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We derive an analytical gauge-invariant formula between the Polyakov loop L p and the Dirac
eigenvalues A, in QCD, i.e., Lp &< Y, A,’,‘”*l(n|l74|n), in ordinary periodic square lattice QCD
with odd-number temporal size N;. Here, |n) denotes the Dirac eigenstate, and U, the temporal
link-variable operator. This formula is a Dirac spectral representation of the Polyakov loop in
terms of Dirac eigenmodes |n). Because of the factor A ~! in the Dirac spectral sum, this for-
mula indicates a negligibly small contribution of low-lying Dirac modes to the Polyakov loop
in both confinement and deconfinement phases, while these modes are essential for chiral sym-
metry breaking. Next, we find a similar formula between the Wilson loop and Dirac modes on
arbitrary square lattices, without restriction of odd-number size. This formula suggests a small
contribution of low-lying Dirac modes to the string tension o, or the confining force. These
findings support no crucial role of low-lying Dirac modes for confinement, i.e., no direct one-to-
one correspondence between confinement and chiral symmetry breaking in QCD, which seems
to be natural because heavy quarks are also confined even without light quarks or the chiral
symmetry.

Subject Index BO1, BO2, BO3, B64

1. Introduction

Since quantum chromodynamics (QCD) was established as the fundamental theory of strong inter-
action [1-3], it has been an important problem in theoretical physics to clarify color confinement and
spontaneous chiral symmetry breaking [4,5]. However, in spite of many and various studies, these
two nonperturbative phenomena have not been well understood directly from QCD.

Dynamical chiral symmetry breaking in QCD is categorized as well-known spontaneous symmetry
breaking, which widely appears in various phenomena in physics. The standard order parameter of
chiral symmetry breaking is the quark condensate (gq), and it is directly related to low-lying Dirac
modes, as the Banks—Casher relation indicates [6]. Here, Dirac modes are eigenmodes of the Dirac
operator 1§, which directly appears in the QCD Lagrangian.

In contrast to chiral symmetry breaking, color confinement is a quite unique phenomenon peculiar
to QCD, and the quark confinement is characterized by the area law of the Wilson loop, i.e., non-zero
string tension, or the zero Polyakov loop, i.e., infinite single-quark free energy.
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The Polyakov loop L p is one of the typical order parameters, and it relates to the single-quark free
energy E; as (Lp) x e Ed/T
spontaneous breaking of the Zy_ center symmetry in QCD [7,8].

at temperature 7. The Polyakov loop is also an order parameter of

In addition to the study of each nonperturbative phenomenon, to clarify the relation between con-
finement and chiral symmetry breaking is one of the challenging important subjects in theoretical
physics [9-29], and their relation is not yet clarified directly from QCD.

A strong correlation between confinement and chiral symmetry breaking has been suggested by
the near coincidence of deconfinement and chiral restoration temperatures [7,30], although slight
difference of about 25 MeV between them is pointed out in recent lattice QCD studies [31,32]. Their
correlation has also been suggested in terms of QCD-monopoles [9—12], which topologically appear
in QCD in the maximally Abelian gauge. By removing the monopoles from the QCD vacuum, con-
finement and chiral symmetry breaking are simultaneously lost [9—12], which indicates an important
role of QCD-monopoles to both phenomena, and thus these two phenomena seem to be related via
the monopole.

As another type of pioneering study, Gattringer, Bruckmann, and Hagen showed that the Polyakov
loop can be analytically expressed with the Dirac eigenvalues under the temporally twisted boundary
condition for temporal link variables [13,14]. Although a temporal (nontwisted) periodic boundary
condition is physically required for link variables in real QCD at finite temperature, such an analytical
formula would be useful to consider the relation between confinement and chiral symmetry breaking.

In our recent series of studies [16-22], we have numerically investigated the Wilson loop and the
Polyakov loop in terms of the “Dirac mode expansion,” and have found that quark confinement prop-
erties are almost kept even in the absence of low-lying Dirac modes. (Also, “hadrons” appear without
low-lying Dirac modes [33,34], suggesting survival of confinement.) Note that the Dirac mode expan-
sion is just a mathematical expansion by eigenmodes |n) of the Dirac operator Ip = y,, D,,, using the
completeness of ), [n)(n| = 1. In general, instead of [P, one can consider any (anti-)Hermitian
operator, e.g., D> = D, D,, and the expansion in terms of its eigenmodes [35,36]. To investi-
gate chiral symmetry breaking, however, it is appropriate to consider /) and the expansion by its
eigenmodes.

In this paper, we derive analytical formulae of the Polyakov and Wilson loops with the Dirac
modes in the lattice QCD formalism [23—-29], and discuss the relation between confinement and
chiral symmetry breaking.

