the differential equation reduce to

C5 = 1 +O(k−2) , (6.40)

Geff

GN
=

Ḡeff

GN
+O(k−2) , (6.41)
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where we have defined

Γ2 ≡

1

2
X (c1X

2
− c3) ,

Ḡeff

GN

≡

2
m4

(

ρ2
m

M4

P

+
ρ2
g

M4

P

)

+
{

4
m2

ρg

M2

P

+3[Γ1(2r+3)+Γ2(1−r)]
}

ρm
m2M2

P

+3[2Γ1r+Γ2(1−r)]
ρg

m2M2

P

+18Γ2
1(r−1)

2
(

3Γ1 +
ρg

m2M2

P

+ ρm
m2M2

P

)2 .

Here we have used the Friedmann equation 3M2
PH

2 = ρm+ρg, in order to make appear only
the dust density and the dark energy density induced in the MTMG theory, ρg.

We notice here that in the large-k limit, the leading term in C1, which corresponds
to the no-ghost condition, is positive. On assuming that for some redshift interval we have
ρm ≃ |m2|M2

P, but still |ρg| < ρm, then one can find a non-trivial evolution for the matter
density profile, even in the case r = 1 (for which ρg is a constant), as

Ḡeff

GN
=

2ρ2m + 15M2
Pm

2Γ1 ρm
2(ρm + 3M2

Pm
2Γ1)2

. (6.42)

In this same case, if the following inequalities are satisfied

− 2ρm
15M2

P

< Γ1m
2 < 0 , (6.43)

then it is possible to have 0 < Ḡeff < GN , i.e. weak gravity regimes, together with a positive
mass for the gravitational waves, as will be explained in section 8.

It is possible to write down the expression for the fields Ψ and Φ in terms of δm and δ̇m.
On considering the quasi-static approximation, namely that k/(aH) ≫ 1, and, at the same
time, δ̇m/N ≃ Hδm, then we find that

η =
Ψ

Φ
=

(

3M2
PΓ1m

2 + ρm + ρg
)

ρm + ρg

Ḡeff

GN
, (6.44)

−k2

a2
Ψ = 4πḠeff ρm δm , (6.45)

where we have also imposed that 3M2
PH

2 = ρm + ρg.

Therefore, in general, at those redshifts for which H2 . |Γ1m
2| is verified, it is indeed

possible to have a non-trivial phenomenology (compared to GR) in the normal branch, even
if no extra-scalar mode has been added into the theory. On the contrary, for those redshift for
which |Γ1m

2| ≪ H2 holds, then the phenomenology will tend to agree with the one of GR.

7 Vector modes

On perturbing the action for the vector modes, we consider the metric perturbations as
follows

γij = a2 (δij + ∂iC
T
j + ∂jC

T
i ) . (7.1)

Furthermore the shift vector will be split as

Ni = N(t)V T
i , (7.2)
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and also the perfect fluid will possess vector modes uTi . Finally the vector λi will have a
vector mode contribution as

λi = Li
T , (7.3)

with CT
i , V

T
i , uTi and Li

T all satisfying the usual transverse relation, e.g. ∂iC
T
i = 0.

Treating the perfect fluid along the lines of [29], after expanding the action at second
order for the vector-mode variables, one finds that the constraint Li

T sets

CT
i = 0 . (7.4)

In this case the action exactly reduces to the action in General Relativity describing the
tensor modes. Therefore the phenomenology for the vector modes is exactly the same as in
General Relativity in both branches. In fact, we find

ρm uTi = −M2
P

2

k2

a2
V T
i , (7.5)

u̇Ti = 0 . (7.6)

8 Tensor modes

The tensor modes for this theory have been already discussed before in the literature [19].
But it is easy to see that since the constraints coming from λ and λi have only scalar and
vector contributions, then the tensor mode action, at quadratic order, will be exactly the
same as in dRGT model. In particular we find

S =
M2

P

8

∑

λ=+,−

∫

d4xNa3

[

ḣ2λ
N2

− (∂hλ)
2

a2
− µ2h2λ

]

, (8.1)

where

µ2 =
1

2
m2X [c2X + c3 + r X (c1X + c2)] . (8.2)

This expression is valid both for both the normal branch and the self-accelerating one. In
order to ensure stability, one requires µ2 > 0.

In the case r = 1, in the normal branch, we find that µ2 = −2Γ1m
2 > 0, so that, in this

case, m2 and Γ1 need to have opposite signs. In the same case, r = 1, in the self-accelerating
branch, since Γ1 = 0, actually µ2 vanishes. It should be mentioned that in both branches
the phenomenology of the tensor modes is different from General Relativity because of the
presence of the mass µ for the gravitational waves.

