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Abstract 

The novel and efficient synthesis of type 2 Lewis antigens is reported in this study.  The rationally 

designed lactosamine-3,2′-diol derivative with an orthogonal set of protecting groups is efficiently 

glycosylated with a benzyl protected 1-thio-L-fucoside donor in a unique regioselective manner to 

produce Lewis x (Lex) and Lewis y (Ley) derivatives in good yields.  These derivatives can be 

prepared not only exclusively but also synchronously by choosing the appropriate reaction temperature 

and donor-acceptor molar ratio.  The Lex derivatives are easily converted into sulfated or non-sulfated 

Lex bearing a terminal azido functionalized oligo-(ethyleneoxide) linker; the Ley derivative having the 

same linker can also be prepared, all of which can be further used for the chemical modification of 

other compounds and materials. 

Keywords: Type 2 Lewis antigens; Sulfated Lewis x; Lewis y; Regioselective glycosylation; The 

Heyns rearrangement 

 

 

1. Introduction 

Lewis antigens are well-known as glycan-based blood group antigens,1 which are classified as 

type 1 and type 2, depending on the disaccharide core structure.  Type 1 Lewis antigens, Lewis a 

and Lewis b, have a common backbone [→3Galβ(1→3) GlcNAcβ1→] and exist widely in the 

membrane of erythrocytes.  The type 2 core structure [→3Galβ(1→4) GlcNAcβ1→] is also found 
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in numerous glycoconjugates; however, the distribution of its fucosylated derivatives, Lewis x (Lex) 

and Lewis y (Ley), classified as type 2 Lewis antigens (T2-LAs), is limited to some epithelial cells 

and leukocytes.  Notably, T2-LAs are overexpressed in various tumor cells,2 and are thus frequently 

used as biomarkers for the diagnosis of cancer.  Furthermore, these T2-LAs are sometimes found in 

their sulfated form, which includes a 6-O-sulfo-GlcNAc residue.3  The Lex determinant also plays a 

critical role in various biological events such as inflammation, lymphocyte homing, and infection of 

pathogens.4  Thus, T2-LAs have attracted much attention as promising target compounds for cancer 

therapy as well as for the treatment of inflammation, infectious diseases, etc. 

In order to utilize T2-LAs and their derivatives as bioactive compounds, it is essential to 

establish versatile, widely applicable synthetic methods.  A large number of reports on the synthesis 

of Lewis antigens have been published to date;5 however, none of them have reported the use of 

common key intermediates to construct T2-LAs, including their sulfated form.  In the present study, 

we report the successful and rapid assembly of T2-LAs (3–5) via a refined disaccharide key 

intermediate 2, which can be readily prepared from lactulose 1 through the Heyns rearrangement 

method6 (Figure 1).  This method is very convenient to obtain useful 2-amino-2-deoxy sugars, 

particularly lactosamine derivatives.7  
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Figure 1. Efficient synthesis of T2-LAs (3–5) via the refined orthogonally protected T2 disaccharide 

derivative 2 derived from lactulose 1. 

 

2. Results and discussion 

2.1 Refinement of the molecular design of key intermediate 2 

In a previous paper,8 we reported the synthesis of T2-LAs having a set of orthogonal protecting 

groups via the useful disaccharide intermediate 2′ (Figure 2).  Compound 2′ was found to be an 

excellent intermediate for the synthesis of T2-LAs, but had a major drawback concerning the 
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removal of the anomeric 4-methoxyphenyl (PMP) group: the 6-O-tert-butyldimethylsilyl (TBDMS) 

group was found to be labile under oxidation conditions by cerium(IV) ammonium nitrate (CAN).  

It is acceptable to produce neutral, non-sulfated T2-LAs; however, in order to synthesize structurally 

complicated and highly bioactive sulfated T2-LAs, the protecting group at glucosamine C6 must be 

stable under oxidation conditions.  Thus, we refined the molecular design from 2′ to 2: the stability 

of the tert-butyldiphenylsilyl (TBDPS) group is several hundred times higher than that of TBDMS 

under acidic conditions, whereas both show similar susceptibility to tetra-n-butylammonium fluoride 

(TBAF).9  Therefore, TBDPS was selected as a more suitable protecting group for the C6 position 

of the glucosamine residue.  Further, the 4,6-O-benzylidene protecting group for the Gal residue 

was replaced with the p-methoxybenzylidene group, which is more rapidly removed by 

hydrogenolysis. 

 

Figure 2. Refinement of the molecular design of key intermediate 2. 

 

According to our previous report,8 the lactosamine derivative of 6 was readily prepared from 

lactulose 1 via the Heyns rearrangement (Scheme 1).  After removal of the acetyl protecting groups 

in 6, the 4′- and 6′-hydroxy moieties were protected with a p-methoxybenzylidene group to afford 7 

in 69% yield via a two-step procedure.  The 6-OH moiety in 7 reacted selectively with TBDPS-Cl 
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in pyridine, giving 8 in moderate yield (59%).  We originally controlled the selectivity in the 

regioselective 3′-O-benzoylation by lowering the reaction temperature (−50 °C). However, the 

unfavorable 3,3′-di-O-benzoyl product was formed even under the optimized conditions designed to 

obtain the target 3′-mono-O-benzoyl product.  In the present study, we exclusively obtained the 

target product 2 at ambient temperature in 73% yield by employing a metal-coordinated regio- and 

chemoselective nucleophilic substitution method.10 

 

Scheme 1. Reagents and conditions: (a) 1) MeONa / MeOH, 2) p-anisaldehyde dimethylacetal, (±)-

10-camphorsulfonic acid/DMF, 30 °C, 24 h, 69% (2 steps); (b) TBDPS-Cl/pyridine, rt, 64 h, 59%; 

(c) Bu2SnCl2, PEMP, BzCl/THF, rt, 48 h, 73%. NPhth: phthalimido, PMP: 4-methoxyphenyl, PEMP: 

1,2,2,6,6-pentamethylpiperidine. 
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2.2 On demand synthesis of Lex and Ley derivatives by regioselective α-fucosylation of 2 

Glycosylation of 2 with benzyl-protected phenyl 1-thio-L-fucopyranoside (9)11 is the extremely 

unique reaction throughout the synthesis of T2-LAs (Scheme 2).  In order to obtain the Lex 

derivative 10, the glycosylation was carried out at lower temperature (−78 °C) with a slight excess of 

9 over 2; under these conditions, 10 was isolated as the sole product in 76% yield (Table 1, entry 1).  

Ley derivative 11 was exclusively formed in 83% yield when more than twice the amount of 9 (2.4 

eq) relative to 2 was used at a higher temperature of −40 °C (entry 2).  The synchronous synthesis 

of 10 and 11 using 9 and 2 (entries 3 and 4) is worth mentioning. Compound 11 appeared at a higher 

temperatures (−40 °C or −50 °C) than that in entry 1.  Furthermore, both 10 and 11 were obtained 

efficiently in 49% and 45% yields, respectively, using an excess amount of 9 (1.8 eq) at −40 °C 

(entry 4).  These results indicate that the synthesis of 10 and 11 can be finely controlled by varying 

the reaction temperature and the feed ratio.  Notably, compounds 10 and 11 can be easily separated 

by conventional silica gel column chromatography: the Rf values for 10 and 11 in an n-hexane–

EtOAc 2:1 mixture are 0.28 and 0.44, respectively. 
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Scheme 2. On demand and synchronous syntheses of Lex and Ley derivatives via glycosylation of 2 

with 9 under the reaction conditions summarized in Table 1.  

 

Table 1. One-pot synthesis of 10 and 11 under different reaction conditions.a 

entry path 2/eq 9/eq NIS/eq TfOH/eq T/°C time/hb yield/% 

        10 11 

1 a 1.0 1.2 2.5 0.2 −78 1.0 76 n.d.c 

2 b 1.0 2.4 5.0 0.4 −40 3.0 n.d.c 83 

3 c 1.0 1.2 2.5 0.2 −50 2.0 25 16 

4 c 1.0 1.8 2.5 0.2 −40 1.0 49 45 

aReaction was carried out under the indicated conditions, in CH2Cl2–Et2O using the NIS–TfOH 
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activation system. bTime for complete consumption of 9. cNot detected. 

 

It is very intriguing that the reactivity of the two hydroxy groups in 2 is strictly fixed as 3-OH > 

2′-OH: a mono-fucosylated product at 2′-OH, that is, a type 2H 

[Fucα(1→2)Galβ(1→4)GlcNAcβ1→] derivative is not formed at all in this series of reactions.  

These results are consistent with our previous report,8 although the molecular design of acceptor 2 is 

slightly different from that of 2′.  Thus, the combination of the newly designed diol acceptor 2 and 

donor 9 has proved to be highly effective for not only the selective synthesis of Lex or Ley 

derivatives but also the synchronous synthesis of both derivatives in a one-pot reaction.  Although 

there are a few reports on lactosamine diol derivatives for the synthesis of T2-LAs,12 the order of 

reactivity of the two hydroxy groups in these derivatives is 2′-OH > 3-OH without exception, which 

is opposite to that for 2 and renders the preparation of Lex derivatives difficult.  Therefore, 

compound 2 is the most effective acceptor capable of providing both Lex and Ley derivatives when 

using 9 as the donor. 

 

2.3 Synthesis of 6-O-sulfo-Lex 3 and non-sulfated Lex 4 bearing a terminal azido functionalized 

oligo-ethyleneoxide linker 

For future applications of T2-LAs, we introduced a terminal azido functionalized aglycon 

moiety.  A highly hydrophilic oligo-(ethyleneoxide) structure is advantageous for conjugation with 
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all kinds of bioactive compounds such as proteins, lipids, polysaccharides, and synthetic polymers.  

Furthermore, azides are the first choice in current biochemical and materials sciences as they allow 

conjugation with a range of substances having alkyne groups via a Huisgen cycloaddition (“click 

chemistry” ).13,14  Hence, we selected a 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl group as an 

efficient linker for T2-LAs, as shown in Fig. 1. 