The organization of this paper is as follows. In Sect. 2, we briefly review the lattice QCD formalism
for the Dirac operator, Dirac eigenvalues, and Dirac modes. In Sect. 3, we derive an analytical formula
between the Polyakov loop and the Dirac modes in lattice QCD where the temporal size is an odd
number. In Sect. 4, we investigate the properties of the formula obtained, and discuss the contribution
from the low-lying Dirac modes to the Polyakov loop. In Sect. 5, we consider the relation between
the Wilson loop and Dirac modes on arbitrary square lattices, without the restriction of odd-number
size. Section 6 will be devoted to the summary.

2. Lattice QCD formalism

To begin with, we state the setup condition of lattice QCD formalism adopted in this study. We use an
ordinary square lattice with spacing a and size N 33 X N;. The normal nontwisted periodic boundary
condition is used for the link variable U, (s) = e!@8415) in the temporal direction, with the gluon
field A, (s), the gauge coupling g, and the site s. This temporal periodicity is physically required at
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finite temperature. In this paper, we take SU(N,) with N, being the color number as the gauge group
of the theory. However, an arbitrary gauge group G can be taken for most arguments in the following.

2.1. Lattice QCD formalism and anatomy of gauge ensemble
In the Euclidean lattice formalism, the QCD generating functional is expressed with the QCD action

Sqcp as

ZQCD=/DéDqDUe—SQCD/.DéDqDUe—{Sgauge[U]-H?K[U]q}

— / DU e SeveelUlgetK [U], (1)

where Sgauge[U ] denotes the lattice gauge action and K [U] a fermionic kernel. In this study, one can
freely choose any type of lattice fermions such as the Wilson fermion, the Kogut—Susskind fermion,
the overlap fermion, and so on [7,8]. As importance sampling for the generating function Z, one
can generate gauge configurations {Uy}x=123,....n using Monte Carlo simulations. The expectation
value of any operator O[U] is given by the gauge ensemble average as

N
1
/ DUe *elVldetK [U] - O[U] = limy 00— Y O[U4]. )
N k=1

(olu)) =

ZqQep

In this study, we consider some analytical relations between Dirac modes and confinement properties
for the gauge configurations {Uy }k=1,2.3.... N, generated in full QCD or quenched QCD with setting
detK[U] = 1.

In this paper, we perform “anatomy” for the nonperturbative QCD vacuum, i.e., the gauge ensemble
which is in principle generated for the QCD generating functional Zgcp. In our approach, we do not
change the QCD action Sgcp or Zgcp, but analyze the QCD vacuum for Zgcp in terms of the
Dirac modes. This approach is similar to our previous work [16-22] and that of Lang et al. [33,34],
where low-lying Dirac modes are removed from the lattice QCD configurations, after their numerical
generation in standard Monte Carlo simulations for Zgcp. In these studies, Zgcp is not changed at
all. Our approach is also similar to that of Abelian dominance [37,38] and monopole dominance
[39] for the argument of quark confinement in the maximally Abelian (MA) gauge. After generating
the QCD configuration in the MA gauge, off-diagonal gluons or monopoles are removed from the
QCD vacuum, and confinement properties are investigated in the processed QCD vacuum. In these
studies, Zqcp is also unchanged. (If off-diagonal gluons are removed from Zgcp at the action level,
the system becomes QED, which is no longer meaningful for the study of QCD.) In fact, the main
interest is the QCD vacuum, and it has been investigated from the viewpoint of some relevant modes,
such as low-lying Dirac modes, monopoles, and so on. In this work, we analyze the lattice gauge
ensemble, generated for Zgcp, in terms of the Dirac modes.

2.2.  Dirac operator, Dirac eigenvalues, and Dirac modes in lattice QCD

Here, we mathematically define the Dirac operator ), Dirac eigenvalues A,, and Dirac eigenmodes
|n) in lattice QCD.

In lattice QCD, the Dirac operator Ip = y,, D,, is expressed with U,,(s) = /4841 () Tn our study,
we take the lattice Dirac operator of

4
1
Bew = 5= vu[Un)osipe = U )8—py], 3)
n=1
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where f[i is the unit vector in the u-direction in the lattice unit, and U_,(s) = U,I(s — [L).
Adopting Hermitian y-matrices as V;I = yy, the Dirac operator Ip is anti-Hermitian and satis-

fies lZ)Z, , = —MDy . (Note that the Dirac operator Py defined here is not identical with the
fermionic kernel K ¢[U] in Sect. 2.1. The relation between /) and K[U] will be discussed in
Sect. 2.4.)

