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Abstract 7 

Age prediction with epigenetic information is now edging closer to practical use in forensic community. 8 

Many age-related CpG (AR-CpG) sites have proven useful in predicting age in pyrosequencing or DNA chip 9 

analyses. In this study, a wide range methylation status in the ELOVL2 and FHL2 promoter regions were 10 

detected with methylation-sensitive high resolution melting (MS-HRM) in a labor-, time-, and cost-effective 11 

manner. Non-linear-distributions of methylation status and chronological age were newly fitted to the logistic 12 

curve. Notably, these distributions were revealed to be similar in 22 living blood samples and 52 dead blood 13 

samples. Therefore, the difference of methylation status between living and dead samples suggested to be 14 

ignorable by MS-HRM. Additionally, the information from ELOVL2 and FHL2 were integrated into a 15 

logistic curve fitting model to develop a final predictive model through the multivariate linear regression of 16 

logit-linked methylation rates and chronological age with adjusted R2 = 0.83. Mean absolute deviation 17 

(MAD) was 7.44 for 74 training set and 7.71 for 30 additional independent test set, indicating that the final 18 

predicting model is accurate. This suggests that our MS-HRM-based method has great potential in predicting 19 

actual forensic age. 20 
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1. Introduction 26 

 27 

Although age is one of the most important pieces of information for criminal investigations, there are few 28 

techniques available to predict age in actual practice, such as examining bones or teeth morphologically. 29 

These techniques require expert medical experience, but the result of prediction might not be “objective”. 30 

Moreover, these are not versatile methods and are limited to samples such as bones or teeth in actual practice.  31 

Age-related changes in cytosine methylation have been recently reported by many groups [1-7]. For 32 

example, Hannum et al. built a predictive model of aging blood with the use of 71 methylation markers 33 

selected from the Illumina Infinium HumanMethylation450 BeadChip, which measures more than 450,000 34 

CpG markers [8]. Branicki et al. investigated the usefulness of CpGs located in the promoter region of 35 

ELOVL2 with pyrosequencing [9, 10]. The promoter region of FHL2 has also been identified as a useful 36 

age-predictive marker in many studies [4, 10]. Owing to these studies, knowledge on the relationships 37 

between methylation patterns and chronological age has accumulated. However, the BeadChip method 38 

requires specialized instruments and analyzing machines followed by complex bioinformatic analysis for 39 

age prediction. The pyrosequencing method also requires specialized instruments. In general, very few 40 

forensic laboratories are equipped with these kinds of machines. Even if so, high costs has prevented these 41 

methods from being routinely used in criminal investigations. 42 

Methylation-sensitive high resolution melting (MS-HRM) is a method that measures methylation 43 

statuses easily, quickly and cost effectively, where bisulfite-treated DNA is PCR amplified followed by 44 

melting analysis [11-15]. In bisulfite-treated DNA analyses, unmethylated cytosines are converted to uracil 45 

by bisulfite conversion while methylated cytosines are kept intact. Therefore, the information of methylation 46 

status is directly converted to the sequence, where it alters the thermodynamic stability of double-stranded 47 

DNA, enabling quantitative methylation assessment. The unique characteristic of MS-HRM is that it 48 

measures the overall methylation status of amplified PCR products, rather than the individual CpG marker. 49 

As a result, the information of many CpG markers present in the region of interest can be integrated and 50 

analyzed with one pair of PCR primers in one measurement. 51 

We have to consider the possibility that post-mortem changes alter the methylation status when 52 

performing age prediction in actual cases. For example, a forensic scientist is not always cognizant of 53 

whether a victim is alive or deceased, as in abduction cases. Before applying this technology to actual cases, 54 

we must investigate the effect of post-mortem changes on forensic age prediction. To our best knowledge, 55 



 3 

no one has focused on this point, which might become a more significant issue when performing age 56 

prediction for actual forensic cases. 57 

Here, we report on a labor-, time-, and cost-effective method of forensic age prediction using MS-HRM 58 

for the ELOVL2 and FHL2. The analysis of 74 blood samples from 22 living and 52 dead donors who varied 59 

in age from 0 to 95 years yielded a logistic curve model. While the majority of previous studies constructed 60 

simple linear models for this analysis, such models were not rational for the purposes of our study. Finally, 61 

30 independent dead blood samples were used to test the prediction accuracy of the model. 62 

 63 

2. Materials and methods 64 

 65 

2.1. Sample collection and DNA extraction 66 

 67 

Blood samples from 19 healthy donors were collected at the same time of health checking. Blood samples 68 

from three children were collected from epistaxis caused by daily life hurt rather than performing any 69 

operation . For these blood samples, DNA was extracted with QIAamp DNA Investigator Kit (Qiagen, 70 

