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We construct a complete action for open superstring field theory that includes the Neveu–
Schwarz sector and the Ramond sector. For the Neveu–Schwarz sector, we use the string field in
the large Hilbert space of the superconformal ghost sector, and the action in the Neveu–Schwarz
sector is the same as the Wess–Zumino–Witten-like action of the Berkovits formulation. For the
Ramond sector, it is known that the BRST cohomology on an appropriate subspace of the small
Hilbert space reproduces the correct spectrum, and we use the string field projected to this sub-
space. We show that the action is invariant under gauge transformations that are consistent with
the projection for the string field in the Ramond sector.
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1. Introduction

The open superstring in the Ramond–Neveu–Schwarz formalism consists of the Neveu–Schwarz
(NS) sector and the Ramond sector, and a complete formulation of open superstring field the-
ory requires the inclusion of string fields of both sectors. The central issue in formulating open
superstring field theory has been how we should tame the picture of open superstring fields.

For the NS sector, Berkovits constructed a Wess–Zumino–Witten-like (WZW-like) action [1] based
on the large Hilbert space of the superconformal ghost sector [2]. The open superstring field is in the
0 picture, and no picture-changing operators are used in the action. Recently, it was demonstrated
that a regular formulation based on the small Hilbert space of the superconformal ghost sector can
be obtained from the Berkovits formulation by partial gauge fixing [3], and then an action with an
A∞ structure [4–9] was constructed in Ref. [10].1 This is an important achievement because the
A∞ structure plays a crucial role when we quantize open superstring field theory based on the
Batalin–Vilkovisky formalism [16,17]. When we explicitly construct interaction terms by carrying
out the program of Ref. [10], however, the number of terms grows as we go to higher orders and
the form of the interactions will be extremely complicated. On the other hand, the action of the
Berkovits formulation is beautifully written in the WZW-like form, and we have much better control
over the interaction terms, although the WZW-like action does not exhibit the A∞ structure and its
Batalin–Vilkovisky quantization [18–22] has turned out to be formidably complicated (N. Berkovits,

1 The construction was further generalized to the NS sector of heterotic string field theory and the NS–
NS sector of type II superstring field theory in Ref. [11]. See Refs. [12–15] for recent discussions on closed
superstring field theory.
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M. Kroyter, Y. Okawa, M. Schnabl, S. Torii, and B. Zwiebach, work in preparation). Very recently, it
was shown that the theory with the A∞ structure in Ref. [10] is related to the Berkovits formulation
by partial gauge fixing and field redefinition [23,24], and we can now extract the A∞ structure from
the Berkovits formulation by the field redefinition.

Inclusion of the string field in the Ramond sector was less successful, and we did not have satis-
factory formulations. In the earlier approach in Ref. [25] or its modification [26,27], the string field
of picture number −1/2 in the small Hilbert space was used. For incorporation of the Ramond sector
into the Berkovits formulation based on the large Hilbert space, the equations of motion were writ-
ten in a covariant form [28], but the action constructed in Ref. [28] was not completely covariant,
although it respects the covariance for a class of interesting backgrounds such as D3-branes in the
flat 10D spacetime. Another approach is to use a constraint to be imposed on the equations of motion
after they are derived from an action [29] as in type IIB supergravity.2 For the recent development
of open superstring field theory with the A∞ structure based on the small Hilbert space [10], the
equations of motion including the Ramond sector were constructed in term of multi-string products
satisfying the A∞ relations [36], but an action to yield the equations of motion including the Ramond
sector has not been constructed.

So what is the difficulty in constructing an action including the string field in the Ramond sec-
tor? The fundamental difficulty lies in the construction of the kinetic term for the string field in the
Ramond sector. We consider that the source of the difficulty is related to the fact that the propagator
strip has a fermionic modulus in addition to the bosonic modulus corresponding to the length of the
strip when we regard propagator strips as super-Riemann surfaces. Let us explain this by comparing
it with the open bosonic string and the closed bosonic string.

The propagator strip in the open bosonic string can be generated by the Virasoro generator L0

as e−t L0 , and the parameter t is the modulus corresponding to the length of the strip. In open bosonic
string field theory [37], the integration over this modulus is implemented by the propagator in Siegel
gauge as

b0

L0
=

∫ ∞

0
dt b0 e−t L0, (1.1)

where the zero mode of the b ghost b0 is the ghost insertion associated with the integration over this
modulus.

The propagator surface in the closed bosonic string can be generated by the Virasoro gener-

ators L0 + L̃0 and i
(

L0 − L̃0

)
as e−t

(
L0+L̃0

)
+iθ

(
L0−L̃0

)
, where t and θ are moduli. In closed

bosonic string field theory, whose construction [38–42] was completed by Zwiebach in Ref. [43],
the integration over t is implemented by the propagator in Siegel gauge as in the open bosonic string:

b+
0

L+
0

=
∫ ∞

0
dt b+

0 e−t L+
0 , (1.2)

2 The Berkovits formulation of open superstring field theory based on the large Hilbert space was extended to
the NS sector of heterotic string field theory [30,31]. The equations of motion including the Ramond sector for
heterotic string field theory were constructed in Refs. [32,33], and the approach in Ref. [29] was also extended
to heterotic string field theory in Ref. [32]. While four-point amplitudes of the open superstring including the
Ramond states at the tree level were correctly reproduced by the Feynman rules in Ref. [29], it was reported that
correct five-point amplitudes were not reproduced (Y. Michishita, unpublished work). This issue was recently
resolved in Ref. [34] by correcting the Feynman rules; it was further extended to the action with a constraint
for heterotic string field theory [32] and correct four-point and five-point amplitudes including the Ramond
states at the tree level were reproduced [35].
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where

L+
0 = L0 + L̃0, b+

0 = b0 + b̃0, (1.3)

and the sum of the zero modes b0 and b̃0 of the holomorphic and antiholomorphic b ghosts, respec-
tively, is the ghost insertion associated with the integration over the modulus t . On the other hand,
the integration over θ is implemented as a constraint on the space of string fields. The integration
over θ yields the operator given by

B = b−
0

∫ 2π

0

dθ

2π
eiθL−

0 , (1.4)

where

L−
0 = L0 − L̃0, b−

0 = b0 − b̃0, (1.5)

and b−
0 is the ghost insertion associated with the integration over this modulus. The operator B can

be schematically understood as δ
(
b−

0

)
δ
(
L−

0

)
. The closed bosonic string field� of ghost number 2 is

constrained to satisfy

b−
0 � = 0, L−

0 � = 0, (1.6)

and the BRST cohomology on this restricted space is known to give the correct spectrum of the
closed bosonic string. The appropriate inner product of �1 and �2 satisfying the constraints can be
written as the BPZ inner product with an insertion of c−

0 in the form〈
�1, c−

0 �2

〉
, (1.7)

where c−
0 consists of the zero modes c0 and c̃0 of the holomorphic and antiholomorphic c ghosts,

respectively, as

c−
0 = 1

2

(
c0 − c̃0

)
. (1.8)

The kinetic term of closed bosonic string field theory is then given by

S = −1
2

〈
�, c−

0 Q�
〉
, (1.9)

where Q is the BRST operator. The operator B can also be written as

B = −i
∫ 2π

0

dθ

2π

∫
d θ̃ eiθL−

0 +i θ̃ b−
0 , (1.10)

where θ̃ is a Grassmann-odd variable, and the extended BRST transformation introduced in Ref. [44]
maps θ to θ̃ . The extended BRST transformation acts in the same way as the ordinary BRST trans-
formation for operators in the boundary conformal field theory (CFT), and in particular it maps
b−

0 to L−
0 . Therefore, the combination iθL−

0 + i θ̃b−
0 in (1.10) is obtained from iθb−

0 by the extended
BRST transformation. Note that the closed bosonic string field � satisfying the constraints can be
characterized as

Bc−
0 � = �. (1.11)

Let us now consider propagator strips for the Ramond sector of the open superstring. The fermionic
direction of the moduli space can be parameterized as eζG0 , where G0 is the zero mode of the super-
current and ζ is the fermionic modulus. The integration over ζ with the associated ghost insertion
yields the operator X given by

X =
∫

dζ
∫

d ζ̃eζG0−ζ̃ β0, (1.12)

where ζ̃ is a Grassmann-even variable and β0 is the zero mode of the β ghost. The extended BRST
transformation introduced in Ref. [44] maps ζ to ζ̃ and maps β0 to G0 so that the combination

3/34
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ζG0 − ζ̃ β0 in (1.12) is obtained from −ζβ0 by the extended BRST transformation. If we perform
the integration over ζ , we obtain

X = −δ(β0)G0 + δ′(β0) b0. (1.13)

See Appendix A for details. It is known that the correct spectrum of the open superstring can be
reproduced by the BRST cohomology on the space of open superstring fields for the Ramond sector
of ghost number 1 and picture number −1/2 that are restricted to an appropriate form [45–47]. The
appropriate inner product of�1 and�2 in the restricted space can be written as the BPZ inner product
in the small Hilbert space with an insertion of Y denoted by

〈〈�1, Y�2〉〉 (1.14)

with

Y = −c0δ
′(γ0), (1.15)

where γ0 is the zero mode of the γ ghost, and the kinetic term of open superstring field theory for
the Ramond sector is given by [45,47,48]

S = −1
2〈〈�, Y Q�〉〉. (1.16)

The important point is that the open superstring field � in the restricted space can be characterized
using the operator X (1.13) as [49]

XY� = �. (1.17)

This is analogous to (1.11) for the closed bosonic string field, and we regard this characterization of
the string field in the Ramond sector as fundamental.

The next question is then whether we can introduce interactions that are consistent with this restric-
tion of the string field in the Ramond sector. Recently, Sen constructed the equations of motion of the
one-particle irreducible effective superstring field theory including the Ramond sector [50]. While
the construction is for the heterotic string and the type II superstring, the idea can be applied to
the construction of the classical equations of motion of open superstring field theory including the
Ramond sector. A salient feature of the resulting equations of motion is that the interaction terms of
the equation of motion for the Ramond sector are multiplied by a zero mode of the picture-changing
operator. The origin of the zero mode of the picture-changing operator is the propagator in the
Ramond sector, and it is just a different way of integrating the fermionic modulus of the propa-
gator strip so that we can replace it by the operator X in (1.13). Then the interaction terms of the
equation of motion for the Ramond sector are multiplied by X . This is reminiscent of the equation
of motion of closed bosonic string field theory, where the interaction terms of the equation of motion
are multiplied by B, and this structure indicates that the open superstring field for the Ramond sector
in the restricted space can be consistently used for the interacting theory.

In this paper, we construct a gauge-invariant action for open superstring field theory including the
NS sector and the Ramond sector. We use the WZW-like action of the Berkovits formulation for the
NS sector, and we couple it to the open superstring field for the Ramond sector in the restricted space.
This is the first construction of a complete action for open superstring field theory in a covariant form.