We introduce the normalized Dirac eigenstate |n) as
Dln) = irgln), (m|n) = pn, 4)

with the Dirac eigenvalue i A, (A, € R). Because of {ys, D} = 0, the state ys|n) is also an eigenstate
of ) with the eigenvalue —iA,. Here, the Dirac eigenstate |n) satisfies the completeness of

Z|n)(n|:l. &)

For the Dirac eigenfunction v, (s) = (s|n), the Dirac eigenvalue equation v, (s) = iA, ¥, (s) is
expressed by

Z ms,s/l//n(sl) = iAnYn(s) (6)
in lattice QCD, and its explicit form is written by
1 4
7}: U Yn(s + 1) = U—p($)¥n (s — )] = i2nWu(s). )

The Dirac eigenfunction v, (s) can be numerically obtained in lattice QCD, apart from a phase factor.
By the gauge transformation of U, (s) — V (s)U,.(s) I’al (s + /l), Y (s) is gauge-transformed as

Un(s) = V(s)¥n(s), ®)

which is the same as that of the quark field, although, to be strict, there can appear an irrelevant
n-dependent global phase factor ¢’V according to the arbitrariness of the phase in the basis
|n) [19].

Note that the spectral density p (1) of the Dirac operator Ip relates to chiral symmetry breaking
in continuum QCD. For example, from the Banks—Casher relation [6], the zero-eigenvalue density
0(0) leads to (gq) as

(qq) = — ,,111510 Vphlylsrg TP 0), )
p(h) = D B0 =), (10)
phys =

with space-time volume Vjpys. (In lattice QCD, the use of the Dirac operator ) in Eq. (3) accompanies
an overall degeneracy factor 2, which will be discussed in Sect. 2.4.) In any case, the low-lying Dirac
modes can be regarded as the essential modes responsible for spontaneous chiral symmetry breaking
in QCD.
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2.3.  Operator formalism in lattice QCD

Now, we present the operator formalism in lattice QCD [16-29]. To begin with, we introduce the
link variable operator U u (u = =1, ..., £4) defined by the matrix element of

(s|0x|s") = Uiy ()85p.50- (1)

Because of U_,,(s) = U, ; (s — ), (A/iu are Hermite conjugate with each other and satisfy

0, =07 (12)
With the link variable operator l}i 1> the covariant derivative is written as
bu = Z(ﬁu - 0—#)’ (13)
and the Dirac operator defined by Eq. (3) is simply expressed as
S T ..
D= ZX:IVM(UM_U—M)' (14)
=

Both IAD and ﬁu are anti-Hermite operators. The Dirac mode matrix element of the link variable
operator lA/M (u = =£1, ..., £4) can be expressed with ¥, (s):

(m|Tp|n) = "(mls)(s|Tpls + a)s + aln) = Y (U () ¥ (s + R2). (15)
N N

Note that the matrix element is gauge invariant, apart from an irrelevant phase factor. Actually, using

the gauge transformation (8), we find the gauge transformation of the matrix element to be [19]

(m]Ouln) = " v U () (s + 2)
= Y UV VEOULVI(s +A) - V(s + ) Ynls + 2)
= YO UL Y (s + 1) = (m| 0 |n). (16)

To be strict, there appears an n-dependent global phase factor, corresponding to the arbitrariness of
the phase in the basis |n). However, this phase factor cancels as ¢/#7e =" = 1 between |n) and (n],
and does not appear for physical quantities such as the Wilson loop and the Polyakov loop [19].

2.4.  Relation between Dirac operator ) and fermionic kernel K

In this subsection, we discuss the relation between the Dirac operator ) defined in Eq. (3) or (14)
and the fermionic kernel K[U] in lattice QCD in Eq. (1).

In lattice QCD, the simple Dirac operator Jp has 2” degeneracy, with D = 4 being the number
of the space-time dimension [7,8]. In the fermionic kernel K[U], the doubler contribution is effec-
tively removed in some way. For a typical example of the Wilson fermion, a large extra energy of
O(1/a) is added only for doublers, which makes the doublers inactive in the low-energy region.
Then, 16 degenerate low-lying Dirac modes of ) correspond to one low-lying mode and 15 doubler
modes in terms of the fermionic kernel K[U].

In fact, each low-lying mode of K[U] is expected to have a large overlap with an eigenmode of
D, but the chiral property is largely different between Ip and K [U]. Actually, if 1) is misleadingly
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used instead of K[U] in Eq. (1), the theoretical structure may be largely changed due to many flavors
of 16 species [40,41]. In addition, the axial anomaly is totally different, since it is not broken in the
Dirac operator I§ due to the cancellation from the doublers [7,8].

