Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements

Author(s)
Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

Citation
Journal of Colloid and Interface Science (2016), 483: 353-359

Issue Date
2016-12-01

URL
http://hdl.handle.net/2433/216978

Right
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/; The full-text file will be made open to the public on 1 December 2018 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Surface Properties of a Single Perfluoroalkyl Group on Water Surfaces Studied by Surface Potential Measurements

Takafumi Shimoaka a, Yuki Tanaka a, Nobutaka Shioya a, Kohei Morita b,
Masashi Sonoyama b, Hideki Amii b, Toshiyuki Takagi c, Toshiyuki Kanamori c,
Takeshi Hasegawa*a

a Laboratory of Solution and Interface Chemistry, Division of Environmental Chemistry,
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

b Division of Molecular Science, Faculty of Science and Technology, Gunma University,
Kiryu, Gunma 376-8515, Japan

c National Institute of Advanced Industrial Science and Technology (AIST), AIST
Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail address: [TS] shimoaka@scl.kyoto-u.ac.jp [YT] yuki@env.kuicr.kyoto-u.ac.jp
[NS] nobutaka@env.kuicr.kyoto-u.ac.jp [KM] t09301167@gunma-u.ac.jp
[MS] sonoyama@gunma-u.ac.jp [HA] amii@gunma-u.ac.jp [TT] t.takagi@aist.go.jp
[TK] t.kanamori@aist.go.jp [TH] htakeshi@scl.kyoto-u.ac.jp
*Corresponding Author: Prof. Takeshi Hasegawa

Postal address: Laboratory of Solution and Interface Chemistry, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Phone: +81 774 38 3070
FAX: +81 774 38 3074
E-mail: htakeshi@scl.kyoto-u.ac.jp

Highlights:

- Dehydration about the head group is a key to understand surface potential changes.
- A single perfluoroalkyl group is stabilized on a water surface.
- A long perfluoroalkyl chain makes a stiff molecular domain on the water surface.
Abstract: A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C–F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique “dipole-interactive” character, which enables the Rf group interacted with the water ‘surface.’ In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19 °C by use of the ΔV measurements.

Keywords: Langmuir monolayer; surface potential; single perfluoroalkyl chain; water surface
Introduction: Perfluoroalkyl (Rf) compounds exhibit unique “bulk characters” represented by the high water- and oil-repelling property, low dielectric permittivity, and low solubility in a solvent, which have long been used extensively for many practical chemical products.\(^1\) When a local structure of the Rf group is taken into account, however, unified understanding of the bulk properties is difficult. For example, the C–F bond has a large dipole moment due to the largest electronegative character of fluorine,\(^2,3\) which should attract water molecule via the dipole-dipole interaction. This fact seems inconsistent with the hydrophobic surface property on Rf compounds. Recently, a novel chemical theory, i.e., the stratified dipole-arrays (SDA) theory, has been proposed for fully understanding the material characters, which discriminates a ‘single molecular character’ from the ‘bulk one.’\(^4\)

This theory is based on the dipole-dipole interaction\(^5\) of the Rf groups having a helical structure.\(^1,6,7\) In Rf compounds, the Rf chains are aggregated tightly by two-dimensional dipole-dipole interaction arrays, in which all the dipoles corresponding to CF\(_2\) groups are linearly aligned in the head-to-tail manner. The tight aggregation readily explains most of the bulk characters comprehensively\(^4\). Fortunately, this theory readily covers the conventional polarizability-based theory\(^8\) to account for the low permittivity. Since the intrinsic difference between an Rf group and a normal
hydrocarbon is attributed to the difference between the dipole-dipole interaction and
the dispersion force, respectively, the SDA theory built on the dipole-dipole interaction
has become very important. In particular, the SDA theory is the only theory accounting
for the discontinuity of the melting point at the length of -C₈F₁₇ as well as the
fluorophilic effect and the low electric permittivity, which are not found in a normal
hydrocarbon material.

