<table>
<thead>
<tr>
<th>Title</th>
<th>The η decay into 3π in asymmetric nuclear medium (Erratum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sakai, Shuntaro; Kunihiro, Teiji</td>
</tr>
<tr>
<td>Citation</td>
<td>Progress of Theoretical and Experimental Physics (2015), 2015(1)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/216737</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Author(s) 2015. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The η decay into 3π in asymmetric nuclear medium

Shuntaro Sakai* and Teiji Kunihiro

Department of Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

*E-mail: s.sakai@ruby.scphys.kyoto-u.ac.jp

Received July 7, 2015; Revised July 15, 2015; Accepted July 15, 2015; Published August 6, 2015

• P. 1 Abstract: In the third line from the bottom, the words “shows only · · · at ρ_0” should be replaced by “is less enhanced with a factor about two at ρ_0”.

• P. 11: Equation (43) should be replaced by

$$
\mathcal{M}_{\eta \to \pi^0\pi^+\pi^-} = -\frac{m_1^2}{3\sqrt{3}f^2} \left(1 + \frac{4c_1}{f^2} \rho \right) \left(1 + \frac{3(s-s_0)}{m_\eta - m_\pi^0}\right) + \sin \theta^{(0)} \mathcal{M}^{(4)_{\text{vac}}}_{\eta \to \pi^0\pi^+\pi^-} + \left\{ -\frac{s-s_0}{f^2} \frac{1}{m_\eta - m_\pi^0} \left(\frac{g_A^2 m_\eta^2}{4\sqrt{3}f^2} + \frac{2 cs m_\pi^2}{\sqrt{3}f^2}\right) + \frac{g_A^2}{48\sqrt{3}f^4} (m_\eta - 3E_{\pi^0}) - \frac{2cs m_\pi^2}{3\sqrt{3}f^4}\right\} \delta \rho

\frac{m_1^2}{m_\eta - m_\pi^0} \left(\frac{2 (c_2 - \frac{s_0^2}{8m_\eta})}{f^4}\right) \rho \left\{ (m_\eta - E_{\pi^0})^2 - \frac{m_\eta^2 + E_{\pi^0}^2 + E_{\pi^+}^2 + E_{\pi^-}^2}{3} \right\} + \frac{2cs \rho}{f^4} (s-s_0) \right\}
$$

(1)

• P. 13 and 14: Accordingly, Fig. 5 in P. 13 and Fig. 7 in P. 14 are replaced with Figs. 1 and 2, below. The added terms are found to make about 10 percent changes at most. The respective figure captions and the main conclusions are not altered.

![Normalized decay width](image-url)

Fig. 1.
Fig. 2.

0. P. 12 and 13: From Eq. (45) to (49), the overall prefactor 3! coming from the combinatorics of the final state three \(\pi^0 \) should be multiplied.

0. P. 13: In accordance with the correction of Eq. (49), the third and fourth terms in the second line of Eq. (50) should be multiplied by the factor 3!.

0. P. 15: Figures 9 and 10 should be replaced by Figs. 5 and 6, respectively.

0. P. 16: The phrase “in terms of \(\cdots \) decay constant \(f^{**} \)” just above Eq. (53) should be replaced by “in terms of the in-medium quark condensate \(\langle \bar{q}q \rangle_\rho \).”

0. P. 16: Due to the change of the Eq. (43), Eq. (53) should read

\[
M_{\eta \to \pi^0 \pi^+ \pi^-} = -\frac{m_1^2}{3\sqrt{3} f^2} \left(1 - \frac{\sigma_{\pi N} \rho}{f^2 m_\pi^2} \right) \left(1 + \frac{3(s - s_0)}{m_\pi^2 - m_\pi^0} \right) + \sin \theta^{(0)} M^{(4)\text{vac}}_{\eta \to \pi^0 \pi^+ \pi^-} \\
+ \left\{ \frac{s - s_0}{f^2} - \frac{1}{m_\eta^2 - m_\pi^2} \left(\frac{g_\eta^2 m_\eta^2}{4\sqrt{3} f^2} + \frac{2\cos m_\pi^2}{\sqrt{3} f^2} \right) + \frac{g_\eta^2}{48\sqrt{3} f^2} (m_\eta - 3E_{\pi^0}) - \frac{2\cos m_\pi^2}{3\sqrt{3} f^2} \right\} \delta \rho \\
- \frac{m_1^2}{\sqrt{3} f^2} \left(\frac{2\left(c_2 - \frac{g_\eta^2}{8\pi \rho} \right)}{f^4} \right) \rho \left(m_\eta - E_{\pi^0} \right)^2 - \frac{m_\pi^2 + E^2_{\pi^0} + E^2_{\pi^+} + E^2_{\pi^-}}{3} + \frac{2c_3 \rho}{f^4} (s - s_0) \\
= -\frac{m_1^2}{3\sqrt{3} f^2} \langle \bar{q}q \rangle_\rho \left(1 + \frac{3(s - s_0)}{m_\pi^2 - m_\pi^0} \right) + \sin \theta^{(0)} M^{(4)\text{vac}}_{\eta \to \pi^0 \pi^+ \pi^-} \\
+ \left\{ \frac{s - s_0}{f^2} - \frac{1}{m_\eta^2 - m_\pi^2} \left(\frac{g_\eta^2 m_\eta^2}{4\sqrt{3} f^2} + \frac{2\cos m_\pi^2}{\sqrt{3} f^2} \right) + \frac{g_\eta^2}{48\sqrt{3} f^2} (m_\eta - 3E_{\pi^0}) - \frac{2\cos m_\pi^2}{3\sqrt{3} f^2} \right\} \delta \rho \\
- \frac{m_1^2}{\sqrt{3} f^2} \left(\frac{2\left(c_2 - \frac{g_\eta^2}{8\pi \rho} \right)}{f^4} \right) \rho \left(m_\eta - E_{\pi^0} \right)^2 - \frac{m_\pi^2 + E^2_{\pi^0} + E^2_{\pi^+} + E^2_{\pi^-}}{3} + \frac{2c_3 \rho}{f^4} (s - s_0) \right) .
\]

(2)

0. P. 14: Figures 6 and 8 should be replaced by Figs. 3 and 4, respectively.

0. P. 15: Figures 9 and 10 should be replaced by Figs. 5 and 6, respectively.

0. P. 16: The words beginning from “where \(f^{**} = f^2 \left(1 - \frac{\sigma_{\pi N} \rho}{f^2 m_\pi^2} \right) \)” just below Eq. (53) to “the pion decay constant“; the fourth line below Eq. (53) should be removed.

0. P. 17: The word “slightly” appearing at the fourth line of the third paragraph of Sect. 5 should be removed.
Fig. 3.

![Normalized decay width vs Proton number density](image1)

Fig. 4.

![Normalized decay width vs Nuclear asymmetry α](image2)

Fig. 5.

![Normalized decay width vs Nuclear asymmetry α](image3)
Fig. 6.