Here, we denote by |v)) g the normalized mode of the fermionic kernel K[U], to distinguish it
from the Dirac mode |n). Because of ), |n)(n| = 1, one finds the identity

W)k = I} nlv))k. (17)

In this paper, we assume that each low-lying mode of the fermionic kernel K[U] is mainly
expressed with the low-lying Dirac modes of Ip. This assumption does not mean one-to-one cor-
respondence between a low-lying Dirac mode and a low-lying mode of K[U], but saturation of each
low-lying mode of K[U] by low-lying Dirac modes of some range. In fact, for each low-lying mode
|[v))k, we assume

k> Y In)nlv)k, (18)
low-lying n
which means
>0 im0, (19)
low-lying n

Here, Zlow—lying ,, denotes the sum over low-lying Dirac modes. This assumption would be natural,
although it is desired to examine (19) quantitatively in lattice QCD. From this assumption, if the low-
lying Dirac modes of 1) are removed, the low-lying modes |v)) ¢ of the fermionic kernel K[U] are
also removed approximately. In fact, this assumption links the Dirac mode expansion to the low-lying
modes of K[U], which is more directly connected to chiral symmetry breaking.

2.5. Dirac operator and Polyakov loop in finite-temperature QCD

In this subsection, we investigate the Dirac operator and the Polyakov loop in finite-temperature
QCD. In the imaginary-time formalism, the finite-temperature system requires periodicity for bosons
and anti-periodicity for fermions in the Euclidean temporal direction [7]. Here, we consider such a
temporally (anti-)periodic lattice with the temporal size N;, which corresponds to the temperature
T = 1/(N;a). In this thermal system, any fermion field v (s) obeys

V(s + Nif) = =y (s), (20)

with 7 = 4, and the temporal anti-periodicity of quarks also reflects in the Dirac operator @ In fact,
the temporal structure of the matrix Dy which acts on quarks is expressed as [42]

0 Us1) 0 - 0 Ul (Ny) )
Uiy 0 Uy - 0 0
L1 o U@ o .. 0 0
Dy=— . @
2a : . : .. : .
0 0 0 .- 0 Us(N; — 1)
—Us(N) 0 0 - —UWN -1 0
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where Us(t) = Us(s, t) (t = 1,2, ..., N;)is an abbreviation of the temporal link variable. The addi-
tional minus sign in front of U4 (N;) and U, I (Ny) reflects the anti-periodicity of quarks in the temporal
direction.

For the thermal system, the link variable operator Us u 1s basically defined by the matrix element
(11). However, taking account of the temporal anti-periodicity in Dy acting on quarks, it is convenient
to add a minus sign to the matrix element of the temporal link variable operator U.4 at the temporal
boundary of t = N;(= 0):

(s, N;|Us S N)=—U_4(s, 1) = Ul (s, N).  (22)

s, 1) = —Us(s, Np), (s, 1|04

Here, U_ w = U J is satisfied. For thermal QCD, by using this definition of the link variable operator
Uy 1> the Dirac operator and the covariant derivative are also simply expressed as

4
- 1 N N A 1 o~ A
D= 50 vl = U D= 50 (0= U @)

which are consistent with Eq. (21).
The Polyakov loop L p is also simply written as the functional trace of U N[,

N—1

1 . 1
Tr{U’}:— tr, Us(s +n) b, 24
T80 =l T T w4 2

with the four-dimensional lattice volume V = N s3 x N;. Here, “Tr.” denotes the functional trace of

Lp=—

Tr. = ), tr. with the trace tr, over the color index. The minus sign stems from the additional minus
on Uy(s, Ny) in Eq. (22).

3. Analytical formula between Polyakov loop and Dirac modes in lattice QCD
with odd temporal size

Now, we consider lattice QCD with odd-number temporal lattice size N;, as shown in Fig. 1. Here,
we use an ordinary square lattice with the normal nontwisted periodic boundary condition for the
link variable in the temporal direction. (Of course, this temporal periodicity is physically required
at finite temperature.) The spatial lattice size N; is taken to be larger than N, i.e., Ny > N;. Note
that, in the continuum limit of @ — 0 and N; — oo, any number of large N; gives the same physical
result. Then, in principle, it is no problem to use the odd-number lattice.

In general, only gauge-invariant quantities such as closed loops and the Polyakov loop survive
in QCD, according to the Elitzur theorem [7]. All the non-closed lines are gauge variant and their
expectation values are zero. Note here that any closed loop, except for the Polyakov loop, needs
even-number link variables on the square lattice, as shown in Fig. 1.

