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We develop a theoretical framework to investigate the two-body composite structure of a res-
onance as well as a bound state from its wave function. For this purpose, we introduce both
one-body bare states and two-body scattering states, and define the compositeness as a fraction
of the contribution of the two-body wave function to the normalization of the total wave function.
Writing down explicitly the wave function for a resonance state obtained with a general separa-
ble interaction, we formulate the compositeness in terms of the position of the resonance pole,
the residue of the scattering amplitude at the pole, and the derivative of the Green function of the
free two-body scattering system. At the same time, our formulation provides the elementariness
expressed with the resonance properties and the two-body effective interaction, and confirms the
sum rule showing that the summation of the compositeness and elementariness gives unity. In
this formulation, Weinberg’s relation for the scattering length and effective range can be derived
in the weak binding limit. The extension to the resonance states is performed with the Gamow
vector, and a relativistic formulation is also established. As its applications, we study the compos-
iteness of the �(1405) resonance and the light scalar and vector mesons described with refined
amplitudes in coupled-channel models with interactions up to the next-to-leading order in chiral
perturbation theory. We find that�(1405) and f0(980) are dominated by the K̄ N and K K̄ com-
posite states, respectively, while the vector mesons ρ(770) and K ∗(892) are elementary. We also
briefly discuss the compositeness of N (1535) and �(1670) obtained in a leading-order chiral
unitary approach.
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1. Introduction

In hadron physics, the internal structure of an individual hadron is one of the most important subjects.
Traditionally, the excellent successes of constituent quark models lead us to the interpretation that
baryons consist of three quarks (qqq) and mesons of a quark–antiquark pair (qq̄) [1]. At the same
time, however, there are experimental indications that some hadrons do not fit into the classifica-
tion suggested by constituent quark models. One of the classical examples is the hyperon resonance
�(1405), which has an anomalously light mass among the negative parity baryons. In addition,
the lightest scalar mesons [ f0(500) = σ , K ∗

0 (800) = κ , f0(980), and a0(980)] exhibit a spectrum
inverted from the naïve expectation with the qq̄ configuration. These observations motivate us to
consider more exotic structures for hadrons, such as hadronic molecules and multiquarks [2–7].

It is encouraging that there have been experimental reports on candidates for manifestly exotic
hadrons, such as charged quarkonium-like states by the Belle collaboration [8]. Moreover, the LEPS
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collaboration observed the “�+ signal” [9,10], but its interpretation is still controversial [11,12].
The accumulation of observations of unconventional states in the heavy quark sector reinforces the
existence of hadrons with exotic structure [13,14]. In fact, recent detailed analyses of �(1405) in
various reactions [15–18] and of the a0

0(980)– f0(980)mixing in J/ψ decay [19] are providing some
clues for unusual structure of these hadrons. The exotic structure is also investigated by analyzing the
theoretical models; the meson–baryon components of�(1405) by using the natural renormalization
scheme [20], the Nc scaling behaviors of scalar and vector mesons [21,22] and of �(1405) [23,24],
the spatial size of�(1405) [25–27], σ meson [28], and f0(980) [27], the nature of the σ meson from
the partial restoration of chiral symmetry [29], and the structure of σ and ρ(770) mesons studied
by their Regge trajectories [30]. Possibilities for extracting the hadron structure from the production
yield in relativistic heavy ion collisions [31,32] and from high-energy exclusive productions [33,34]
are also suggested.

Among various exotic structures, hadronic molecular configurations are of special interest. These
states are composed of two (or more) constituent hadrons by strong interaction between them without
losing the character of the constituent hadrons, in a similar way to atomic nuclei as bound states of
nucleons. The K̄ N quasi-bound picture for�(1405) is one example. In contrast to the quark degrees
of freedom, the masses and interactions of hadrons are defined independently of the renormalization
scheme of QCD, because hadrons are color singlet states. This fact implies that the structure of
hadrons may be adequately defined in terms of the hadronic degrees of freedom. This viewpoint
originates in investigations of the elementary or composite nature of particles in terms of the field
renormalization constant [35–37]. Indeed, it is shown in this approach that the deuteron is dominated
by the loosely bound proton–neutron component [38]. The study of the structure of hadrons from the
field renormalization constant has been further developed in Refs. [39–51].

Motivated by these observations, in this study we develop a framework to investigate hadronic two-
body components inside a hadron by comprehensively analyzing the wave function of a resonance
state. For this purpose, we explicitly introduce one-body bare states in addition to the two-body
components so as to form a complete set within them and to measure the elementary and composite
contributions. The one-body component has not been taken into account in the preceding studies on
wave functions (see Refs. [43,52,53]). For the resonance state we employ the Gamow vector [54],
which ensures a finite normalization of the resonance wave function. The wave function from a
relativistically covariant wave equation is also discussed. Making good use of a general separable
interaction, we analytically solve the wave equations.

In the present formulation, the compositeness and elementariness are respectively defined as the
fractions of the contributions from the two-body scattering states and one-body bare states to the nor-
malization of the total wave function. They are further expressed with the quantities in the scattering
equation with a general separable interaction. As a consequence, the compositeness can be written in
terms of the residue of the scattering amplitude at the pole position, i.e., the coupling constant, and
the derivative of the Green function of the free two-body scattering system at the pole. This means
that the compositeness can be obtained solely with the pole position of the resonance and the residue
at the pole but without knowing the details of the two-body effective interaction. On the other hand,
the elementariness is obtained with the residue of the scattering amplitude, the Green function, and
the derivative of the two-body effective interaction at the pole. It is an interesting finding that with this
expression we are allowed to interpret the elementariness as the contributions coming from one-body
bare states and implicit two-body channels which do not appear as explicit degrees of freedom but
are effectively taken into account for the two-body interaction in the practical model space. Through
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the discussion on the multiple bare states, we show that our formulation of the compositeness and
elementariness can be applied to any separable interactions with arbitrary energy dependence. Based
on this foundation, as applications we evaluate the compositeness of hadronic resonances, such as
�(1405), the light scalar mesons and vector mesons described in the chiral coupled-channel approach
with the next-to-leading-order interactions so as to discuss their internal structure from the viewpoint
of hadronic two-body components.

This paper is organized as follows. In Sect. 2, we formulate the compositeness and elementariness
of a physical particle state in terms of its wave function, and show their connection to the physical
quantities in the scattering equation. We first consider a two-body bound state in the nonrelativistic
framework, and later extend the formulation to a resonance state in a relativistic covariant form
with the Gamow vector. In Sect. 3, numerical results for the applications to physical resonances are
presented. Section 4 is devoted to drawing the conclusions of this study.

2. Compositeness and elementariness from wave functions

In this section, we define the compositeness (and simultaneously elementariness) of a particle state,
i.e., a stable bound state or an unstable resonance, using its wave function, and link the compositeness
to the physical quantities in the scattering equation. For this purpose, we consider two-body scattering
states1 coupled with each other and one-body bare states. The one-body bare states have not been
introduced in studies of wave functions before, and the introduction of the one-body bare states makes
it possible to establish the meaning of the elementariness in the formulation. To solve the scattering
equation analytically, we make use of the separable type of interaction. We will concentrate on an
s-wave scattering system, and thus the two-body wave function and the form factors are assumed to
be spherical.

In Sect. 2.1 we consider a bound state2 in two-body scattering. We first introduce a one-body
bare state and a single scattering channel, and give the expressions of the compositeness and the
elementariness in terms of the wave function of the bound state. In Sect. 2.2 we extend the discussion
to a system with multiple bare states and coupled scattering channels, in order to clarify further the
meaning of the compositeness and elementariness obtained in Sect. 2.1. Here we also discuss a way
to introduce a general energy-dependent interaction into the formulation. In Sect. 2.3 we consider the
weak binding limit to derive Weinberg’s relation for the scattering length and the effective range [38].
Generalization to resonance states is discussed in Sect. 2.4. Finally, we give a relativistic covariant
formulation in Sect. 2.5.

2.1. Bound state in nonrelativistic scattering

We consider a two-body scattering system in which there exists a discrete energy level below the
scattering threshold energy. We call this energy level a bound state since it is located below the two-
body scattering threshold. We do not assume the origin and structure of the bound state at all. We take
the rest frame of the center-of-mass motion, namely two scattering particles have equal and opposite
momentum and the bound state is at rest with zero momentum. The system in this frame is described

1 We note that the two-body wave functions are given by the asymptotic states of the system. In the application
to QCD, the basis should be spanned by the hadronic degrees of freedom. The compositeness in terms of quarks
cannot be defined in this approach.

2 In general, there can be several bound states in the system. In such a case, we just focus on one of these
bound states. Nothing changes in the following discussion.
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by Hamiltonian Ĥ which consists of the free part Ĥ0 and the interaction term V̂ ,

Ĥ = Ĥ0 + V̂ . (1)

We assume that the free Hamiltonian has continuum eigenstates |q〉 for the scattering state and one
discrete state |ψ0〉 for the one-body bare state. The eigenvalues of the Hamiltonian are set to be

Ĥ0|q〉 =
(

M th + q2

2μ

)
|q〉, 〈q|Ĥ0 =

(
M th + q2

2μ

)
〈q|, (2)

Ĥ0|ψ0〉 = M0|ψ0〉, 〈ψ0|Ĥ0 = M0〈ψ0|, (3)

whereμ is the reduced mass of the two-body system, M0 is the mass of the bare state, and q ≡ |q|. We
include the sum of the scattering particle masses, M th, which is just the scattering threshold energy,
into the definition of the eigenenergy for later convenience. These eigenstates are normalized as〈

q′∣∣q〉 = (2π)3δ3(q′ − q
)
,

〈
ψ0
∣∣ψ0

〉 = 1,
〈
ψ0
∣∣q〉 = 〈

q
∣∣ψ0

〉 = 0. (4)

These states form the complete set of the free Hamiltonian, and thus we can decompose unity in the
following way:

1 = |ψ0〉〈ψ0| +
∫

d3q

(2π)3
|q〉〈q|. (5)

The bound state is realized as an eigenstate of the full Hamiltonian:

Ĥ |ψ〉 = MB|ψ〉, 〈ψ |Ĥ = MB〈ψ |, (6)

where MB is the mass of the bound state. The bound state wave function is normalized as

〈ψ |ψ〉 = 1. (7)

We take the matrix element of Eq. (5) in terms of the bound state |ψ〉:

1 = 〈ψ |ψ0〉〈ψ0|ψ〉 +
∫

d3q

(2π)3
〈ψ |q〉〈q|ψ〉. (8)

The first term of the right-hand side is the probability of finding the bare state in the bound state and
also corresponds to the field renormalization constant in the field theory. Thus, we call this quantity
elementariness Z :

Z ≡ 〈ψ |ψ0〉〈ψ0|ψ〉. (9)