Two types of Lex derivatives (3 and 4) were synthesized following the reactions outlined in 

Scheme 3. In order to avoid damaging the α-L-fucoside linkage and azido group, hydrogenation of 10 

was first carried out with Pd(OH)2 on activated carbon (Pd(OH)2-C) under H2 atmosphere.  This 

reaction normally proceeds to completion within 10 h, and the reaction mixture must be immediately 

worked-up, as prolonged reaction accelerates the undesirable cleavage of the α-L-fucoside linkage 

due to the acidity of the reagents.  After acetylation, compound 12 was obtained in 39% yield, in 

two steps.  Considering the low yield and our observations by TLC monitoring during the 

hydrogenation, removal of the benzyl protection in 11 without cleaving the α-L-fucoside linkage 

seems difficult. The anomeric PMP group of 12 was smoothly removed by CAN oxidation to 

produce 13 in 61% yield.  Compound 13 was converted into the activated glycosyl donor of 

trichloroacetimidate 14 through the reaction of trichloroacetonitrile with DBU in 83% yield.  The 

linker moiety was introduced through the glycosylation of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)-1-

ethanol with 14, promoted by the addition of TMSOTf at −50 °C, affording 15 in a modest yield of 

48%.  The acyl groups in 15 were removed successively by treatment with MeONa and hydrazine 
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monohydrate, followed by acetylation in pyridine and the removal of the TBDPS group with TBAF, 

affording 16 in 56% yield (4 steps).  Sulfation at the 6-OH group in 16 was carried out by the 

addition of SO3·NMe3 to produce 17 in excellent yield (91%).  Finally, all of the O-acetyl groups in 

17 were removed with MeONa, which resulted in the target 6-O-sulfo-Lex 3 in 63% yield.  The 

non-sulfated Lex derivative 4 was obtained from 15 through the reactions in steps e and h in 15% 

yield (5 steps). Thus, the sulfated and non-sulfated forms of the Lex derivatives were efficiently 

synthesized from a common intermediate, 10, which could be readily prepared through the 

regioselective glycosylation described above. 
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Scheme 3. Reagents and conditions: (a) (1) Pd(OH)2-C, H2/MeOH, rt, 10 h, (2) Ac2O/pyridine, rt, 

overnight, 39% (2 steps); (b) CAN/CH3CN–H2O, 0 °C, 6 h, 61%; (c) CCl3CN, DBU/CH2Cl2, 0 °C, 5 
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h, 83%; (d) HO(CH2CH2O)3C2H4N3, TMSOTf, MS4A/CH2Cl2, −50 °C, 8 h, 48%; (e) (1) 

MeONa/MeOH, rt, overnight, (2) NH2NH2·H2O/EtOH, 90 °C, 7 h, (3) Ac2O/pyridine, rt, 48 h, (4) 

TBAF–AcOH/THF, rt, 72 h, 56% (4 steps); (f) SO3·NMe3/DMF, 55 °C, 72 h, 91%; (g) 

MeONa/MeOH, rt, overnight, 63%; (h) MeONa/MeOH, rt, overnight, 15% (5 steps from 15). 

 

2.4 Synthesis of Ley bearing a terminal azido functionalized oligo-ethyleneoxide linker 5 

The Ley derivative bearing a terminal azido functionalized oligo-ethyleneoxide linker 5 was also 

prepared according to the reactions outlined in Scheme 4.  Compound 11 was treated with Pd(OH)2-

C in THF–MeOH (1:1) mixture under H2 atmosphere as described for the synthesis of 12.  The 

obtained mixture was subjected to acetylation to provide pure 18.  The anomeric PMP group in 18 

was removed by CAN oxidation, followed by trichloroacetimidation to give 19.  Glycosidation of 

19 with 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)-1-ethanol, which is the same acceptor employed in 

the synthesis of 15, proceeded very smoothly with the addition of a catalytic amount of TMSOTf at 

−50 °C and gave 20 within 30 min in a very good yield of 80%.  Compound 20 was converted into 

21 through a three-step reaction, i.e., removal of the acetyl and benzoyl groups by MeONa, removal 

of the phthaloyl group by hydrazine monohydrate and acetylation, which gave 21 in 64% yield.  All 

the protecting groups in 21 were removed by successive treatment with TBAF in THF and MeONa 

in MeOH, which led to the target Ley derivative 5 in 57% yield via two steps.  Thus, the Ley 

derivative can also be synthesized easily from 11, which in turn can be obtained by the glycosylation 
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described above. 

 

 

Scheme 4. Reagents and conditions: (a) (1) Pd(OH)2-C, H2/THF–MeOH, rt, 10 h, (2) Ac2O, 

DMAP/pyridine, rt, 24 h, 68% (2 steps); (b) (1) CAN/CH3CN–H2O, rt, 2 h, (2) CCl3CN, 

DBU/CH2Cl2, 0 °C, 4 h, 56% (2 steps); (c) HO(CH2CH2O)3C2H4N3, TMSOTf, MS4A/CH2Cl2, 

−50 °C, 0.5 h, 80%; (d) (1) MeONa/MeOH, rt, 2 h, (2) NH2NH2·H2O/EtOH, 90 °C, 13 h, (3) 

Ac2O/pyridine, rt, overnight, 64% (3 steps); (e) (1) TBAF/THF, rt, 72 h, (2) MeONa/MeOH, rt, 

overnight, 57% (2 steps). 

 

3. Conclusion 

In the present study, we have demonstrated for the first time the feasibility of the on-demand 

synthesis of Lex and Ley derivatives, in addition to their synchronous synthesis in one-pot through 

the combined use of diol acceptor 2 and benzyl-protected thiophenyl fucoside donor 9.  The 



15 

 

selectivity was easily controlled by varying the reaction temperature and the ratio of 2 and 9.  The 

derivatives of Lex and Ley were further functionalized by introducing an oligo-ethyleneoxide-azide 

linker through glycosylation.  The versatile set of orthogonal protecting groups of the obtained Lex 

derivative 15 enabled the facile and regioselective synthesis of both sulfated Lex 3 and non-sulfated 

Lex 4.  Ley derivative 5 was also easily prepared from 11.  Thus, our method is highly efficient for 

the synthesis of T2-LAs and will be further applied to the preparation of a variety of bioactive 

materials. 

 

4. Experimental 

4.1 General methods 

Anhydrous solvents were purchased from Wako Pure Chemical Industries, Ltd., and stored 

under Ar atmosphere prior to use.  Other chemicals were used without further purification unless 

otherwise stated.  Molecular sieves (MS) AW300 and 4A were powdered and activated over 100 °C 

under reduced pressure with P2O5 as desiccant prior to use.  Silica gel flash column chromatography 

was performed on Silica Gel 60, spherical, neutrality (Nacalai Tesque), or with a CombiFlash Rf 75 

Var (Teledyne Isco) on RediSep Rf Gold Normal Phase Silica columns.  The reactions were 

monitored by TLC (silica gel 60 F254, Merck) visualized by sprayed with a mixture of 

H3(PMo12O40)· n H2O (12.5 g) and Ce(SO4)2·nH2O (5 g) in 10% H2SO4 (500 mL) and colored by 

heating at 140 °C.  Glycosylation reactions at −50 °C or lower were performed on UCR-150 
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(Techno-sigma).  Optical rotations were measured with a P-1010 polarimeter (Jasco). 1H and 13C 

NMR were recorded on a DPX-400 spectrometer (Bruker).  Assignments were based on homo- and 

heteronuclear correlation measurements, and DEPT measurements.  High resolution mass 

spectrometry was carried out with JMS-HX110A spectrometer (Jeol, for FAB-MS) or Exactive 

spectrometer (Thermo Fisher Scientific, for ESI-MS).  Melting points were determined with a MP-

500P (Yanaco). 

 

4.2. 4-Methoxyphenyl 4,6-O-(4-methoxybenzylidene)-β-D-galactopyranosyl-(1→4)-2-deoxy-2-

phthalimido-β-D-glucopyranoside (7). 

Compound 68 (13.5 g, 16.2 mmol) in dry MeOH (250 mL) was treated with MeONa in MeOH (ca. 

28wt%, 2.4 mL) at 0 °C under dry atmosphere for 23 h.  The formed precipitate was filtered through 

filter paper, and washed with MeOH.  The filtrate was neutralized by addition of Dowex 50W-X8 

(H+ form), filtered through a cotton bed, and concentrated to dryness by vacuum pump overnight.  

The former precipitate and the latter residue were combined and dissolved in dry DMF (120 mL).  To 

a solution of the mixture was added p-anisaldehyde dimethylacetal (3.16 mL, 18.6 mmol) under acidic 

conditions in the presence of catalytic amount of (±)-10-camphorsulfonic acid.  After kept stirring at 

rt for 7 h, excess amount of Et3N was added to neutralize the reaction system.  The mixture was 

concentrated under diminished pressure, and coevaporated with toluene.  The residue was purified 

by silica gel column chromatography (CHCl3/MeOH, 20:1, v/v, containing 0.5% Et3N) to provide 7 
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(7.75 g, 11.1 mmol, 69 %) as a white solid. 

[]D
23 −20.8 (c 0.64, CHCl3); mp 128–130 °C ; Rf 0.30 (CHCl3/MeOH, 10:1); 1H NMR (400 MHz, 

CD3OD, TMS): δ (ppm) 7.96–7.78 (m, 4H, NPhth), 7.47–6.72 (m, 8H, -C6H4-OMe×2), 5.70 (d, 1H, 

J1,2 8.5 Hz, H-1I), 5.56 (s, 1H, CH of p-methoxybenzylidene), 4.55 (d, 1H, J1,2 7.5 Hz, H-1II), 4.51 

(dd, 1H, J2,3 11.0, J3,4 8.5 Hz, H-3I), 4.28 (dd, 1H, J1,2 8.6, J2,3 11.0 Hz, H-2I), 4.24–4.06 (m, 3H, H-

4II, H-6IIa, H-6Ia), 4.06–3.93 (m, 2H, H-6IIb, H-6Ib), 3.84 (t, 1H, J3,4=J4,5=9.6 Hz, H-4I), 3.77 (s, 3H, 

OMe), 3.73–3.63 (m, 7H, H-5I, H-2II, H-3II, H-5II, OMe) ; 13C NMR (100 MHz, CDCl3): δ 168.23, 

167.93 (C=O), 159.89, 155.21, 150.79, 134.03, 131.58, 130.38, 127.76, 123.32, 118.32, 114.32, 

113.30 (aromatic), 103.99 (C1II), 100.92 (CH of p-methoxybenzylidene ), 97.45 (C1I), 81.92 (C4I), 

75.53 (C4II), 75.05 (C5I), 72.08 (C3II), 70.58 (C2II), 69.70 (C3I), 68.73 (C6II), 66.82 (C5II), 61.54 

(C6I), 56.07 (C2I), 55.47, 55.17 (OMe); HRMS (FAB, positive ion mode, NBA) m/z = 718.2103 [M 

+ Na]+, calcd for C35H37NO14Na, 718.2112. 

 

4.3. 4-Methoxyphenyl 4,6-O-(4-methoxybenzylidene)-β-D-galactopyranosyl-(1→4)-6-O-tert-

butyldipheylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (8). 

To a solution of 7 (7.75 g, 11.1 mmol) in anhydrous pyridine (120 mL) was added tert-

butyldiphenylchlorosilane (5.36 mL, 20.9 mmol) at rt under dry atmosphere.  After stirring for 64 h, 

MeOH was added to quench excess reagent, and then the mixture was concentrated under reduced 

pressure.  The residue was coevaporated with toluene and extracted with CHCl3, washed 
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successively with satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered 

through a Celite bed and concentrated under diminished pressure.  The residue was subjected to 

silica gel column chromatography eluting with CHCl3/EtOAc (2:1, v/v, containing 0.1% Et3N) to 

provide pure 8 (6.12 g, 6.55 mmol, 59 %) as an amorphous powder. 