The rest of the paper is organized as follows. In Sect. 2 we explain the kinetic terms we use for the
string field in the NS sector and for the string field in the Ramond sector. In Sect. 3 we construct cubic
and quartic interactions so that the action is invariant under nonlinearly extended gauge transforma-
tions up to this order. In Sect. 4 we present the complete action and show that it is gauge invariant.

4/34
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This is the main result of this paper. In Sect. 5 we investigate the relation between the equations
of motion constructed by Berkovits in Ref. [28] and ours. Section 6 is devoted to conclusions and
discussion.

2. Kinetic terms

An open superstring field is a state in the boundary CFT corresponding to the D-brane we are consid-
ering. The boundary CFT consists of the matter sector, the bc ghost sector, and the superconformal
ghost sector, and the superconformal ghost sector can be described either by β(z) and γ (z) or by
ξ(z), η(z), and φ(z) [2]. The two descriptions are related as follows:

β(z) = ∂ξ(z) e−φ(z), γ (z) = eφ(z) η(z) . (2.1)

The Hilbert space we usually use for the βγ system is smaller than the Hilbert space for ξ(z), η(z),
and φ(z) and is called the small Hilbert space. In the description in terms of ξ(z), η(z), and φ(z), a
state is in the small Hilbert space when it is annihilated by the zero mode of η(z). We denote the zero
mode of η(z) by η, and then the condition that a state A is in the small Hilbert space can be stated as

ηA = 0. (2.2)

The Hilbert space for ξ(z), η(z), and φ(z) is called the large Hilbert space. Since the anticommu-
tation relation of η and the zero mode ξ0 of ξ(z) is

{η, ξ0} = 1, (2.3)

any state  in the large Hilbert space can be written as follows:

 = {η, ξ0} = ηξ0+ ξ0η = ̃+ ξ0̂, (2.4)

where

̃ = ηξ0, ̂ = η. (2.5)

The states ̃ and ̂ are in the small Hilbert space because η2 = 0. Therefore, any state in the large
Hilbert space can be decomposed into two states in the small Hilbert space this way.

For the NS sector, we use an open superstring field in the large Hilbert space. It is a Grassmann-
even state, its ghost number is 0, and its picture number is 0. The kinetic term S(0)NS of  in the
Berkovits formulation [1] is given by

S(0)NS = −1
2〈, Qη〉, (2.6)

where Q is the BRST operator and 〈A, B〉 is the BPZ inner product of A and B. The action is invariant
under the gauge transformations given by

δ
(0)
�  = Q�, δ

(0)
�  = η�, (2.7)

where � and � are gauge parameters in the NS sector. The gauge invariance can be shown by the
following properties:

Q2 = 0, η2 = 0, {Q, η} = 0, 〈B, A〉 = (−1)AB 〈A, B〉,
〈Q A, B〉 = −(−1)A 〈A, Q B〉, 〈ηA, B〉 = −(−1)A 〈A, ηB〉. (2.8)

Here and in what follows, a state in the exponent of −1 represents its Grassmann parity: it is 0 mod 2
for a Grassmann-even state and 1 mod 2 for a Grassmann-odd state.

5/34
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The equation of motion of the free theory is given by

Qη = 0. (2.9)

As in (2.4), we write  as  = ̃+ ξ0̂, and we can bring  to the form ξ0̂ by the gauge
transformation δ(0)�  with � = −ξ0̃. Then the equation of motion reduces to the following form:

Qηξ0̂ = Q {η, ξ0} ̂ = Q̂ = 0. (2.10)

The string field  brought to the form ξ0̂ satisfies the condition ηξ0 = 0, and the gauge trans-
formation δ = Q�+ η� preserving this condition should satisfy ηξ0 δ = 0. This constrains the
gauge parameters as follows:

ηξ0 δ = ηξ0 Q�+ ηξ0η� = ηξ0 Q�+ η� = 0. (2.11)

We therefore choose η� to be −ηξ0 Q� and find

δ = Q�− ηξ0 Q� = ξ0ηQ� = −ξ0 Qη�. (2.12)

This generates the transformation of ̂ given by

δ̂ = ηδ = −ηξ0 Qη� = Q�̂ (2.13)

with �̂ = −η� in the small Hilbert space. This way the physical state condition Q̂ = 0 in the small
Hilbert space and the equivalence relation ̂ ∼ ̂+ Q�̂ are reproduced. This partial gauge fixing
can be extended to the interacting theory. See Ref. [3] for details.

For the Ramond sector, we use an open superstring field � in the small Hilbert space:

η� = 0. (2.14)

It is a Grassmann-odd state, its ghost number is 1, and its picture number is −1/2. We expand
� based on the zero modes b0, c0, β0, and γ0 as

� =
∞∑

n=0

(γ0)
n (φn + c0ψn), (2.15)

where

b0 φn = 0, β0 φn = 0, b0 ψn = 0, β0 ψn = 0. (2.16)

It is known [45–47] that the physical state condition can be written as

Q� = 0 (2.17)

with � restricted to the following form:

� = φ − (γ0 + c0G) ψ, (2.18)

where G = G0 + 2b0γ0 and

b0 φ = 0, β0 φ = 0, b0 ψ = 0, β0 ψ = 0. (2.19)

See also Refs. [48,51,52]. As pointed out in Ref. [49], the string field � of this restricted form can
be characterized as

XY� = �, (2.20)

6/34
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where the Grassmann-even operators X and Y are defined by3

X = −δ(β0) G0 + δ′(β0) b0, Y = −c0 δ
′(γ0) . (2.21)

The picture number of X is 1 and the picture number of Y is −1. As we mentioned in the introduction,
the operator X is related to the integration of the fermionic modulus of propagator strips in the
Ramond sector. See Appendix A for details.4 Therefore, the condition (2.20) on� can be understood
in the context of the supermoduli space of super-Riemann surfaces. The operators X and Y satisfy
the following relations:

XY X = X, Y XY = Y,
[
Q, X

] = 0, ηXη = 0, ηYη = 0. (2.22)

It then follows that the operator XY is a projector:

(
XY

)2 = XY. (2.23)

We say that � is in the restricted space when � satisfies

XY� = �. (2.24)

While we always consider� of picture number −1/2, we allow� to have an arbitrary ghost number
when we refer to the restricted space. When � is in the restricted space, Q� is also in the restricted
space because

XY Q� = XY Q XY� = XY X QY� = X QY� = Q XY� = Q�. (2.25)

To summarize, the physical state condition and the equivalence relation can be stated as

Q� = 0, � ∼ � + Qλ (2.26)

with � and λ satisfying

η� = 0, XY� = �, ηλ = 0, XYλ = λ. (2.27)

The appropriate inner product for �1 and �2 in the restricted space is

〈〈�1, Y�2〉〉, (2.28)

where 〈〈A, B〉〉 is the BPZ inner product of A and B in the small Hilbert space. Recall that the picture
number of Y is −1, and the total picture number is −2 for �1 and �2 of picture number −1/2.

3 The operators δ(β0), δ′(β0), and δ′(γ0) here and the operators δ′(γ (z)) and�(β0) that will appear later are
Grassmann odd, and it should be understood that an appropriate Klein factor is included when it is necessary.

4 For the geometric meaning of X and Y , see also Ref. [53].
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Table 1. Properties of the string fields and the gauge parameters. The string field  in the NS sector is
a Grassmann-even state, and the string field � in the Ramond sector is a Grassmann-odd state. The gauge
parameters � and � in the NS sector are Grassmann-odd states, and the gauge parameter λ in the Ramond
sector is a Grassmann-even state. The ghost number g and the picture number p of the string fields and the
gauge fields are also shown.

field  � � � λ

Grassmann even odd odd odd even

(g, p) (0, 0) (1,−1/2) (−1, 0) (−1, 1) (0,−1/2)

As we will show later, the operator X is BPZ even in the small Hilbert space:

〈〈X A, B〉〉 = 〈〈A, X B〉〉. (2.29)

For �1 and �2 in the restricted space, we then have

〈〈�1, Y�2〉〉 = (−1)�1�2〈〈�2, Y�1〉〉, (2.30)

〈〈Q�1, Y�2〉〉 = −(−1)�1 〈〈�1, Y Q�2〉〉. (2.31)

The relation (2.30) can be shown as

〈〈�1, Y�2〉〉 = 〈〈XY�1, Y�2〉〉 = 〈〈Y�1, XY�2〉〉
= 〈〈Y�1, �2〉〉 = (−1)�1�2〈〈�2, Y�1〉〉, (2.32)

and the relation (2.31) can be shown as

〈〈Q�1, Y�2〉〉 = 〈〈Q XY�1, Y�2〉〉 = 〈〈QY�1, XY�2〉〉
= −(−1)�1〈〈Y�1, Q XY�2〉〉 = −(−1)�1〈〈Y�1, XY Q�2〉〉
= −(−1)�1〈〈XY�1, Y Q�2〉〉 = −(−1)�1〈〈�1, Y Q�2〉〉. (2.33)

We take the kinetic term S(0)R for the Ramond sector to be [45,47,48]

S(0)R = −1
2〈〈�, Y Q�〉〉 (2.34)

for � satisfying

η� = 0, XY� = �. (2.35)

The action is invariant under the gauge transformation

δ
(0)
λ � = Qλ, (2.36)

where λ is a gauge parameter in the Ramond sector satisfying

ηλ = 0, XYλ = λ. (2.37)

The equation of motion reproduces the physical state condition, and the equivalence relation is imple-
mented as a gauge symmetry. The properties of the open superstring fields and the gauge parameters
are summarized in Table 1. The constraint on� characterized as XY� = � also plays a crucial role
in the context of the Batalin–Vilkovisky quantization [54].

8/34
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The operator Y in the kinetic term can be replaced by Ymid, which is an insertion of
Y (z) = −c(z) δ′(γ (z)) at the open-string midpoint:

− 1
2〈〈�, Y Q�〉〉 = −1

2〈〈�, Ymid Q�〉〉. (2.38)

This can be shown from the relation XYmid X = X as follows:

〈〈�, Y Q�〉〉 = 〈〈XY�, Y XY Q�〉〉 = 〈〈Y�, XY XY Q�〉〉 = 〈〈Y�, XY Q�〉〉
= 〈〈Y�, XYmid XY Q�〉〉 = 〈〈XY�, Ymid XY Q�〉〉 = 〈〈�, Ymid Q�〉〉. (2.39)

Therefore, our kinetic term coincides with that of open superstring field theory in the Witten
formulation [25] for � in the restricted space.