Because 〈ψ |ψ0〉 = 〈ψ0|ψ〉∗, Z is always real and nonnegative. The second term, on the other hand,
represents the contribution from the two-body state and we call it compositeness X :

X ≡
∫

d3q

(2π)3
〈ψ |q〉〈q|ψ〉. (10)

The elementariness and compositeness satisfy the sum rule

1 = 〈ψ |ψ〉 = Z + X. (11)

Introducing the momentum space wave function for the two-body state, ψ̃(q),

ψ̃(q) = 〈q|ψ〉, ψ̃∗(q) = 〈ψ |q〉, (12)

the compositeness X can be expressed as

X =
∫

d3q

(2π)3

∣∣∣ψ̃(q)∣∣∣2 . (13)

Again, X is real and nonnegative.
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For the explicit calculation, we assume the separable form of the matrix elements of V̂ in the
momentum space. The matrix elements are given by〈

q′∣∣V̂ ∣∣q〉 = v f ∗(q ′ 2) f
(
q2), 〈q∣∣V̂ ∣∣ψ0〉 = g0 f ∗(q2), 〈

ψ0
∣∣V̂ ∣∣ψ0

〉 = 0, (14)

where v is the interaction strength between the scattering particles, and g0 is the coupling constant
of the bare state to the scattering state. As we will see later, the one-body state is the source of the
energy dependence of the effective interaction between the scattering particles. The matrix element
〈ψ0|V̂ |ψ0〉 is taken to be zero since it can be absorbed into Ĥ0 without loss of generality, and through-
out this study the mass of the bare state, M0, is not restricted to be smaller than M th but is allowed to
take any value with this condition. The form factor f (q2) is responsible for the off-shell momentum
dependence of the interaction and suppresses the high momentum contribution to tame the ultraviolet
divergence. The normalization is chosen to be f (0) = 1. The hermiticity of the Hamiltonian ensures
that v is real and 〈

ψ0
∣∣V̂ ∣∣q〉 = g∗

0 f
(
q2). (15)

In this study we further assume the time-reversal invariance of the scattering process, which
constraints the interaction, with an appropriate choice of phases of the states, as〈

q′∣∣V̂ ∣∣q〉 = 〈
q
∣∣V̂ ∣∣q′〉 = v f

(
q ′ 2) f

(
q2), 〈

q
∣∣V̂ ∣∣ψ0

〉 = 〈
ψ0
∣∣V̂ ∣∣q〉 = g0 f

(
q2), 〈

ψ0
∣∣V̂ ∣∣ψ0

〉 = 0.
(16)

Thus all of the quantities v, g0, and f
(
q2
)

are now real. We emphasize that the assumptions made in
the present framework are just the factorization of the momentum dependence and the time-reversal
invariance of the interaction. With the interaction (16), we obtain the exact solution of this system
without introducing any further assumptions.

For the separable interaction, the wave function ψ̃(q) can be analytically obtained [55]. To this
end, we multiply 〈q| and 〈ψ0| by Eq. (6):

〈
q
∣∣Ĥ ∣∣ψ 〉 = (

M th + q2

2μ

)
ψ̃(q)+ v f

(
q2) ∫ d3q ′

(2π)3
f
(
q ′ 2)ψ̃(q ′)+ g0 f

(
q2)〈ψ0|ψ〉 = MBψ̃(q),

(17)

〈ψ0
∣∣Ĥ ∣∣ψ〉 = M0

〈
ψ0
∣∣ψ 〉+ g0

∫
d3q

(2π)3
f
(
q2)ψ̃(q) = MB

〈
ψ0
∣∣ψ 〉, (18)

where we have inserted Eq. (5) between V̂ and |ψ〉. Eliminating
〈
ψ0
∣∣ψ 〉 from these equations, we

obtain the Schrödinger equation for ψ̃(q) in an integral form:(
M th + q2

2μ

)
ψ̃(q)+ veff(MB) f

(
q2) ∫ d3q ′

(2π)3
f
(
q ′ 2)ψ̃(q ′) = MBψ̃(q), (19)

where we have defined the energy-dependent interaction veff as

veff(E) ≡ v + (g0)
2

E − M0
. (20)

Equation (19) is the single-channel Schrödinger equation for the relative motion of the scattering
particles under the presence of the bare state interacting with them by V̂ . The effect of the bare state
is incorporated into the energy-dependent interaction veff(E).
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The solution of Eq. (19) can be obtained as

ψ̃(q) = −c f
(
q2
)

B + q2/(2μ)
, (21)

where we have defined the binding energy B ≡ M th − MB > 0 and the normalization constant

c ≡ veff(MB
) ∫ d3q ′

(2π)3
f
(
q ′ 2)ψ̃(q ′). (22)

In general, Eq. (19) is an integral equation to determine the wave function ψ̃(q). For the separable
interaction, however, the integral in Eq. (22), and hence the constant c, is independent of q. In this
way, the wave function ψ̃(q) is analytically determined by the form factor f (q2) and the constant c,
which will be determined through the comparison with the scattering amplitude. Substituting the
wave function (21) into Eq. (22), we obtain

c = −veff(MB
) ∫ d3q

(2π)3

[
f
(
q2
)]2

B + q2/(2μ)
c. (23)

For the existence of the bound state at E = MB, Eq. (23) should be satisfied with nonzero c. The
nontrivial solution can be obtained by

1 = veff(MB
)
G
(
MB

)
, (24)

where we have introduced a function

G(E) =
∫

d3q

(2π)3

[
f
(
q2
)]2

E − M th − q2/(2μ)
, (25)

which plays an important role in the following discussion and is called the loop function. As we will
see later, the loop function is equivalent to the Green function of the free two-body Hamiltonian. We
note that here and in the following the energy in the denominator of the loop function is considered
to have an infinitesimal positive imaginary part iε: E → E + iε.

The normalization constant c is equal to the square root of the residue of the scattering amplitude
at the pole position of the bound state. To prove this, we first represent the compositeness X and
elementariness Z using c. With the explicit form of the wave function (21) and the loop function (25),
the compositeness for the separable interaction can be expressed with the derivative of the loop
function as

X =
∫

d3q

(2π)3

∣∣∣ψ̃(q)∣∣∣2 = −|c|2
[

dG

d E

]
E=MB

. (26)

We note that both the wave function ψ̃(q) and the loop function have the same structure of
1/(E − Ĥ0) at E = MB. Substituting the wave function into Eq. (18), we obtain〈

ψ0
∣∣ψ 〉 = cg0

MB − M0
G
(
MB

)
, (27)

and hence

Z = 〈ψ |ψ0〉〈ψ0|ψ〉 = |c|2G(MB)
(g0)

2

(MB − M0)2
G(MB) = −|c|2

[
G

dveff

d E
G

]
E=MB

, (28)

where we have used the derivative of Eq. (20). We note that Eqs. (26) and (28) provide a sum rule

1 = −|c|2
[

dG

d E
+ G

dveff

d E
G

]
E=MB

. (29)

Next, the scattering amplitude t (E) is obtained by taking the matrix element of the T -operator for
the scattering state |q〉 with the on-shell condition as 〈q′|T̂ |q〉 = t (E) f (q ′ 2) f (q2) for the separable
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interaction. The T -operator satisfies the Lippmann–Schwinger equation

T̂ = V̂ + V̂
1

E − Ĥ0
T̂ . (30)

Inserting the complete set (5) between the operators and eliminating the bare state component from
the equation, we obtain the Lippmann-Schwinger equation for the scattering state as

T̂ = V̂ eff(E)+ V̂ eff(E)
1

E − Ĥ0
T̂ , (31)

where we have introduced the operator of the effective interaction for the scattering state as

V̂ eff(E) ≡ V̂ + V̂ |ψ0〉 1

E − M0
〈ψ0|V̂ . (32)

This operator acts only on the two-body state and its matrix element leads to
〈
q′∣∣V̂ eff(E)

∣∣q〉 =
veff(E) f

(
q ′ 2
)

f
(
q2
)
. Taking matrix elements of the two-body state in Eq. (31), we obtain the

amplitude t (E) algebraically as

t (E) = veff(E)+ veff(E)G(E)t (E) = veff(E)

1 − veff(E)G(E)
, (33)

where G(E) is the same form as Eq. (25), i.e., the Green function of the free two-body Hamiltonian.
The bound state condition (24) ensures that the amplitude t (E) has a pole at E = MB. The residue
of the amplitude t (E) at the pole reflects the properties of the bound state. The residue turns out to
be real and positive, so we represent the residue as |g|2:

|g|2 ≡ lim
E→MB

(E − MB)t (E) = − 1[
dG
d E + 1

(veff)2
dveff

d E

]
E=MB

. (34)

We can interpret g as the coupling constant of the bound state to the two-body state. Using the bound
state condition (24), we obtain the relation

1 = −|g|2
[

dG

d E
+ G

dveff

d E
G

]
E=MB

. (35)

Comparing this with Eq. (29), we find c = g with an appropriate choice of phase.
The equality c = g is also confirmed by the following form of the T -operator:

T̂ = V̂ eff(E)+ V̂ eff(E)
1

E − Ĥ0 − V̂ eff(E)
V̂ eff(E). (36)

As we have seen before, the operator Ĥ0 + V̂ eff corresponds to the full Hamiltonian for the two-body
system with the implicit bare state. Near the bound state pole, the amplitude is dominated by the pole
term in the expansion by the eigenstates of the full Hamiltonian as

lim
E→MB

T̂ (E) ∼ V̂ eff(MB
)|ψ〉 1

E − MB
〈ψ |V̂ eff(MB

)
, (37)

and hence, taking the matrix element of the scattering states, we have

lim
E→MB

t (E) ∼
∫

d3q

(2π)3

∫
d3 p

(2π)3
veff(MB

)
f
(
q2)〈q|ψ〉〈ψ |p〉

E − MB
f
(

p2)veff(MB
) → |c|2

E − MB
, (38)

where we have used Eq. (22). From the definition of the residue (34), this verifies c = g.
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Here, we emphasize that, as seen in Eq. (26), the compositeness is expressed with the residue of the
scattering amplitude at the pole position and the energy derivative of the loop function dG/d E , and
hence the compositeness does not explicitly depend on the effective interaction veff.3 Therefore, the
compositeness can be obtained solely with the bound state properties without knowing the details of
the effective interaction, once we fix the loop function, which coincides with fixing the model space
to measure the compositeness via the Green function of the free two-body Hamiltonian.