9 Conclusions

After reformulating the minimal theory of massive gravity (MTMG) [19] in terms of its
Lagrangian in both the vielbein and the metric formalisms, we have studied the evolution of
the linear cosmological perturbations in both the self-accelerating and the normal branches
with a dust fluid. Solutions in both branches are stable as far as µ2 ≥ 0. The strongest
phenomenological upper bound on µ known to date is: µtoday < 7.6 × 10−20 eV (µtoday <
1.8× 10−5 Hz) from binary pulsar [30, 31] and µtoday < 1.2× 10−22 eV (µtoday < 2.9× 10−8

Hz) from the detection of gravitational waves by LIGO [32], where µtoday is the value of µ in
the late time universe.
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We have found that the phenomenology in the self-accelerating branch exactly coincides
with the one in general relativity (GR), except that the expansion of the universe acquires
acceleration due to the graviton mass term even without the genuine cosmological constant
and that the tensor modes acquire a non-zero mass. Therefore, the MTMG serves as a stable
nonlinear completion of the self-accelerating cosmological solution [6] found originally in the
de Rham-Gabadadze-Tolley theory [3, 4].

In the normal branch we have found that in addition to having massive tensor modes,
the scalar sector gets affected in a non-trivial way, leading to a modified dynamics (compared
to GR) for the only scalar dynamical field δm. In particular both the friction term and Geff

get modifications which depend on the parameters of the theory and on the time-dependent
fiducial metric.

Depending on the actual value of µ, then it is possible to distinguish two different eras
of the normal branch: a) H ≫ µ (at early redshifts), and in this case the phenomenology
tends to coincide with the one in GR; b) H . µ (at intermediate/low redshifts), and in this
case the dynamics of δm gets, in general, significant modifications. In this case, though, also
the background will feel significant contributions from the MTMG sector. However, these
contributions depend on the dynamics of the fiducial metric. In fact, it is even possible to
choose the fiducial metric so that ρg (the MTMG effective energy density in the Friedmann
equation) in the normal branch behaves as an effective cosmological constant.

We have studied the behavior of Geff and η in the large k limit and found that in
the normal branch, there exists non-null parameter-space for which Geff < GN , while the
background is stable, namely the graviton mass squared is positive. Nonetheless, at low
redshifts, when ρm ≃ ρg, then the evolution of Geff will be strongly parameter dependent. We
leave the study of consistency of the theoretical predictions with the data to a future project.

While the main focus of the present paper was on phenomenological aspects of MTMG,
here we point out some of theoretical issues to be explored in the future work. The identi-
fication of the strong coupling scale and the cutoff scale is among the most important ones.
Because of the existence of non-trivial constraints that are essential for the exclusion of the
scalar mode, the analysis in the previous attempts of Lorentz-violating massive gravity in
the literature does not necessarily apply to MTMG directly. In this respect, it is expected
to be insightful to see how helicity-0 and helicity-1 degrees are removed in the Stueckelberg
language that was introduced in the context of massive gravity in [33].

As already stated in the introduction, Lorentz violation in the matter sector induced
by graviton loops should be suppressed by a minuscule factor m2/M2

P, where m is the gravi-
ton mass. It is worthwhile proving this by explicit computation. Calculation should be
straightforward, but one might need to deal with some complication due to the existence of
non-trivial constraints in the gravity sector.

As constructed in [19] and reviewed in section 2 of the present paper, MTMG was
obtained by imposing two additional constraints on the precursor theory. The additional
constraints are chosen carefully so that they do not over-constrain the system nor kill the
FLRW background solution. We conjecture that our choice, i.e. C0 and the linear combina-
tion of Ci (i = 1, 2, 3) that is orthogonal to C̃τ (τ = 1, 2), is unique if we further demand
that the resulting theory should respect the spatial diffeomorphism invariance. One of the
reasons behind this conjecture is that for the FLRW background in the precursor theory, C0
is essentially the time derivative of the primary constraint R0. Another reason is that the
three components of Ci (i = 1, 2, 3) form a spatial vector and that C̃τ (τ = 1, 2) are two linear
combinations of them. It is worthwhile proving this conjecture in a more rigorous way.
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Last but not least, it would be interesting to seek a UV completion or a partial UV
completion of MTMG.
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A The canonical field for dust