Note also that, from the definition of the link variable operator U pw(uef{£l, ..., £4})inEq. (11),
the functional trace of the product of U 1, along any non-closed trajectory is zero, i.e.,

Tr. (UMUM2 e Uwv) = tr, Z<S|UM1UM2 - Upy |s>
N

N—1 N
= tr, Z Um(s)Uuz(s 4 /11) Uy <s + Z [Lk> <s + Z[Lkls> =0 (25)
K k=1 k=1

for the non-closed trajectory with Z,](V: | ik # 0. (Here, [ix can take positive or negative direction as
fu € { + 1,..., :I:ZL}, and any closed loop satisfies 21]{\’:1 fr =0.)
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N, =3 case Polyakov loop

O o)

1

@)

O closed loop

Fig. 1. Anexample of the lattice with odd-number temporal size (N, = 3 case). Only gauge-invariant quantities
such as closed loops and the Polyakov loop survive or do not vanish in QCD, after taking the expectation value,
i.e., the gauge-configuration average. Geometrically, closed loops have even-number links on the square lattice.

non-closed lines (gauge-variant) N, =3 case
0 0 0
t K €
A 4
0] o @)

A AN -1 .
Fig. 2. Partial examples of the trajectories stemming from I = Tr. , (U4E ) For each trajectory, the total

length is N;, and the “first step” is the positive temporal direction corresponding to Us. All the trajectories with
the odd-number length N; cannot form a closed loop on the square lattice, and therefore they are gauge variant
and give no contribution in /, except for the Polyakov loop.

In lattice QCD with odd-number temporal size N;, we consider the functional trace of

~ A N—1
I=Tr., <U4lD ) (26)

where Tr. , = > tretr), includes tr. and the trace tr,, over spinor index. Its expectation value

(1) = <Trc,y (041%N"1)> @7

is obtained as the gauge-configuration average in lattice QCD. In the case of a large enough volume V,

one can expect (O) >~ Tr O /Tr 1 for any operator O at each gauge configuration.
From Eq. (14), 04[2) s expressed as a sum of products of N; link variable operators, since

N ~ ~Ni—1
the Dirac operator I) includes one link variable operator in each direction of +x. Then, Uy Ip '

includes many trajectories with the total length N; in the lattice unit on the square lattice, as shown
in Fig. 2. Note that all the trajectories with the odd-number length N; cannot form a closed loop on
the square lattice, and thus give a gauge-variant contribution, except for the Polyakov loop.

A A N1 . ,
Therefore, among the trajectories stemming from Tr. <U4D ' ), all the non-loop trajectories

are gauge variant and give no contribution, according to the Elitzur theorem [7]. The only excep-

A o~ Ni—1
tion is the Polyakov loop (see Figs. 2 and 3). For each trajectory in Uy Ip ", the first step is the

N A AN—1
positive temporal direction corresponding to Uy, and hence Tr. (U4D ' ) cannot include the
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Polyakov loop (gauge-invariant)

- N, =3 case
y §
FH

O

~ N,—
Fig. 3. Among the trajectories stemming from Tr., <U4¢ ) only the Polyakov-loop ingredient can

o~ N—1 .
survive as a gauge-invariant quantity. Here, Tr. , <U4ID ) does not include L;, because of the first

factor 04.

A AN
anti-Polyakov loop L;. Thus, in the functional trace I = Tr, ,, (U4ID ' ), only the Polyakov-loop

ingredient can survive as the gauge-invariant quantity, and / is proportional to the Polyakov loop L p.
Actually, we can mathematically derive the following relation:

A A N—1 A R _
[=Tr., (U41p ’ ) =Tre,y {Oa(yaDa) "~} = 4T (04037
4 A /A A\ N1 4 AN 4NV
=—F—T U(U—U_) ——Tr, {U’}:——L. 28
g 0 (0= 04} = s car it Y
Here, a minus appears from Eq. (24), which reflects the temporal anti-periodicity of ). We thus
A A N—1
obtain the relation between I = Tr , (U4¢ ' ) and the Polyakov loop Lp,
Ao~ N1 4NV
I = Trc,)/ (U4D ) = —WLP (29)

On the other hand, we calculate the functional trace in Eq. (27) using the complete set of the Dirac
mode basis |n) satisfying ), |[n)(n| = 1, and find the Dirac mode representation of

I = Z(n ) Nf_l‘n>:iN’_IZ)\,]lV’_I(n‘lA]ﬂn). 30)
n

n

Combing Egs. (29) and (30), we obtain the analytical formula between the Polyakov loop Lp and
the Dirac eigenvalues i \,,:

(2a1) =1
Lr=="gnv 2 vl G1)

for each gauge configuration. Taking the gauge-configuration average, we obtain

S\N;—1
(Lp) = —%<Zxﬁf—l(n|ﬁ4|n)> : (32)
n gauge avg

This is a direct relation between the Polyakov loop (Lp) and the Dirac modes in QCD, and is
mathematically valid in lattice QCD with odd-number temporal size in both confinement and decon-
finement phases. The formula (31) is a Dirac spectral representation of the Polyakov loop, and we
can investigate each Dirac mode contribution to the Polyakov loop individually, based on Eq. (31).
(For example, each contribution specified by » is numerically calculable in lattice QCD [27-29].)
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As a remarkable fact, because of the factor )»,11\]’ - , the contribution from low-lying Dirac modes

with |A,| ~ 0 is negligibly small in the Dirac spectral sum of the right-hand side of Eq. (31), in
comparison with the other Dirac mode contribution. In fact, the low-lying Dirac modes have a fairly
small contribution to the Polyakov loop in Eq. (31), regardless of confinement or deconfinement
phase.