We also note that, as seen in Eq. (28), the elementariness Z is proportional to the energy derivative
of the interaction dveff/d E at the bound state energy. This is instructive in interpreting the origin
of the elementariness Z . In quantum mechanics, the two-body interaction should not depend on
the energy to have an appropriate normalization. In the present case, the energy dependence of veff

stems from the bare state channel |ψ0〉. Strong energy dependence of the interaction veff at the bound
state pole position emerges when the involved bare state lies close to the physical bound state, and
provides Z ≈ 1. This means that the effect from the bare state is responsible for the formation of
the bound state. Weak energy dependence, which corresponds to Z ≈ 0, can be understood that the
bare state exists far away from the pole position of the physical bound state, and is insensitive to
the bound state. In this case, the bound state is composed dominantly of the scattering channels
considered. This shares viewpoints with Ref. [20], where it was discussed that the energy-dependent
Weinberg–Tomozawa term can provide the effect of the Castillejo–Dalitz–Dyson (CDD) pole [56].

2.2. Coupled scattering channels with multiple bare states

The framework in the last subsection is straightforwardly generalized to the coupled-channel scat-
tering with multiple one-body bare states. The eigenstates of the free Hamiltonian Ĥ0 now include
several bare states |ψa〉 labeled by a and two-body scattering states of several channels labeled by j .
We assume that the bound state whose components we want to examine is located below the lowest
threshold of the two-body channels to make the state stable. The normalization and the completeness
relation are given by〈

q′
j

∣∣qk

〉 = (2π)3δ jkδ
3(q′ − q

)
,

〈
ψa
∣∣ψb

〉 = δab,
〈
ψa
∣∣q j

〉 = 〈
q j

∣∣ψa
〉 = 0, (39)

1 =
∑

a

∣∣ψa
〉 〈
ψa
∣∣+∑

j

∫
d3q

(2π)3
∣∣q j

〉 〈
q j

∣∣. (40)

The matrix elements of the interaction are〈
q′

j

∣∣V̂ ∣∣qk

〉 = v jk f j
(
q ′ 2) fk

(
q2), 〈

q j

∣∣V̂ ∣∣ψa
〉 = 〈

ψa
∣∣V̂ ∣∣q j

〉 = ga, j
0 f j

(
q2), 〈

ψa
∣∣V̂ ∣∣ψb

〉 = 0,
(41)

where, due to the time-reversal invariance, v jk is a real symmetric matrix and ga, j
0 and f j

(
q2
)

are
real with an appropriate choice of phases of states. The total normalization of the bound state wave
function now leads to

1 =
∑

a

Za +
∑

j

X j , (42)

with the elementariness

Za ≡ 〈ψ |ψa〉〈ψa|ψ〉, (43)

3 Since the bound state properties are determined by the interaction, the compositeness depends implicitly
on the effective interaction veff.
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and the compositeness given by the wave function for each channel

X j ≡
∫

d3q

(2π)3

∣∣∣ψ̃ j (q)
∣∣∣2 , (44)

where

ψ̃ j (q) = 〈q j |ψ〉, ψ̃∗
j (q) = 〈ψ |q j 〉. (45)

We follow the same procedure as the single-channel case; incorporating the one-body bare states
in the effective interaction for the two-body states, we obtain the coupled Schrödinger equation as

(
M th

j + q2

2μ j

)
ψ̃ j (q)+

∑
k

veff
jk (MB) f j

(
q2) ∫ d3q ′

(2π)3
fk
(
q ′ 2)ψ̃k(q

′) = MBψ̃ j (q), (46)

where M th
j and μ j are the threshold and the reduced mass in channel j , respectively, and we have

defined the energy-dependent effective interaction as

veff
jk (E) ≡ v jk +

∑
a

ga, j
0 ga,k

0

E − Ma
, (47)

which is a real symmetric matrix for a real energy, and Ma is the mass of the bare state. The
Schrödinger equation can be solved algebraically again for the separable interaction:

ψ̃ j (q) = −c j f j
(
q2
)

B j + q2/(2μ j )
, (48)

where B j ≡ M th
j − MB is the binding energy measured from the j-channel threshold. The

normalization constant is given by

c j ≡
∑

k

veff
jk

(
MB

) ∫ d3q

(2π)3
fk
(
q2)ψ̃k(q). (49)

With substitution of Eq. (48) in Eq. (49), the bound state condition for nonzero c j can be
summarized as

det
[
1 − veff(MB)G(MB)

] = 0, (50)

with the loop function

G j (E) =
∫

d3q

(2π)3

[
f j
(
q2
)]2

E − M th
j − q2/(2μ j )

, (51)

which is diagonal with respect to the channel index.
The coupled-channel scattering equation is, in matrix form,

t (E) = [
1 − veff(E)G(E)

]−1
veff(E), (52)

where the channel index runs through only the scattering channels, since the one-body bare states
are incorporated into the effective interaction veff. Equation (50) ensures the existence of the bound
state pole at E = MB. The residue of the amplitude at the pole, which is real for the bound state,
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is interpreted as the product of the coupling constants,4

g j gk = lim
E→MB

(E − MB)t jk(E). (53)

On the other hand, using the coupled-channel version of Eq. (36), the amplitude near the bound state
pole is given by

lim
E→MB

t jk(E) ∼
∑
l,m

∫
d3q

(2π)3

∫
d3 p

(2π)3
veff

jl (MB) fl
(
q2)〈ql |ψ〉〈ψ |pm〉

E − MB
fm
(

p2)veff
mk(MB)

→ c j c∗
k

E − MB
, (54)

which shows that c j = g j with an appropriate choice of phase.
Now the compositeness in channel j can be expressed as

X j =
∫

d3q

(2π)3

∣∣∣ψ̃ j (q)
∣∣∣2 = −|c j |2

[
dG j

d E

]
E=MB

= −|g j |2
[

dG j

d E

]
E=MB

. (55)

The overlap of the bound state wave function with the bare state ψa is given by

〈ψa|ψ〉 = 1

MB − Ma

∑
j

c j g
a, j
0 G j (MB), (56)

and thus we obtain

Za = 〈ψ |ψa〉〈ψa|ψ〉 =
∑
j,k

ckc∗
j G j (MB)Gk(MB)

ga, j
0 ga,k

0

(MB − Ma)2
. (57)

The total elementariness Z ≡ ∑
a Za , which contains all contributions from the implicit channels, is

Z ≡
∑

a

Za =
∑
j,k

ckc∗
j G j (MB)Gk(MB)

∑
a

ga, j
0 ga,k

0

(MB − Ma)2
= −

∑
j,k

gk g j

[
G j

dveff
jk

d E
Gk

]
E=MB

.

(58)
From the normalization (42), we obtain the sum rule

−
∑
j,k

gk g j

[
δ jk

dG j

d E
+ G j

dveff
jk

d E
Gk

]
E=MB

= 1. (59)

This corresponds to the nonrelativistic counterpart of the generalized Ward identity derived in
Ref. [26]. We note that the sum rule (59) as the normalization of the wave function can be obtained
by the explicit treatment of both the two-body states and the one-body bare states, which complement
the discussion of the bound state wave function with an energy-independent separable interaction in
Ref. [52].

So far, we have regarded the components coming from the one-body bare states as the elemen-
tariness. On the other hand, sometimes it happens that some of the two-body channel thresholds are
high enough that these channels may play a minor role. In such a case, these channels can be also
included into implicit channels of the effective interaction veff by, e.g., the Feshbach method [57,58].

4 Since an interaction of a symmetric matrix veff
jk leads to a symmetric t-matrix, t jk = tk j , the residue of the

t-matrix is also symmetric and can be factorized as g j gk .
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These implicit channels also provide energy dependence of the effective interaction which acts on
the reduced model space (see also Ref. [48]), and accordingly we are allowed to interpret the con-
tributions coming from these channels as the elementariness. For instance, the implementation of a
scattering channel N into the effective interaction can be done by replacing veff as:

w jk(E) = veff
jk + veff

j N
G N (E)

1 − veff
N N G N (E)

veff
Nk, j, k 
= N , (60)

where the N th channel has been absorbed in the effective interaction w jk in the same manner as
in [59]. In this case the elementariness Zw may be able to be calculated by the derivative of the
effective interaction w jk as

Zw = −
∑

j,k 
=N

gk g j

[
G j

dw jk

d E
Gk

]
E=MB

. (61)

Interestingly, the elementariness Zw can be expressed as the sum of the elementariness with the full
two-body channels, Z , and the N th channel compositeness X N , namely,

Zw = Z + X N , (62)

with

Z = −
∑
j,k

gk g j

[
G j

dveff
jk

d E
Gk

]
E=MB

, X N = −g2
N

[
dG N

d E

]
E=MB

. (63)

The proof is shown in Appendix A. In this way, the elementariness can be redefined by Eq. (61). With
this expression the elementariness measures contributions coming from both one-body bare states
and two-body channels which are implemented into the effective interaction and do not appear as
explicit degrees of freedom.

At the end of this subsection, we mention that our formulation of the compositeness and elemen-
tariness can be applied to any separable interactions with arbitrary energy dependence by interpreting
that the energy dependence on the effective interaction comes from the implicit channels. Actually,
when the compositeness and elementariness are formulated with multiple one-body bare states, all
of these bare states are included in the effective two-body interaction veff(E) and the total elemen-
tariness is calculated as the sum of each bare-state contribution, which is essentially the derivative of
the effective two-body interaction as in Eq. (58). It is important that in this case we can produce any
energy-dependent interactions with suitable bare states. In order to see this, for instance, we assume
that the mass of a bare state is large enough, and by expanding the bare-state term in the effective
interaction as

1

E − M0
= − 1

M0

(
1 + E

M0
+ · · ·

)
, (64)

we have polynomial energy dependence in the effective interaction. This fact enables us to apply
the formulae of the compositeness and elementariness to interactions with an arbitrary energy
dependence. This is the foundation of the analysis of physical hadronic resonances in Sect. 3.

2.3. Weak binding limit and threshold parameters

In this subsection, we consider the weak binding limit to derive Weinberg’s compositeness condi-
tion [38] on the scattering length a and the effective range re. This ensures that the expression for
the compositeness in this paper correctly reproduces the model-independent result of Ref. [38] in the
weak binding limit. For simplicity we consider a system with one scattering channel, as in Sect. 2.1.
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In the single-channel problem, the elastic scattering amplitude F(E) is written with the t-matrix
t (E) given in Eq. (33) as

F(E) = − 1

(2π)3
(2π)2μt (E)

[
f
(
k2)]2

, (65)

with k ≡
√

2μ(E − M th). The scattering length a is defined as the value of the scattering amplitude
at the threshold:

a ≡ −F
(
M th) = μ

2π
t
(
M th) = μ

2π

1

v−1
(
M th

)− G
(
M th

) , (66)

where we have abbreviated veff as v for simplicity. Now we perform the expansion in terms of the
energy E around MB by considering B = M th − MB to be small. To expand the denominator, we
write

v−1(M th) = v−1(MB)+ B

[
dv−1

d E

]
E=MB

+�v−1, (67)

G
(
M th) = G(MB)+ B

[
dG

d E

]
E=MB

+�G, (68)

where we have defined

�v−1 ≡
∞∑

n=2

Bn

n!