Some of the ‘single molecular characters’ predicted by the SDA theory have
experimentally been confirmed via the adsorption of ‘molecular water’ on a stretched
polytetrafluoroethylene (PTFE; known as Teflon) tape by using ¹H NMR. A PTFE
tape is made of bundled fibrils of polymeric Rf chains with the SDA packing. If the
tape is mechanically stretched, then the SDA packed fibrils are partly disaggregated,
and a single-molecule character of an Rf chain faces to the air. Since a single Rf group
possesses strong dipole moments on the surface due to the C–F bonds, molecular water
having a large dipole should be adsorbed on the surface via the dipole-dipole
interaction. The ¹H NMR study reveals that the adsorption is due to the dipole-dipole
interaction in fact by the chemical shift and T₁ analyses.

Judging from an electrodynamics theory, both stretched and un-stretched PTFE
tapes should exhibit ‘hydrophobicity’ to a water ‘droplet’ (not molecular water), since
the polarization density (summation of dipole moment in a macroscopic scale) becomes nearly zero for both cases. In fact, a large contact angle is commonly obtained for both cases11.

This implies that the attraction character of a single Rf group to a molecular water should be discriminated from the general concept of hydrophilicity, and the character is thus called “dipole-interactive property” throughout this paper. In the present study, the physical character of a single Rf group is investigated at the air/water interface. Water surface is known to have some hydrogen-bond free (dangling) OH groups,12 which should be a good field to study a single Rf group on the concept of the dipole-interactive property.

A study using a spread monolayer on water (Langmuir (L) film) and the Langmuir-Blodgett (LB) film is a key approach to investigate properties of a two-dimensional (2D) molecular aggregate.13 In fact, the SDA theory has already proved to be powerful to predict the material property of a compound by the surface pressure (π)–surface area (A) isotherm measurement of the L film and a spectroscopic study of the LB film.4 For example, according to the theory, a compound containing a short Rf-group (CF$_3$(CF$_2$)$_6^-$ or shorter) should exhibit the dipole interactive or hydrophilic character, especially when the compound is spread on water: the spread
molecules are not aggregated, and they are lying on the water surface. In fact, the monolayer stays on pure water stably, and the lift-off surface area is apparently larger than that of a similar compound having no Rf group. This implies that the short-Rf containing compounds are not dissolving into water, but it is strongly interacted with the water ‘surface.’ In this manner, a single Rf group should have a unique attracting character with the water surface, which is not found for a normal hydrocarbon.

To reveal the unique property of an Rf group on a water surface, in the present study, the surface potential (ΔV)–surface area (A) isotherms are measured for some Rf-containing myristic acid (MA) derivatives having an Rf group with a different length, which are cooperatively discussed with the π–A isotherms. As a result, a notable molecular aggregation property depending on both Rf length and temperature is revealed. Thus far, ΔV–A isotherms have been discussed in terms of molecular orientation change after Gains’s textbook. In the present study, however, additional two factors are found necessary: the molecular density change and the dehydration about the head group on the monolayer compression. The dehydration is particularly useful to discuss the dipole-interactive property on the water surface, since the dipole-shielding by the hydration water is broken by the monolayer compression.

In addition, the ΔV–A isotherms reveal that bulk properties on the phase
transition can also be predicted by the SDA theory. The measurements have all been performed thus far at 15 °C (Phase II) below the transition temperature at 19 °C. If the Rf compounds obey the phase diagram, the SDA theory should readily predict the bulk properties at another temperature above 19 °C (i.e., Phase IV). In the present study, the same analysis is also performed at 25 °C in Phase IV, and the SDA theory has proved to be powerful for explaining the phase transition. This is the first report to our knowledge that the bulk characters of Rf-containing compounds are predicted based on the primary chemical structure.

Materials and methods:

Sample preparation: Octadecanoic acid (stearic acid, SA, ≥98.5%), tetradecanoic acid (myristic acid, MA, ≥99%) and chloroform (ACS Spectra Grade, ≥99.8%) were purchased from Sigma-Aldrich (St. Louis, MO, USA), and they were used as is without further purification. 11,11,12,12,13,13,14,14,14-Nonafluorotetradecanoic acid (MA–Rf3), 9,9,10,10,11,11,12,12,13,13,14,14,14-tridecafluorotetradecanoic acid (MA–Rf5), 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecfluorotetradecanoic acid (MA–Rf7) and 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-henicosfluorotetradecanoic acid (MA–Rf9) were synthesized as mentioned in our previous work. Each
amphiphilic compound was dissolved in chloroform with a concentration of 0.2–1.0 mg mL\(^{-1}\) for preparation of a Langmuir monolayer on water.