 [α]D
23 −20.6 (c 1.0, CHCl3) ; Rf 0.33 (CHCl3/EtOAc, 1:1), 1H NMR (400 MHz, CDCl3, TMS): δ 

7.96–6.68 (m, 22H, NPhth, -OSiPh2CMe3 , -C6H4OMe×2), 5.75 (d, 1H, J1,2 8.0 Hz, H-1I), 5.45 (s, 

1H, CH of 4-methoxybenzylidene), 4.55 (dd, 1H, J2,3 10.5, J3,4 8.04 Hz, H-3I), 4.50 (d, 1H, J1,2 8.0 

Hz, H-1II), 4.44 (dd, 1H, J1,2 8.5, J2,3 11.0 Hz, H-2I), 4.30–4.22 (m, 2H, H-6IIa, 3I-OH), 4.17 (d, 1H, 

J3,4 3.0 Hz, H-4II), 4.14–4.08 (m, 1H, H-6Ia), 4.06–3.97 (m, 2H, H-6Ib, H-6IIb), 3.86 (t, 1H, J3,4 = J4,5 

= 9.5 Hz, H-4I), 3.79 (s, 3H, OMe), 3.76–3.67 (m, 5H, H-5I, H-2II, OMe), 3.59 (ddd, 1H, J2,3 9.5, 

J3,OH 9.5, J3,4 3.5 Hz, H-3II), 3.49 (bs, 1H, H-5II), 2.44 (d, 1H, J3,OH 9.5 Hz, 3II-OH), 2.34 (d, 1H, J2,OH 

2.5 Hz, 2II-OH), 1.08 (s, 9H, Me3 of tert-Bu); 13C NMR (100 MHz, CDCl3): δ 168.51, 168.04 (C=O), 

160.11, 155.33, 150.98, 149.54, 136.20, 135.84, 135.65, 134.09, 133.49, 132.78, 131.70, 130.04, 

129.68, 127.76, 127.66, 123.81, 118.80, 114.39, 113.49 (aromatic), 103.73 (C1II), 101.17 (CH of 4-

methoxybenzylidene ), 97.42 (C1I), 81.06 (C4I), 75.32 (C3II), 75.09 (C4II), 72.81 (C5I), 71.19 (C2II), 

69.75 (C3I), 68.67 (C6II), 66.93 (C5II), 62.41 (C6I), 56.37 (C2I), 55.61, 55.22 (OMe), 26.81 (CMe3 of 

tert-Bu), 19.36 (CMe3 of tert-Bu); HRMS (FAB, positive ion mode, NBA) m/z = 956.3308 [M + 

Na]+, calcd for C51H55NO14SiNa, 956.3290. 
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4.4. 4-Methoxyphenyl 3-O-benzoyl-4,6-O-(4-methoxybenzylidene)-β-D-galactopyranosyl-(1→4)-

6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (2). 

To a solution of compound 8 (2.40 g, 2.57 mmol) in dry THF (50 mL) was added Bu2SnCl2 (78.1 

mg, 0.26 mmol) and 1,2,2,6,6-pentamethylpiperidine (0.92 mL, 5.14 mmol), followed by kept 

stirring for 10 min at rt under Ar atmosphere.  Benzoyl chloride (0.36 mL, 2.57 mmol) was added 

dropwise to the mixture at rt under Ar atmosphere.  After stirring for 48 h, MeOH was added to 

quench excess reagent, and the mixture was evaporated under reduced pressure.  The residue was 

diluted with CHCl3, and washed with satd aq NaHCO3 and brine.  The organic layer was dried over 

MgSO4, filtered through a Celite bed, and concentrated under reduced pressure.  The residue was 

purified by silica gel column chromatography (CHCl3/EtOAc, 1:0 to 0:1, v/v, linear gradient) to 

afford 2 (1.95 g, 1.88 mmol, 73%) as colorless amorphous. 

[α]D
23 +23.9 (c 1.0, CHCl3); Rf 0.41 (n-hexane/EtOAc, 1:1); 1H NMR (400 MHz, CDCl3, TMS): δ 

8.13–6.69 (m, 27H, aromatic), 5.75 (d,1H, J1,2 8.0 Hz, H-1I), 5.41 (s, 1H, CH of 4-

methoxybenzylidene), 5.01 (dd, 1H, J2,3 10.0, J3,4 3.5 Hz, H-3II), 4.60 (d, 1H, J1,2 7.6 Hz, H-1II), 4.54 

(t, 1H, J2,3 = J3,4 = 8.6 Hz, H-3I), 4.50–4.41 (m, 2H, H-2I, H-4II), 4.27 (m, 1H, H-6IIa), 4.23 (s, 1H, 3I-

OH), 4.14–3.98 (m, 4H, H-2II, H-6Ia, H-6Ib, H-6IIb), 3.86 (t, 1H, J3,4 = J4,5 = 8.5 Hz, H-4I) 3.82–3.70 

(m, 7H, H-5I, OMe×2), 3.59 (s, 1H, H-5II), 2.17 (d, 1H, J2,OH 4.0 Hz, 2II-OH), 1.09 (s, 9H, Me3 of 

tert-Bu); 13C NMR (100 MHz, CDCl3): δ 168.55, 168.13, 166.45 (C=O), 160.03, 155.39, 151.03, 

135.94, 135.69, 134.16, 133.48, 133.35, 132.85, 131.79, 130.16, 129.98, 129.83, 129.77, 129.65, 
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128.53, 127.87, 127.73, 127.53, 123.67, 123.41, 118.80, 114.44, 113.49 (aromatic), 104.03 (C1II), 

100.73 (CH of 4-methoxybenzylidene ), 97.48 (C1I), 81.94 (C4I), 75.40 (C5I), 74.25 (C3II), 73.31 

(C4II), 69.87 (C3I), 68.69 (C2II), 68.56 (C6II), 66.81 (C5II), 62.79 (C6I), 56.24 (C2I), 55.66, 55.29 

(OMe), 26.88 (CMe3 of tert-Bu), 19.38 (CMe3 of tert-Bu) ; HRMS (FAB, positive ion mode, NBA) 

m/z = 1037.3693 [M]+, calcd for C58H59NO15Si, 1037.3654. 

 

4.5. 4-Methoxyphenyl 3-O-benzoyl-4,6-O-(4-methoxybenzylidene)-β-D-galactopyranosyl-(1→4)-

[2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→3)]-6-O-tert-butyldiphenylsilyl-2-deoxy-2-

phthalimido-β-D-glucopyranoside (10). 

Compound 2 (817 mg, 787 μmol) was added to a solution of 9 (497 mg, 944 μmol) in anhydrous 

CH2Cl2 (10 mL), and then diluted with anhydrous Et2O (20 mL).  The mixture was kept stirring at rt 

for 30 min under Ar atmosphere in the presence of activated powdered molecular sieves (MS) AW 

300 (1.00 g).  N-Iodosuccinimide (443 mg, 1.97 mmol) was added to the mixture, followed by 

cooling down to −78 °C under Ar atmosphere.  Triflic acid (13.8 μL, 141 μmol) in anhydrous Et2O 

(124 μL) was added dropwise to the mixture.  After stirring for 1 h, excess amount of Et3N was 

added to terminate the reaction.  After kept stirring for 15 min, the mixture was filtered through a 

bed of Celite, diluted with CHCl3, washed successively with 5 wt% aq Na2S2O3, satd aq NaHCO3 

and brine.  The organic layer was dried over MgSO4, filtered through a bed of Celite, and 

concentrated under reduced pressure.  The residue was subjected to silica gel column 
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chromatography (n-hexane/EtOAc, 2:1, v/v, containing 0.1% Et3N), providing pure 10 (867 mg, 596 

μmol, 76%) as a white solid. 

[α]D
23 −10.2 (c 0.64, CHCl3); mp 106–107 °C; Rf 0.28 (n-hexane/EtOAc, 2:1); 1H NMR (400 MHz, 

CDCl3, TMS): δ 8.20–6.64 (m, 42H, aromatic), 5.55 (d, 1H, J1,2 8.5 Hz, H-1I), 5.52 (s, 1H, CH of 4-

methoxybenzylidene), 5.13–5.07 (m, 2H, H-1III, H-3III), 4.91–4.84 (m, 2H, H-3I, H-5II), 4.76–4.69 

(m, 2H, H-2I, H-1II), 4.61 (s, 2H, -CH2Ph), 4.53–4.25 (m, 6H, H-4I, H-6Ia, H-4III, H-6IIIa, -CH2Ph), 

4.19–4.10 (m, 2H, H-2III, -CH2Ph), 4.10–3.96 (m, 3H, H-6Ib, H-6IIIb, H-3II), 3.71 (s, 3H, OMe), 

3.69–3.62 (m, 2H, H-5I, H-2II), 3.59–3.48 (m, 4H, OMe, -CH2Ph), 3.42 (s, 1H, H-5III), 3.21 (s, 1H, 

H-4II), 2.38 (d, 1H, J2,OH 3.0 Hz, 2III-OH), 1.13 (s, 9H, Me3 of tert-Bu), 1.08 (d, 3H, H-6II, J5,6 6.5 

Hz); 13C NMR (100 MHz, CDCl3): δ 171.28, 166.35 (C=O), 159.96, 155.37, 151.18, 139.56, 139.48, 

138.16, 136.11, 135.44, 134.29, 133.88, 133.53, 132.29, 130.28, 130.00, 129.96, 129.80, 128.63, 

128.57, 128.39, 128.29, 128.23, 128.17, 128.05, 127.98, 127.93, 127.85, 127.78, 127.66, 127.46, 

127.39, 127.25, 127.12, 127.07, 127.02, 126.78, 123.76, 118.83, 114.44, 113.39 (aromatic), 101.78 

(C1III), 99.72 (CH of 4-methoxybenzylidene ), 98.19 (C1II), 97.89 (C1I), 79.14 (C3II), 78.77 (C4II), 

76.00 (C2II), 74.90 (CH2Ph), 74.61 (C4I), 74.36 (C3III), 73.64 (C4III), 73.42 (C5I), 73.01 (CH2Ph), 

72.41 (C3I), 71.47 (CH2Ph), 69.63 (C2III), 69.08 (C6III), 66.63 (C5III), 66.45 (C5II), 61.79 (C6I), 56.81 

(C2I), 55.70, 55.06 (OMe), 26.99 ( Me3 of tert-Bu), 19.74 (CMe3 of tert-Bu), 16.63 (C6II) ; HRMS 

(FAB, positive ion mode, NBA) m/z = 1476.5502 [M + Na]+, calcd for C85H87NO19SiNa, 1476.5539. 
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4.6. 4-Methoxyphenyl 2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→2)-3-O-benzoyl-4,6-O-

benzylidene-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→3)]-6-O-

tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (11). 

Compound 2 (2.01 g, 1.94 mmol) was added to a solution of 9 (2.45 g, 4.66 mmol) in anhydrous 

CH2Cl2 (15 mL), and then diluted with anhydrous Et2O (30 mL).  The mixture was kept stirring at rt 

for 30 min under Ar atmosphere in the presence of activated powdered MS AW 300 (2.0 g).  N-

Iodosuccinimide (2.18 g, 9.70 mmol) was added to the mixture, and then it was cooled down to −40 °C 

under Ar atmosphere.  Triflic acid (68 μL, 776 μmol) in anhydrous Et2O was injected to the mixture.  