[
dnv−1

d En

]
E=MB

, �G ≡
∞∑

n=2

Bn

n!

[
dnG

d En

]
E=MB

. (69)

Here we allow arbitrary energy dependence for v, as stated in the end of the last subsection, but
assume that the effective range expansion is valid up to the energy of the bound state, which is a pre-
condition for the formula in Ref. [38]. In this case there should exist no singularity of v−1(E) between
E = MB and M th, and expansion (67) is safely performed up to the threshold; hence�v−1 = O

(
B2
)
.

Otherwise, the singularity of v−1(E) around the threshold spoils the effective range expansion, as
the divergence of v−1 leads to the existence of the CDD pole. As a result, with the bound state
condition (24), the scattering length is now given by

a = μ

2π

(
B

[
dv−1

d E
− dG

d E

]
E=MB

−�G + O
(
B2))−1

. (70)

The first term in the parenthesis in Eq. (70) is calculated as

B

[
dv−1

d E
− dG

d E

]
E=MB

= −B

[
G2 dv

d E
+ dG

d E

]
E=MB

= B

|g|2

= − B

X

[
dG

d E

]
E=MB

= B

X

∫
d3q

(2π)3
[ f (0)]2 + O

(
q2
)

[B + q2/(2μ)]2

= μ

4πX

1

R
+ O(B), (71)
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where we have used Eqs. (24), (35), (26), and the normalization f (0) = 1, and we have defined
R ≡ 1/

√
2μB in the last line. To evaluate �G, we first note that[

dnG

d En

]
E=MB

=
∫

d3q

(2π)3
(−1)nn!

[
f
(
q2
)]2

[MB − M th − q2/(2μ)]n+1

= −n!
∫

d3q

(2π)3

[
f
(
q2
)]2

[B + q2/(2μ)]n+1

= − n!

Bn

2μ

R

∫
d3q ′

(2π)3

[
f
(
2μBq ′ 2

)]2
(q ′ 2 + 1)n+1 , (72)

where q′ ≡ Rq. Thus, summing up all contributions we have

�G = −
∞∑

n=2

2μ

R

∫
d3q ′

(2π)3
[ f (0)]2

(q ′ 2 + 1)n+1 + O(B)

= − μ

π2 R

∫ ∞

0
dx x2

∞∑
n=2

1

(x2 + 1)n+1 + O(B)

= − μ

4π

1

R
+ O(B), (73)

where we have used the summation relation
∞∑

n=2

1

(x2 + 1)n+1 = 1

x2(x2 + 1)2
(x 
= 0). (74)

As a consequence, we obtain the expression of the scattering length in terms of the compositeness
X from Eqs. (70), (71), and (73):

a = μ

2π

(
μ

4πX

1

R
+ μ

4π

1

R
+ O(B)

)−1

= R
2X

1 + X
+ O

(
B0), (75)

which agrees with the result in Ref. [38] with X = 1 − Z . It is important that in the weak binding
limit the details of the form factor f

(
q2
)

are irrelevant to the determination of the compositeness
of the bound state from the scattering length of two constituents. In contrast, the correction terms of
O
(
B0
)

depend on the explicit form of the function f
(
q2
)
.

Because we have assumed that the bound state pole lies within the valid region of the effective
range approximation, the relation between the scattering length and the effective range is given by5

re = 2R

(
1 − R

a

)
. (76)

Comparing it with Eq. (75), we find

re = R
X − 1

X
+ O

(
B0). (77)

This again corresponds to the expression in Ref. [38].
In this way, the structure of the bound state can be determined from a and re unambiguously in the

weak binding limit. This means that, in principle, tuning a and re could lead to arbitrary structure of

5 The relation (76) can be obtained from the condition F−1(k) = −1/a − ik + rek2/2 = 0 at k = i/R.
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the bound state. It is, however, shown in Ref. [60] that the bound state with Z ∼ 0 naturally appears
when the state exists near the threshold, and a significant fine tuning is required to realize Z ∼ 1 in
this small binding region. This behavior can be understood by considering the value of Z in the exact
B → 0 limit. Actually, the value of Z is shown to vanish in the B → 0 limit, as far as the bound
state pole exists in the scattering amplitude [61]. It is therefore natural to expect that the bound state
should be Z ∼ 0 in the small binding region.

2.4. Generalization to resonances

Now we generalize our argument to a resonance state. We first introduce the Gamow state [54]
denoted as |ψ) to express the resonance state. The eigenvalue of the Hamiltonian is allowed to be
complex for the Gamow state:

Ĥ |ψ) =
(

MR − i
�R

2

)
|ψ). (78)

Here, MR and�R are the mass and width of the resonance state, respectively. The state with a complex
eigenvalue cannot be normalized in the ordinary sense. To establish the normalization, we define the
corresponding bra-state as the complex conjugate of the Dirac bra-state:

(ψ | ≡ 〈ψ∗|, (79)

which was first introduced to describe unstable nuclei [62–64]. As a consequence, the eigenvalue of
the Hamiltonian is the same, with the ket vector:6

(ψ |Ĥ =
(

MR − i
�R

2

)
(ψ |. (80)

These eigenvectors can be normalized as

(ψ |ψ) = 1. (81)

With the same eigenstates of the free Hamiltonian in Eqs. (39) and (40), we can decompose this
normalization as

1 =
∑

a

(ψ |ψa〉〈ψa|ψ)+
∑

j

∫
d3q

(2π)3
(ψ |q j 〉〈q j |ψ) =

∑
a

Za +
∑

j

X j , (82)

where we have defined the elementariness Za and compositeness X j as

Za ≡ (ψ |ψa〉〈ψa|ψ), X j ≡
∫

d3q

(2π)3
(ψ |q j 〉〈q j |ψ). (83)

In addition, we define the momentum space wave function ψ̃ j (q) ≡ 〈q j |ψ). It follows from Eqs. (79)
and (80) that

(ψ |q j 〉 = 〈q j |ψ) = ψ̃ j (q). (84)

The compositeness is then given by

X j =
∫

d3q

(2π)3

[
ψ̃ j (q)

]2
. (85)

In contrast to Eq. (44), where X j is given by the absolute value squared, the compositeness of
the resonance is given by the complex number squared. This is also the case for Za , because

6 The eigenvectors |ψ∗) and (ψ∗| = 〈ψ | have the eigenvalue MR + i�R/2.
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(ψ |ψa〉 = 〈ψa|ψ) 
= 〈ψa|ψ)∗. In this way, Za and X j are in general complex, and the probabilistic
interpretation of Za and X j is not guaranteed.

To determine the wave function, we solve the Schrödinger equation(
MR − i

�R

2

)
ψ̃ j (q) =

(
M th

j + q2

2μ j

)
ψ̃ j (q)+

∑
k

v jk f j
(
q2) ∫ d3q ′

(2π)3
fk
(
q ′ 2)ψ̃k(q

′)

+
∑

a

ga, j
0 f j

(
q2)〈ψa|ψ), (86)

and (
MR − i

�R

2

)
〈ψa|ψ) = Ma〈ψa|ψ)+

∑
k

ga,k
0

∫
d3q

(2π)3
fk
(
q2)ψ̃k(q). (87)

Eliminating 〈ψa|ψ), we obtain

ψ̃ j (q) = −c j f j
(
q2
)

M th
j − MR + i�R/2 + q2/(2μ j )

, (88)

with the normalization constant

c j ≡
∑

k

veff
jk (MR − i�R/2)

∫
d3q

(2π)3
fk
(
q2)ψ̃k(q), (89)

where veff
jk (E) is defined in the same way with Eq. (47). The condition for nonzero c j is

det
[
1 − veff(MR − i�R/2)G(MR − i�R/2)

] = 0. (90)

This is the condition for the resonance pole at E = MR − i�R/2. We note that the loop function in
the complex energy plane is defined on the 2n-sheeted Riemann surface for an n-channel problem.
The resonance pole can exist in any sheet, except for the one which is reached by choosing the
first sheet for all channels. The most relevant Riemann sheet for the scattering amplitude at a given
energy is reached by choosing the first sheet for the closed channels and the second sheet for the open
channels. In the following, we concentrate on the poles in this Riemann sheet, while the framework
is in principle applicable to the complex poles in the other Riemann sheets.

Also, for the resonance pole the residue of the scattering amplitude is interpreted as the product of
the coupling constants g j gk :

g j gk = lim
E→MR−i�R/2

(E − MR + i�R/2)t jk(E), (91)

where the complex conjugate should not be taken for the coupling constant gk since t jk is symmet-
ric: t jk = tk j . In contrast to the bound states, the coupling constant g j is in general complex. The
amplitude near the resonance pole is also given by

lim
E→MR−i�R/2

t jk(E) ∼
∑
l,m

∫
d3q

(2π)3

∫
d3 p

(2π)3
veff

jl (E) fl
(
q2) 〈ql |ψ)(ψ |pm〉

E − MR + i�R/2
fm
(

p2)veff
mk(E)

→ c j ck

E − MR + i�R/2
, (92)

thus we find c j = g j . The compositeness in channel j is then given by

X j =
∫

d3q

(2π)3

[
ψ̃ j (q)

]2 = −g2
j

[
dG j

d E

]
E=MR−i�R/2

. (93)

The loop function in the complex energy plane should be evaluated by choosing the Riemann sheets
consistently with the choice to obtain the pole condition (90).
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From Eq. (87) and its counterpart coming from Eq. (80), we obtain

〈ψa|ψ) = (ψ |ψa〉 =
∑

j

c j g
a, j
0

MR − i�R/2 − Ma
G j (MR − i�R/2), (94)

so the total elementariness Z ≡ ∑
a Za is obtained as

Z ≡
∑

a

Za = −
∑
j,k

gk g j

[
G j

dveff
jk

d E
Gk

]
E=MR−i�R/2

. (95)

Using Eqs. (82), we obtain

−
∑
j,k

gk g j

[
δ jk

dG j

d E
+ G j

dveff
jk

d E
Gk

]
E=MR−i�R/2

= 1. (96)

This corresponds to the nonrelativistic counterpart of the generalized Ward identity for resonance
states derived in Ref. [26]. The special case of Z = 0 of Eq. (96) is obtained in Ref. [53] by using an
energy-independent separable interaction without the bare-state contribution. Here we mention that
we should obtain the same results in appropriate ways to treat resonance states such as the complex
scaling method [65].7

By definition, the compositeness for the resonance state becomes complex. Therefore, strictly
speaking, it cannot be interpreted as a probability of finding the two-body component. Neverthe-
less, because it represents the contribution of the channel wave function to the total normalization,
the compositeness X j will have an important piece of information on the structure of the resonance.
For instance, consider a resonance such that the real part of a single X j is close to unity with small
imaginary part, and all the other components have small absolute values. In this case, the resonance
wave function is considered to be similar to that of the bound state dominated by the j th channel.
It is therefore natural to interpret the resonance state in this case as dominated by the component of
the channel j . In general, however, all X j and Z can be arbitrary complex numbers constrained by
Eq. (82). The interpretation of the structure of such a state from X j and Z is not straightforward.