In this paper, we have made use of an action for the perfect fluid, which is not commonly
used in the literature. Indeed, in order to study the scalar perturbations of a perfect fluid
with barotropic equation of state P = P (ρ) (dust in particular) it is sufficient to study the
action [34]

Spf =

∫

d4x
√−g P (X ) , (A.1)

where X = −(∂σ)2/2, and σ is a scalar field. On defining

uµ = − ∂µσ√
2X

, (A.2)

we find that, on studying the perturbations of such a field, δui = −∂ivm, where N(t) δσ/σ̇ =
vm (assuming σ̇ > 0), then, for a general fluid, we find that, on choosing the gauge-invariant
combination vm − ζ/H as the canonical field, the action for the scalar perturbation tends to
blow up in the limit c2s → 0, where c2s ≡ P,X /(2XP,XX + P,X ). One may wonder why this
happens, as in this work, the action for the scalar modes remains always finite.

It is not a problem intrinsic of the action written in eq. (A.1), rather it is a problem
of the choice of vm as the field which is supposed to describe the degrees of freedom of the
system. There are several ways to prove this statement. In fact, it is clear that for a dust
fluid in General Relativity, in the flat gauge (ζ = 0 = γ), the equation for vm can be found
by taking variations of the Lagrangian (6.16) with respect to δm, and reads as follows

v̇m
N

− ρm
2M2

PH
vm = 0 . (A.3)

This same equation of motion can be found independently of the action one considers. For
example, on using the action given in eq. (A.1), it corresponds to combining the equation of
motion for the field χ with α = v̇m/N .

Most importantly, eq. (A.3) is a closed equation for the field vm. Therefore it completely
determines the evolution for vm. In particular, the essential point here to notice, is that this
equation is only first order. Therefore, there is only one single initial condition which need to
be imposed in order to completely determine the dynamics of the field vm. In this case, if it
were possible to choose vm as the canonical field for the dust fluid, this would imply that the
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scalar sector of the dust fluid would have only 1 degree of freedom (rather than two). This is
impossible, as indeed the equations of motion coming from the Lagrangian in eq. (6.17) for
the field δm do require two independent initial conditions (or, equivalently, there is another
one independent initial condition to be imposed in the Lagrangian in eq. (6.16) for the field
δm). Therefore the canonical field for the dust fluid cannot be chosen to be proportional to
vm, but it can be chosen to be proportional, e.g. to δm.

B Integrating auxiliary variable in & out

Let us consider a simple harmonic oscillator described by the Lagrangian

L =
A

2
q̇2 − B

2
q2. (B.1)

This can be rewritten as

L =
A

2C2
(Cq̇ +Dq)2 − AD2 +BC2

2C2
q2 + (total derivative). (B.2)

This Lagrangian is equivalent to the following one.

L̃ =
A

2C2

[

2Q(Cq̇ +Dq)−Q2
]

− AD2 +BC2

2C2
q2. (B.3)

It is easy to see that the previous Lagrangian is obtained from the present one by simply
integrating out Q. In other words, L̃ is obtained from L by integrating-in the auxiliary
variable Q.

Let us now integrating-out the original variable q from the equivalent Lagrangian L̃. To
do this, we first perform an integration by part to obtain

L̃ = −AD2 +BC2

2C2

[

q +
A(CQ̇−DQ)

AD2 +BC2

]2

+
A2

2(AD2 +BC2)
Q̇2 − AB

2(AD2 +BC2)
Q2 + (total derivative). (B.4)

By integrating-out q, we then obtain the following equivalent Lagrangian

L̄ =
Ā

2
Q̇2 − B̄

2
Q2, (B.5)

where

Ā =
A2

AD2 +BC2
, B̄ =

AB

AD2 +BC2
. (B.6)

For example, if we choose

A = 1, B = ǫ2, C = 1, D = 0, (B.7)

where ǫ is a constant, then we obtain

Ā =
1

ǫ2
, B̄ = 1. (B.8)
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We thus have the equivalence

L =
1

2
q̇2 − ǫ2

2
q2 ⇔ L̃ =

1

2ǫ2
Q̇2 − 1

2
Q2, (B.9)

under the correspondence

Q = q̇. (B.10)

This is equivalent to the following canonical transformation

Q = p, P = −q, (B.11)

where p = q̇ and P = Q̇/ǫ2 are momenta conjugate to q and Q, respectively. The Hamilto-
nians corresponding to the Lagrangians are equal to each other.

H =
1

2
p2 +

ǫ2

2
q2 =

ǫ2

2
P 2 +

1

2
Q2 = H̄. (B.12)
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