Hilden, Germany) according to the manufacturer’s protocol. All donors or their parents signed written 71 

consent form prior to donation. Additionally, cadaver blood samples were collected from 82 autopsies 72 

performed during 2006-2009 at Kyoto University, Kyoto, Japan. Cadaver blood samples were collected in 73 

cases of extrinsic death—such as burn cases or suicides—and all autopsies were performed within 10 days 74 

of death. All dead bodies had no evidence of disease (e. g. cancer) which affects the methylation status. DNA 75 

from cadaver blood was extracted using the QIAprep DNA Blood Kit and stored at -20 °C until use. All 76 

samples in this study were used with permission for research use from the ethical committee of Graduate 77 

School of Medicine of Kyoto University. 78 

 79 

2.2. Bisulfite modification and control DNA 80 

 81 

All DNA extracted from blood was treated with EpiTect Fast Bisulfite Conversion Kit (Qiagen) and bisulfite-82 

converted DNA were eluted with Buffer EB (10 mM Tris-Cl, pH 8.5). The concentration of eluted DNA was 83 

then measured with the Nano Vue Plus (GE Healthcare, Amersham, England) and subsequently adjusted to 84 

10 ng/μL with Buffer EB. As a positive (fully methylated) or negative (fully unmethylated) control, we used 85 
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“EpiTect Control DNA (human), methylated/unmethylated and bisulfite converted (Qiagen)” respectively. 86 

Control DNA was stored in Buffer EB and adjusted to 10 ng/μL. 87 

 88 

2.3. High resolution melting step 89 

 90 

PCR primers were designed with BiSearch [16,17] according to Table 1. For ELOVL2, the amplicon is 91 91 

bp long and includes 10 CpG markers between primer binding sites (chr6: 11,044,611-11,044,701; Genome 92 

browser UCSC GRCh38, Fig. 1). For FHL 2, the amplicon is 133 bp long and includes 14 CpG markers 93 

(chr2: 105,399,228-105,399,360). PCR amplification was carried out with a Roche LightCycler 480 94 

Instrument II (Roche Diagnostics GmbH, Mannheim, Germany) equipped with the Gene Scanning Software 95 

(version 1.5.1.62 SP2) in a 25 μL total volume containing: 1x EpiTect HRM PCR Master Mix (EpiTect HRM 96 

PCR Kit, Qiagen), 250 nM of each primer and 20 ng of bisulfite modified template. First, polymerase was 97 

activated at 95 °C for 5 min, followed by 45 cycles of 95 °C for 10 s, 50 °C for 30 s, and 72 °C for 10 s. 98 

After the amplification, HRM analysis was initiated by denaturing all products at 95 °C for 1 min, followed 99 

by re-annealing at 40 °C for 1 min. Subsequently, the samples were quickly warmed to 50 °C and heated to 100 

95 °C at 0.1 °C/s. Fluorescence intensity was measured at 25 acquisitions/s. All reactions were performed in 101 

duplicate. 102 

When HRM analysis was performed, Gene Scanning Software first normalized raw melt curves so that 103 

different samples can be compared. In this normalizing process, we set the pre-melt temperature region to 104 

68–69 °C and the post-melt temperature region to 82–83 °C. Although, the temperature shift process is often 105 

run when the software is used for analyzing heterozygous mutant, no adjustment was performed in this study 106 

by setting the threshold to zero, because the shape of melt curve itself was important in analysis of the overall 107 

methylation status of the amplicon. If the temperature shift process was performed, the shape of melt curve 108 

would be distorted. A difference curve was then derived from the first derivative of the melt curves, after 109 

setting the data of fully unmethylated sample as a baseline. Relative signal difference values were exported 110 

as .txt data, and the maximum absolute value were defined as “Df value” for each sample (Fig. 2B). 111 

  112 

2.4. Methylation analysis 113 

 114 

In general, PCR bias occurs when amplifying bisulfite-treated DNA [18, 19], since unmethylated DNA (UG 115 
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pair rich sequence after bisulfite modification) tends to be amplified more efficiently than methylated DNA 116 

(CG pair rich sequence). Therefore, a standard curve was first established for each target site to accurately 117 

measure methylation status. Fully methylated control DNA and fully unmethylated DNA were mixed in 118 

appropriate ratios to make 0%, 25%, 50%, 65%, 80%, 90%, and 100% methylated control DNA. For the 119 