After stirring for 3 h, excess amount of Et3N was added to terminate the reaction.  The mixture was 

filtered through a bed of Celite, diluted with CHCl3, washed successively with 5 wt% aq Na2S2O3, satd 

aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered through a Celite bed, and 

concentrated under reduced pressure.  The residue was subjected to silica gel column 

chromatography (n-hexane/EtOAc, 1:0 to 0:1, v/v, linear gradient), providing pure 11 (3.03 g, 1.61 

mmol, 83%) as a white solid. 

[α]D −28.2 (c 0.54, CHCl3); mp 90–91 °C; Rf 0.79 (n-hexane/EtOAc, 1:1); 1H NMR (400 MHz, 

CDCl3, TMS): δ 8.10–6.68 (57H, m, aromatic), 5.57 (1H, d, J1,2 3.6 Hz, H-1III), 5.46 (1H, s, -CH of 

p-methoxybenzylidene), 5.42 (1H, d, J1,2 8.0 Hz, H-1I), 5.18 (1H, d, J1,2 8.0 Hz, H-1II), 5.13 (1H, dd, 

J2,3 10.0, J3,4 3.8 Hz, H-3II), 4.98 (1H, d, Jgem 11.8 Hz, -CH2Ph), 4.91 (1H, m, H-5IV), 4.75–4.73 (2H, 

m, H-2I, H-3I), 4.67 (1H, d, J1,2 4.0 Hz, H-1IV), 4.62 (1H, d, Jgem 11.6 Hz, -CH2Ph), 4.57–4.49 (5H, 
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m, -CH2Ph×4, H-4I), 4.45–4.29 (7H, m, H-4II, H-2II, H-6IIb, -CH2Ph×4), 4.21 (1H, m, H-5III), 4.16 

(1H, m, H-6Ia), 4.05–3.98 (4H, m, H-6IIa, H-2III, H-3IV, -CH2Ph), 3.76 (3H, s, OMe), 3.71–3.65 (2H, 

m, H-6Ib, H-2IV), 3.55–3.52 (4H, m, OMe, H-3III), 3.45 (1H, d, J3,4 3.2 Hz, H-4III), 3.43 (1H, d, Jgem 

12.4 Hz, -CH2Ph), 3.33 (1H, m, H-5II), 3.20 (1H, m, H-5I), 3.09 (1H, s, H-4IV), 1.30 (1H, d, J5,6 7.2 

Hz, H-6III), 1.19 (1H, d, J5,6 6.4 Hz, H-6IV), 1.11 (9H, s, Me3 of tert-Bu); 13C NMR (100 MHz, 

CDCl3): δ 165.61, 159.97, 155.59, 151.32, 139.74, 139.57, 138.95, 138.78, 138.45, 138.19, 136.06, 

135.15, 133.093, 133.71, 132.32, 130.18, 130.09, 129.94, 129.89, 129.70, 128.88, 128.46, 128.39, 

128.33, 128.30, 128.27, 128.21, 128.18, 128.11, 128.04, 127.93, 127.82, 127.71, 127.57, 127.44, 

127.37, 127.34, 127.10, 127.08, 127.05, 126.97, 126.65, 119.18, 114.45, 113.43 (C=O, aromatic), 

99.86 (C1II), 99.83 (CH of p-methoxybenzylidene ), 98.75 (C1IV), 98.41 (C1I), 98.36 (C1III), 79.48 

(C4III), 79.38 (C3IV), 78.73 (C4IV), 77.96 (C3III), 77.55 (C4I), 76.61 (C2III), 76.16 (C3II), 75.99 (C5I), 

75.07, 74.73 (CH2Ph), 73.30 (C4II), 73.28 (CH2Ph), 73.09 (CH2Ph), 72.94 (C3I, CH2Ph), 72.83 

(C2IV), 72.31 (C2II), 71.38 (CH2Ph), 69.14 (C6II), 67.51 (C5III), 66.84 (C5IV), 66.33 (C5II), 61.47 

(C6I), 56.92 (C2I), 55.84, 55.10 (OMe), 26.87 (Me3 of tert-Bu), 19.74 (CMe3 of tert-Bu), 16.39 

(C6III), 16.31 (C6IV); HRMS (FAB, positive ion mode, NBA) m/z = 1892.7506 [M + Na]+, calcd for 

C112H115NO23SiNa, 1892.7527. 

 

4.7. 4-Methoxyphenyl 2,4,6-tri-O-acetyl-3-O-benzoyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-

acetyl-α-L-fucopyranosyl-(1→3)]-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-
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glucopyranoside (12). 

Compound 10 (0.43 g, 294 μmol) was dissolved in the mixture of dry MeOH (4.0 mL) and dry THF 

(4.0 mL) followed by addition of Pd(OH)2 on activated carbon (20%, 200 mg).  After stirring at rt 

under H2 atmosphere for 10 h, the mixture was filtered through filter paper, followed by concentration 

under reduced pressure.  To a solution of the residue in pyridine (8 mL) was added Ac2O (350 μL, 

3.70 mmol) under dry atmosphere at rt overnight, and methanol was added to quench excess reagents.  

The mixture was concentrated and coevaporated with toluene under reduced pressure.  The residue 

was dissolved in CHCl3, and washed with satd aq NaHCO3 and brine.  The organic layer was dried 

over MgSO4, filtered through a Celite bed, and concentrated under reduced pressure.  The residue 

was purified by silica gel column chromatography (Rf 75 system, n-hexane/EtOAc, 1:0 to 0:1, v/v, 

linear gradient) to afford 12 (153 mg, 116 μmol, 39%) as colorless amorphous. 

[α]D
30 −42.7 (c 0.05, CHCl3

 ); Rf 0.32 (n-hexane/EtOAc, 1:1); 1H NMR (CDCl3, 400 MHz, TMS): δ 

7.95–6.69 (23H, m, aromatic), 5.60 (d, 1H, J3,4 3.2 Hz, H-4III), 5.55 (d, 1H, J1,2 8.4 Hz, H-1I), 5.42 (s, 

1H, H-4III), 5.29–5.02 (m, 5H, H-3II, H-5II, H-1III, H-2III, H-3III), 4.98 (d, 1H, J1,2 4.0 Hz, H-1II), 

4.87–4.82 (m, 2H, H-3I, H-2II), 4.58–4.51 (m, 2H, H-2I, H-6IIIa), 4.37–4.30 (m, 2H, H-4I, H-6IIIb), 

3.91–3.84 (m, 1H, H-5I), 3.73 (s, 3H, OMe), 3.53 (bd, 1H, J5,6
 10.0 Hz, H-5III), 2.14–1.80 (m, 18H, 

Ac), 1.27 (d, 3H, J5,6 6.0 Hz, H-6II), 1.12 (s, 9H, Me3 of tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 

170.87, 170.73, 170.48, 170.42, 169.80, 169.05, 165.32 (C=O), 155.57, 150.98, 136.13, 135.89, 

134.56, 133.60, 130.25, 130.04, 129.94, 128.70, 128.23, 128.15, 127.84, 123.81, 118.83, 114.54 
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(aromatic), 99.92 (C1III), 97.74 (C1I), 95.45 (C1II), 75.56 (C5I), 74.17 (C4I), 72.00 (C3III), 71.60 

(C4II), 71.48 (C3I), 71.36 (C5III), 69.35 (C2III), 68.30 (C3II), 67.94 (C2II), 67.07 (C4III), 64.37 (C5II), 

61.19 (C6I), 61.10 (C6III), 56.60 (C2I), 55.74 (OMe), 27.01 (Me3 of tert-Bu), 20.95, 20.87, 20.81, 

20.67, 20.62 (Ac), 19.46 (CMe3 of tert-Bu), 16.10 (C6II); HRMS (ESI, positive ion mode) m/z = 

1340.4334 [M + Na]+, calcd for C68H75NO24SiNa, 1340.4360. 

 

4.8. 2,4,6-Tri-O-acetyl-3-O-benzoyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-

fucopyranosyl-(1→3)]-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-D-glucopyranose (13). 

Compound 12 (153 mg, 116 μmol) was dissolved in a mixed solution of CH3CN-H2O (8.0 mL – 2.0 

mL) followed by addition of cerium(IV) ammonium nitrate (CAN) (190 mg, 348μmol).  After stirring 

at rt for 6 h, the mixture was concentrated under reduced pressure to remove CH3CN.  The residue 

was dissolved in CHCl3, washed successively with satd aq NaHCO3 and brine.  The organic layer 

was dried over MgSO4, filtered through a Celite bed, and concentrated under reduced pressure.  The 

residue was purified by silica gel column chromatography eluting with CH3Cl/EtOAc (1:0 to 0:1, v/v, 

linear gradient, Rf 75 system) to afford 13 (86 mg, 70.9 μmol, 61%) as a yellowish amorphous powder.  

[α]D
28 −22.2 (c 0.1, CHCl3

 ); Rf 0.56 (CH3Cl/EtOAc, 2:1); 1H NMR (CDCl3, 400 MHz, TMS): δ 

7.94–7.41 (19H, m, aromatic), 5.58 (d, 1H, J3,4 3.2 Hz, H-4III), 5.39 (d, 1H, J3,4 3.2 Hz, H-4 II), 5.29–

5.16 (m, 3H, H-1I, H-3II, H-2III), 5.13–5.00 (m, 3H, H-1III, H-5II, ), 5.03 (dd, 1H, J2,3
 10.0, J3,4 10.0 

Hz, H-3III), 4.95 (d, 1H, J1,2
 4.0 Hz, H-1II), 4.84–4.77 (m, 2H, H-3I, H-2II), 4.54 (dd, 1H, J5,6a

 6.5, 
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J6a,6b
 11.2 Hz, H-6IIIa), 4.33–4.10 (m, 3H, H-4I, H-6IIIb, H-2I), 4.04 (m, 2H, H-6Ia, H-6Ib), 3.84–3.79 

(m, 1H, H-5III), 3.47 (m, 1H, H-5I), 2.66 (d, 1H, J1,OH 8.2 Hz, 1-OH), 2.13–1.85 (m, 18H, Ac), 1.25 

(d, 3H, J5,6 6.0 Hz, H-6II), 11.5 (s, 9H, CMe3 of tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 170.89, 

170.77, 170.48, 170.27, 169.82, 169.12, 165.35 (C=O), 136.26, 135.61, 134.55, 133.62, 133.45, 

132.46, 130.34, 130.12, 129.77, 129.15, 128.73, 128.21, 127.89, 123.77 (aromatic), 99.86 (C1III), 

95.30 (C1II), 92.86 (C1I), 75.79 (C5I), 74.19 (C4I), 72.04 (C3 III), 71.64 (C4II), 71.26 (C5III, C3I), 

69.36 (C2III), 68.28 (C3II), 68.05 (C2II), 67.02 (C4III), 64.37 (C5II), 61.37 (C6I), 61.09 (C6III), 58.58 

(C2I), 27.12 (CMe3 of tert-Bu), 20.99, 20.92, 20.84, 20.73, 20.71, 20.65 (Ac), 19.55 (CMe3 of tert-

Bu), 16.12 (C6II); HRMS (ESI, positive ion mode) m/z = 1234.3911 [M + Na]+, calcd for 

C61H69NO23SiNa, 1234.3927. 