We will construct interactions that couple  in the large Hilbert space and � in the small Hilbert
space. Let us describe further the relation between the large Hilbert space and the small Hilbert space.
The BPZ inner product 〈〈A, B〉〉 in the small Hilbert space defined for A and B satisfying ηA = 0
and ηB = 0 is related to the BPZ product in the large Hilbert space 〈A, B〉 as follows:

〈〈A, B〉〉 = 〈ξ0 A, B〉. (2.40)

Since the zero mode ξ0 is BPZ even, this can also be written as

〈〈A, B〉〉 = (−1)A 〈A, ξ0 B〉. (2.41)

The BRST cohomology is trivial in the large Hilbert space, and thus the operator X , which commutes
with the BRST operator, can be written as

X = {Q, �} , (2.42)

where � is a Grassmann-odd operator carrying ghost number −1 and picture number 1. We use �
defined by [26]

� = �(β0), (2.43)

where � is the Heaviside step function. As we show in Appendix B, the anticommutator of η and �
is given by

{η,�} = 1, (2.44)

and � is BPZ even:

〈�A, B〉 = (−1)A〈A, �B〉. (2.45)

Because of the relation (2.44) we can also use � to relate the BPZ inner product in the large Hilbert
space and the BPZ inner product in the small Hilbert space:

〈〈A, B〉〉 = 〈�A, B〉, 〈〈A, B〉〉 = (−1)A 〈A, �B〉. (2.46)

Finally, let us discuss the BPZ property of the operator X . Even when we work in the large Hilbert
space, the operator X always acts on a state in the small Hilbert space of picture number −3/2, and
we show that X is BPZ even in the small Hilbert space. Actually, this can be shown even when � is
not BPZ even, and it follows only from the relation η�� +�η = 1 on a state of picture number −1/2,
where �� is the BPZ conjugate of �, together with η�A = A and η�B = B for a pair of states A
and B in the small Hilbert space of picture number −3/2:

〈〈X A, B〉〉 = (−1)A 〈(Q�+�Q) A, �B〉
= (−1)A 〈(Q�+�Q) η�A, �B〉 = (−1)A 〈

η
(
Q�� +��Q

)
�A, �B

〉
= 〈(

Q�� +��Q
)
�A, η�B

〉 = 〈�A, (�Q + Q�) η�B〉
= 〈�A, (�Q + Q�) B〉 = 〈〈A, X B〉〉. (2.47)
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3. Cubic and quartic interactions

In this section we construct cubic and quartic terms of the action in the Ramond sector. The action
S consists of SNS for the NS sector and SR for the Ramond sector:

S = SNS + SR, (3.1)

where SNS contains only  and SR contains both  and �. We expand SNS and SR as follows:

SNS = S(0)NS + gS(1)NS + g2S(2)NS + O
(

g3
)
, (3.2)

SR = S(0)R + gS(1)R + g2S(2)R + O
(

g3
)
, (3.3)

where g is the coupling constant and

S(0)NS = −1
2 〈, Qη〉, (3.4)

S(0)R = −1
2 〈〈�, Y Q�〉〉. (3.5)

We also expand the gauge transformations as follows:

δ� = δ
(0)
� + gδ(1)� + g2δ

(2)
� + O

(
g3

)
, (3.6)

δ�� = δ
(0)
� � + gδ(1)� � + g2δ

(2)
� � + O

(
g3

)
(3.7)

with

δ
(0)
�  = Q�, δ

(0)
� � = 0, (3.8)

where � is a gauge parameter in the NS sector;

δ� = δ
(0)
� + g δ(1)� + g2 δ

(2)
� + O

(
g3

)
, (3.9)

δ�� = δ
(0)
� � + g δ(1)� � + g2 δ

(2)
� � + O

(
g3

)
(3.10)

with

δ
(0)
�  = η�, δ

(0)
� � = 0, (3.11)

where � is a gauge parameter in the NS sector; and

δλ = δ
(0)
λ + g δ(1)λ + g2 δ

(2)
λ + O

(
g3

)
, (3.12)

δλ� = δ
(0)
λ � + g δ(1)λ � + g2 δ

(2)
λ � + O

(
g3

)
(3.13)

with

δ
(0)
λ  = 0, δ

(0)
λ � = Qλ, (3.14)

where λ is a gauge parameter in the Ramond sector.
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For the NS sector, we use the cubic and quartic terms in the Berkovits formulation [1]:

S(1)NS = −1
6〈, Q[, η]〉, (3.15)

S(2)NS = − 1
24〈, Q[, [, η]]〉. (3.16)

The gauge invariance up to this order can be stated as

δ
(0)
� S(1)NS + δ

(1)
� S(0)NS = 0, δ

(0)
� S(2)NS + δ

(1)
� S(1)NS + δ

(2NS)
� S(0)NS = 0, (3.17)

where

δ
(1)
�  = −1

2 [, Q�], δ
(2NS)
�  = 1

12 [, [, Q�]], (3.18)

and

δ
(0)
� S(1)NS + δ

(1)
� S(0)NS = 0, δ

(0)
� S(2)NS + δ

(1)
� S(1)NS + δ

(2)
� S(0)NS = 0, (3.19)

where

δ
(1)
�  = 1

2 [, η�], δ
(2)
�  = 1

12 [, [, η�]]. (3.20)

As we will see, there is an additional contribution δ(2R)
�  to δ(2)�  when we include the Ramond

sector, and δ(2)�  is given by

δ
(2)
�  = δ

(2NS)
� + δ

(2R)
� . (3.21)

On the other hand, it will turn out that there are no corrections to δ(2)� when we include the Ramond
sector. The goal of this section is to determine S(1)R and S(2)R in the action and δ(1)� , δ(1)� �, δ(1)� ,
δ
(1)
� �, δ(1)λ , δ(1)λ �, δ(2)� , δ(2)� �, δ(2)� , δ(2)� �, δ(2)λ , and δ(2)λ � in the gauge transformations.
We use the star product [37] in constructing interaction terms, and all products of string fields in

this paper are defined by the star product. The star product has the following properties:

(AB)C = A(BC) , 〈A, BC〉 = 〈AB,C〉,
Q(AB) = (Q A) B + (−1)A A(Q B) , η(AB) = (ηA) B + (−1)A A(ηB) . (3.22)

We will construct cubic and quartic interactions such that the action is invariant under nonlinearly
extended gauge transformations. Corrections to the gauge transformations are determined from the
structures of the kinetic terms in the following way. The variation of S(0)NS is given by

δS(0)NS = −〈δ, Qη〉. (3.23)

Therefore, a term of the form

δS = 〈A, Qη〉 (3.24)

in the gauge variation can be canceled by δS(0)NS with δ given by

δ = A. (3.25)

The variation of S(0)R is given by

δS(0)R = −〈〈δ�, Y Q�〉〉. (3.26)

A term of the form

δS = 〈B, Q�〉 (3.27)

in the gauge variation can be transformed as

δS = 〈B, η ξ0 XY Q�〉 = 〈ξ0ηB, XY Q�〉 = 〈〈ηB, XY Q�〉〉 = 〈〈XηB, Y Q�〉〉. (3.28)
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Therefore, this can be canceled by δS(0)R with δ� given by

δ� = XηB. (3.29)

Note that this form of δ� satisfies the conditions

η δ� = 0, XY δ� = δ�. (3.30)

3.1. The cubic interaction

Let us consider the cubic interaction S(1)R in the form

S(1)R = α1

〈
,�2

〉
, (3.31)

where α1 is a constant to be determined. When we take the string field  to be an on-shell state in
the −1 picture multiplied by ξ0 and the two string fields of � to be on-shell states in the −1/2 pic-
ture, this cubic interaction reproduces correct three-point amplitudes up to an overall normalization.
The action is gauge invariant at this order if we can find δ(1)� �, δ(1)� �, δ(1)λ , and δ(1)λ � such that

δ
(0)
� S(1)R + δ

(1)
� S(0)R = 0,

δ
(0)
� S(1)R + δ

(1)
� S(0)R = 0,

δ
(0)
λ S(1)R + δ

(1)
λ S(0)NS + δ

(1)
λ S(0)R = 0

(3.32)

are satisfied. The variation of S(1)R under the gauge transformation δ(0)�  is given by

δ
(0)
� S(1)R = α1

〈
Q�,�2

〉
= α1 〈�, (Q�)� −� (Q�)〉 = −α1 〈{�,�} , Q�〉 . (3.33)

This takes the form of (3.27) so that this can be canceled by δ(1)� S(0)R with δ(1)� � given by

δ
(1)
� � = −α1 Xη {�,�} . (3.34)

The variation of S(1)R under the gauge transformation δ(0)�  is given by

δ
(0)
� S(1)R = α1

〈
η�,�2

〉
= α1 〈�, (η�)� −� (η�)〉 = 0 (3.35)

because η� = 0. Therefore, we do not need δ(1)� S(0)R and we have

δ
(1)
� � = 0. (3.36)

The variation of S(1)R under the gauge transformation δ(0)λ � is given by

δ
(0)
λ S(1)R = α1〈, (Qλ)�〉 + α1〈,�(Qλ)〉

= −α1〈Q, λ�〉 − α1〈, λ(Q�)〉 + α1〈Q,�λ〉 + α1〈, (Q�)λ〉
= −α1〈[�, λ], Q〉 − α1〈[, λ], Q�〉
= −α1〈[�, η�λ], Q〉 − α1〈[, η�λ], Q�〉
= α1〈{�,�λ}, Qη〉 + α1〈{η,�λ}, Q�〉. (3.37)

This can be canceled by δ(1)λ S(0)NS with δ(1)λ  and δ(1)λ S(0)R with δ(1)λ � given by

δ
(1)
λ  = α1{�,�λ}, (3.38)

δ
(1)
λ � = α1 Xη{η,�λ}. (3.39)
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Note that the forms of δ(1)λ  and δ(1)λ � are not unique. For example, if we instead transform
〈[�, λ], Q〉 as

〈[�, λ], Q〉 = 〈ηξ0[�, λ], Q〉 = 〈ξ0[�, λ], Qη〉, (3.40)

we obtain

δ̃
(1)
λ  = −α1ξ0[�, λ]. (3.41)

However, the difference between δ(1)λ  and δ̃(1)λ  can be absorbed into a correction to� in the gauge
transformation δ(0)�  = η� because

δ
(1)
λ − δ̃

(1)
λ  = α1{�,�λ} + α1ξ0[�, λ] = η(α1ξ0 {�,�λ}). (3.42)

We choose the forms of δλ and δλ� such that λ appears in the combination�λ except for Qλ. This
corresponds to writing Qλ as Qη�λ and transforming δ(0)λ S(1)R as follows:

δ
(0)
λ S(1)R = α1〈, (Qη�λ)�〉 + α1〈,�(Qη�λ)〉

= α1〈η, (Q�λ)�〉 − α1〈η,�(Q�λ)〉
= α1〈Qη, (�λ)�〉 + α1〈η, (�λ)(Q�)〉

+ α1〈Qη,�(�λ)〉 − α1〈η, (Q�)(�λ)〉
= α1〈{�,�λ}, Qη〉 + α1〈{η,�λ}, Q�〉. (3.43)

We then obtain δ(1)λ  in (3.38) and δ(1)λ � in (3.39).