90% and 100% methylated standard sample of ELOVL2, 40 ng bisulfite-treated DNA was used as a template 120 

due to its small amplification efficiency caused by PCR bias. Df values of each control sample were plotted 121 

and a non-linear regression model was developed [18] with R (version 3.2.2) [20] depicted as Equation 1 as 122 

follows  123 

 124 

a ∗ M

100 − M
=

Df

Dfmax − Df
                (1) 125 

 126 

where M is the proportion of a methylation status and Dfmax is the Df value of 100% methylated control 127 

sample and “a” is a coefficient. Once the standard curve is established, the overall methylation status of the 128 

sample can be calculated by substituting the Df value to the Eq. (1). Therefore, Df values can be converted 129 

to methylation status. 130 

 131 

2.5. Statistical Analysis 132 

 133 

First, logistic curve fittings were performed with R to determine the relationship between age and 134 

methylation status. In this fitting, the value of methylation status is converted to the logit form, and it was 135 

fitted to a line by ordinary least squares depicted as Equation 2 for ELOVL2 and FHL2 each.  136 

 137 

Predicted age = b + c ∗ ln
M

1 − M
                (2) 138 

 139 

where “b, c” are coefficients. Secondly, ANCOVA were performed with IBM SPSS Statistics 20 to confirm 140 

whether live status (dead or alive) affects the regression line or not (p < 0.05 is considered as statistically 141 

significant). 142 

Thirdly, a multivariate regression analysis was performed with 74 samples (22 living; 52 dead) as a 143 
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training group to establish the final age predicting model depicted as Equation 3 as follows 144 

 145 

Predicted age = d + e ∗ ln
ME

1 − ME
+  f ∗ ln

MF

1 − MF
                (3) 146 

 147 

Where ME and MF stand for the proportion of a methylation status of ELOVL2 and FHL2, respectively, and 148 

“d, e, f” are coefficients. The prediction accuracy of the regression model was assessed using the adjusted 149 

R2. The mean absolute deviation (MAD) was also calculated. The final model was further validated using 150 

an additional set of 30 test samples (all dead). 151 

 152 

3. Results 153 

 154 

3.1. Methylation analysis with MS-HRM 155 

 156 

Smooth melting curves were obtained from MS-HRM (Fig. 2A) and difference curves were also obtained 157 

with Gene Scanning Software using the 0 % methylated data as a baseline (Fig. 2B). Table 2 shows the 158 

estimated “a” value of the Eq. (1) for ELOVL2 and FHL2, meaning that unmethylated DNA exhibits a 5-fold 159 

or 5.6-fold amplification efficiently in MS-HRM due to PCR bias (Fig. 2C). In this study, methylation rate 160 

differences between 40%–100% can be detected clearly by the differences of Df values both for ELOVL2 161 

and FHL2, while those between 0%–30% were hard to detect. 162 

 163 

3.2 Assessment of the methylation status difference between living and dead 164 

 165 

Fig. 3A, D shows the methylation status of ELOVL2 and FHL2 for 74 training samples (22 alive; 52 dead). 166 

Coefficient values of the Eq. (2) (“b”, “c”) are listed in Table 2. Chronological age and logit-linked 167 

methylation status correlated well. Therefore, we decided to adopt logistic curve model for predicting age, 168 

while simple linear model is adopted in most of researches performed in past. Two simple linear regression 169 

lines of logit-linked methylation status and age derived from living or dead sample has no statistically 170 

significant difference (p  0.05) in slope and intercept for each target site (Fig. 3 B, E). New regression 171 

models explained nearly 80% of the variation in age when combining living samples and dead samples (Fig. 172 
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3 C, F; adjusted R2 was 0.74 for ELOVL2 and 0.81 for FHL2). Negative prediction values obtained for three 173 

or four young individuals were set at 0 [9, 10]. The mean absolute deviation (MAD) was 9.67 for ELOVL2 174 

and 7.71 for FHL2. The prediction accuracy was good for the youth but a little poor for the old. No 175 

statistically significant difference in slope and intercept were observed based on gender either (Fig. S1). 176 

Thus, we decided to ignore differences due to gender to keep the prediction model simple. 177 

 178 

3.3 Developing final age prediction model and its validation 179 

 180 

The final age prediction model was developed combining the methylation information of ELOVL2 and FHL2. 181 

Estimated coefficient values of Eq. (3) (“d”, “e”, “f”) are also listed in Table 2. This multivariate regression 182 

model showed further accuracy with MAD 7.44 (Fig. 4). In the end, holdout validation test was performed. 183 