2.5. Relativistic covariant formulation

Finally, we consider the coupled-channel two-body scattering in a relativistic form. Here we do not
consider the intermediate states with more than two particles but simply solve the two-body wave
equation.8 To describe the wave function of the resonances, we extract the relative motion of the
two-body system from a relativistic scattering equation with a three-dimensional reduction [66,67].

According to Appendix B, we introduce the state |qco
j 〉 as the two-body scattering state of the

particles with masses m j and M j and the relative momentum q, and its normalization is fixed as

〈
q′ co

j |qco
k

〉 = 2ω j (q)� j (q)√
sq j

(2π)3δ jkδ
3(q′ − q

)
, (97)

7 In Sect. 3.2 we will compare the structure of �(1405) in the present framework with that in the complex
scaling method.

8 In general relativistic field theory, there are infinitely many diagrams which contribute to the scattering
amplitude. The present formulation picks up the summation of the s-channel two-body loop diagrams, which
is the most dominant contribution in the nonrelativistic limit.
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where sq j ≡ [ω j (q)+� j (q)]2 with the on-shell energies ω j (q) ≡
√

q2 + m2
j and � j (q) ≡√

q2 + M2
j . This normalization is chosen so that the expression of the relativistic wave equation (103)

becomes a natural extension of the nonrelativistic Schrödinger equation (see Appendix B). Further-
more, we also introduce the bare state �a , which satisfies the following orthonormal conditions:〈

�a|�b
〉 = δab,

〈
qco

j |�a
〉 = 〈

�a|qco
j

〉 = 0. (98)

We note that with the normalization (97) and (98), the complete set of the system is given by

1 =
∑

a

∣∣�a
〉 〈
�a
∣∣+∑

j

∫
d3q

(2π)3

√
sq j

2ω j (q)� j (q)

∣∣qco
j

〉 〈
qco

j

∣∣. (99)

The scattering state
∣∣qco

j

〉
and the bare state |�a〉 span the space of the eigenstates of the kinetic

energy operator K̂ which extracts the total energy squared of the state. Namely, for the two-body
scattering state

∣∣qco
j

〉
we have

K̂
∣∣qco

j

〉 = sq j
∣∣qco

j

〉
,

〈
qco

j

∣∣K̂ = 〈
qco

j

∣∣sq j . (100)

For the bare state, the eigenvalue of K̂ is the mass squared of the bare state �a , M2
a :

K̂|�a〉 = M2
a |�a〉, 〈�a|K̂ = 〈�a|M2

a . (101)

The dynamics of the system are determined by the interaction operator V̂ . We again adopt the
separable form as〈

q′ co
j

∣∣V̂∣∣qco
k

〉 = Vjk f j
(
q ′ 2) fk

(
q2), 〈

qco
j

∣∣V̂∣∣�a
〉 = 〈

�a
∣∣V̂∣∣qco

j

〉 = ga, j
0 f j

(
q2), 〈

�a
∣∣V̂∣∣�b

〉 = 0,

(102)

where Vjk is a real symmetric matrix and ga, j
0 and f j

(
q2
)

are real with an appropriate choice of
phases of the states.9 In order to make a three-dimensional reduction of the scattering equation, we
assume that the form factor f j

(
q2
)

depends only on the magnitude of the three-momentum. We
consider that the wave equation with the operator K̂ + V̂ contains a resonance |�) with mass MR

and width �R as an eigenstate [66,67]:[
K̂ + V̂

]|�) = sR|�), (�|[K̂ + V̂
] = (�|sR, (103)

where (�| = 〈�∗| and sR = (MR − i�R/2)2. By using Eq. (99) we can decompose the normaliza-
tion of the resonance vector (�|�) = 1 as

1 = (�|�) =
∑

a

Za +
∑

j

X j , (104)

where we have defined the elementariness Za and compositeness X j as:

Za ≡ (�|�a〉〈�a|�), X j ≡
∫

d3q

(2π)3

√
sq j

2ω j (q)� j (q)

[
�̃ j (q)

]2
, (105)

9 In relativistic field theory, the coupling ga, j
0 can have an energy dependence from the derivative coupling.

We do not consider the energy dependence of the coupling, in order to ensure a smooth reduction to the results
in the previous section in the nonrelativistic limit.
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with the momentum space wave function〈
qco

j

∣∣�) = �̃ j (q) = (
�
∣∣qco

j

〉
. (106)

As in Sect. 2.3, the wave function is determined as

�̃ j (q) = C j f j
(
q2
)

sR − sq j
, (107)

C j =
∑

k

V eff
jk (sR)

∫
d3q ′

(2π)3

√
sq ′k

2ωk(q′)�k
(
q′ 2
) fk

(
q ′ 2)�̃k(q

′), (108)

V eff
jk (s) = Vjk +

∑
a

ga, j
0 ga,k

0

s − M2
a

(109)

The consistency condition for nonzero C j is given by

det
[
1 − V eff(sR)G(sR)

] = 0, (110)

where the loop function G is diagonal with respect to the channel index and is expressed as

G j (s) =
∫

d3q

(2π)3

√
sq j

2ω j (q)� j (q)

[
f j
(
q2
)]2

s − sq j
=
∫

d4q

(2π)4
i
[

f j
(
q2
)]2[

(P/2 + q)2 − m2
j

][
(P/2 − q)2 − M2

j

] ,
(111)

with the energy squared P2 = s. The energy squared s in the denominator of the loop function is con-
sidered to have an infinitesimal positive imaginary part iε: s → s + iε. We note that the dimensional
regularization of the loop function is achieved by setting f j (q2) = 1 and modifying the integration
variable as d4k → μ4−d

reg ddk with the regularization scale μreg.
In Appendix B we confirm that the wave equation (103) indeed describes a two-body system gov-

erned by the relativistic scattering equation. Namely, with the energy-dependent two-body interaction
V eff

jk (s) (109) and the loop function G j (s) (111), the scattering amplitude Tjk(s) can be calculated as

Tjk(s) = V eff
jk (s)+

∑
l

V eff
jl (s)Gl(s)Tlk(s). (112)

Therefore, Eq. (110) ensures that the scattering amplitude Tjk(s) has a pole at s = sR.
By comparing the residue of the resonance pole as in Eq. (92), we find C j = g j , where

g j gk = lim
s→sR

(s − sR)Tjk(s). (113)

Then, as in Sect. 2.3, we obtain

〈�a|�) = (�|�a〉 =
∑

j

g j g
a, j
0

sR − M2
a

G j (sR). (114)

Therefore, we obtain the compositeness and elementariness as

X j = −g2
j

[
dG j

ds

]
s=sR

, (115)

Z ≡
∑

a

Za = −
∑
j,k

gk g j

[
G j

dV eff
jk

ds
Gk

]
s=sR

, (116)
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+

(a) (b)

Fig. 1. Diagrammatic interpretation of the compositeness X (a) and elementariness Z (b). The double and
wiggly lines represent the resonance state and the probe current, respectively, and the solid and dashed lines
correspond to the constituent particles.

and the sum rule is derived from the normalization (104) as

−
∑
j,k

gk g j

[
δ jk

dG j

ds
+ G j

dV eff
jk

ds
Gk

]
s=sR

= 1. (117)

This is another derivation of the generalized Ward identity in Ref. [26], where Eq. (117) is obtained
by attaching one probe current to the meson–baryon scattering amplitude. The derivative of the loop
function corresponds to the diagrams in Fig. 1(a) in the soft limit of the probe current. It is therefore
consistent to interpret the first term of Eq. (117) as compositeness, which reflects the contribution
from the two-body molecule component. On the other hand, the derivative of the contact inter-
action corresponds to the attachment of the probe current to the interaction vertex [Fig. 1(b)], which
represents something other than the compositeness and thus is understood as the elementariness.

We note that, although both the compositeness X j and elementariness Z are complex for reso-
nances, their sum should be unity, provided that the proper normalization of the wave function is
adopted. As in the nonrelativistic case, the compositeness (elementariness) is expressed with the
derivative of the loop function (interaction), and they can be determined by the local behavior of
the interaction and loop function. Finally, we mention that the expression of the elementariness Z in
Eq. (116) coincides with that derived by matching with the Yukawa theory in Ref. [42]. In this work,
we derive Z and X j without specifying the explicit form of the vertex and relate them with the wave
function of the bound and resonance states.

3. Applications: structure of dynamically generated hadrons

3.1. Compositeness and elementariness in chiral dynamics

Having established the compositeness and elementariness in Eqs. (115) and (116), we now turn to the
analysis of physical hadronic resonances by theoretical models with hadronic degrees of freedom.
One of the most prominent models is the coupled-channel approach with the chiral perturbation
theory. In this model the nonperturbative summation of the chiral interaction makes it possible to
generate hadronic resonances dynamically, and hence these hadronic resonances are often called
dynamically generated hadrons. This framework has been successfully applied to the description of
low-energy hadron scatterings with resonance states. Among others, the �(1405) resonance in the
strangeness S = −1 meson–baryon scattering [59,68–75] and the lightest scalar and vector mesons
in the meson–meson scattering [76–85] have been extensively studied in this approach.

The compositeness and elementariness have been evaluated in the chiral model with the simple
leading order chiral interaction for�(1405) and the scalar mesons in Ref. [27]. The compositeness of
the ρ(770)meson [43] and K ∗(892) [44] are also studied in phenomenological models. Here we aim
at more quantitative discussion by using refined chiral models constrained by the recent experimental
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data. For this purpose, we employ the next-to-leading-order calculations for�(1405) [73,74] and for
scalar and vector mesons [85].