3.2. The quartic interaction

Let us move on to the construction of the quartic interaction. We construct S(2)R such that

δ
(0)
� S(2)R + δ

(1)
� S(1)R + δ

(2R)
� S(0)NS + δ

(2)
� S(0)R = 0, (3.44)

δ
(0)
� S(2)R + δ

(1)
� S(1)R + δ

(2R)
� S(0)NS + δ

(2)
� S(0)R = 0, (3.45)

δ
(0)
λ S(2)R + δ

(1)
λ S(1)NS + δ

(1)
λ S(1)R + δ

(2)
λ S(0)NS + δ

(2)
λ S(0)R = 0 (3.46)

are satisfied for appropriate choices of the parameter α1 appearing in S(1)R , δ(1)� �, δ(1)λ , and δ(1)λ �

and the gauge transformations δ(2R)
� , δ(2)� �, δ(2R)

� , δ(2)� �, δ(2)λ , and δ(2)λ �.

3.2.1. The gauge transformation with the parameter �

The variation of S(1)R under the gauge transformations δ(1)�  and δ(1)� � is given by

δ
(1)
� S(1)R = −α1

2

〈
[, Q�] , �2

〉
− α2

1 〈, (Xη {�,�})�〉 − α2
1 〈,� (Xη {�,�})〉 . (3.47)

Using X = {Q, �}, we transform 〈, (Xη{�,�})�〉 as follows:

〈, (Xη {�,�})�〉 = − 〈η, ({Q, �} {�,�})�〉
= − 〈Qη, (� {�,�})�〉 − 〈η, (� {�,�}) (Q�)〉

− 〈η, (�[Q�,�])�〉 + 〈η, (�[�, Q�])�〉
= − 〈(� {�,�})�, Qη〉 − 〈(η) (� {�,�}) , Q�〉

− 〈{�(� (η)) ,�} , Q�〉 − 〈Q�, {�,� (� (η))}〉 . (3.48)
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We similarly transform 〈,�(Xη{�,�})〉 to find

δ
(1)
� S(1)R = α1

2

〈
Q�,

[
,�2

]〉
+ α2

1 〈{�,� {�,�}} , Qη〉 + α2
1 〈{η,� {�,�}} , Q�〉

+ α2
1 〈{� {η,�} ,�} , Q�〉 + α2

1 〈Q�, {�,� {η,�}}〉 . (3.49)

From the structure of the last term on the right-hand side of (3.49), let us consider a quartic interaction
S(2)R of the form

S(2)R = α2 〈, {�,� {η,�}}〉 , (3.50)

where α2 is a constant to be determined. The variation of S(2)R under the gauge transformation δ(0)� 

is given by

δ
(0)
� S(2)R = α2

〈
δ
(0)
� , {�,� {η,�}}

〉
+ α2

〈
,

{
�,�

{
ηδ
(0)
� ,�

}}〉
= α2

〈
δ
(0)
� , 2 {�,� {η,�}} −

[
,�2

]〉
= 2α2 〈Q�, {�,� {η,�}}〉 − α2

〈
Q�,

[
,�2

]〉
. (3.51)

Comparing this with (3.49), we find that the constants α1 and α2 should be chosen to be

α1 = −1, α2 = −1
2 , (3.52)

and then we have

δ
(0)
� S(2)R + δ

(1)
� S(1)R = 〈{�,� {�,�}} , Qη〉

+ 〈{η,� {�,�}} , Q�〉 + 〈{� {η,�} ,�} , Q�〉. (3.53)

The term 〈{�,� {�,�}}, Qη〉 containing Qη can be canceled by δ(2R)
� S(0)NS with δ(2R)

�  given by

δ
(2R)
�  = {�,� {�,�}}. (3.54)

The remaining terms take the form of (3.27) so that they can be canceled by δ(2)� S(0)R with δ(2)� �

given by

δ
(2)
� � = Xη {� {η,�} ,�} + Xη {η,� {�,�}}. (3.55)

3.2.2. The gauge transformation with the parameter �

The variation of S(1)R under the gauge transformation δ(1)�  is given by

δ
(1)
� S(1)R = −1

2

〈
[, η�] , �2

〉
= 1

2

〈
η�,

[
,�2

]〉
. (3.56)

The variation of S(2)R under the gauge transformation δ(0)�  is given by

δ
(0)
� S(2)R = −1

2〈η�, {�,� {η,�}}〉 = −1
2〈η�, {�, [,�]}〉 = −1

2

〈
η�,

[
,�2

]〉
. (3.57)

Since

δ
(0)
� S(2)R + δ

(1)
� S(1)R = 0, (3.58)

we do not need δ(2R)
� S(0)NS and δ(2)� S(0)R , and we have

δ
(2R)
�  = 0, δ

(2)
� � = 0. (3.59)
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3.2.3. The gauge transformation with the parameter λ

Let us next calculate the variations δ(1)λ S(1)NS , δ(1)λ S(1)R , and δ(0)λ S(2)R and express each term in the form
of an inner product with �λ. The variation δ(1)λ S(1)NS is given by

δ
(1)
λ S(1)NS = −1

2

〈
δ
(1)
λ , {Q, η}

〉
= 1

2〈{�,�λ}, {Q, η}〉
= −1

2〈�λ, [{Q, η}, �]〉. (3.60)

The variation δ(1)λ S(1)R is given by

δ
(1)
λ S(1)R =

〈
{�,�λ} , �2

〉
+ 〈, (Xη {η,�λ})�〉 + 〈,� (Xη {η,�λ})〉 . (3.61)

The first term on the right-hand side vanishes:〈
{�,�λ} , �2

〉
= −

〈
�λ,�3

〉
+

〈
�λ,�3

〉
= 0. (3.62)

The remaining terms are

δ
(1)
λ S(1)R = − 〈η, ({Q, �} {η,�λ})�〉 + 〈η,� ({Q, �} {η,�λ})〉

= 〈�λ, [η, {Q, �} {η,�}]〉 . (3.63)

For the variation δ(0)λ S(2)R , we write Qλ as Qη�λ and find

δ
(0)
λ S(2)R = −1

2〈, {Qη�λ,� {η,�}}〉 − 1
2〈, {�,�{η, Qη�λ}}〉

= 1
2〈Qη�λ, [,� {η,�}] + [�[�,], η]〉

= 〈Q�λ, {η,�{η,�}}〉 + 1
2〈Q�λ, {[, η], �}〉

= 〈�λ, Q {η,�{η,�}}〉 + 1
2〈�λ, Q{[, η], �}〉, (3.64)

where in an intermediate step we used the following Jacobi identity:

[, {η,�}] + {[�,], η} = {[, η], �} . (3.65)

We then find

δ
(1)
λ S(1)NS + δ

(1)
λ S(1)R + δ

(0)
λ S(2)R

= −1
2〈�λ, [{Q, η}, �]〉 + 〈�λ, [η, {Q, �}{η,�}]〉

+ 〈�λ, Q{η,�{η,�}}〉 + 1
2〈�λ, Q{[, η], �}〉

= 〈�λ, [Qη,�{η,�}]〉 + 〈�λ, [η,�[Qη,�]]〉 − 〈�λ, [η,�[η, Q�]]〉
+ 1

2〈�λ, [[, Qη], �]〉 − 1
2〈�λ, [[, η], Q�]〉

= −〈{�,�{η,�λ}} + {�{η,�}, �λ}, Qη〉 + 1
2〈[, {�,�λ}], Qη〉

− 〈{η,�{η,�λ}}, Q�〉 − 1
2〈{[, η], �λ}, Q�〉. (3.66)

These terms are canceled by δ(2)λ S(0)NS and δ(2)λ S(0)R with δ(2)λ  and δ(2)λ � given by

δ
(2)
λ  = − {�,� {η,�λ}} − {� {η,�} , �λ} + 1

2 [, {�,�λ}] , (3.67)

δ
(2)
λ � = −Xη {η,� {η,�λ}} − 1

2 Xη {[, η], �λ} . (3.68)
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3.3. Summary

Let us summarize the results of this section. The action in the NS sector is given by

SNS = S(0)NS + gS(1)NS + g2S(2)NS + O
(

g3
)
, (3.69)

where

S(0)NS = −1
2〈, Qη〉, (3.70)

S(1)NS = −1
6〈, Q[, η]〉, (3.71)

S(2)NS = − 1
24〈, Q[, [, η]]〉. (3.72)

The action in the Ramond sector is given by

SR = S(0)R + gS(1)R + g2S(2)R + O
(

g3
)
, (3.73)

where

S(0)R = −1
2 〈〈�, Y Q�〉〉, (3.74)

S(1)R = −
〈
,�2

〉
, (3.75)

S(2)R = −1
2 〈, {�,� {η,�}}〉. (3.76)

The gauge transformation with the gauge parameter � in the NS sector is given by

δ� = δ
(0)
� + gδ(1)� + g2δ

(2)
� + O

(
g3

)
, (3.77)

δ�� = δ
(0)
� � + gδ(1)� � + g2δ

(2)
� � + O

(
g3

)
, (3.78)

where

δ
(0)
�  = Q�, (3.79)

δ
(1)
�  = −1

2 [, Q�], (3.80)

δ
(2)
�  = 1

12 [, [, Q�]] + {�,� {�,�}}, (3.81)

δ
(0)
� � = 0, (3.82)

δ
(1)
� � = Xη {�,�}, (3.83)

δ
(2)
� � = Xη {� {η,�} ,�} + Xη {η,� {�,�}}. (3.84)

The gauge transformation with the gauge parameter � in the NS sector is given by

δ� = δ
(0)
� + gδ(1)� + g2δ

(2)
� + O

(
g3

)
, (3.85)

δ�� = δ
(0)
� � + gδ(1)� � + g2δ

(2)
� � + O

(
g3

)
, (3.86)
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where

δ
(0)
�  = η�, (3.87)

δ
(1)
�  = 1

2 [, η�], (3.88)

δ
(2)
�  = 1

12 [, [, η�]], (3.89)

δ
(0)
� � = 0, (3.90)

δ
(1)
� � = 0, (3.91)

δ
(2)
� � = 0. (3.92)

The gauge transformation with the gauge parameter λ in the Ramond sector is given by

δλ = δ
(0)
λ + gδ(1)λ + g2δ

(2)
λ + O

(
g3

)
, (3.93)

δλ� = δ
(0)
λ � + gδ(1)λ � + g2δ

(2)
λ � + O

(
g3

)
, (3.94)

where

δ
(0)
λ  = 0, (3.95)

δ
(1)
λ  = − {�,�λ}, (3.96)

δ
(2)
λ  = − {�,� {η,�λ}} − {� {η,�} , �λ} + 1

2 [, {�,�λ}], (3.97)

δ
(0)
λ � = Qλ, (3.98)

δ
(1)
λ � = −Xη {η,�λ}, (3.99)

δ
(2)
λ � = −Xη {η,� {η,�λ}} − 1

2 Xη {[, η], �λ}. (3.100)

4. Complete action

In this section we present a complete action. We derive the equations of motion and show the gauge
invariance of the action.

