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Abstract 

The circle of Willis (CW) is a circulatory anastomosis that supplies blood to 

the brain and adjacent structures. We examined the timing of formation of CW in 20 

Japanese human embryo samples by using 3-dimensional reconstruction of serial 

histological sections. The CW was closed in 1 (n=6), 2 (n=8), 2 (n=3) and 2 (n=3) 

samples at Carnegie stages 20, 21, 22, and 23, respectively. The CW was unclosed in 

13 samples (unclosed at ACOM alone, 6 samples; ACOM and bilateral P1, 4; left 

PCOM and right P1, 1; right PCOM and right P1, 1; ACOM and left PCOM, 1). It was 

difficult to predict whether the circle would close during further development, as such 

variations frequently exist in adults. 
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Introduction 

The circle of Willis (CW), also called Willis' circle or cerebral arterial circle, is a 

circulatory anastomosis that supplies blood to the brain and adjacent structures 

(Eastcott 1994). The CW is composed of the following arteries: left and right anterior 

cerebral arteries (ACA), anterior communicating artery (ACOM), internal carotid arteries 

(ICA), posterior cerebral arteries (PCA), posterior communicating arteries (PCOM), and 

basilar artery (BA). As the CW serves the important function of providing blood supply to 

the brain, it communicates with multiple collaterals in the cerebral circulation. Willis 

recognized these anastomoses as a compensatory system to overcome any arterial 

occlusion. The presence of collateral flow via the PCOM in the CW is associated with a 

low prevalence of border zone infarcts in patients with unilateral ICA occlusion 

(Hendrikse et al. 2001). A recent simulation study demonstrated that the CW served as 

a passive pressure dissipating system under physiologic conditions, implying that the 

CW and its communicating arteries protect the cerebral arteries and the blood–brain 

barrier from hemodynamic stress (Vrselja et al. 2014). 

The CW has many variations. The complete circle was observed in only 

5-28% of adults. Variations at the ACOM, PCOM, and precommunicating segment 
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(segment P1) of the PCA are well known. ACOM aplasia or hypoplasia was observed in 

5-32% of the total examined adult cases, PCOM aplasia or hypoplasia was observed in 

23-81%, and segment P1 aplasia or hypoplasia was observed in 7-15% (Alpers et al. 

1959; Eftekhar et al. 2006; Fisher 1965; Fujimoto & Tanaka 1989).  

 Cerebral aneurysms that result in intracranial hemorrhage (subarachnoid 

hemorrhage) frequently occur in the CW. Cerebral aneurysms are associated with 

various pathological cerebrovascular conditions responsible for hemodynamic changes 

(Dyste & Beck 1989). Variations in the CW have a direct impact on the distribution of 

carotid and basilar blood flow and the formation of aneurysms (Horikoshi et al. 2002; 

Kayembe et al. 1984; Kirgis et al. 1966; Kwak et al. 1980). There are other 

cerebrovascular disorders (Hendrikse et al. 2001; Schomer et al. 1994) and mental 

disorders that may also be associated with these variations (Blackburn 1907, 1910). 

Padget (1948) was the first person to precisely describe the embryonic 

development of the human brain vasculature. In her study, development of the 

intracranial artery, including CW, was fully described in 19 human embryonic samples 

between Carnegie stages (CS) 13 and 21, one fetal sample (crown-rump length, CRL = 

40 mm), and one adult sample. Padget also demonstrated that the circle was unclosed 
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in 2 samples at CS 18 and CS 19, whereas closed in all 3 samples at CS 20 and all 3 

samples after CS 21. Among the 3 samples at CS 20, ACOM had a plexiform 

appearance in two samples, and a single main artery in one sample. No other studies 

have provided such a precise description of the development of the CW in the 

embryonic period of humans to date. 

In the present study, we examined the timing of formation of CW in Japanese 

human embryo samples by using 3-dimensional (3-D) reconstruction of serial histology 

sections. 

Materials and Methods  

Human embryo specimens 

Approximately 44,000 human embryos comprising the Kyoto Collection are 

stored at the Congenital Anomaly Research Center of Kyoto University (Nishimura et al. 

1968; Shiota 1991; Yamada et al. 2004). Well-preserved human embryos that were 

found to be normal on external appearance were subjected to serial sectioning for 

histology. For this study, 20 Japanese human embryos between CS 20 and CS 23 were 

selected from the Kyoto Collection. All the selected samples exhibited no overt damage 

or anomalies, and the histological specimens were well preserved. 
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Digitalization of histological sections and 3D reconstruction of CW 

Serial sections (transverse sections, 10 µm thick) of whole embryos were 

scanned and stored as digital data by using a film scanner (CanoScan 9000F, Canon, 

Tokyo, Japan) at 4800 dpi. Sequential 2-D images were trimmed digitally by using 

ImageJ 64-bit (ver. 1.46, National Institutes of Health, Bethesda, MD, USA) and saved 

in Microsoft Windows Bitmap Image files (.bmp) at a resolution identical to that of the 

original digital data. The cranial arteries, including CW, were segmented on serial digital 

sections, and 3-D images were computationally reconstructed for examining the 

morphology by using Amira software (ver. 5.5.0, Visage Imaging, Berlin, Germany) in all 

samples. The ethics committee of the Kyoto University Graduate School and Faculty of 

Medicine approved this study (E986). 