This is consistent with the previous numerical lattice QCD result that confinement properties are
almost unchanged by removing low-lying Dirac modes from the QCD vacuum [16-22].

4. Discussions on the Dirac spectral representation of the Polyakov loop

In this section, we consider the Dirac spectral representation of the Polyakov loop, i.e., the formula
(31) between the Polyakov loop and Dirac modes, and discuss its physical meaning. In particular, we
consider the contribution from low-lying Dirac modes to the Polyakov loop.

4.1. Properties of the formula between the Polyakov loop and Dirac modes

First, we note that Eq. (31) is a manifestly gauge-invariant formula. Actually, the matrix element
(n ‘ 174 ’n) can be expressed with the Dirac eigenfunction ¥, (s) and the temporal link variable U4 (s) as
(n|Oaln) =" tnls)(s|Oals + s +Fln) = 3 vl () Ua() ¥ (5 + 7). (33)
R) )
and each term w; ($)Us(s)Yp (s + f) is manifestly gauge invariant, because of the gauge transfor-
mation property (8). Here, the irrelevant global phase factors also cancel exactly as e "i%n¢/¥n = 1
between (n| and |n) [16-22].

Second, we note the chiral property and nontriviality of Eq. (31). In the right-hand side of Eq. (31),
there is no cancellation between chiral-pair Dirac eigenstates, |n) and ys|n), because (N; — 1) is
even, i.e., (—i,) V1 = )»,I,V’_l, and (n|y5(74y5|n) = (n|[74|n>.

Third, Eq. (31) is correct for any odd number N,(>1) and is applicable to both confinement and
deconfinement phases. Then, Eq. (31) obtained on the odd-number lattice is expected to hold in the
continuum limit ofa — 0 and N; — o0, since any number of large N; gives the same physical result.

Finally, we comment on the generality and wide applicability of Eq. (31). In the argument to derive
Eq. (31), we only use a few setup conditions:

i) square lattice (including anisotropic cases)
ii) odd-number temporal size N;(<Nj)
iii) temporal periodicity for link variables.

Accordingly, Eq. (31) is widely correct in the case of an arbitrary gauge group for the theory.
For example, Eq. (31) is applicable in the SU(N,) gauge theory for the arbitrary color number N.. In
addition, regardless of the presence or absence of dynamical quarks, Eq. (31) is formally correct as
the Dirac mode expansion. In fact, Eq. (31) can also be derived for the gauge configuration after inte-
grating out quark degrees of freedom. Of course, the dynamical quark effect appears in the Polyakov
loop L p, the Dirac eigenvalue distribution p (1), and (n ‘ Us ‘n) However, the formula (31) holds even
in the presence of dynamical quarks. Therefore, the formula (31) is applicable at finite density and
finite temperature.

4.2. On the small contribution from low-lying Dirac modes to the Polyakov loop
In this subsection, we consider the contribution from low-lying Dirac modes to the Polyakov loop

based on Eq. (31). Due to the factor A,I;[’_l, the contribution from low-lying Dirac modes with
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|An| = O is negligibly small in the right-hand side in Eq. (31), compared with the other Dirac mode
contribution, so that the low-lying Dirac modes have a small contribution to the Polyakov loop in
both confinement and deconfinement phases.

If the right-hand side of Eq. (31) were not a sum but a product, low-lying Dirac modes, or the
small |1,| region, should have given an important contribution to the Polyakov loop as a crucial
reduction factor of )L,]lv ! Inthe sum, however, the contribution (oc )»,jlv ! _1) from the small |A, | region
is negligible.

Even if <n|04‘n) behaves as the § function §()), the factor k,iv =1 s still crucial in the right-hand
side of Eq. (31), because of Ad(%) = 0. In fact, without the appearance of the extra counter factor
An V=D from <n |U4 |n>, the crucial factor )»,]1\’ =1 inevitably leads to a small contribution for low-lying
Dirac modes. Note here that the explicit N; dependence appears as the factor )»,11\] ~!in the right-hand
side of Eq. (31), and the matrix element (n|04|n> does not include N; dependence in an explicit

(v-1)

manner. Then, it seems rather difficult to consider the appearance of the counter factor An
from the matrix element <n|(A]4|n>.

One may suspect the necessity of renormalization for the Polyakov loop, although the Polyakov
loop is at present one of the typical order parameters of confinement, and most arguments on the
QCD phase transition have been done in terms of the simple Polyakov loop. Even in the presence of
a possible multiplicative renormalization factor for the Polyakov loop like Zp L p, the contribution
from the low-lying Dirac modes, or the small |A, | region, is relatively negligible compared with other
Dirac mode contributions in the sum of the right-hand side of Eq. (31).