4.1. Action and gauge transformations

The complete action S is given by

S = −1
2 〈〈�, Y Q�〉〉 −

∫ 1

0
dt

〈
At (t), Q Aη(t)+ (F(t)�)2

〉
, (4.1)

where

F(t)� = � +�
{

Aη(t),�
} +�

{
Aη(t),�

{
Aη(t),�

}} + · · ·

=
∞∑

n=0

�
{

Aη(t),�
{

Aη(t), · · · , �
{

Aη(t)︸ ︷︷ ︸
n

, �
} · · · }}, (4.2)

and the string fields Aη(t) and At (t) satisfy the relations

ηAη(t) = Aη(t) Aη(t), ∂t Aη(t) = ηAt (t)− Aη(t) At (t)+ At (t) Aη(t) (4.3)

with Aη(0) = 0 and At (0) = 0. We can parameterize Aη(t) and At (t) satisfying (4.3) in terms of
(t) in the NS sector with (0) = 0 as

Aη(t) =
(
ηe(t)

)
e−(t), At (t) =

(
∂t e

(t)
)

e−(t). (4.4)
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The string field(t) is a Grassmann-even state and is in the large Hilbert space. Its ghost number is
0 and its picture number is also 0. The string field � is in the Ramond sector. It is a Grassmann-odd
state, its ghost number is 1, and its picture number is −1/2. It is in the small Hilbert space and is in
the restricted space:

η� = 0, XY� = �. (4.5)

Note that � is not a function of t . As we will show, the dependence of the action on t is topological,
and the action is a functional of  and �, where  is the value of (t) at t = 1.

We will show that the action (4.1) is invariant under the following gauge transformations:

Aδ = Q�+ Dη�+ {F�, F�({F�,�} − λ)}, (4.6a)

δ� = Qλ+ Xη F� Dη ({F�,�} − λ), (4.6b)

where � and � are gauge parameters in the NS sector and λ is a gauge parameter in the Ramond
sector satisfying

ηλ = 0, XYλ = λ. (4.7)

The action of Dη is defined by

DηA = ηA − AηA + (−1)A AAη, (4.8)

where

Aη = Aη(1), (4.9)

and the action of F is defined by

F A = A +�
[
Aη, A

] +�
[
Aη,�

[
Aη, A

]] + · · ·

=
∞∑

n=0

�
[
Aη,�

[
Aη, · · · , �

[
Aη︸ ︷︷ ︸

n

, A
] · · · ]] (4.10)

when A is a Grassmann-even state and

F A = A +�
{

Aη, A
} +�

{
Aη,�

{
Aη, A

}} + · · ·

=
∞∑

n=0

�
{

Aη,�
{

Aη, · · · , �
{

Aη︸ ︷︷ ︸
n

, A
} · · · }} (4.11)

when A is a Grassmann-odd state. The string field Aδ is related to Aη as

δAη = DηAδ = ηAδ − [
Aη, Aδ

]
. (4.12)

This relation defines Aδ up to terms that are annihilated by Dη, and the ambiguity can be absorbed
by the gauge parameter �. For the parameterization of Aη(t) in (4.4), an explicit form of Aδ is

Aδ = (
δe

)
e−. (4.13)

Note that δ� in (4.6b) is in the small Hilbert space and in the restricted space:

η δ� = 0, XY δ� = δ�. (4.14)

When we set � = 0, the action (4.1) coincides with the WZW-like action SWZW of the Berkovits
formulation [1]:

SWZW = 1

2

〈
e−Qe, e−ηe

〉
− 1

2

∫ 1

0
dt

〈
e−(t)∂t e

(t),
{

e−(t)Qe(t), e−(t)ηe(t)
}〉
,

(4.15)
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and the form of SWZW given by

SWZW = −
∫ 1

0
dt

〈
At (t), Q Aη(t)

〉
(4.16)

was recently used in Ref. [23]. While the NS sector of the action is based on the large Hilbert space,
we can apply the partial gauge fixing discussed in Ref. [3] and obtain a gauge-invariant action based
on the small Hilbert space both for the NS sector and the Ramond sector.

The action up to quartic interactions in Sect. 3 with g = 1 coincides with (4.1) under the param-
eterization (4.4). However, the gauge invariance of the action does not depend on this particular
parameterization, and other parameterizations of Aη(t) and At (t) satisfying (4.3) are possible.
For example, as was demonstrated in Ref. [23], we can parameterize Aη(t) and At (t) in terms of
a string field in the small Hilbert space so that the action in the NS sector coincides with the action
constructed in Ref. [10] with the A∞ structure. Therefore, we can also regard the action (4.1) as the
inclusion of the Ramond sector to the action in Ref. [10].

4.2. Algebraic ingredients

In the rest of this section, we derive the equations of motion from the action (4.1) and show its gauge
invariance. The starting point of our discussion is the relation

ηAη(t) = Aη(t) Aη(t). (4.17)

This is analogous to the equation of motion Q A + A2 = 0 in open bosonic string field theory, and
the string field Aη(t) satisfying this relation corresponds to a pure gauge with respect to the gauge
transformation generated by η. We define the covariant derivative Dη(t) by

Dη(t)A = ηA − Aη(t)A + (−1)A A Aη(t). (4.18)

This is a generalization of Dη in (4.8), and Dη corresponds to Dη(t) with t = 1. The covariant
derivative Dη(t) squares to zero,

Dη(t)
2 = 0, (4.19)

because of the relation (4.17). It acts as a derivation with respect to the star product,

Dη(t)(AB) = (Dη(t)A)B + (−1)A A
(
Dη(t)B

)
, (4.20)

and it is BPZ odd: 〈
Dη(t)A, B

〉 = −(−1)A 〈
A, Dη(t)B

〉
(4.21)

for any states A and B. The covariant derivative Dη(t) is an important ingredient in our construction.
Another important ingredient is the linear map F(t). It is a generalization of F defined in (4.10)

and (4.11), and the action of F(t) on a state A in the Ramond sector is defined by

F(t)A = A +�
[
Aη(t), A

] +�
[
Aη(t),�

[
Aη(t), A

]] + · · ·

=
∞∑

n=0

�
[
Aη(t),�

[
Aη(t), · · · , �

[
Aη(t)︸ ︷︷ ︸

n

, A
] · · · ]] (4.22)

when A is a Grassmann-even state and

F(t)A = A +�
{

Aη(t), A
} +�

{
Aη(t),�

{
Aη(t), A

}} + · · ·

=
∞∑

n=0

�
{

Aη(t),�
{

Aη(t), · · · , �
{

Aη(t)︸ ︷︷ ︸
n

, A
} · · · }} (4.23)
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when A is a Grassmann-odd state. The map F in (4.10) and (4.11) corresponds to F(t) with t = 1.
It is useful to consider the inverse map F−1(t) given by

F−1(t)A = A −�
(

Aη(t) A − (−1)A A Aη(t)
)
. (4.24)

Since

A −�
(

Aη(t) A − (−1)A A Aη(t)
)

= A +�Dη(t)A −�ηA = η�A +�Dη(t)A, (4.25)

we find

F−1(t) = η�+�Dη(t). (4.26)

It follows from η2 = 0 and Dη(t)2 = 0 that

ηF−1(t) = η�Dη(t), F−1(t)Dη(t) = η�Dη(t). (4.27)

We thus obtain

ηF−1(t) = F−1(t)Dη(t). (4.28)

In terms of F(t), we have

Dη(t)F(t) = F(t)η. (4.29)

An important relation can be obtained when we multiply both sides of (4.26) by F(t):

1 = F(t)η�+ F(t)�Dη(t) = Dη(t)F(t)�+ F(t)�Dη(t). (4.30)

We thus find {
Dη(t), F(t)�

} = 1. (4.31)

Therefore, any state A in the Ramond sector annihilated by Dη(t),

Dη(t)A = 0, (4.32)

can be written as

A = {
Dη(t), F(t)�

}
A = Dη(t)F(t)�A. (4.33)

While we use F(t) in the construction of the action in the Ramond sector, it will be convenient to
introduce f (t), which acts on a state in the NS sector and satisfies{

Dη(t), f (t) ξ0
} = 1. (4.34)

The action of f (t) on a state A in the NS sector is defined by

f (t)A = A + ξ0
[
Aη(t), A

] + ξ0
[
Aη(t), ξ0

[
Aη(t), A

]] + · · ·

=
∞∑

n=0

ξ0
[
Aη(t), ξ0

[
Aη(t), · · · , ξ0

[
Aη(t)︸ ︷︷ ︸

n

, A
] · · · ]] (4.35)

when A is a Grassmann-even state and

f (t)A = A + ξ0
{

Aη(t), A
} + ξ0

{
Aη(t), ξ0

{
Aη(t), A

}} + · · ·

=
∞∑

n=0

ξ0
{

Aη(t), ξ0
{

Aη(t), · · · , ξ0
{

Aη(t)︸ ︷︷ ︸
n

, A
} · · · }} (4.36)

when A is a Grassmann-odd state.
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The string fields Q Aη(t) and F(t)� in the action (4.1) are annihilated by Dη(t):

Dη(t) Q Aη(t) = 0, (4.37)

Dη(t)F(t)� = 0. (4.38)

The first relation (4.37) follows from (4.17), and the second relation (4.38) follows from (4.29) and
η� = 0:

Dη(t)F(t)� = F(t) η� = 0. (4.39)

The string field ∂t Aη(t) is also annihilated by Dη(t):

Dη(t) ∂t Aη(t) = 0, (4.40)

which again follows from the relation (4.17). Therefore, ∂t Aη(t) can be written as

∂t Aη(t) = Dη(t)At (t), (4.41)

where At (t) is a string field of ghost number 0 and picture number 0. Since Aη(t) is a pure gauge
for any t , an infinitesimal change in t should be implemented by a gauge transformation, and At (t)
corresponds to the gauge parameter. One choice of At (t) is f (t)ξ0∂t Aη(t), but it is not unique.
Suppose that A(1)t (t) and A(2)t (t) both satisfy (4.41):

∂t Aη(t) = Dη(t)A
(1)
t (t), ∂t Aη(t) = Dη(t)A

(2)
t (t). (4.42)

Then the difference �At (t) = A(1)t (t)− A(2)t (t) is annihilated by Dη(t):