 

4.9. 2,4,6-Tri-O-acetyl-3-O-benzoyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-

fucopyranosyl-(1→3)]-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl 

trichloroacetimidate (14). 

To a solution of compound 13 (32 mg, 26.4 μmol) in dry CH2Cl2 (5.0 mL) was added 

trichloroacetonitrile (53 μL, 527 μmol). After stirring at 0 oC under Ar atmosphere for 30 min, DBU 

(1 μL, 7.9 μmol) was added, then the reaction mixture was kept stirring at 0 oC under Ar atmosphere 

for 5 h.  The mixture was evaporated under reduced pressure.  The residue was purified by silica gel 

column chromatography (n-hexane-ethyl acetate containing 0.5% Et3N, 1:0 to 0:1, v/v, linear gradient, 
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Rf 75 system) to afford 14 (30 mg, 22.1 μmol, 83%) as colorless amorphous.  

[α]D
27 −42.7 (C 0.1, CHCl3

 ); Rf 0.41 (n-hexane/EtOAc 1:1 containing with Et3N); 1H NMR (CDCl3, 

400 MHz, TMS): δ 8.55 (s, 1H, -CNHCCl3), 7.96–7.30 (m,19H, aromatic), 6.36 (d, 1H, J1,2 8.8 Hz, 

H-1I), 5.60 (d, 1H, J3,4 3.2 Hz, H-4III), 5.42 (d, 1H, J3,4 2.8 Hz, H-4 II), 5.31 (dd, 1H, J1,2 10, J2,3 10 

Hz, H-2III), 5.24–5.19 (m, 2H, H-1III, H-3II), 5.16–5.12 (m, 2H, H-3III, H-5II), 5.01 (d, 1H, J1,2 4.0 Hz, 

H-1II), 4.91 (t, 1H, J2,3
 =J3,4=8.7 Hz, H-3I), 4.82 (dd, 1H, J1,2 3.9, J2,3

 10.9 Hz, H-2II), 4.65–4.52 (m, 

2H, H-2I, H-6IIIa), 4.40–4.31 (m, 2H, H-4I, H-6IIIb), 4.08 (bs, 2H, H-6Ia, H-6Ib), 3.86 (m, 1H, H-5III), 

3.66–3.60 (m, 1H, H-5I), 2.13, 2.12, 2.09, 2.08, 1.93, 1.84 (s×6, 18H, Ac), 1.28 (d, 3H J5,6
 6.4 Hz, H-

6II), 1.15 (s, 9H, Me3 of tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 170.86, 170.82, 170.42, 170.21, 

169.77, 169.03, 165.30, 160.73 (C=O, -CNHCCl3), 136.14, 135.38, 134.59, 133.60, 133.47, 131.95, 

130.24, 130.02, 129.75, 128.69, 128.20, 127.80, 123.71 (aromatic), 99.95 (C1III), 95.39 (C1II), 93.62 

(C1I), 90.47 (-CCl3), 76.06 (C5I), 73.95 (C4I), 71.98 (C3III), 71.56 (C4II), 71.43 (C5III), 71.20 (C3I), 

69.31 (C2III), 68.22 (C3II), 68.09 (C2II), 67.10 (C4III), 64.38 (C5II), 61.18 (C6III), 60.09 (C6I), 55.58 

(C2I), 26.98 (C(CH3)3 of tert-Bu), 20.95, 20.89, 20.81, 20.65, 20.61 (Ac), 19.55 (C(CH3)3 of tert-

Bu), 16.09 (C6II); HRMS (ESI, positive ion mode) m/z = 1377.2974 [M + Na]+, calcd for 

C63H69N2O23SiCl3Na, 1377.3024.  

 

4.10. 2-(2-(2-(2-Azidoethoxy)ethoxy)ethoxy)ethyl 2,4,6-tri-O-acetyl-3-O-benzoyl-β-D-

galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-6-O-tert-
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butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (15). 

To a solution of compound 14 (40 mg, 29.8 μmol) in dry CH2Cl2 (5.0 mL) was added 2-(2-(2-(2-

azidoethoxy)ethoxy)ethoxy)ethanol (19 mg, 88.5 μmol) and activated 4Å molecular sieves (MS4A, 80 

mg).  After stirring at −50 oC under Ar atmosphere for 30 min, TMSOTf (2 μL, 8.85 μmol) was added 

to the mixture, followed by stirring at −50 oC under Ar atmosphere for 8 h.  After the reaction was 

completed, the reaction mixture was neutralized by addition of Et3N, filtered through a Celite bed, and 

the filtrate was concentrated under reduced pressure.  The residue was dissolved in CHCl3, and 

washed with satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered through 

a Celite bed, and concentrated under reduced pressure.  The residue was purified by silica gel column 

chromatography (n-hexane/EtOAc 1:0 to 0:1, v/v, Rf 75 system, linear gradient) to afford 15 (20 mg, 

14.2 μmol, 48%) as colorless amorphous. 

[α]D
29 −44.4 (c 0.1, CHCl3

 ); Rf 0.31 (n-hexane/EtOAc 2:3); 1H NMR (CDCl3, 400 MHz, TMS): δ 

7.95–7.36 (m,19H, aromatic), 5.58 (d, 1H, J3,4 3.2 Hz, H-4III), 5.40 (d, 1H, J3,4 2.4 Hz, H-4II), 5.28 

(dd, 1H, J1,2 8.4, J2,3 10.0 Hz, H-2III), 5.22–5.17 (m, 2H, H-1III, H-3II), 5.13–5.07 (m, 3H, H-1I, H-3III, 

H-5II), 4.95 (d, 1H, J1,2
 4.0 Hz, H-1II), 4.82 (dd, 1H, J1,2 4.0, J2,3

 10.9 Hz, H-2II), 4.77 (t, 1H, J2,3
 

=J3,4=9.9 Hz, H-3I), 4.55 (dd, 1H, J5,6a 6.7, J6a,6b 11.6 Hz, H-6IIIa), 4.35–4.22 (m, 3H, H-2I, H-4I, H-

6IIIb), 4.07–3.98 (m, 2H, H-6Ia, H-6Ib), 3.89–3.83 (m, 2H, H-5III, PEG), 3.65–3.25 (m, 16H, H-5I, 

PEG), 2.12, 2.10, 2.06, 1.91, 1.82 (s×6, 18H, Ac), 1.25 (d, 3H, J5,6
 6.4 Hz, H-6II), 1.15 (s, 9H, Me3 of 

tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 170.91, 170.89, 170.51, 170.29, 169.83, 169.12, 165.36 
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(C=O), 136.23, 135.50, 134.48, 133.62, 133.46, 132.25, 130.29, 130.07, 129.79, 129.16, 128.73, 

128.24, 127.85, 123.68 (aromatic) , 99.93 (C1III), 98.18(C1I), 95.36 (C1II), 75.44 (C5I), 74.38 (C4I), 

72.06 (C3III), 71.68 (C4II), 71.54 (C3I), 71.31 (C5III), 70.72, 70.64, 70.62, 70.54, 70.20, 70.16 (PEG), 

69.45 (C2III), 68.53 (PEG), 68.32 (C3II), 68.04 (C2II), 67.11 (C4III), 64.33 (C5II), 61.18 (C6I, C6III), 

56.71 (C2I), 50.79 (PEG), 27.07 (CMe3 of tert-Bu), 20.98, 20.95, 20.85, 20.71, 20.67 (Ac), 19.54 

(CMe3 of tert-Bu), 16.14 (C6II); HRMS (ESI, positive ion mode) m/z = 1435.5026 [M + Na]+, calcd 

for C69H84N4O26SiNa, 1435.5041 

 

4.11. 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-

(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-2-acetamido-2-deoxy-β-D-glucopyranoside 

(16). 

Compound 15 (51 mg, 36.8 μmol) was suspended in dry MeOH (5.0 mL) followed by the addition 

of ca. 28 wt-% MeONa in MeOH (3 μL, 19.7 μmol).  After stirring at rt under dry atmosphere 

overnight, the reaction mixture was neutralized by the addition of Dowex 50W-X4 (H+ form), filtered 

through cotton, and concentrated under reduced pressure.  The residue dissolved in EtOH (5.0 mL) 

was added NH2NH2·H2O (10 μL, 205.8 μmol).  After stirring at 90 °C for 7 h, reaction mixture was 

concentrated to dryness under reduced pressure.  The residue was dissolved in pyridine (5.0 mL) 

followed by addition of Ac2O (65 μL, 687.6 μmol) and DMAP (3 mg, 24.6 μmol).  After stirring at 

rt under dry atmosphere for 36 h, MeOH was added to quench excess reagents, followed by 
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concentration under reduced pressure.  The residue was dissolved in CHCl3, and washed with satd aq 

NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered through a Celite bed, and 

concentrated under reduced pressure.  The residue was roughly purified by silica gel column 

chromatography eluting with CH3Cl/MeOH (1:0 to 6:1, v/v, Rf 75 system, linear gradient).  The 

obtained compound was dissolved in dry THF (3.0 mL) followed by the addition of AcOH (5 μl, 91.8 

μmol) and 1M TBAF in THF (207 μl, 207 μmol).  After stirring at rt under Ar atmosphere for 72 h, 

the reaction mixture was concentrated under reduced pressure and extracted with CHCl3, washed with 

satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered through a Celite bed, 

and concentrated under reduced pressure.  The residue was purified by silica gel column 

chromatography eluting with CHCl3/MeOH (1:0 to 6:1, v/v, linear gradient, Rf 75 system) to afford 

the compound 16 (21 mg, 20.5 μmol, 56%, 4 steps) as colorless amorphous. 

[α]D
26 −71.4 (c 0.2, CHCl3

 ); Rf 0.24 (CHCl3/MeOH, 10:1); 1H NMR (CDCl3, 400 MHz, TMS): δ 

6.31 (d, 1H, J2,NHAc 9.4 Hz, NHAc), 5.42–5.38 (m, 3H, H-1II, H-4II, H-4III), 5.22 (dd, 1H J2,3 11.0, J3,4 

3.4 Hz, H-3II), 5.10–4.98 (m, 4H, H-2II, H-5II, H-2III, H-3III), 4.73 (d, 1H, J1,2 7.28 Hz, H-1III), 4.67 

(d, 1H, J1,2 8.40 Hz, H-1I), 4.50 (dd, 1H, J5,6a 6.2, J6a,6b 11.4 Hz, H-6aIII), 4.32 (dd, 1H, J5,6b 7.9, J6a,6b 

11.4 Hz, H-6bIII), 4.03–3.90 (m, 4H, H-2I, H-4I, H-6Ia, H-5III), 3.85–3.54 (m, 16H, H-3I, H-6Ib, 

PEG), 3.45–3.39 (m, 2H, PEG), 3.28–3.24 (m, 1H, H-5I), 2.30 (dd, 1H, J6a,OH 3.96, J6Ib,OH 9.6 Hz, I6-

OH), 2.19, 2.14, 2.13, 2.08, 2.05, 1.98, 1.97, 1.95 (s×8, 24H, Ac), 1.19 (d, 3H J5,6 6.5 Hz, H-6II); 13C 

NMR (CDCl3, 100 MHz): δ 171.70, 171.15, 170.87, 170.67, 170.64, 170.14, 169.79, 169.26 (C=O), 
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102.11 (C1I), 100.40 (C1III), 95.58(C1II), 75.45 (C5I), 74.55 (C4I), 73.76 (C5III), 71.73 (C4III, PEG), 

71.09, 71.05 (C3I, C3III), 70.99, 70.69, 70.67, 70.52, 70.10 (PEG), 69.47 (C2III), 68.59 (PEG), 68.11 

(C2II, C3II), 67.05 (C4II), 64.14 (C5II), 60.87 (C6I), 60.59 (C6III), 55.97 (C2I), 50.76 (PEG), 23.35, 

21.26, 20.96, 20.86, 20.83, 20.81, 20.76, 20.70 (Ac), 15.97 (C6II); HRMS (ESI, positive ion mode) 

m/z = 1047.3740 [M + Na]+, calcd for C42H64N4O25Na, 1047.3757. 