As we will show below, the scattering amplitudes in Refs. [73,74,85] can be reduced to the form
of the coupled-channel algebraic equation

Tjk(s) = Vjk(s)+
∑

l

V jl(s)Gl(s)Tlk(s). (118)

Here, the separable interaction kernel Vjk is a symmetric matrix with respect to the channel indices
and depends on the Mandelstam variable s, and G j is the two-body loop function. The explicit forms
of Vjk and G j will be given for each model. The resonances are identified by the poles of the scatter-
ing amplitude Tjk , and the scattering amplitude can be written in the vicinity of one of the resonance
poles as:

Tjk(s) = g j gk

s − sR
+ T BG

jk (s), (119)

where g j and sR are the coupling constant and the pole position for the resonance, respectively, and
T BG

jk is a background term which is regular at s → sR.
In this study, we utilize the set of the one- and two-body states introduced in Sect. 2 as the basis

for interpreting the structure of the hadronic resonances in the coupled-channel chiral model. On
the assumption that the energy dependence of the interaction originates from channels which do not
appear as explicit degrees of freedom, it has been shown that the final expression of the compositeness
is given by Eq. (115) only with the quantities at the pole position. Namely, the j-channel compos-
iteness is expressed with the pole position and the residue of the amplitude and the derivative of the
loop function G j , which is obtained with the two-body eigenstates of the free Hamiltonian Ĥ0:

X j = −g2
j

[
dG j

ds

]
s=sR

. (120)

On the other hand, the elementariness Z is given by the rest of the component out of unity:

Z = 1 −
∑

j

X j . (121)

By using the interaction V in the coupled-channel equation (118), the elementariness Z is also
given as

Z = −
∑
j,k

gk g j

[
G j

dVjk

ds
Gk

]
s=sR

, (122)

which measures the contributions from one-body bare states and implicit two-body states on the
basis in Sect. 2. Since the contribution of the bare state with a large mass gives an interaction
with polynomial energy dependence, we are allowed to apply Eq. (122) for V with general energy
dependence, which can be reproduced with suitable bare states.

Let us summarize the interpretation of the compositeness and elementariness for resonances.
As shown in Sect. 2.3, X j and Z for resonances are in general complex. This fact spoils the probabilis-
tic interpretation in a strict sense. It is, however, possible to interpret the structure of the resonance
when one of the real parts of X j or Z is close to unity and all the other numbers have small absolute
values. In this case, we interpret that the resonance is dominated by the j th channel component or
something other than the two-body channels involved, respectively, on the basis of the similarity of
the wave function of the stable bound state.
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Table 1. Compositeness X j and elementariness Z of �(1405) in the isospin
basis.

�(1405), higher pole �(1405), lower pole
√

sR [MeV] 1424 − 26i 1381 − 81i
X K̄ N 1.14 + 0.01i −0.39 − 0.07i
Xπ� −0.19 − 0.22i 0.66 + 0.52i
Xη� 0.13 + 0.02i −0.04 + 0.01i
X K� 0.00 + 0.00i −0.00 + 0.00i
Z −0.08 + 0.19i 0.77 − 0.46i

3.2. Structure of �(1405)

In Refs. [73,74] the low-energy meson–baryon scattering in the strangeness S = −1 sector was stud-
ied in the chiral model. The meson–baryon interaction kernel was constructed in chiral perturbation
theory up to the next-to-leading order, which consists of the Weinberg–Tomozawa contact term, the
s- and u-channel Born terms, and the next-to-leading-order contact terms. After the s-wave pro-
jection, the interaction kernel Vjk depends only on the Mandelstam variable s as a real symmetric
separable interaction. The explicit form of Vjk can be found in Refs. [74,75]. The loop function is
regularized by the dimensional regularization:

G j (s) = iμ4−d
reg

∫
ddq

(2π)d
1[

(P/2 + q)2 − m2
j

] [
(P/2 − q)2 − M2

j

]

= a j (μreg)+ 1

16π2

[
−1 + ln

(
m2

j

μ2
reg

)
+

s + M2
j − m2

j

2s
ln

(
M2

j

m2
j

)

−
λ1/2

(
s, m2

j , M2
j

)
s

artanh

(
λ1/2

(
s, m2

j , M2
j

)
m2

j + M2
j − s

)]
, (123)

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx . The finite part is specified
by the subtraction constant a j (μreg) at the regularization scale μreg. Because the meson–baryon
one loop is counted as next-to-next-to-leading order in the baryon chiral perturbation theory, the
amplitude is not renormalizable and hence it depends on the subtraction constants in this framework.
The low-energy constants in the next-to-leading-order contact interaction terms and the subtraction
constants of the loop function have been determined by fitting to the low-energy total cross sections
of K − p scattering to elastic and inelastic channels, the threshold branching ratios, and the recent
measurement of the 1s shift and width of kaonic hydrogen [86,87]. In this approach, the �(1405)
resonance is associated with two poles of the scattering amplitude in the complex energy plane [72].
For convenience we refer to the pole which has higher (lower) mass MR = Re

(√
sR
)

as the higher
(lower) pole. It is expected from the structure of the Weinberg–Tomozawa interaction that the higher
pole originates in a bound state caused by the K̄ N attraction [59].

With the formulae in Sect. 3.1 we calculate the pole positions, compositeness X j , and the ele-
mentariness Z of the �(1405) resonance in this model; the results are summarized in Table 1.
In Refs. [73,74], the isospin symmetry is slightly broken by the physical hadron masses. Therefore,
we evaluate the compositeness in the charge basis and define the compositeness in the isospin basis
by summing up all the channels in the charge basis, i.e., X K̄ N = X K − p + X K̄ 0n , and so on. Although
there are nonzero contributions from the I = 1 channels, Xπ0� and Xη�0 , to the total normalization,
these are negligible and hence not listed in Table 1. It is remarkable that the real part of the X K̄ N
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component of the higher�(1405) pole is close to unity and its imaginary part is very small. In addi-
tion, the magnitude of the real and imaginary parts of all the other components is also small (�0.2).
This indicates that the wave function of the higher �(1405) pole is similar to that of the pure K̄ N
bound state which has X K̄ N = 1, Xi = 0 (i 
= K̄ N ), and Z = 0. It is therefore natural to interpret
that the higher�(1405) pole is dominated by the K̄ N composite component. This is consistent with
the non-qqq nature of this pole from the Nc scaling analysis [23,24].

On the other hand, for the lower pole, there is a certain amount of cancellation (∼0.4) in the real part
of the sum rule (117), and the absolute values of the imaginary parts are as large as ∼0.5. Although
one may observe relatively large contributions in Xπ� and Z , the dominance of these components is
comparable with the magnitude of the imaginary part. Therefore, it is not possible to clearly conclude
the structure of the lower pole from the present analysis.

The compositeness and elementariness of �(1405) were calculated in Ref. [27] using the simple
chiral model with the leading-order Weinberg–Tomozawa interaction. The qualitative features of X j

and Z are not changed very much, so we confirm the earlier results in the present refined model.
At the quantitative level, the results of the lower pole show relatively larger model dependence. This
model dependence also implies the difficulty of clear interpretation of the structure of the lower pole.

Before closing this subsection, we mention that the structure of �(1405) was investigated in the
complex scaling method in Refs. [88,89]. In a K̄ N–π� two-channel model, the norm of each com-
ponent is evaluated from the wave function. It is found that the norm of the K̄ N component of the
higher�(1405) pole is close to unity with a small imaginary part. Thus, the result for the higher pole
is qualitatively consistent with ours. On the other hand, the result for the lower pole in Ref. [89] shows
the dominance of the π� component. This is because the complete set to decompose the resonance
wave function in Ref. [89] does not contain the elementary component. Namely, the application of
our formula to their amplitude would indicate a certain amount of the elementary component Z ,
as we have found here, since the interaction in Ref. [89] has an energy dependence. In fact, this
is in accordance with the observation in Ref. [89] that the lower pole disappears when the energy
dependence of the interaction is switched off.

3.3. Structure of the lightest scalar and vector mesons

The lowest-lying scalar and vector mesons in the meson–meson scattering have been studied
in Ref. [85] using the inverse amplitude method (IAM) with the chiral interaction up to the
next-to-leading order. The scattering amplitude in the coupled-channel IAM is given by

T (s) = T2(s) [T2(s)− T4(s)]
−1 T2(s), (124)

where T2 and T4 are respectively the leading- and next-to-leading-order amplitudes in matrix form
with channel indices from chiral perturbation theory and have been projected to the orbital angular
momentum L = 0 (scalar) and L = 1 (vector). In contrast to the model in the previous subsection, the
meson–meson one loop is in the next-to-leading order, and hence the amplitude does not depend on
the renormalization scale. Therefore, the parameters in this model are the renormalized low-energy
constants in the next-to-leading-order chiral Lagrangians. These constants are determined by fitting
the experimental meson–meson scattering data such as the ππ scattering up to

√
s = 1.2 GeV [85].

The lightest scalar mesons σ , f0(980), and κ are found as poles of the s-wave amplitude, while the
a0(980) resonance appears as a cusp at the K K̄ threshold, but the corresponding resonance pole is
not found. The vector mesons ρ(770) and K ∗(892) are also dynamically generated as poles of the
p-wave amplitude.
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To evaluate the compositeness and elementariness, we rewrite the amplitude (124) in the form of
Eq. (118). To this end, we first notice that T4 can be decomposed as the s-channel loop part and
the rest:

T4 = T2GT2 + T4,non-G, (125)

where T4,non-G(s) consists of the next-to-leading-order tree-level amplitudes, tadpoles, and t- and
u-channel loop contributions. The loop function G j (s) in Eq. (125) is given by

G j (s) = 1

16π2

[
−1 +

(
M2

j − m2
j

2s
+

m2
j + M2

j

2(m2
j − M2

j )

)
ln

(
M2

j

m2
j

)

−
λ1/2

(
s, m2

j , M2
j

)
s

artanh

(
λ1/2

(
s, m2

j , M2
j

)
m2

j + M2
j − s

)]
. (126)

Note that there are no degrees of freedom of the subtraction constant; the finite part is determined
by the low-energy constants included in T4,non-G . We then define

V ≡ T2(T2 − T4,non-G)
−1T2. (127)

It is easily checked that the amplitude in IAM (124) is formally equivalent to Eq. (118) with the
interaction (127) and the loop function (126). We thus interpret Eq. (127) as the effective interaction
kernel used in IAM. Physically, this interaction kernel contains not only the chiral interaction up to
the next-to-leading order but also the nonperturbative summation of contributions from the t- and
u-channel loops. We also note that the interaction kernel (127) can have a nonzero imaginary part due
to contributions from the t- and u-channel loops, which will disappear in the nonrelativistic limit.

Before evaluating the compositeness, let us focus on the structure of the interaction kernel (127).
Because of the (T2 − T4,non-G)

−1 factor, the interaction kernel can have a pole when det[T2(s)−
T4,non-G(s)] = 0 is satisfied. Thus, even though the IAM is constructed from chiral perturbation the-
ory without bare fields of the scalar and vector mesons, there can be a pole contribution in the effective
interaction V . In fact, we find poles in the vector channel V near the physical resonances as

ρ channel : 746 − 11i MeV, K ∗ channel : 890 − 0i MeV. (128)

In contrast, in the scalar channel there is no pole contribution in the relevant energy region. The pole
structure of the interaction V can be related to the origin of resonances in the full amplitude T .