Dη(t)�At (t) = Dη(t)
(

A(1)t (t)− A(2)t (t)
)

= 0. (4.43)

The string fields Aη(t) and At (t) in the action have to satisfy (4.41). The ambiguity in At (t), however,
does not affect the action because〈

�At (t), Q Aη(t)+ (F(t)�)2
〉
=

〈{
Dη(t), f (t)ξ0

}
�At (t), Q Aη(t)+ (F(t)�)2

〉
=

〈
f (t)ξ0 Dη(t)�At (t), Q Aη(t)+ (F(t)�)2

〉
+ 〈

f (t)ξ0�At (t), Dη(t) Q Aη(t)
〉

+ 〈
f (t)ξ0�At (t),

(
Dη(t)F(t)�

)
(F(t)�)− (F(t)�)

(
Dη(t)F(t)�

)〉 = 0. (4.44)

When we parameterize Aη(t) in terms of (t), the variation δAη(t) under δ(t) is annihilated
by Dη(t):

Dη(t) δAη(t) = 0. (4.45)

This follows from (4.17), and the underlying reason is the same as in the case of ∂t Aη(t). The string
field Aη(t) is a pure gauge for any(t), and an infinitesimal change in(t) should be implemented
by a gauge transformation. We write

δAη(t) = Dη(t) Aδ(t), (4.46)

where Aδ(t) corresponds to the gauge parameter. When Aη(t) is given, the gauge parameter Aδ(t)
satisfying (4.46) is again not unique, but we only use the relation (4.46).
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We will also need a relation between δAt (t) and ∂t Aδ(t). First, consider δ∂t Aη(t) using (4.41).
We find

δ∂t Aη(t) = δDη(t) At (t) = [
δ, Dη(t)

]
At (t)+ Dη(t) δAt (t), (4.47)

where the action of [δ, Dη(t)] is defined by[
δ, Dη(t)

]
A = δDη(t)A − Dη(t) δA, (4.48)

and we have [
δ, Dη(t)

]
A = − (

δAη(t)
)

A + (−1)A A
(
δAη(t)

)
= − (

Dη(t)Aδ(t)
)

A + (−1)A A
(
Dη(t)Aδ(t)

)
. (4.49)

Therefore, δ ∂t Aη(t) is given by

δ∂t Aη(t) = Dη(t)δAt (t)− [
Dη(t)Aδ(t), At (t)

]
. (4.50)

Second, consider ∂tδAη(t) using (4.46). We find

∂tδAη(t) = ∂t Dη(t) Aδ(t) = [
∂t , Dη(t)

]
Aδ(t)+ Dη(t)∂t Aδ(t), (4.51)

where the action of [∂t , Dη(t)] is defined by[
∂t , Dη(t)

]
A = ∂t Dη(t)A − Dη(t)∂t A, (4.52)

and we have [
∂t , Dη(t)

]
A = − (

∂t Aη(t)
)

A + (−1)A A
(
∂t Aη(t)

)
= − (

Dη(t)At (t)
)

A + (−1)A A
(
Dη(t)At (t)

)
. (4.53)

Therefore, ∂t δAη(t) is given by

∂tδAη(t) = Dη(t)∂t Aδ(t)− [
Dη(t) At (t), Aδ(t)

]
. (4.54)

Since δ∂t Aη(t)− ∂tδAη(t) = 0, we find

Dη(t) δAt (t)− [
Dη(t) Aδ(t), At (t)

] − Dη(t) ∂t Aδ(t)− [
Aδ(t), Dη(t) At (t)

]
= Dη(t) (δAt (t)− ∂t Aδ(t)− [Aδ(t), At (t)]) = 0. (4.55)

We write this as

Dη(t)Fδt (t) = 0, (4.56)

where

Fδt (t) = δAt (t)− ∂t Aδ(t)− [Aδ(t), At (t)] . (4.57)

When we parameterize Aη(t) as Aη(t) = (
ηe(t)

)
e−(t) and choose At (t) and Aδ(t) to be

At (t) =
(
∂t e

(t)
)

e−(t), Aδ(t) =
(
δe(t)

)
e−(t), (4.58)

the string field Fδt (t) vanishes. In general, however, this is not the case, and in fact it was found in
Ref. [23] that Fδt (t) is nonvanishing for the parameterization of Aη(t) and At (t) to reproduce the
action with the A∞ structure constructed in Ref. [10] with a choice of Aδ(t). It was also confirmed
in Ref. [23] that the nonvanishing Fδt (t) is annihilated by Dη(t), which is in accord with the general
discussion.
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4.3. The equations of motion

We are now ready to derive the equations of motion from the action (4.1). We first show that the
variation δ

〈
At (t), Q Aη(t)+ (F(t)�)2

〉
is a total derivative with respect to t . The variation consists

of three terms:

δ
〈
At (t), Q Aη(t)+ (F(t)�)2

〉
=

〈
δAt (t), Q Aη(t)+ (F(t)�)2

〉
+ 〈

At (t), QδAη(t)
〉 + 〈[At (t), F(t)�] , δF(t)�〉 . (4.59)

The first term on the right-hand side of (4.59) can be transformed as follows:〈
δAt (t), Q Aη(t)+ (F(t)�)2

〉
=

〈
∂t Aδ(t), Q Aη(t)+ (F(t)�)2

〉
+

〈[
Aδ(t), At (t)

]
, Q Aη(t)+ (F(t)�)2

〉
+

〈
Fδt (t), Q Aη(t)+ (F(t)�)2

〉
=

〈
∂t Aδ(t), Q Aη(t)+ (F(t)�)2

〉
+

〈[
Aδ(t), At (t)

]
, Q Aη(t)+ (F(t)�)2

〉
, (4.60)

where we used〈
Fδt (t), Q Aη(t)+ (F(t)�)2

〉
=

〈{
Dη(t), f (t)ξ0

}
Fδt (t), Q Aη(t)+ (F(t)�)2

〉
= 0 (4.61)

because Fδt (t) and Q Aη(t)+ (F(t)�)2 are annihilated by Dη(t). The second term on the right-hand
side of (4.59) can be transformed as follows:〈

At (t), QδAη(t)
〉 = 〈

At (t), Q Dη(t) Aδ(t)
〉

= 〈
At (t),

{
Q, Dη(t)

}
Aδ(t)

〉 − 〈
At (t), Dη(t) Q Aδ(t)

〉
. (4.62)

Using the identity {
Q, Dη(t)

}
A = − [

Q Aη(t), A
]
, (4.63)

we find 〈
At (t), Q δAη(t)

〉
=

〈
At (t),

[
Aδ(t), Q Aη(t)

]〉
+

〈
Dη(t) At (t), Q Aδ(t)

〉
=

〈
∂t Aη(t), Q Aδ(t)

〉
+

〈
At (t),

[
Aδ(t), Q Aη(t)

]〉
=

〈
Aδ(t), ∂t Q Aη(t)

〉
+

〈
At (t),

[
Aδ(t), Q Aη(t)

]〉
. (4.64)

To transform the third term on the right-hand side of (4.59), let us calculate ∂t F(t)� and δF(t)�.
For ∂t F(t)�, we find

∂t F(t)� = [∂t , F(t)]� = −F(t)
[
∂t , F−1(t)

]
F(t)� = −F(t)�

[
∂t , Dη(t)

]
F(t)�, (4.65)

where the actions of [∂t , F(t)] and
[
∂t , F−1(t)

]
should be understood as

[∂t , F(t)] A(t) = ∂t F(t) A(t)− F(t) ∂t A(t),[
∂t , F−1(t)

]
A(t) = ∂t F−1(t) A(t)− F−1(t) ∂t A(t). (4.66)

We then use (4.53) to obtain

∂t F(t)� = F(t)�
{

Dη(t)At (t), F(t)�
} = F(t)�Dη(t) [At (t), F(t)�] . (4.67)
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For δF(t)�, we find

δF(t)� = [δ, F(t)]� + F(t) δ� = −F(t)
[
δ, F−1(t)

]
F(t)� + F(t) δ�

= −F(t)�
[
δ, Dη(t)

]
F(t)� + F(t) δ�, (4.68)

where the actions of [δ, F(t)] and
[
δ, F−1(t)

]
should be understood as

[δ, F(t)] A(t) = δF(t) A(t)− F(t) δA(t),[
δ, F−1(t)

]
A(t) = δF−1(t) A(t)− F−1(t) δA(t). (4.69)

We then use (4.49) to obtain

δF(t)� = F(t)�
{

Dη(t)Aδ(t), F(t)�
} + F(t)η� δ�

= F(t)�Dη(t)[Aδ(t), F(t)�] + Dη(t)F(t)� δ�

= [Aδ(t), F(t)�] + Dη(t)F(t)� (δ� − [Aδ(t), F(t)�]), (4.70)

where we also used (4.29) and (4.31). The third term on the right-hand side of (4.59) can now be
transformed as follows:〈[

At (t), F(t)�
]
, δF(t)�

〉
=

〈[
At (t), F(t)�

]
,
[

Aδ(t), F(t)�
]〉

+
〈[

At (t), F(t)�
]
, Dη(t) F(t)�

(
δ� −

[
Aδ(t), F(t)�

])〉
=

〈
At (t),

[
Aδ(t),

(
F(t)�

)2]〉 +
〈
Dη(t)

[
At (t), F(t)�

]
, F(t)�

(
δ� −

[
Aδ(t), F(t)�

])〉
.