4.3.  Numerical confirmation with lattice QCD

It is notable that all the above arguments can be numerically confirmed by lattice QCD calculations.
In this subsection, we briefly mention the numerical confirmation with lattice QCD Monte Carlo
calculations [27-29].

Using actual lattice QCD calculations at the quenched level, we numerically confirm the analytical
formula (31), the non-zero finiteness of <n | U, \n) for each Dirac mode, and the negligibly small con-
tribution of low-lying Dirac modes to the Polyakov loop, i.e., the Polyakov loop is almost unchanged
even by removing low-lying Dirac mode contributions from the QCD vacuum generated by lattice
QCD simulations, in both confinement and deconfinement phases [27-29].

As for the matrix element (n | Us |n), its behavior is different between confinement and deconfine-
ment phases. In the confinement phase, we find a “positive/negative symmetry” in the distribution
of the matrix element <n | Us ‘n) [27-29], i.e., its actual value seems to appear as “pair-wise” plus and
minus, and this symmetry is one of the reasons for the zero value of the Polyakov loop L p. In fact, due
to this symmetry of (n | 04|n) in the confinement phase, the contribution from partial Dirac modes
in an arbitrary region a < A, < b leads to L p = 0. In particular, the high-lying Dirac modes do
not contribute to the Polyakov loop L p, in spite of the large factor ALY =1 This behavior is consis-
tent with our previous lattice QCD results [16—22], which indicate that the “seed” of confinement
is distributed in a wider region of the Dirac eigenmodes, unlike chiral symmetry breaking. In the
deconfinement phase, there is no such symmetry in the distribution of (n ‘ U |n>, and this asymmetry
leads to a non-zero value of the Polyakov loop [27-29].

In any case, regardless of the behavior of <n|lA]4|n), we numerically confirm that the contribution
from low-lying Dirac modes to the Polyakov loop is negligibly small [27-29] in both confinement
and deconfinement phases, owing to the factor )»,iv ~1in Eq. (31).
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AN

Fig. 4. The left figure shows the Wilson loop W defined on an R x T rectangle. The right figure shows the
factorization of the Wilson-loop operator as a product of Usgple = URUT,UX, and U/ . Here, T, R, and the
lattice size are arbitrary.

From the analytical formula (31) and the numerical confirmation, low-lying Dirac modes have a
small contribution to the Polyakov loop, and are not essential for confinement, while these modes
are essential for chiral symmetry breaking.

5. A similar formula for the Wilson loop on arbitrary square lattices

In this section, we attempt a similar consideration of the Wilson loop and the string tension on arbi-
trary square lattices (including anisotropic cases) with any number of Ny, i.e., without the restriction
of an odd-number size. We consider the ordinary Wilson loop on an R x T rectangle, where T and
R are arbitrary positive integers. The Wilson loop is expressed by the functional trace [16—19]

W= Tr.OROT,0%, 07 = TroOape07 (34)
where we introduce the “staple operator” 0stap1e as
Ustaple = 05014051 (35)

Here, the Wilson-loop operator is factorized as a product of 0staple and U 4T , as shown in Fig. 4. We
note that W o¢ (W) gauge avg for a lattice of large enough volume [16-19].
In the case of an even number T, let us consider the functional trace of

A ~T
J = Trc,y Ustaplem . (36)

From similar arguments to Sect. 3, we obtain

N ~T A AT A A
J =Tr., U stapleD = Trc,y Ustaple ()/4 D4) =4Tr, Ustaple D4T

A 4 4
(2 )T Tchstaple(U - U—4) a)T ——=Tre stapleU4 = WW’ (37)
and
J = Z( ‘Ustaplem = (- )2 Z)‘ }Ustaple > (38)
n
Therefore, we obtain for even T the simple formula
T
(—)zQa)" A

W= > aL (0] Ugapie |n). (39)
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Again, because of the factor A7, the contribution from low-lying Dirac modes is expected to be small
also for the Wilson loop, although the matrix element <n{ﬁ5taple‘n) includes explicit 7 dependence
and its behavior is not so clear, unlike the formula (31) for the Polyakov loop.
In the case of odd T', similar results can be obtained by considering
~T—1

instead of J. Actually, one finds
A ~T—1 ~ ~ A NT—1 ~ AoAT
K = Trc y UstapleU4m = Trc,yUstapleU4 (V4D4) = 4Tr, UstapleU4D4
= —Trcﬁgta 1604(04 - 0_4)T_1 = —Trc(}sta le[]th = —W, (41)
(2a)T_1 stap (2a)T_1 stap (Za)T_l
and
K = Z(”|Ustapleﬁ4mT = (— ) Z)\T \UetapleU4| ) (42)
n
so that one finds for odd 7 the similar formula of
T-1
(-) 7 Qa)'! BN ~
W= > Al | Usiapte Ua |n). (43)