The methylation status of 30 additional independent samples was analyzed and applied for the final model. 184 

The result is also shown in Fig. 4. MAD was slightly higher in this test group (7.71). 185 

 186 

4. Discussion 187 

 188 

Age prediction with the epigenetic techniques has attracted increasing attention from the forensic science 189 

community. For investigation of crimes, it is important to minimize the time required to obtain test results. 190 

In this study, MS-HRM was adopted to analyze the methylation status of the ELOVL2 and FHL2 promoter 191 

regions, which is able to return a test result within half a day after blood sample acquisition. The unique 192 

characteristic of this method is that it can detect the overall methylation status of the region of interest. 193 

Branicki et al. found that the methylation rates of CpG sites near AR-CpG correlate well with chronological 194 

age for ELOVL2 (C1-C7 in his study [9]). The methylation status of many CpG sites can be detected with 195 

only one MS-HRM analysis, while DNA chip can detect only a limited number of CpG sites. On the other 196 

hand, MS-HRM has its limitations for practical usage. The biggest limitation might be the issue of PCR bias 197 

[18, 19], where methylated templates (containing many Cs in the sequence) are less effectively amplified 198 

than unmethylated templates (contain many Us). Owing to the PCR bias, the methylation status differences 199 

are hard to detect in lower methylated region (e.g. 0%–30%). Therefore, if a researcher wanted to detect 200 

differences in the lowly methylated region with MS-HRM, he/she would have to identify a sequence without 201 

any PCR bias or design primers that reverse the PCR bias [19]. As for this study, PCR bias does not affect 202 
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the detectability of methylation differences across samples for analyzing higher methylated regions. In 203 

addition, if CpG sites in a CpG island were intended to be analyzed, designing primers might be a little 204 

difficult because they should include as little CpG sites as possible. 205 

The speed of the methylation change with aging has been less discussed. Most researchers have 206 

developed simple linear regression models for the methylation status and age (i.e. the speed of methylation 207 

change is constant through one’s lifetime); however, these models have not accounted for pediatric 208 

specimens. Alisch et al. pointed out that the methylation changes accelerate in childhood for some CpG sites 209 

[21]. We found that changes of methylation status in the promoter region of ELOVL2 and FHL2 were not 210 

linear, but rather increased dramatically in youth and slowed down with increasing age. The methylation 211 

change for two target sites could be fitted well with a logistic or growth curve (adjusted R2 = 0.74 and 0.81). 212 

It is reasonable to hypothesize that the methylation status plateaus with increasing age than to hypothesize 213 

that it has no upper limit. 214 

The prediction accuracy depended on sample donor’s chronological age in this study (Fig. 4), which was 215 

concordant with the research performed by Branicki et al. Age estimation for youths (0–20 years old) had 216 

little prediction error, but this error increased with chronological age. This might be explained by individual 217 

differences in the rate of methylation change. At first, individual differences may be slight, but they 218 

accumulate with age. Therefore, a prediction result must be handled carefully when the predicted age is high 219 

(>50 years old). Similarly, it is highly reliable when the predicted age is low (0–20 years old). 220 

To our best knowledge, it is unknown whether death affects the methylation status. If post-mortem 221 

changes affect one’s methylation status, forensic researchers cannot predict age without information about 222 

the sample donor’s safety. In this study, all blood samples from dead bodies were collected within 10 days 223 

after death and the methylation status was analyzed. The distribution of age and methylation rate was similar 224 

regardless of the sample donor’s life or death (Fig. 3 A,D). Moreover, no statistically significant change was 225 

observed between living and dead blood samples. These observations may suggest that the difference of 226 

methylation status between living and dead samples is ignorable, though sample size is limited. It was 227 

difficult to collect more living blood samples especially for youths. Further analysis might be required to 228 

support our findings.  229 

Additionally, differences in methylation status due to gender were considered (Fig. S1). No statistically 230 

significant change was observed between male and female genders, which is consistent with findings of 231 

other studies. Huang et al. developed an age prediction model for the gender combined case and two 232 
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additional models for only male or only female cases; however, no statistically significant difference was 233 

observed between the gender-based models [6]. Branicki et al. decided not to include gender in prediction 234 

modeling (R2 improved by 0.001 with age as a covariate) [10]. In our study, age prediction accuracy was 235 

minimally affected by distinguishing gender, and therefore, the simplicity of the combined model was 236 

preferred. 237 

The multivariate regression model enhanced the prediction accuracy when combining the information 238 

about the methylation status of ELOVL2 and FHL2 in our study. It is well known that increasing the number 239 

of target sites enhances age prediction accuracy—Weidner et al. developed a prediction model with 3 target 240 

genes (MAD = 5.4), while more accurate model required 102 sites (MAD = 3.34) [2]. Additional target sites 241 

may also increase the prediction accuracy of our method. The authors are investigating other target sites with 242 