(4.71)

Note that the structure of the second term on the right-hand side of the last line is similar to that of
∂t F(t)� in (4.67). In fact, the operator F(t)� is BPZ even:

〈F(t)�A, B〉 = (−1)A〈A, F(t)�B〉. (4.72)

This can be shown using

F(t) = 1
1−�(η−Dη(t))

(4.73)

as follows:

〈F(t)�A, B〉 =
∞∑

n=0

〈(
�

(
η − Dη(t)

))n
�A, B

〉

=
∞∑

n=0

(−1)A 〈
A, �

((
η − Dη(t)

)
�

)n
B

〉 = (−1)A 〈A, F(t)�B〉 . (4.74)

We thus find

〈[At (t), F(t)�] , δF(t)�〉
=

〈
At (t),

[
Aδ(t), (F(t)�)

2
]〉

+ 〈
F(t)�Dη(t) [At (t), F(t)�] , δ� − [Aδ(t), F(t)�]

〉
=

〈
At (t),

[
Aδ(t), (F(t)�)

2
]〉

+ 〈∂t F(t)�, δ� − [Aδ(t), F(t)�]〉

=
〈
At (t),

[
Aδ(t), (F(t)�)

2
]〉

+
〈
Aδ(t), ∂t (F(t)�)

2
〉
− 〈δ�, ∂t F(t)�〉. (4.75)
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The sum of the three terms on the right-hand side of (4.59) is then

δ
〈
At (t), Q Aη(t)+ (F(t)�)2

〉
=

〈
∂t Aδ(t), Q Aη(t)+ (F(t)�)2

〉
+

〈
[Aδ(t), At (t)] , Q Aη(t)+ (F(t)�)2

〉
+ 〈

Aδ(t), ∂t Q Aη(t)
〉 + 〈

At (t),
[
Aδ(t), Q Aη(t)

]〉
+

〈
At (t),

[
Aδ(t), (F(t)�)

2
]〉

+
〈
Aδ(t), ∂t (F(t)�)

2
〉
− 〈δ�, ∂t F(t)�〉

= ∂t

〈
Aδ(t), Q Aη(t)+ (F(t)�)2

〉
− ∂t 〈δ�, F(t)�〉, (4.76)

where we used 〈
[Aδ(t), At (t)] , Q Aη(t)+ (F(t)�)2

〉
+ 〈

At (t),
[
Aδ(t), Q Aη(t)

]〉 + 〈
At (t),

[
Aδ(t), (F(t)�)

2
] 〉

= 0. (4.77)

The variation δ
〈
At (t), Q Aη(t)+ (F(t)�)2

〉
is a total derivative with respect to t so that the t depen-

dence is topological. This shows that the action is a functional of  and �, where  is the value of
(t) at t = 1. The variation of the action δS is thus

δS = −
〈
Aδ, Q Aη + (F�)2

〉
+ 〈δ�, F�〉 − 〈〈δ�, Y Q�〉〉. (4.78)

The second term on the right-hand side can be transformed as

〈δ�, F�〉 = 〈η ξ0 XY δ�, F�〉 = − 〈〈XY δ�, ηF�〉〉 = − 〈〈Y δ�, XηF�〉〉
= − 〈〈Y δ�, XY XηF�〉〉 = − 〈〈XY δ�, Y XηF�〉〉 = − 〈〈δ�, Y XηF�〉〉, (4.79)

and the final form of δS is

δS = −
〈
Aδ, Q Aη + (F�)2

〉
− 〈〈δ�, Y (Q� + XηF�)〉〉. (4.80)

Therefore, the equations of motion are given by

Q Aη + (F�)2 = 0, (4.81a)

Q� + XηF� = 0. (4.81b)

Note that the second term on the left-hand side of the equation of motion derived from δ� is
multiplied by Xη. The factor η ensures that this term is in the small Hilbert space:

ηXηF� = 0. (4.82)

The factor X ensures that this term is in the restricted space:

XY XηF� = XηF� (4.83)

because XY X = X . As we mentioned in the introduction, this is the structure that we anticipated
from the approach by Sen in Ref. [50].
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4.4. The gauge invariance

Our remaining task is to derive the gauge transformations (4.6). When we set� = 0, the action (4.1)
coincides with the WZW-like action SWZW shown in (4.15) or in (4.16), and it is invariant under the
gauge transformations,

δ
(NS)
� SWZW = 0, δ

(NS)
� SWZW = 0, (4.84)

with δ(NS)
�  and δ(NS)

�  given by

A
δ
(NS)
�

= Q�, A
δ
(NS)
�

= Dη�, (4.85)

where A
δ
(NS)
�

is Aδ with δ = δ
(NS)
�  and A

δ
(NS)
�

is Aδ with δ = δ
(NS)
� . Let us calculate the

variations of S in (4.1) under δ(NS)
�  and δ(NS)

� .
First, the variation δ(NS)

� S is given by

δ
(NS)
� S = −

〈
Dη�, Q Aη + (F�)2

〉
= −

〈
�, Dη

(
Q Aη + (F�)2

)〉
= 0 (4.86)

because Q Aη and F� are annihilated by Dη. Therefore, there are no corrections to δ(NS)
� from the

inclusion of the Ramond sector, and we find

δ�S = 0 (4.87)

with

Aδ� = Dη�, δ�� = 0, (4.88)

where Aδ� is Aδ with δ = δ�.
Let us next calculate the variation δ(NS)

� S:

δ
(NS)
� S = −

〈
Q�, Q Aη + (F�)2

〉
= −

〈
�, Q

(
Q Aη + (F�)2

)〉
= 〈{F�,�} , Q F�〉. (4.89)

The string field Q F� is given by

Q F� = [Q, F]� + F Q� = −F
[

Q, F−1
]

F� + F Q�

= −F
[
Q, 1 −�η +�Dη

]
F� + F Q�

= F
(
Xη − {Q, �} Dη +�

{
Q, Dη

})
F� + F Q�. (4.90)

Using DηF� = 0 and the identity (4.63), we have

Q F� = F(Q� + XηF�)− F�
[
Q Aη, F�

]
. (4.91)

Note that Q� + XηF� in the equation of motion (4.81b) appeared in the first term on the right-hand
side. Since

[
(F�)2 , F�

] = 0, we can also make Q Aη + (F�)2 in the equation of motion (4.81a)
appear in the second term on the right-hand side:

Q F� = F(Q� + XηF�)− F�
[

Q Aη + (F�)2 , F�
]
. (4.92)

We can further transform Q F� as follows:

Q F� = Fη�
(

Q� + XηF�
)

− F�
[

Q Aη +
(

F�
)2
, F�

]
= DηF�

(
Q� + XηF�

)
+ F�

[
F�, Q Aη +

(
F�

)2]
. (4.93)

Since Dη, F�, and the graded commutator with F� are BPZ odd, BPZ even, and BPZ odd,
respectively, any BPZ inner product with Q F� can be brought to a sum of an inner product with
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Q� + XηF� and an inner product with Q Aη + (F�)2. This allows the nonvanishing variation
δ
(NS)
� S to be canceled by correcting the gauge transformations. We find

δ
(NS)
� S = 〈{F�,�} , DηF�(Q� + XηF�)

〉 + 〈
{F�,�} , F�

[
F�, Q Aη + (F�)2

]〉
= 〈

F�Dη {F�,�} , Q� + XηF�
〉 + 〈

{F�, F� {F�,�}} , Q Aη + (F�)2
〉
. (4.94)

Since〈
Q�+ {F�, F� {F�,�}} , Q Aη + (F�)2

〉
+ 〈

F�Dη {F�,�} , Q� + XηF�
〉 = 0, (4.95)

we conclude that

δ�S = 0 (4.96)

with

Aδ� = Q�+ {F�, F� {F�,�}} , δ�� = Xη F�Dη {F�,�}, (4.97)

where Aδ� is Aδ with δ = δ�.
Finally, let us derive the correction to the gauge transformation

δ
(0)
λ  = 0, δ

(0)
λ � = Qλ. (4.98)

We use the form of the variation of S in (4.78) to find

δ
(0)
λ S = 〈Qλ, F�〉 − 〈〈Qλ, Y Q�〉〉 = −〈λ, Q F�〉. (4.99)

This takes the form of an inner product with Q F� so that it can be canceled by correcting the gauge
transformation. We find

δ
(0)
λ S = − 〈

λ, DηF�(Q� + XηF�)
〉 − 〈

λ, F�
[

F�, Q Aη + (F�)2
]〉

= − 〈
F�Dηλ, Q� + XηF�

〉 − 〈
F�λ,

[
F�, Q Aη + (F�)2

]〉
= − 〈

F�Dηλ, Q� + XηF�
〉 − 〈

{F�, F�λ} , Q Aη + (F�)2
〉
. (4.100)

We thus conclude that

δλS = 0 (4.101)

with

Aδλ = −{F�, F�λ} , δλ� = Qλ− XηF�Dηλ, (4.102)

where Aδλ is Aδ with δ = δλ.
In Sect. 3, we chose the form of the gauge transformations with the gauge parameter λ such that λ

appears in the combination �λ except for Qλ. While λ in Aδλ appears in the combination �λ, this
is not the case for the term XηF�Dηλ in δλ�. Using (4.31) and ηλ = 0, we can bring δλ� to this
form in the following way:

δλ� = Qλ− Xη
(
1 − DηF�

)
λ = Qλ+ XηDηF�λ. (4.103)

Since XηDηF�λ = −Xη
{

Aη, F�λ
}
, we see that this reproduces δ(1)λ � and δ(2)λ � in Sect. 3.

Furthermore, the gauge transformation δλ� in (4.103) can be brought to the form

δλ� = Qλ+ XηFλ (4.104)

because Fλ = Fη�λ = DηF�λ . Note that the right-hand side of (4.104) has the same structure as
the equation of motion Q� + XηF� = 0 with � replaced by λ. We expect that this structure will
play a role in the Batalin–Vilkovisky quantization.
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5. Relation to the Berkovits formulation

As we mentioned in the introduction, the equations of motion of open superstring field theory includ-
ing the Ramond sector were constructed by Berkovits in Ref. [28]. In this section we investigate the
relation between the equations of motion in Ref. [28] and ours.

The equations of motion in Ref. [28] are given by

η
(
e−Q e

) +
(
ηψ B

)2 = 0, Q
(

e
(
ηψ B

)
e−

)
= 0, (5.1)

where  is the string field in the NS sector and ψ B is the string field in the Ramond sector. Both
string fields are in the large Hilbert space. Let us discuss the relation between our string field � and
the string field ψ B . Since ψ B is in the large Hilbert space, it is convenient to uplift our string field
to the large Hilbert space as well. We introduce the string field ψ in the large Hilbert space by

� = ηψ. (5.2)

The condition that � is in the restricted space is translated into

XYηψ = ηψ. (5.3)

The equations of motion in terms of  and ψ are

Q Aη + (Fηψ)2 = 0, (5.4a)

Qηψ + XηFηψ = 0. (5.4b)

In order to find a relation between ψ and ψ B , it is convenient to introduce ψ̃ B defined by

ψ̃ B = i eψ Be−. (5.5)

Then the equations of motion in terms of  and ψ̃ B are given by

Q Aη +
(

Dηψ̃
B
)2 = 0, (5.6a)

Q Dηψ̃
B = 0. (5.6b)

Since

Fηψ = DηFψ, (5.7)

where we used (4.29), the equations of motion (5.4a) and (5.6a) in the NS sector coincide under the
field redefinition

ψ̃ B = Fψ. (5.8)

Let us next consider the equation of motion in the Ramond sector. When  and ψ satisfy the
equations of motion (5.4), the string fields  and ψ̃ B mapped by the field redefinition (5.8) satisfy
the equation of motion (5.6b) because

Q Dηψ̃
B = Q Fηψ = F(Qηψ + XηFηψ)− F�

[
Q Aη + (Fηψ)2 , Fηψ

]
, (5.9)

where we used (4.92). On the other hand, we can transform (5.9) as

Qηψ + XηFηψ = F−1 Q Fηψ +�
[

Q Aη + (Fηψ)2 , Fηψ
]

= F−1 Q Dηψ̃
B +�

[
Q Aη +

(
Dηψ̃

B
)2
, Dηψ̃

B
]
, (5.10)

so the string fields andψ satisfy the equation of motion (5.4b) when and ψ̃ B satisfy the equations
of motion (5.6). We thus conclude that the two sets of the equations of motion (5.6) and (5.4) are
equivalent under the field redefinition (5.8).
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Finally, let us see how the condition (5.3) that ηψ is in the restricted space is mapped by the field
redefinition (5.8). Since

ηF−1 = η�Dη, (5.11)

the condition (5.3) is translated into the following condition on ψ̃ B :

XYη�Dηψ̃
B = η�Dηψ̃

B . (5.12)

We can also translate it into the condition on ψ B as

XYη�
(

e
(
ηψ B

)
e−

)
= η�

(
e

(
ηψ B

)
e−

)
. (5.13)

Both forms of the constraint are highly nontrivial since they are conditions on nonlinear combinations
of string fields involving not only the string field in the Ramond sector but also the string field in the
NS sector. This suggests that our choice of the string field in the Ramond sector,� orψ , is canonical
in constructing an action, and no field redefinitions in the Ramond sector seem to be allowed.