Now let us evaluate the compositeness and elementariness of the lightest scalar and vector mesons
described by the coupled-channel IAM developed in Ref. [85] on the basis of the one- and two-body
states introduced in Sect. 2. The values obtained for the compositeness and elementariness are listed
in Tables 2 (scalar channels) and 3 (vector channels). In the scalar channels, the f0(980) resonance

Table 2. Compositeness X j and elementariness Z of scalar mesons in the isospin basis.

f0(500) = σ f0(980) K ∗
0 (800) = κ

√
sR [MeV] 443 − 217i 988 − 4i 750 − 227i

Xππ −0.09 + 0.37i 0.00 − 0.00i —
X K K̄ −0.01 − 0.00i 0.87 − 0.04i —
Xηη −0.00 + 0.00i 0.06 + 0.01i —
XπK — — 0.32 + 0.36i
XηK — — −0.01 − 0.00i
Z 1.09 − 0.37i 0.07 + 0.02i 0.70 − 0.36i
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Table 3. Compositeness X j and elementariness Z of vector
mesons in the isospin basis.

ρ(770) K ∗(892)
√

sR [MeV] 760 − 84i 885 − 22i
Xππ −0.08 + 0.03i —
X K K̄ −0.02 + 0.00i —
XπK — −0.03 + 0.04i
XηK — −0.03 + 0.00i
Z 1.10 − 0.04i 1.06 − 0.04i

shows a clear property: the real part of the K K̄ component is close to unity, while other components
are smaller than 0.07. This indicates that the f0(980) resonance is dominated by the K K̄ component.
On the other hand, the results for the σ and κ resonances are subtle; the largest component seems
to be Z , but its imaginary part is not small, ∼ 0.37. We thus refrain from interpreting the structure
of the σ and κ resonance from X and Z . In Refs. [21,22] the non-qq̄ nature of the scalar mesons is
implied from the Nc scaling behavior. Our conclusion of the K K̄ dominance of f0(980) is consistent
with the Nc scaling analysis.

In the vector channels,10 we find that, for both the ρ(770) and K ∗(892) mesons, the real part of
the elementariness Z is close to unity and the magnitude of the imaginary part is less than 0.1. This
indicates that the structure originates in the elementary component. This is consistent with the finding
of the pole contribution in the interaction kernel V for the vector channels. In fact, the physical pole
position in Table 3 is very close to that in the effective interaction (128). We thus conclude that these
vector mesons are not dominated by the two-meson composite structure. This is consistent with the
Nc scaling analysis in Refs. [21,22], which indicates the qq̄ structure of vector mesons.

The compositeness of scalar mesons [σ , f0(980), and a0(980)] has been studied in Ref. [27] using
the leading-order chiral interaction. The qualitative tendency of the results for σ and f0(980) is
similar to the present calculation, while the dominance of the K K̄ component of f0(980) is much
clearer in the present results. Also, for the vector mesons, the present calculation in IAM with the
next-to-leading-order chiral interaction is consistent with the previous phenomenological ones in
Refs. [43,44], which suggest that ρ(770) and K ∗(892) are elementary.

3.4. Structure of other hadrons

In the preceding subsections we have evaluated the compositeness and elementariness of �(1405),
light scalar mesons, and light vector mesons using the scattering amplitudes calculated in chiral
dynamics with systematic improvements by higher-order contributions. In this subsection we also
discuss the compositeness and elementariness of N (1535) and �(1670) in a simplified model with

10 In the framework of IAM, the loop function in p wave is identical to that in s wave. On the other hand, with
a nonrelativistic separable interaction, the loop function in the lth partial wave should contain the q2l factor
in the integrand [43,44]. This is to ensure the correct low-energy behavior of the amplitude Fl(q) ∼ q2l . The
difference of the loop function may be regarded as the difference of the definition of Z and X j (basis to form the
complete set). We note, however, that the present definition leads to Z = 0 in the B → 0 limit even in p wave,
while the definition in Refs. [43,44] does not constrain the value of Z at threshold for nonzero l. The general
threshold behavior is consistent with the latter [61], so the present definition would lead to special behavior
near the threshold. In practice, the ρ(770) and K ∗(892) mesons locate away from the threshold energies of
meson–meson channels, so the special nature of the definition would not cause a problem in the present analysis.
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Table 4. Compositeness X j and elementariness Z of N (1535) and�(1670) in the isospin
basis.

N (1535) �(1670)
√

sR [MeV] 1529 − 37i
√

sR [MeV] 1678 − 21i
XπN −0.02 − 0.01i X K̄ N 0.03 + 0.00i
XηN −0.03 + 0.23i Xπ� 0.00 + 0.00i
X K� 0.09 − 0.04i Xη� −0.09 + 0.16i
X K� 0.26 − 0.09i X K� 0.53 − 0.10i
Z 0.70 − 0.09i Z 0.53 − 0.06i

the lowest-order Weinberg–Tomozawa interaction. Although a systematic analysis is not performed
for these resonances, the model with appropriate subtraction constants [90,91] describes N (1535)
and �(1670) reasonably well.

Using V (s) and G(s)with the subtraction parameters given in Ref. [90] for N (1535) and Ref. [91]
for �(1670), we calculate the compositeness and elementariness of N (1535) and �(1670). The
results are listed in Table 4. First of all, interestingly, for both resonances the imaginary parts of
the values of the compositeness X j and elementariness Z are relatively small. This may allow us
to interpret X j and Z as the components of the resonance state. For N (1535), Z is a dominant
piece with a relatively small imaginary part. This suggests that N (1535) in the present model has a
large component originating from contributions other than the pseudoscalar meson–baryon dynamics
considered, in accordance with Ref. [20]. In contrast, for �(1670) the K� compositeness X K�

and the elementariness Z share unity half-and-half. This implies that in the present model the K�
composite state plays a substantial role for the�(1670) pole together with a bare state coming from
components other than meson–baryon systems. This conclusion for �(1670) is consistent with the
discussion with the natural renormalization scheme in Ref. [92].

Here we emphasize that both N (1535) and �(1670) discussed in this subsection are described by
scattering amplitudes which do not fully reproduce the experimental data at relevant energies [93,94].
For a more realistic discussion, it is desirable to improve the theoretical models so as to reproduce
the experimental data well, for instance by taking into account the interplay between N (1535) and
N (1650) [95], by including the vector meson–baryon channels [96], and by implementing higher-
order terms.

4. Conclusion

In this study we have developed a framework to investigate the internal structure of bound and
resonance states with their compositeness and elementariness by using their wave functions. For
this purpose we have explicitly taken into account both one-body bare states and two-body scattering
states as the basis to interpret the structure of bound and resonance states. Compositeness and ele-
mentariness are respectively defined as the contributions from the two-body scattering states and the
one-body bare states to the normalization of the total wave function. After reviewing the formulation
for the bound state, we have discussed the extension to the resonance state.

Because the wave function is analytically obtained for a separable interaction, we have explicitly
written down the wave function for a bound state in a general separable interaction and obtained
the expressions for the compositeness and elementariness. We have demonstrated that the compos-
iteness is determined by the residue of the scattering amplitude and the energy dependence of the
loop function at the pole position. Therefore, once one has the loop function, which is the Green

25/32

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 063D04 T. Sekihara et al.

function of the free two-body Hamiltonian, one can obtain the compositeness only from the bound
state properties. On the other hand, we have found that the elementariness is obtained with the energy
dependence of the effective two-body interaction. It is an interesting finding that the energy depen-
dence of the two-body effective interaction arises from implicit channels which do not appear as
explicit degrees of freedom but are effectively taken into account for the two-body interaction in the
practical model space. These implicit channels contain the two-body scattering states as well as the
one-body bare states. We have also shown the sum rule of the compositeness and elementariness.
We have proved that, with multiple bare states, the formulae of the compositeness and elementari-
ness can be applied to interactions with an arbitrary energy dependence. Of particular value is the
derivation of Weinberg’s relation for the scattering length and effective range in the weak binding
limit. In the present formulation, thanks to the separable interaction, the scattering amplitude is ana-
lytically obtained. With this fact we have explicitly performed the expansion of the amplitude around
the threshold to derive Weinberg’s relation. In this derivation, the higher-order corrections come from
the explicit expression of the form factor as well as higher-order derivatives in the expansion. The
limitation of the formula due to the existence of the CDD pole is clearly linked to the breakdown of
the effective range expansion.

Our discussion on the wave function has been extended to resonance states with Gamow vectors.
The use of the Gamow vector enables us to have finite normalization of the resonance wave function.
For a resonance state, by definition both the compositeness and elementariness become complex,
which are difficult to interpret. Nevertheless, utilizing the fact that the compositeness and element-
ariness are defined by the wave functions, we have proposed the interpretation of the structure of a
certain class of resonance states, on the basis of the similarity of the wave function of the bound state.
Namely, if the compositeness in a channel (elementariness) is close to unity with small imaginary
part and all the other components have small absolute values, this resonance state can be considered
to be a composite state in the channel (an elementary state). Finally, we have given the expressions for
the compositeness and elementariness with a general separable interaction in a relativistic covariant
form by considering a relativistic scattering with a three-dimensional reduction.

As applications, the expression for the compositeness in a relativistic form has been used to inves-
tigate the internal structure of hadronic resonances, on the assumption that the energy dependence of
the interaction originates from the implicit channels. By employing chiral coupled-channel scatter-
ing models with interactions up to the next-to-leading order, we have observed that the higher pole
of�(1405) and f0(980) are dominated by the K̄ N and K K̄ composite states, respectively, while the
vector mesons ρ(770) and K ∗(892) are elementary.

Finally, we emphasize that the fact that constituent hadrons are observable as asymptotic states in
QCD is essential to constructing the two-body wave functions and to determining the compositeness
for hadronic resonances.
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Appendix A. Proof of Eq. (62)

In this appendix we prove the relation in Eq. (62). In order to specify the problem, we consider a
nonrelativistic stable bound system described with N two-body channels, in which the j th channel
compositeness X j and the elementariness Z can be expressed as

X j = −g2
j

[
dG j

d E

]
E=MB

( j = 1, . . . , N ), (A1)

Z = −
N∑

j,k=1

gk g j

[
G j

dveff
jk

d E
Gk

]
E=MB

, (A2)

with the coupling constant g j , the loop function G j , and the two-body effective interaction veff
jk .