MS-HRM in order to improve the prediction accuracy now. However, analyzing more than 5 target sites 243 

might be too labor-intensive to perform age prediction in actual forensic cases. 244 

Age prediction with epigenetic information has become popular in the forensic science community. This 245 

knowledge should now be used for actual criminal investigations. Most previous reports analyzed the 246 

methylation rate of CpG sites by using DNA chips or pyrosequencing. However, these techniques are too 247 

labor-, time-, and cost-intensive to apply to routine crime investigations. MS-HRM has the potential to be a 248 

gold standard for usual forensic test because of its convenience. However, there are a few causes for caution 249 

before applying this method to actual cases. First, the standard curve of methylation rate and Df value must 250 

be determined for each MS-HRM instrument and chemical because commercially available fully 251 

unmethylated DNA may not be perfectly unmethylated. Second, methylation analysis should be performed 252 

more than twice to validate the obtained data. Third, test samples are limited to blood samples. AR-CpG is 253 

considered to differ by tissue [3, 5, 7]. We are attempting to develop an age prediction model using saliva, 254 

semen, sweat, and bone samples with MS-HRM, but only the blood model has been fully developed. Huang 255 

et al. have shown that there was no statistically significant difference in age prediction results from blood 256 

samples and those from bloodstain [6]. When these points are considered, forensic age prediction for dead 257 

or living samples can be performed with MS-HRM conveniently. For instance, analysis of a bloodstain left 258 

at a crime scene could provide the approximate age of the suspect or victim. Thus, we believe that this study 259 

opens new possibilities for forensic DNA phenotyping. 260 

 261 
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Table 1 332 

The sequence of PCR primers 333 

Primers          Primer sequence (5’ to 3’) 

ELOVL2-Fw      CGATTTGTAGGTTTAGT 

ELOVL2-Rv      ACTACCAATCTAAACAA 

FHL2-Fw        TTTACCAAAACTCCTTTCTT 

FHL2-Rv        GTGGGTAGATTTTTGTTATT 

 334 

 335 

Table 2 336 

Coefficients calculated in this study 337 

               a (× 10−2)    b        c        d        e         f 

ELOVL2          19.7      -28.8      22.9 

FHL2             9.8       -21.1      45.1 

Combined                                     -37.2     14.6      18.9 

 338 

  339 
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Figure captions 340 

 341 

Fig. 1. Sequences of PCR target sites in this study (before bisulfite conversion). PCR primer binding sites 342 

are boxed. CpG markers that can be analyzed by MS-HRM are emphasized and underlined. 343 

 344 

Fig. 2. A) Representative normalized melting data. Melting data of 0% methylated standard sample is 345 

highlighted with light blue. B) Difference curves obtained by Gene Scanning software. The 0% methylated 346 

standard sample was set as a baseline. C) Standard curves of the relationship between methylation rates 347 

and Df value for 0%, 25%, 50%, 65%, 80%, 90%, and 100% methylated standard samples. 348 

 349 

Fig. 3. A, D) Distribution of methylation status and chronological age for living and dead blood samples. 350 

B, E) Linear relation of chronological age and logit linked methylation status. C, F) Accuracy of age 351 

prediction. Negative prediction values were set at 0. 352 

 353 

Fig. 4. Accuracy of the final age predicting model with combined information of the methylation status of 354 

ELOVL2 and FHL2 for 74 training set and 30 test set. 355 

 356 

Fig. S1. Relationship between chronological age and logit-linked methylation status for males or females. 357 

  358 
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Fig. 1. 359 

  360 

ELOVL2

…GCGG

CGATTTGCAGGTCCAGCCGGCGCCGGTTTCGCGCG

GCGGCTCAACGTCCACGGAGCCCCAGGAATACCCA

CCCGCTGCCCAGATCGGCAGCCGCT…

FHL2

…TTG

TTTGCCAGGGCTCCTTTCTTCGTGCCCTCCGGGTC

TTGGGAGCACAGTAGTTATCGGGAGCGTCGCCTCC

GGCGTGGGCTCTCGGGCGCGAGTTTCGGACGAGGC

CTGGGCGCGGTGGCAGGGGTCTGCCCACGCC…
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Fig. 2.  361 

 362 
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Fig. 3 364 
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Fig. 4 367 
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Fig. S1 370 
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