6. Conclusions and discussion

In this paper we constructed the action (4.1) for open superstring field theory. It includes both the
NS sector and the Ramond sector, and it is invariant under the gauge transformations given by (4.6).
This is the first construction of a complete action for superstring field theory in a covariant form. The
gauge invariance ensures the decoupling of unphysical states, and we believe that correct scattering
amplitudes at the tree level will be reproduced (H. Kunitomo, Y. Okawa, H. Sukeno, and T. Takezaki,
work in progress).5

We use the large Hilbert space for the NS sector and the small Hilbert space for the Ramond sector.
Let us first discuss the possibility of formulations within the framework of the small Hilbert space.
As we have already mentioned, our action can also be interpreted as the action for the string fields in
the small Hilbert space both for the NS sector and the Ramond sector. We only need to parameterize
Aη(t) and At (t) satisfying the relations (4.3) in terms of a string field in the small Hilbert space. We
can use the partial gauge fixing in Ref. [3] or use the string field in Ref. [10] for the action with the
A∞ structure, as demonstrated in Ref. [23]. While the resulting theory is described in terms of string
fields in the small Hilbert space, the structure of the large Hilbert space is used in an essential way in
these formulations. In our context, it is manifested in the aspect that we need to use the operator �.
However, we do not foresee any fundamental obstructions in constructing a gauge-invariant action
within the framework of the βγ ghosts by extending the approach in an upcoming paper (K. Ohmori
and Y. Okawa, work in preparation) based on the covering of the supermoduli space of super-Riemann
surfaces to the Ramond sector. The reason we use the large Hilbert space for the NS sector is to have
a closed-form expression for the action, and it would be an important problem to construct an action
in a closed form based on the βγ ghosts.

Let us next discuss the possibility of formulations based on the large Hilbert space. As we did in
Sect. 5, it is straightforward to uplift the string field in the Ramond sector to the large Hilbert space,
but the structure of the small Hilbert space is crucially used in the characterization of the space of
string fields in the Ramond sector in terms of the operator X . It would be more flexible if we could
characterize it in terms of ξ(z), η(z), and φ(z). For example, in the approach by Sen [50], the zero
mode X0 of the picture-changing operator is used for the propagator in the Ramond sector, and this

5 See Ref. [55] for a mathematical discussion on the S-matrix of superstring field theory.
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seems to suggest a possibility of characterizing the space of string fields in the Ramond sector in
terms of X0, as the information on degrees of freedom should be reflected in the propagator. If this
is possible, we may be able to replace � with the zero mode ξ0, as the origin of the operator � is the
relation X = {Q, �} and X0 can be written as X0 = {Q, ξ0}. Use of the large Hilbert space obscures
the relation to the supermoduli space of super-Riemann surfaces at the moment, and we had to use
the framework of the βγ ghosts in describing the space of string fields in the Ramond sector. We hope
to have formulations of superstring field theory where the large Hilbert space and the supermoduli
space of super-Riemann surfaces are integrated in a fundamental fashion.

Now that we have the complete action (4.1) for open superstring field theory, we can address inter-
esting questions. First of all, we are now at a starting point for quantizing open superstring field the-
ory. One important question that we can address by quantizing open superstring field theory would be
whether we can describe closed strings in terms of open string fields or whether we need closed string
fields as independent degrees of freedom. The first step is the construction of a classical master action
in the Batalin–Vilkovisky formalism [16,17] for quantization. As we mentioned before, the action
in the NS sector can be described by multi-string products satisfying the A∞ relations [10,23,24],
and the Batalin–Vilkovisky quantization is straightforward. In addition, as we commented at the
end of Sect. 4, the equation of motion (4.81b) in the Ramond sector and the gauge transformation
δλ� in (4.104) share the same structure, which is promising for the Batalin–Vilkovisky quantization.
It would also be a promising approach to adapt the recent construction of the equations of motion
including the Ramond sector in terms of multi-string products satisfying the A∞ relations [36] so
that string products in the Ramond sector are consistent with the projection to the restricted space.

Another important question that we can discuss with our action would be spacetime supersymme-
try preserved by the D-brane. It would again be helpful to see Ref. [36] for a recent discussion on
supersymmetry based on the equations of motion.6 A more ambitious question would be to uncover
the supersymmetry spontaneously broken by the presence of the D-brane.

It would also be fascinating to extend the present formulation to closed superstring field theory.
While the construction of a complete action for type II superstring field theory seems challenging,
we hope that our construction can be extended to heterotic string field theory [30–33].7

Construction of a complete action for open superstring field theory is not the end of the story.
It is just the beginning. We hope that this will provide a useful approach complementary to other
directions such as the AdS/CFT correspondence and help us unveil the nature of the nonperturbative
theory underlying the perturbative superstring theory.
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Appendix A. The integration over the fermionic modulus

As we mentioned in the introduction, the operator X given by

X = −δ(β0)G0 + δ′(β0) b0, (A1)

which is used to characterize the restricted space of string fields in the Ramond sector, is related to
the integration of the fermionic modulus of propagator strips in the Ramond sector. In this appendix
we elaborate on this aspect and show that the expression (A1) can be obtained from the expression

X =
∫

dζ
∫

d ζ̃ eζG0−ζ̃ β0 (A2)

by carrying out the integration over the fermionic modulus ζ .8

In Ref. [44] the extended BRST transformation was introduced, and the fermionic modulus ζ
is mapped to the Grassmann-even variable ζ̃ by the extended BRST transformation. The extended
BRST transformation acts in the same way as the ordinary BRST transformation for operators in the
boundary CFT, and in particular it maps β0 to G0. Therefore, the combination ζG0 − ζ̃ β0 in (A2)
is obtained from −ζβ0 by the extended BRST transformation.

Let us carry out the integration over ζ in (A2). Using the commutation relations

[G0, β0] = −2b0, [β0, b0] = 0, {G0, b0} = 0 (A3)

and the Baker–Campbell–Hausdorff formula, we find

eζG0−ζ̃ β0 = e
−1

2

[
ζG0,ζ̃ β0

]
e−ζ̃ β0eζG0 = eζ̃ ζb0e−ζ̃ β0eζG0 = e−ζ̃ β0

(
1 + ζ̃ ζb0 + ζG0

)
. (A4)

By integrating over ζ , the operator X can be written as

X = −
∫

d ζ̃
∫

dζe−ζ̃ β0
(

1 + ζ̃ ζb0 + ζG0

)
=

∫
d ζ̃e−ζ̃ β0

(
−ζ̃b0 − G0

)
, (A5)

where we treated dζ and d ζ̃ as Grassmann-odd objects. As emphasized in Ref. [44], the integral
over the Grassmann-even variable ζ̃ should not be considered as an ordinary integral, and it should
be regarded as an algebraic operation similar to the integration over Grassmann-odd variables. See
Ref. [44] for more details. In this context, we define δ(β0) and δ′(β0) by

δ(β0) =
∫

d ζ̃e−ζ̃ β0, δ′(β0) = −
∫

d ζ̃ ζ̃e−ζ̃ β0, (A6)

and the operator X is written as

X = δ′(β0) b0 − δ(β0)G0. (A7)

Note that δ(β0) and δ′(β0) are Grassmann-odd operators because we treat dζ and d ζ̃ as Grassmann-
odd objects. We have thus obtained the expression (A1) for X .

8 This appendix is based on the results for the NS sector in an upcoming paper (K. Ohmori and Y. Okawa,
work in preparation).
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Appendix B. Properties of �

In this appendix we first show that the anticommutator of η and � is given by

{η,�} = 1 (B1)

for

� = �(β0) , (B2)

where � is the Heaviside step function. We begin with the identification [57]

�(β (σ)) = ξ (σ ), (B3)

where

β(σ) =
∑

n

βn einσ , ξ (σ ) =
∑

n

ξn einσ . (B4)

We then separate β(σ) as

β(σ) = β0 + β̃(σ ), (B5)

where

[γ0, β0] = 1,
[
γ0, β̃(σ )

] = 0, (B6)

and we rewrite ξ(σ ) in the following way:

ξ(σ ) = �
(
β0 + β̃(σ )

) = eβ̃(σ )γ0�(β0) e−β̃(σ )γ0 . (B7)

We invert this relation to write � in terms of ξ(σ ) as follows:

� = �(β0) = e−β̃(σ )γ0ξ(σ ) eβ̃(σ )γ0 . (B8)

It follows from (2.1) that [
η, β̃(σ )

] = [η, β(σ )− β0] = 0, [η, γ0] = 0, (B9)

and we also use

{η, ξ(σ )} = 1 (B10)

to find

{η,�} = e−β̃(σ )γ0 {η, ξ(σ )} eβ̃(σ )γ0 = 1. (B11)

Let us next show that � is BPZ even based on the expression (B8). We denote the BPZ conjugate
of an operator O by O�. Consider the mode expansion of a primary field ϕ(z) of weight h. In general,
the BPZ conjugate of the mode ϕn with [L0, ϕn] = −nϕn is given by

ϕ�n = (−1)n+hϕ−n. (B12)

We therefore have

ξ�n = (−1)nξ−n, γ �n = (−1)n−1
2 γ−n, β�n = (−1)n+3

2 β−n. (B13)

The right-hand side of (B8) is actually independent of σ , and it is convenient to set σ = π/2. Since

β̃
(π

2

)� = (−1)
3
2 β̃

(π
2

)
, γ �0 = (−1)−

1
2 γ0, ξ

(π
2

)� = ξ
(π

2

)
, (B14)

we find

�� =
(

eβ̃(π/2)γ0
)�
ξ
(π

2

)� (
e−β̃(π/2)γ0

)�
= e−γ0β̃(π/2)ξ

(π
2

)
eγ0β̃(π/2) = �. (B15)
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