 

4.12. Triethylammonium {2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 2,3,4,6-tetra-O-acetyl-β-

D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-2-acetamido-2-deoxy-

6-O-sulfonato-β-D-glucopyranoside} (17). 

Compound 16 (28 mg, 27.3 μmol) was dissolved in dry DMF (3.0 mL) and Et3N (600 μL).  After 

stirring at 55 °C under Ar atmosphere for 20 min, the reaction mixture was added to SO3·NMe3 (145 

mg, 934 μmol).  After stirring at 55 °C for 72 h, MeOH (1 mL) was added to quench excess reagents, 

and evaporated under reduced pressure.  The residue was purified by LH-20 size exclusion column 

chromatography eluting with MeOH to afford 17 (30 mg, 24.9 μmol, 91%) as colorless amorphous.   

[α]D
23 −83.8 (c 0.07, MeOH ); Rf 0.17 (CHCl3/MeOH 10:1); 1H NMR (400 MHz, CDCl3, TMS): δ 

9.46 (1H, bs, SO3H), 6.43 (d, 1H, J2,NHAc 9.6 Hz, NHAc), 5.45 (bs, 1H, H-4III), 5.39 (d, 1H, J1,2 3.8 

Hz, H-1II), 5.36 (bd, 1H, J3,4 3.0 Hz, H-4II), 5.26 (dd, 1H, J2,3 10.9, J3,4 3.3 Hz, H-3II), 5.10–4.97 (m, 

5H, H-2II, H-3III, H-5II, H-1III, H-2III), 4.60 (d, 1H, J1,2 8.40 Hz, H-1I), 4.44 (dd, 1H, J5,6a 5.8, J6a,6b 

11.2 Hz, H-6IIIa), 4.32 (bs, 2H, H-6Ia, H-6Ib), 4.26 (dd, 1H, J5,6b 8.7, J6a,6b 11.1 Hz, H-6IIIb), 4.05–
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3.93 (m, 3H, H-2I, H-5III, PEG), 3.80–3.54 (m, 14H, PEG), 3.47–3.42 (m, 4H, H-3I, H-4I, H-5I, 

PEG), 3.20 (6H, m, N(CH2CH3)3), 2.17, 2.14, 2.12, 2.08, 2.06, 1.96, 1.95, 1.94 (s×8, 24H, Ac), 1.40 

(t, 9H, J 7.3 Hz, N(CH2CH3)3), 1.20 (d, 3H, J5,6 6.5 Hz, H-6II); 13C NMR (CDCl3, 100 MHz): δ 

171.60, 171.26, 170.83, 170.61, 169.83, 169.80, 169.79, 169.76 (C=O), 102.04 (C1I), 99.66 (C1III), 

95.53 (C1II), 74.63 (PEG), 73.79 (C3I, C5I), 73.43 (C5III), 71.83 (C4II), 71.65 (PEG), 71.29 (C3III), 

70.88 (PEG), 70.72 (C4I), 70.65, 70.61, 70.46, 70.06 (PEG), 69.44 (C2III), 68.47 (PEG), 68.20 (C2II), 

67.94 (C3II), 67.25 (C4III), 64.91 (C6I), 64.30 (C5II), 60.64 (C6III), 55.46 (C2I), 50.78 (PEG), 46.71 

(N(CH2CH3)3), 23.30, 21.22, 21.02×2, 20.88, 20.83, 20.77, 20.69 (Ac), 15.97 (C6II), 8.83 

(N(CH2CH3)3): HRMS (ESI, negative ion mode) m/z = 1103.3360 [M − HNEt3]
−, calcd for 

C48H63N4O28S, 1103.3350. 

 

4.13. 4-Methoxyphenyl 2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-

benzoyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-6-O-tert-

butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (18). 

To a solution of compound 11 (1.00 g, 0.53 mmol) in 20.0 mL of THF–MeOH (1:1,v/v) was added 

Pd(OH)2-C (20%, 0.25 g, 1.78 mmol).  After stirring at rt under H2 for 10 h, the reaction mixture was 

filtered through a Celite bed, and the filtrate was concentrated under reduced pressure.  The residue 

was dissolved in dry pyridine (10.0 mL), followed by addition of DMAP (64 mg 0.53 mmol) and Ac2O 

(1.0 mL, 10.6 mmol).  After stirring at rt under dry atmosphere for 24 h, MeOH was added to quench 
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excess reagents, and then concentrated and coevaporated with toluene under reduced pressure.  The 

residue was dissolved in CHCl3, and washed with satd aq NaHCO3 and brine.  The organic layer was 

dried over MgSO4, filtered through a Celite bed, and concentrated under reduced pressure.  The 

residue was subjected to silica gel column chromatography eluting with n-hexane/EtOAc (1:2, v/v, 

containing 0.5% Et3N) to afford 18 (562 mg, 0.36 mmol, 68%) as colorless amorphous.  

[α]D
27 −110.1 (c 0.03, CHCl3

 ); Rf 0.63 (n-hexane/EtOAc, 1:2); 1H NMR (400 MHz, CDCl3, TMS): δ 

7.89–7.32, 7.23–6.74 (23H, m, aromatic), 5.51 (bd, 1H, J3,4 3.4 Hz, H-4II), 5.45 (d, 1H, J1,2 8.5 Hz, 

H-1I), 5.40 (bd, 1H, J3,4 2.7 Hz, H-4III), 5.26–5.09 (7H, m, H-1IV, H-4IV, H-3III, H-3II, H-1II, H-2IV, H-

5II), 4.97–4.81 (m, 4H, H-1III, H-3IV, H-2III, H-3I), 4.59 (dd, 1H, J1,2 8.6, J2,3 10.0 Hz, H-2I), 4.53–

4 .40 (m, 3H, H-4I
, H-6IIa, H-5IV), 4.30 (dd, 1H, J5,6 7.4, J6a,6b 11.4 Hz, H-6IIb), 4.23–4.15 (m, 2H, H-

6Ia, H-6Ib), 3.92 (bt, 1H, J1,2=J2,3=9.0 Hz, H-2II), 3.85–3.80 (m, 1H, H-5II), 3.75 (s, 3H, OMe), 3.47–

3.43 (m, 1H, H-5I), 2.15, 2.11, 2.09, 2.08, 2.07, 1.92, 1.86, 1.72 (s×8, 24H, Ac), 1.27–1,24 (m, 6H, 

H-6III, H-6IV), 1.16 (s, 9H, Me3 of tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 171.00, 170.88, 170.67, 

170.40, 170.15, 169.88, 169.85, 169.61, 169.15 (C=O), 155.69, 1150.94, 135.99, 135.41, 134.55, 

133.90, 133.46, 132.04, 130.04, 129.99, 129.93, 129.96, 128.90, 128.27, 128.15, 127.89, 127.86 

(aromatic), 99.86 (C1II), 98.16 (C1I), 97.72 (C1IV), 95.92 (C1III), 75.42 (C5I), 74.21 (C2II), 74.07 

(C3II), 73.04 (C4I), 72.47 (C3I), 71.70 (C4III), 71.20 (C5II), 71.06 (C4IV), 68.23 (C3III), 67.98 (C3IV), 

67.67 (C2III), 67.27(C4II), 66.88 (C2IV), 65.41 (C5IV), 64.41 (C5III), 61.14, 61.08 (C6I, C6II), 56.83 

(C2I), 55.80 (OMe), 27.16 (Me3 of tert-Bu), 21.06, 20.97, 20.82, 20.73, 20.69×2, 20.67, 20.34 (Ac), 



34 

 

19.43 (CMe3 of tert-Bu), 15.59, 15.52 (C6III, C6IV); HRMS (ESI, positive ion mode) m/z = 

1570.5151 [M + Na]+, calcd for C78H89NO30SiNa, 1570.5136. 

 

4.14. 2,3,4-Tri-O-acetyl-α-L-fucopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzoyl-β-D-

galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-6-O-tert-

butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (19). 

Compound 18 (562 mg, 0.36 mmol) was dissolved in a mixed solution of CH3CN (8.0 mL)–H2O (2.0 

mL) followed by addition of CAN (592 mg, 1.08 mmol).  After stirring at rt for 2 h, the reaction 

mixture was extracted with CHCl3, washed successively with satd aq NaHCO3 and brine.  The 

organic layer was dried over MgSO4, filtered through a Celite bed, and concentrated under reduced 

pressure.  The residue was purified by silica gel column chromatography (CHCl3/MeOH, 30:1, 

containing 0.5% Et3N) to afford the corresponding anomer-free compound (440 mg).  To a solution 

of this compound (440 mg) in dry CH2Cl2 (10 mL) was added CCl3CN (290 μL, 2.90 mmol).  After 

stirring at 0 °C under Ar for 15 min, DBU (13 μL, 87 μmol) was added to the mixture.  After kept 

stirring for 4 h, the mixture was concentrated under reduced pressure.  The residue was purified by 

silica gel column chromatography (CHCl3/EtOAc, 3:1, containing 0.5% Et3N ) to afford 19 (314 mg, 

0.20 mmol, 2 steps, 56%) as colorless amorphous.  