Then we make an implementation of a scattering channel N into the effective interaction, in the
same manner as in [59]:

w jk(E) = veff
jk + veff

j N
G N (E)

1 − veff
N N G N (E)

veff
Nk ( j, k = 1, . . . , N − 1). (A3)

When we adopt the effective interaction w jk for the N − 1 two-body channels, the elementariness
Zw may be able to be calculated by the derivative of the effective interaction w jk as

Zw = −
N−1∑
j,k=1

gk g j

[
G j

dw jk

d E
Gk

]
E=MB

. (A4)

Now we would like to prove that Zw can be expressed as

Zw = Z + X N . (A5)

For this purpose we first note that the coupling constant g j satisfies the following bound state
condition: ∑

k

[
δ jk − veff

jk Gk

]
E=MB

gk = 0. (A6)

In the following equations we omit the argument of the functions veff
jk , G j , and so on, since we always

take E = MB in this appendix. From the condition (A6) we can express gN in terms of other coupling
constants g j ( j 
= N ) as

gN = 1

1 − veff
N N G N

N−1∑
j=1

g j G jv
eff
j N = 1

1 − veff
N N G N

N−1∑
k=1

gk Gkv
eff
Nk . (A7)

We prove the relation (A5) by first calculating the derivative of the effective interaction w. From
Eq. (A3), its derivative can be evaluated as

dw jk

d E
=

dveff
jk

d E
+

dveff
j N

d E

G N

1 − veff
N N G N

veff
Nk + veff

j N
dG N

d E

1

1 − veff
N N G N

veff
Nk

+ veff
j N

G N(
1 − veff

N N G N
)2 d

(
veff

N N G N
)

d E
veff

Nk + veff
j N

G N

1 − veff
N N G N

dveff
Nk

d E
. (A8)
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Therefore, the elementariness Zw becomes

Zw = −
N−1∑
j,k=1

gk g j G j Gk

[
dveff

jk

d E
+

dveff
j N

d E

G N

1 − veff
N N G N

veff
Nk + veff

j N
dG N

d E

1

1 − veff
N N G N

veff
Nk

+veff
j N

G N(
1 − veff

N N G N
)2 d

(
veff

N N G N
)

d E
veff

Nk + veff
j N

G N

1 − veff
N N G N

dveff
Nk

d E

]
. (A9)

Then using Eq. (A7) we can rewrite Zw as

Zw = −
N−1∑
j,k=1

gk g j G j Gk
dveff

jk

d E
−

N−1∑
j=1

g j G j
dveff

j N

d E
G N gN −

N−1∑
j=1

g j G jv
eff
j N

dG N

d E
gN

− gN G N
d
(
veff

N N G N
)

d E
gN −

N−1∑
k=1

gk Gk G N gN
dveff

Nk

d E
. (A10)

The third term of the right-hand side can be further translated by multiplying 1 =
(1 − veff

N N G N )/(1 − veff
N N G N ) as

−
N−1∑
j=1

g j G jv
eff
j N

dG N

d E
gN = −gN

(
1 − veff

N N G N

) dG N

d E
gN , (A11)

which is combined with the fourth term to give

− gN

(
1 − veff

N N G N

) dG N

d E
gN − gN G N

d
(
veff

N N G N
)

d E
gN = −g2

N
dG N

d E
− g2

N G2
N

dveff
N N

d E
. (A12)

As a consequence, the elementariness Zw becomes

Zw = −
N−1∑
j,k=1

gk g j G j
dveff

jk

d E
Gk −

N−1∑
j=1

g j G j
dveff

j N

d E
G N gN − g2

N
dG N

d E
− g2

N G2
N

dveff
N N

d E

−
N−1∑
k=1

gk gN G N
dveff

Nk

d E
Gk

= −
N∑

j,k=1

gk g j G j
dveff

jk

d E
Gk − g2

N
dG N

d E
, (A13)

which completes the proof of Eq. (A5). By repeating the above procedure, one can make an imple-
mentation of two or more two-body channels. Moreover, in a similar way, one can prove that the
contribution of the bare states can be expressed by the derivative of the Green function like Eq. (A1)
when the bare states are not counted into the implicit channels.

Appendix B. Conventions of relativistic two-body state and two-body equation

In this appendix we summarize our conventions of the two-body state in the relativistic kinematics
and confirm that the wave equation (103) indeed describes a two-body system whose motion is gov-
erned by the Klein–Gordon equation. In the following we concentrate on single-channel kinematics
of the two-body system, but generalization to multi-channel kinematics is straightforward.

28/32

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 063D04 T. Sekihara et al.

B.1. Normalization of states

First, we consider an on-shell one-body state of a scalar field of mass m with definite three-
dimensional momentum p, |p〉, whose normalization is defined as follows:

〈p′|p〉 = 2
√

p2 + m2(2π)3δ3(p′ − p). (B1)

Since we do not explicitly treat spin components of scattering baryons in this paper, we also use the
above normalization for baryons.

Next, we construct a two-body state, in which both particles are on the mass shell and the relative
momentum is denoted as q in the center-of-mass frame used in Sect. 2.4. In this kinematical condi-
tion, the momenta of the two particles are given by pμ1 = (ω(q), q) and pμ2 = (�(q), −q), where
ω(q) ≡

√
q2 + m2 and�(q) ≡

√
q2 + M2 are the on-shell energies of the two particles with m (M)

being the mass of the first (second) particle, and the total momentum becomes Pμ ≡ pμ1 + pμ2 =
(
√

sq , 0)with
√

sq ≡ ω(q)+�(q). Then the two-body state with relative momentum q, |qco〉, can be
defined by using the product of two one-body states, |p1〉 ⊗ |p2〉. In this study we adopt the following
normalization of |qco〉:

|qco〉 ≡ Nsq |q1〉 ⊗ | − q2〉, 〈qco| ≡ N ∗
sq〈q1| ⊗ 〈−q2|, |Nsq |2 ≡ 1

2V3
√

sq
. (B2)

In the normalization factor Nsq , V3 is the total spatial volume and is related to the delta func-
tion for the momentum as V3 = (2π)3δ3(0). The advantage to adopting this normalization factor
is that the expression of the relativistic two-body wave equation becomes a natural extension of the
nonrelativistic Schrödinger equation, as we will see in the next subsection.

With the definition of the two-body state |qco〉 in Eq. (B2) and the normalization of the one-body
state in Eq. (B1), we can calculate the normalization for |qco〉 in a straightforward way as

〈
q′ co|qco〉 = 2ω(q)�(q)√

sq
(2π)3δ3(q′ − q). (B3)

This normalization leads to the projection operator to the two-body state:

P̂two =
∫

d3q

(2π)3

√
sq

2ω(q)�(q)
|qco〉〈qco|, (B4)

which corresponds to a part of the completeness condition.

B.2. Relativistic wave equation and scattering equation

Now we would like to confirm that the wave equation (103) indeed describes a two-body system
whose motion is governed by the Klein–Gordon equation, by deriving the scattering equation from
the operators in the wave equation. Here, in the same manner as in Sect. 2, we introduce a one-body
bare state and a two-body scattering state, and assume that the bare state contribution is effectively
contained in the two-body interaction V eff. In this sense, the relation in Eq. (B4) coincides with the
completeness condition; P̂two = 1.

In general, the wave equation can be composed of the free two-body Green’s operator Ĝ(s)
and the two-body interaction operator V̂eff(s). The two-body Green’s operator Ĝ(s) is defined as
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Ĝ(s) ≡ 1/(s − K̂) with the kinetic energy operator K̂ so that11

Ĝ(s)|qco〉 = 1

s − sq
|qco〉, 〈qco|Ĝ(s) = 1

s − sq
〈qco|. (B5)

On the other hand, the two-body interaction operator V̂eff(s) has a general separable interaction as in
Eq. (102), thus we have 〈

q′ co|V̂eff(s)|qco〉 = V eff(s) f
(
q2) f

(
q ′ 2), (B6)

where V eff(s) corresponds to the interaction in Eq. (109), which contains the implicit contribution
from the bare state.12 Here we also assume that the form factor f (q2) depends only on the three-
momentum so as to make a three-dimensional reduction of the scattering equation. Then, by using
Ĝ and V̂eff, we can express the wave equation for a relativistic resonance state |�), whose mass and
width are described by an eigenvalue sR, as

Ĝ−1(sR)|�) = V̂eff(sR)|�
)
, (�|Ĝ−1(sR) = (�|V̂eff(sR), (B7)

which is equivalent to the wave equation in Eq. (103) with the implicit bare-state degree of freedom.
Let us now derive the scattering equation with the above normalizations. To this end, we define the

T -operator T̂ by the interaction V̂eff and two-body Green’s operator Ĝ as:

T̂ = V̂eff + V̂effĜT̂ . (B8)

This corresponds to the two-body scattering equation in an operator form. For the separable
interaction (B6), the matrix element of the T -operator is given in the form 〈q′ co|T̂ |qco〉 =
T (s) f

(
q2
)

f
(
q ′ 2
)
. The scattering equation is then obtained from Eq. (B8) as

T (s) = V eff(s)+ V eff(s)G(s)T (s). (B9)

where G(s) corresponds to the loop function and is defined as

G(s) ≡
∫

d3q

(2π)3

√
sq

2ω(q)�(q)

[
f
(
q2
)]2

s − sq
= i

∫
d4q

(2π)4

[
f
(
q2
)]2[(

P/2 + q
)2 − m2

][(
P/2 − q

)2 − M2
] ,

(B10)

with Pμ ≡ (
√

s, 0). The second term of the right-hand side in Eq. (B9) can be obtained by inserting
the operator P̂two = 1 (B4) between V̂eff and Ĝ as

〈q′ co|V̂effĜT̂ |qco〉 =
∫

d3q ′′

(2π)3

√
sq ′′

2ω(q′′)�
(
q′′) 〈q′ co|V̂eff|q′′ co〉〈q′′ co|T̂ |qco〉

s − sq ′′

=
∫

d3q ′′

(2π)3

√
sq ′′

2ω(q′′)�
(
q′′) V eff(s) f

(
q ′′ 2

)
f
(
q ′ 2
)× T (s) f

(
q2
)

f
(
q ′′ 2

)
s − sq ′′

= V eff(s)G(s)T (s) f
(
q2) f

(
q ′ 2). (B11)

As seen in the last expression of the loop function G(s) in Eq. (B10), Eq. (B9) is nothing but the
scattering equation with the Klein–Gordon propagators, and hence the wave equation (103) indeed
describes a two-body system whose motion is governed by the Klein–Gordon equation.

11 In the nonrelativistic framework the two-body Green’s operator is Ĝ(E) = 1/(E − Ĥ0), with Ĥ0 being the
free Hamiltonian, and Eq. (B7) is reduced to the Schrödinger equation.

12 By using the notations in Sect. 2.4, the two-body interaction operator V̂eff(s) can be defined as V̂eff(s) ≡
V̂ + V̂|�0〉〈�0|V̂/(s − M2

0 ) in a similar manner to the operator V̂ eff(E) in Sect. 2.1.
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At last we emphasize that the normalization (B3) is consistent with the two-body Green’s opera-
tor Ĝ(s) = 1/(s − K̂), which is a natural extension of the nonrelativistic Green’s operator Ĝ(E) =
1/(E − Ĥ0). Otherwise, we should redefine Ĝ(s) so as to absorb a kinematical factor coming from√

sq/[2ω(q)�(q)] in the loop integral (B10). This allows us to determine the coefficient of the
relativistic two-body wave function in Sect. 2.4 in a straightforward way as in the nonrelativistic case.
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