Results 

 A total of 20 samples were analyzed. The CW was closed in 1 (n=6), 2 

(n=8), 2 (n=3), and 2 (n=3) samples at Carnegie stages 20, 21, 22, and 23, respectively 

(Figure 1, Table 1). The CW was unclosed in 13 samples, 6 at ACOM alone, 4 at ACOM 

and bilateral P1, one at right PCOM and right P1, one at left PCOM and right P1, and 

one at the ACOM and left PCOM (Figure 2). ACOM occasionally had a plexiform 
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appearance (Figure 1, reconstruction at CS 22). 

 

Discussion 

The study by Padget (1948) remains unmatched in its precision in reporting the 

development schedule of the formation of CW during the embryonic period. Thus, the 

schedule described in that study is the only one available worldwide. Padget’s study 

demonstrated that the CW forms a closed circle at CS 20 to coincide with the formation 

of the ACOM. The results of our study deviate from Padget's findings in suggesting a 

delay of one or two stages in the schedule of formation of the CW. Racial differences 

may one possible explanation of the difference in timing noted in the two studies. 

Previous studies reviewed the distribution of the CW variation in different populations 

(Eftekhar et al. 2006; Hashemi et al. 2013). They are very cautious to the conclusion 

that the distributions of the variations of cerebral arterial circle differ in different 

populations. Padget has reported many variations in adults samples (Padget 1944), but 

did not describe the variation during development (Padget 1948). We speculate that 

Padget might exclude samples with such variations in CW in the latter study to 
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demonstrate the natural development of CW or might not meet such samples as she 

described in the limited number of samples. 

 The ACOM may close in later stages, as its formation is the final step in 

completing the CW, according to the previous study by Padget. It is also possible that 

the CW remains unclosed at the ACOM until birth, as such a variation is known to exist 

in adults (Alpers et al. 1959; Eftekhar et al. 2006; Fawcett & Blachford 1905; Fisher 

1965; Fujimoto & Tanaka 1989). A similar interpretation can be considered for samples 

in which the CW remained unclosed at the PCOM and P1, suggesting this may remain 

so until birth. Previous studies indicate that the blood supply from ICA to PCA through 

PCOM, supplying the cerebellum and brain stem, may decrease during embryonic 

development owing to the growth of the prosencephalon (cerebrum) (Okahara et al. 

2002; Van Overbeeke et al. 1991). The blood supply to the PCA territory is 

compensated by the BA. However, an unclosed CW owing to aplasia or hypoplasia of 

PCOM results in restricted collateral flows, and, is a recognized risk factor for 

cerebrovascular conditions such as ICA occlusion, border zone infarcts, transient 

ischemic attacks, and minor strokes (Hendrikse et al. 2001). Variations, in the form of 
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aplasia or hypoplasia of P1, result in the ICA providing blood supply to the PCA. This 

condition is referred to as the fetal posterior cerebral artery (fetal type) (Raamt et al, 

2006). In the fetal type of CW, the entire PCA territory depends on the ICA for its blood 

supply, while the other areas, including cerebellum and brain stem, depend on the BA 

for their blood supply. The communication of the CW at P1 has a significant influence on 

intracranial hemodynamics (Wentland et al. 2010). The present study, however, 

suggests the possibility that the variations in ACOM, PCOM, and P1 may occur during 

embryonic development itself. Such variations may have a significant influence on the 

development and growth of the brain, and affect its morphology as well as function 

(Raybaud 2010; Wentland et al. 2010). The present study indicates that the CW is 

closed around CS 22, one or two stages later than previously reported (Padget 1948). 

Thus, the frequency of variations in the CW at CS 23, at the end of the embryonic stage, 

and its comparison with the frequency of variations after birth need to be investigated in 

future studies. 
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Figure legends 

Figure 1. Formation of the CW during Carnegie stages 20 and 23 

� in CS20; Left and right ACA was not connected. Acom was not formed. 

Figure 2. Variations in the CW at Carnegie stage 21.  

(A) The circle is unclosed at ACOM and bilateral PCOM.  

(B) The circle is unclosed at left PCOM and right P1. ACOM, anterior communicating 

artery; PCOM, posterior communicating artery; ACA, anterior cerebral arteries; ICA, 

internal carotid arteries (ICA); PCA, posterior cerebral arteries; BA, basilar artery; P1, 
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P1 segment of PCA 



Table1. Formation of the circle of Willis 

Carnegie 
stage 

No of 
samples 

Circle formation 
 

Segments at which the circle was unclosed 

Closed Unclosed �  ACOM alone ACOM + b/l P1 PCOM + others 

20 6 1 5 
 

4 1 0 
21 8 2 6  2 1 ACOM + Lt. PCOM, 1; 

Lt. PCOM + Rt. P1, 1; 
Rt. PCOM + Rt. P1, 1 

22 3 2 1 

 

0 1 0 

23 3 2 1 �  0 1 0 

Total 20 7 13 �  6 4 3 

ACOM, anterior communicating artery; PCOM, posterior communicating artery; P1, P1 segment of 

posterior cerebral artery; Rt., right; Lt., left; b/l, bilateral 

 