[α]D
27 −77.4 (c 0.5, CHCl3

 ); Rf 0.57 (CHCl3/EtOAc 2:1); 1H NMR (400 MHz, CDCl3, TMS): δ 8.58 

(s, 1H, NH), 7.90–7.32 (19H, m, aromatic), 6.32 (d, 1H, J1,2 8.8 Hz, H-1I), 5.51 (bd, 1H, J3,4 3.6 Hz, 
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H-4II), 5.39 (bd, 1H, J3,4 2.8 Hz, H-4III), 5.26–5.24 (m, 2H, H-1IV, H-4IV), 5.23–5.16 (m, 2H, H-3II, H-

3III), 5.14-5.07 (m, 3H, H-5III, H-1II, H-2IV), 5.02–4.95 (m, 2H, H-3IV, H-1III), 4.94–4.84 (m, 2H, H-3I, 

H-2III), 4.63 (dd, 1H, J1,2 8.9, J2,3 10.2 Hz, H-2I), 4.53–4.44 (m, 2H, H-4I, H-6IIa), 4.42–4.36 (m, 1H, 

H-5IV), 4.33-4.18 (m, 3H, H-6Ia, H-6Ib, H-6IIb), 3.92 (dd, 1H, J1,2 8.1, J2,3 9.9 Hz, H-2II), 3.80–3.75 

(m,1H, H-5II), 3.62–3.58 (m, 1H, H-5I), 2.12, 2.11, 2.09, 2.08, 2.07, 1.93, 1.86, 1.71 (s×8, 24H, Ac), 

1.28–1.24 (m, 6H, H-6III, H-6IV), 1.16 (s, 9H, CMe3 of tert-Bu); 13C NMR (CDCl3, 100 MHz): δ 170.97, 

170.86, 170.53, 170.38, 170.13, 169.86, 169.61, 168.05, 165.23, 160.74 (C=O), 136.03, 135.40, 

134.65, 133.87, 133.57, 132.19, 131.45, 130.09, 130.01, 129.57, 128.95, 128.72, 128.20, 127.88, 

123.72 (aromatic, C=NH), 100.01 (C1II), 97.80 (C1IV), 95.89 (C1III), 94.08 (C1I), 90.48 (CCl3), 76.03 

(C5I), 74.39 (C2II), 73.97 (C3II), 72.99 (C4I), 72.12 (C3I), 71.65 (C4III), 71.25 (C5II), 71.15 (C4IV), 

68.14 (C3III), 67.86 (C3IV), 67.83 (C2III), 67.33 (C4II), 67.02 (C2IV), 65.57 (C5IV), 64.42 (C5III), 61.14, 

61.08 (C6I, C6III), 55.73 (C2I), 27.14 (CMe3 of tert-Bu), 21.00, 20.98, 20.82, 20.70, 20.68, 20.65, 20.64, 

20.34 (Ac), 19.66 (CMe3 of tert-Bu), 16.14, 15.73 (C6III, C6IV); HRMS (ESI) m/z = 1340.4334 [M + 

Na]+, calcd for C68H75NO24SiNa, 1340.4360. 

 

4.15. 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→2)-

4,6-di-O-acetyl-3-O-benzoyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-

fucopyranosyl-(1→3)]-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-β-D-glucopyranoside 

(20). 



36 

 

To a solution of compound 19 (314 mg, 200 μmol) and 2-(2-(2-(2-

azidoethoxy)ethoxy)ethoxy)ethanol (65 mg, 0.30 mmol) in dry CH2Cl2 (5.0 mL) was added activated 

MS4A.  The mixture was kept stirring at −50 °C for 15 min under Ar atmosphere, followed by 

addition of TMSOTf (11 μL, 59 μmol).  After stirring at −50 °C for 30 min, Et3N was added to 

terminate the reaction.  The mixture was filtered through a Celite bed, and the filtrate was washed 

successively with satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered 

through a Celite bed, and concentrated under reduced pressure.  The residue was purified by silica 

gel chromatography (n-hexane/EtOAc 1:2, v/v, containing 0.5% Et3N) to afford 20 (262 mg, 159 μmol, 

80%) as colorless amorphous. 

 [α]D
25 −73.6 (c 0.1, CHCl3

 ); Rf 0.39 (n-hexane/EtOAc 2:3); 1H NMR (400 MHz, CDCl3, TMS): δ 

7.90–7.36 (19H, m, aromatic), 5.50 (bd, 1H, J3,4 3.8 Hz, H-4II), 5.38 (bd, 1H, J3,4 3.0 Hz, H-4III), 5.26–

5.08 (m, 7H, H-1IV, H-4IV, H-3III, H-3II, H-1I, H-5III, H-3IV), 5.02 (d, 1H, J1,2 8.5 Hz, H-1I), 4.98–4.93 

(m, 2H, H-2IV, H-1III), 4.87 (dd, 1H, J1,2 4.0, J2,3 11.0 Hz, H-2III), 4.78 (t, 1H, J2,3=J3,4=9.7 Hz, H-3I), 

4.50–4.38 (m, 3H, H-5IV, H-6IIa, H-4I), 4.36–4.26 (m, 2H, H-2I, H-6IIb), 4.20 (bs, 2H, H-6Ia, H-6Ib), 

3.95–3.88 (m, 2H, H-2II, PEG), 3.82–3.78 (m, 1H, H-5II), 3.70–3.23 (m, 16H, H-5I, PEG), 2.11, 2.10, 

2.08×2, 2.07, 1.92, 1.87, 1.73 (s×8, 24H, Ac), 1.27–1.24 (m, 6H, C6III, C6IV), 1.16 (s, 9H, Me3 of tert-

Bu); 13C NMR (CDCl3, 100 MHz): δ 170.96×2, 170.88, 170.67, 170.38, 170.13, 169.86×2, 169.63, 

165.22×2 (C=O), 136.06, 135.47, 134.46, 133.88, 133.52, 132.40, 130.06, 130.01, 129.56, 128.94, 

128.73, 128.22, 127.87, 123.61 (aromatic), 99.88 (C1II), 98.50 (C1I), 97.63 (C1IV), 95.81 (C1III), 75.30 



37 

 

(C5I), 74.07 (C2II, C3II), 73.28 (C4I), 72.51 (C3I), 71.72 (C4III), 71.14 (C5II), 71.07(C4IV), 770.87, 

70.83, 70.76, 70.72, 70.66, 70.61, 70.55, 70.15, 70.10, 68.88 (PEG), 68.19 (C3III), 68.03 (C2IV), 67.75 

(C2III), 67.30 (C4II), 66.93 (C3IV), 65.41 (C5IV), 64.34 (C5III), 61.27 (C6I), 61.04 (C6II), 56.87 (C2I), 

50.80 (PEG), 27.15 (CMe3 of tert-Bu), 21.01, 20.96, 20.83, 20.70×2, 20.68×2, 20.37 (Ac), 19.61 

(CMe3 of tert-Bu), 16.14, 15.65 (C6III,C6IV); HRMS (ESI) m/z = 1665.5807 [M + Na]+, calcd for 

C79H98N4O32SiNa, 1665.5831. 

 

4.16. 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→2)-

3,4,6-tri-O-acetyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-L-fucopyranosyl-(1→3)]-6-

O-tert-butyldiphenylsilyl-2-acetamido-2-deoxy-β-D-glucopyranoside (21). 

To a solution of compound 20 (262 mg, 159 μmol) in MeOH (5.0 mL) was added MeONa in MeOH 

solution (ca. 28 wt%; 32 μL, 159 μmol).  After stirring at rt for 2 h, DOWEX 50W-X8 (H+ form) 

was added to neutralize the reaction system, and then filtered through cotton, concentrated under 

reduced pressure to obtain the crude mixture (203 mg).  To a solution of the mixture (164 mg, 136 

μmol) in EtOH (4.0 ml) was added NH2NH2·H2O (33 μL, 681 μmol).  After stirring at 90 °C for 13 

h, the reaction mixture was concentrated under reduced pressure.  The residue was dissolved in 

pyridine (5.0 mL), followed by addition of Ac2O (192 μL, 2.04 mmol) and DMAP (8 mg, 68.0 

μmol).  After stirring at rt under dry atmosphere overnight, MeOH (1 mL) was added to quench 

excess reagents, and the mixture was concentrated with toluene under reduced pressure.  The 
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residue was dissolved in CHCl3, washed with satd aq NaHCO3 and brine.  The organic layer was 

dried over MgSO4, filtered through a Celite bed, and concentrated under reduced pressure.  The 

residue was purified by silica gel chromatography (MeOH/EtOAc, 1:30, v/v, containing 1% Et3N) to 

afford 21 (151 mg, 101 μmol, 64%) as colorless amorphous. 

[α]D
25 −115.5 (c 0.24, CHCl3

 ); Rf 0.51 (CHCl3/MeOH, 10:1); 1H NMR (400 MHz, CDCl3, TMS): δ 

7.76–7.70, 7.42–7.32 (m, 10H, aromatic), 6.11 (d,1H, J2,NH 8.6 Hz, NH), 5.39–5.37 (m, 2H, H-1IV, 

H-4III), 5.33–5.28 (m, 2H, H-4I, H-1III), 5.24 (dd, 1H, J2,3 11.0, J3,4 3.0 Hz, H-3III), 5.17 (bs, 1H, H-

4IV), 5.07–4.95 (m, 5H, H-1II, H-2III, H-3IV, H-2IV, H-5III), 4.92 (dd, 1H, J2,3 10.0, J3,4 3.5 Hz, H-

3II),4.61 (d, 1H, J1,2
 7.4 Hz, H-1I), 4.45 (dd, 1H, J5,6a 6.4, J6a,6b 11.5 Hz, H-6IIa), 4.32–4.20 (m, 3H, 

H-4I, H-6IIb, H-5IV), 4.15–4.04 (m, 2H, H-6Ia, H-6Ib), 3.93-3.86 (m, 4H, H-2I, H-3I, PEG×1), 3.78-

3.59 (m, 14H, H-2II, H-5II, PEG×6), 3.42–3.39 (m, 2H, PEG×1), 3.16–3.12 (m, 1H, H-5I), 2.18, 2.14, 

2.13, 2.11, 2.05×2, 1.99, 1.96, 1.95, 1.91 (s×10, 3H×10, Ac×10), 1.17–1.06 (m, 15H, H-6IV, H-6III, 

Me3 of tert-Bu); 13C NMR (100 MHz, CDCl3): δ 171.64, 171.37, 170.90, 170.66, 170.60×2, 170.39, 

170.24, 169.86, 169.80 (C=O), 136.05, 135.46, 133.61, 132.47, 129.89, 128.07, 127.81 (aromatic), 

101.48 (C1I), 100.56 (C1II), 96.64 (C1III), 96.09 (C1IV), 75.37 (C5I), 73.61 (C2II), 73.40 (C3II), 73.08 

(C4I), 71.79 (C4III), 71.36, 71.07 (PEG), 70.97 (C4IV), 70.94 (C5II), 70.68, 70.67, 70.55, 70.07 

(PEG), 68.19 (C3III), 68.10 (C3I, C2IV), 68.04 (C2I), 67.96 (C2III), 67.72 (C3IV), 67.33 (C4II), 65.03 

(C5IV), 64.06 (C5III), 61.36 (C6I), 61.04 (C6II), 50.78 (PEG), 27.10 (Me3 of tert-Bu), 23.48, 21.33, 

20.96, 20.84×2, 20.83×3, 20.76, 20.71, (Ac), 19.57 (CMe3 of tert-Bu) 16.14, 15.71 (C6III, C6IV); 
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HRMS (ESI, positive ion mode) m/z = 1510.6196 [M + NH4]
+, calcd for C68H100N5O31Si1, 

1510.6172. 

 

4.17. Sodium {2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl β-D-galactopyranosyl-(1→4)-[α-L-

fucopyranosyl-(1→3)]-2-acetamido-2-deoxy-6-O-sulfonato-β-D-glucopyranoside} (3). 

To a solution of the compound 17 (30 mg, 24.9 μmol) in MeOH (3.0 mL) was added MeONa (ca. 28 

wt-%) in MeOH (2 μL, 12.4 μmol ).  After stirring at rt overnight, the reaction mixture was 

concentrated under reduced pressure.  The residue was purified by Biogel P-2 gel column eluting 

with H2O to afford 3 (13 mg, 15.6 μmol, 63%) as colorless amorphous. 