n

Finally, for the even T case, we show the inter-quark potential V (R) and the string tension o . From
the expression (39) for the Wilson loop W, we obtain the inter-quark potential V (R) and the string

tension o':
1 1 T, 1A
V(R) = - hm _an - Tli)moo ?ln Xn: (2akn) (n}Ustaple|”> ) (44)
. 1 . 1 T 1A
=" R,lTlgloo rT W =- R,ITIEIOO 7T ™ Xn: (2arn)" (n|Ustaple|n)] - (45)

Because of the factor ] in the sum, the low-lying Dirac mode contribution is to be small for the
Wilson loop W, the inter-quark potential V (R), and the string tension o, unless the extra counter
factor A;T appears from (n ‘ ﬁstaple ‘n) Also for the odd T case, similar arguments can be made with
Eq. (43).

In this way, the string tension o, or the confining force, is expected to be unchanged by the removal
of the low-lying Dirac mode contribution, which is consistent with our previous numerical work for
lattice QCD [16-19].

Taking the assumption (19) in Sect. 2.4, the removal of low-lying Dirac modes of 1) leads to an
approximate removal of low-lying modes of the fermionic kernel K[U], which largely reduces the
chiral condensate. Then, the insensitivity of confinement to low-lying Dirac modes suggested above
indicates no direct one-to-one correspondence between confinement and chiral symmetry breaking
in QCD.

6. Summary and concluding remarks

We have derived an analytical gauge-invariant formula between the Polyakov loop L p and the Dirac
eigenvalues A, as Lp oc ), A,llv ! _1(n‘l}4’n> in lattice QCD with odd-number temporal size N;, by

A AN
considering Tr (U4D I on the ordinary square lattice with the normal (nontwisted) temporally
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periodic boundary condition for link variables. Here, |n) denotes the Dirac eigenstate, and Uy the
temporal link variable operator.

This formula is a Dirac spectral representation of the Polyakov loop in terms of Dirac eigenmodes
[n), and expresses each contribution of the Dirac eigenmode to the Polyakov loop. Because of the
factor A1) ~!in the Dirac spectral sum, this formula indicates a fairly small contribution of low-lying
Dirac modes to the Polyakov loop in both confinement and deconfinement phases, while these modes
are essential for chiral symmetry breaking.

Next, we have found a similar formula between the Wilson loop and Dirac modes on arbitrary
lattices, without restriction of odd-number size. This formula suggests a small contribution of low-
lying Dirac modes to the string tension o, or the confining force.

Thus, it is likely that low-lying Dirac modes have fairly small contributions to the Polyakov loop and
the string tension, and are not essential modes for confinement, while these modes are essential for
chiral symmetry breaking. This suggests no direct one-to-one correspondence between confinement
and chiral symmetry breaking in QCD. Note here that the independence of confinement and chiral
symmetry breaking would be natural, because heavy quarks are also confined even without light
quarks or chiral symmetry.

Also, for thermal QCD, we have investigated the relation between confinement and chiral symmetry
breaking using the ratio of the susceptibility of the Polyakov loop [43,44], the importance of which
for the deconfinement transition has been pointed out [45,46].

Finally, we state some cautions and future works in this framework in order.

In Sect. 2.4, for the strict connection to chiral symmetry breaking, we have assumed that each low-
lying mode of the fermionic kernel K[U] is mainly expressed with the low-lying Dirac modes of 1.
We are now investigating this assumption (19) quantitatively in lattice QCD.

In this paper, we have derived the Dirac mode expansion Eq. (31), which is mathematically correct.
In this expansion, each Dirac mode contribution is explicitly expressed, and we have focused on this
explicit contribution. This treatment would be appropriate in quenched QCD. For a more definite
argument in full QCD, however, we have to clarify an implicit contribution of the Dirac modes in the
fermionic determinant, which can actually alter the properties of the QCD vacuum [40,41].

It is important to take the continuum limit of the mathematical formulae obtained on the lattice,
although it seems a difficult problem. It is also interesting to compare with other lattice QCD results
on the important role of infrared gluons (below about 1 GeV) for confinement in the Landau gauge
[47,48], in contrast to the insensitivity of confinement against low-lying Dirac modes.

This work suggests some possible independence between confinement and chiral symmetry break-
ing in QCD, and this may lead to a richer phase structure of QCD in various environments. In fact,
there is an interesting possibility that QCD phase transition points can be generally different between
deconfinement and chiral symmetry restoration, e.g., in the presence of strong electromagnetic fields,
because of their nontrivial effect on the chiral symmetry [49,50].
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