 [α]D
25 −37.5 (c 0.2, MeOH); Rf 0.51(CHCl3/MeOH/H2O, 5:4:1); 1H NMR (400 MHz, CD3OD): δ 

5.04 (d, 1H, J1,2 3.9 Hz, H-1II), 4.83–4.76 (m, 1H, H-5II), 4.59 (d, 1H, J1,2 7.6 Hz, H-1III), 4.55 (d, 1H, 

J1,2 7.7 Hz, H-1I), 4.44 (dd, 1H, J5,6a 3.4, J6a,6b 10.8 Hz, H-6IIIa), 4.31 (dd, 1H, J5,6b 2.5, J6a,6b 10.9 Hz, 

H-6IIIb), 3.98–3.84 (m, 5H, H-2I, H-3II, H-4I, PEG×1), 3.82 (d, 1H, J3,4 2.9 Hz, H-4III), 3.79–3.61 (m, 

18H, H-6Ia, H-6Ib, H-2II, H-3I, H-4II, H-5III, PEG×6), 3.56–3.1 (m, 2H, H-3 III, H-5I), 3.47 (dd, 1H, 

J1,2 7.6, J2,3 9.6 Hz, H-2III), 3.42–3.38 (m, 2H, PEG×1), 1.97 (s, 3H, Ac), 1.17 (d, 3H, J5,6 6.5 Hz, H-

6II); 13C NMR (CD3OD, 100 MHz) δ 173.83 (C=O),103.61 (C1III), 102.40 (C1I), 100.15 (C1II), 76.40 

(C5I), 76.27, 75.17, 75.07, 74.80, 73.72 (C4II, C3III, C5III, C3I, C4I), 72.97 (C2III), 71.51, 71.48, 

71.44, 71.40, 71.35 (PEG), 71.15 (C3II), 71.04 (PEG), 70.11 (C4III), 69.98 (C2II), 69.94 (PEG), 67.72 

(C5II), 66.96 (C6III), 62.66 (C6I), 56.71 (C2I), 51.77 (PEG), 23.08 (Ac), 16.61 (C6II); HRMS (ESI, 
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negative ion mode) m/z = 809.2626 [M − Na]−, calcd for C28H49N4O21S, 809.2610. 

 

4.18. 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl β-D-galactopyranosyl-(1→4)-[α-L-

fucopyranosyl-(1→3)]-2-acetamido-2-deoxy-β-D-glucopyranoside (4). 

Compound 15 (51 mg, 36.1 μmol) was suspended in dry MeOH (3.0 mL) followed by the addition of 

ca. 28 wt-% MeONa in MeOH (5 μL, 32.9 μmol).  After stirring at rt under dry atmosphere overnight, 

the reaction mixture was neutralized by the addition of Dowex 50W-X4 (H+ form), filtered through 

cotton, and concentrated under reduced pressure.  The residue dissolved in EtOH (4.0 mL) was added 

NH2NH2·H2O (10 μL, 212.8 μmol).  After stirring at 90 °C overnight, the reaction mixture was 

concentrated under reduced pressure.  To a solution of the residue in pyridine (3.0 mL) was added 

Ac2O (50 μL, 530.7 μmol).  After stirring at rt under dry atmosphere for 36 h, MeOH (1 mL) was 

added to quench excess reagents, then concentrated with toluene under reduced pressure.  The residue 

was purified by silica gel column chromatography (CH3Cl/MeOH, 1:0 to 6:1, v/v, linear gradient, Rf 

75 system).  The obtained compound was dissolved in dry THF (3.0 mL) followed by the addition of 

AcOH (3 μL, 58.6 μmol) and 1M TBAF in THF (550 μl, 550 μmol).  After stirring at rt under Ar 

atmosphere for 3 days, the reaction mixture was concentrated under reduced pressure and extracted 

with CHCl3, washed with satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, 

filtered through a Celite bed, and concentrated under reduced pressure.  The residue was roughly 

purified by silica gel column chromatography (CHCl3/Methnol, 1:0 to 6:1, v/v, linear gradient, Rf 75 
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system) to afford 16.  To a solution of 16 in MeOH (4.0 mL) was added MeONa in MeOH (ca. 28 

wt-%, 6 μL, 40.9 μmol).  After stirring at rt overnight, the reaction mixture was concentrated under 

reduced pressure.  The residue was subjected to LH-20 size-exclusion column chromatography 

eluting with H2O, and then to reversed phase column chromatography eluting with H2O/MeOH (1:0 

to 0:100, v/v, linear gradient, Rf 75 system) to afford 4 (4 mg, 5.47μmol, 15%, 5 steps) as colorless 

amorphous. 

[α]D
24 −56.0 (c 0.04, MeOH); Rf 0.58 (CHCl3/MeOH/H2O, 5:4:1); 1H NMR (400 MHz, CD3OD): δ 

5.03 (d, 1H, J1,2 3.9 Hz, H-1II), 4.86–4.81 (m, 1H, H-5II), 4.54 (d, 1H, J1,2 7.5 Hz, H-1I), 4.44 (d, 1H, 

J1,2 7.3 Hz, H-1III), 3.95–3.84 (m, 6H, H-6IIIa, H-4I, H-2I, H-3II, PEG×1), 3.82–3.60 (m, 19H, H-4III, 

H-6Ia, H-4II, H-6IIIb, H-6Ib, H-5III, H-2II, PEG×6), 3.54–3.35 (m, 6H, H-2III, H-3III, H-3I, H-5I, 

PEG×1), 1.97 (s, 3H, Ac), 1.18 (d, 3H, J5,6 6.6 Hz, H-6II); 13C NMR (CD3OD, 100 MHz): δ 173.90 

(C=O), 103.89 (C1III), 102.40 (C1I), 100.35 (C1II), 77.42 (C5I), 76.66 (C3I, C5III), 75.17 (C3II), 74.90 

(C3III), 73.69 (C4II), 72.75 (C2III), 71.69, 71.62, 71.54, 71.51 (PEG), 71.22 (C4I), 71.13 (PEG), 70.00 

(C4III), 69.94 (C2II), 69.90 (PEG), 67.67 (C5II), 62.77 (C6I), 61.39 (C6III), 57.38 (C2I), 51.77 (PEG), 

23.12 (Ac), 16.61 (C6II); HRMS (ESI, positive ion mode) m/z = 753.3000 [M + Na]+, calcd for 

C28H50N4O18Na, 753.3018. 

 

4.19. 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl α-L-fucopyranosyl-(1→2)-β-D-

galactopyranosyl-(1→4)-[α-L-fucopyranosyl-(1→3)]-2-acetamido-2-deoxy-β-D-glucopyranoside 
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(5). 

Compound 21 (24 mg, 16.1 μmol) was dissolved in THF (3 mL) followed by addition of AcOH (3 

μl, 64.3 μmol) and TBAF (156 μL, 156 μmol).  After stirring at rt under Ar atmosphere for 72 h, the 

reaction mixture was concentrated under reduced pressure and extracted with CHCl3, washed 

successively with satd aq NaHCO3 and brine.  The organic layer was dried over Na2SO4, filtered 

through a Celite bed, and concentrated under reduced pressure.  The residue was roughly purified 

by silica gel column chromatography eluting with CH3Cl/MeOH (1:0 to 6:1, v/v, linear gradient, Rf 

75 system).  To a solution of the obtained product in dry MeOH (3 mL) was added MeONa in 

MeOH (ca. 28 wt-%, 10 μL, 56.8 μmol).  After stirring at rt overnight, the reaction mixture was 

added DOWEX 50W-X4 (H+ form) to neutralize the reaction system, and then filtered and 

concentrated under reduced pressure.  The residue was purified by LH20 column chromatography 

eluting with MeOH to afford 5 (8 mg, 9.1 μmol, 57%, 2 steps) as colorless amorphous. 

[α]D
22 −104.4 (c 0.01, MeOH ); Rf 0.53 (CHCl3/MeOH/water, 5:4:1); 1H NMR (400 MHz, CD3OD): 

δ 5.17 (d, 1H, J1,2 3.2 Hz, H-1IV), 5.03 (d, 1H, J1,2 3.9 Hz, H-1III), 4.88–4.79 (m, 1H, H-5IV), 4.54-

4.51 (m, 2H, H-1I, H-1II), 4.22–4.16 (m, 1H, H-5III), 3.95–3.61 (m, 29H, PEG×6, H-2I, H-3I, H-4I, H-

6Ia, H-6Ib, H-2II, H-3II, H-4II, H-5II, H-6IIa, H-6IIb, H-2III, H-3III, H-4III, H-2IV, H-3IV, H-4IV), 3.47–

3.43 (m, 1H, H-5I), 3.39–3.35 (m, 2H, PEG×1), 1.97 (s, 3H, Ac), 1.26–1.21 (m, 6H, H-6III, H-6IV); 

13C NMR (CDCl3, 100 MHz): δ 173.89 (C=O), 102.53, 102.21 (C1I, C1II), 102.14 (C1IV), 100.36 

(C1III), 79.45, 77.45, 76.72, 76.64, 76.52, 75.30, 74.46, 73.71, 73.67, 71.87, 71.68, 71.60, 71.53, 
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71.25, 71.13, 70.79, 70.13, 69.96, 69.93 (C5I, C4I, C5II, C3I, C4II, C2II, C3II, C4II, C2III, C3III, C2IV, 

C3IV, C4IV, PEG), 68.28 (C5III), 67.65 (C5IV), 62.94, 62.71 (C6I, C6II), 57.32 (C2I), 51.78 (PEG), 

23.12 (Ac), 16.86, 16.80 (C6III, C6IV); HRMS (ESI, positive ion mode) m/z = 899.3592 [M + Na]+, 

calcd for C34H60N4O22Na, 899.3597. 

 

4.20. A typical procedure for synchronous synthesis of 10 and 11. 

Compound 2 (100 mg, 96.3 μmol) was added to a solution of 9 (90 mg, 170.9 μmol) in anhydrous 

CH2Cl2 (1.0 mL), and then diluted with anhydrous Et2O (2.0 mL).  The mixture was kept stirring at 

rt for 30 min under Ar atmosphere in the presence of activated MSAW 300 (100 mg).  N-

Iodosuccinimide (55 mg, 244.5 μmol) was added to the mixture, and then it was cooled down to 

−40 °C under Ar atmosphere.  Triflic acid (1.7 μL, 19.3 μmol) in anhydrous Et2O (100 μL) was 

injected to the mixture.  After stirring for 1 h, excess amount of Et3N was added to terminate the 

reaction.  The mixture was filtered through a Celite bed, diluted with CHCl3, washed successively 

with 5% aq Na2S2O3, satd aq NaHCO3 and brine.  The organic layer was dried over MgSO4, filtered 

through a Celite bed, and concentrated under reduced pressure.  The residue was subjected to silica 

gel column chromatography (n-hexane/EtOAc, 1:0 to 0:1, v/v, linear gradient, Rf75 system), 

providing 10 (69 mg, 48.4 μmol, 49%) and 11 (73 mg, 43.3 μmol, 45%). 
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