\(\pi-A\) and \(\Delta V-A\) measurements: The \(\pi-A\) and \(\Delta V-A\) isotherms were simultaneously measured by using a Biolin Scientific (Espoo, Finland) KSV-NIMA Minitrough Langmuir-Blodgett system equipped with a KSV-NIMA SPOT Kelvin probe. The \(\pi\) was measured by the Wilhelmy method using a paper plate with a width of 1 cm, and \(\Delta V\) was measured by using the Kelvin probe with a counter electrode made of stainless steel.\(^{17}\) The Kelvin probe (KP) was located at the position (1) in Chart 1. Each isotherm was measured three times to check the reproducibility. The water subphase and room temperature were both maintained at 15 °C or 25 °C to keep the phase II (\(<19\) °C) or IV (\(>19\) °C), respectively. Pure water subphase was obtained by a Millipore (Molsheim, France) Elix UV-3 pure-water generator and a Yamato (Tokyo, Japan) Autopure WT100U water purifier (a compatible model with Milli-Q). The water exhibited an electric resistivity of 18.2 MΩ cm or higher. The surface tension was 72.5 mN m\(^{-1}\) at 25 °C, which was measured by using a Kyowa Interface Science Co., Ltd. (Saitama, Japan) DropMaster, DM-501Hy, contact angle meter. The Langmuir monolayer was prepared by spreading the chloroform solution of the amphiphilic compounds on pure water subphase with a size of 75×324 mm\(^2\). Each isotherm was measured with a
compression rate of 1.688×10^3 mm2 min$^{-1}$.

Chart 1 The relative position of the Kelvin probe to the trough. The dark blue objects are island domains of a Langmuir film. The surface potential (ΔV) of the film is measured at the position (1) except for the purple dash line in Figure 3a, which is measured at the position (2).

The isotherms were measured on pure water (ca. pH 5.8) to make the potential measurements free from a chemical interference due to a pH modifier. For only MA, the isotherms were measured at pH 2.0; otherwise the shorter compound than SA is dissolved into the subphase. The isotherms of a MA monolayer were measured on a subphase of pH 2.0 involving hydrochloride to prevent the dissolution of the monolayer into the subphase.

Results and Discussion: The variation of ΔV during the monolayer compression (ΔV–A) is discussed with related to the corresponding π–A isotherm. A ΔV–A isotherm of a Langmuir monolayer (L film) is often discussed in terms of only the molecular orientation change of a chemical group having a large dipole moment. In the following
sections, we show that a $\Delta V-A$ isotherm reflects two other factors, molecular density and dehydration about a polar head group, as well as the orientation change, which has an apparent correlation with the $\pi-A$ isotherm. Before discussing the Rf-containing compounds, L films of commonly known stearic acid (SA) and MA are thus used to show the newly found key factors.

$\Delta V-A$ isotherm of a Normal Carboxylic Acid:

Figure 1a presents $\pi-A$ and $\Delta V-A$ isotherms of an L film of SA measured at 25 °C. The $\pi-A$ isotherm has a typical shape consisting of the well-known three regions: the gaseous and liquid condensed (G/LC), LC (or “tilted condensed”) and solid (S, or “un-tilted condensed”) phase regions.19,20 The electric dipole moment of SA is localized near the C=O group, but the moment (1.50 D)21 is tilted to have the upward component (Figure 1c). Thus, the dipole moment can readily be monitored by the Kelvin probe even when the molecule has a perpendicular stance to the water surface.15 In fact, ΔV positively appears in the S phase. Note that the $\Delta V-A$ isotherm seems not synchronous to the $\pi-A$ curve (Figure 1a). In particular, ΔV begins to increase at ca. $A = 0.35$ nm2 molecule$^{-1}$, which is apparently larger than the lift-off of π (ca. 0.25 nm2 molecule$^{-1}$) in the G/LC region.
Figure 1. The $\pi - A$ (dashed red line) and $\Delta V - A$ (solid red line) isotherms of a Langmuir monolayer of (a) stearic acid (SA) and (b) myristic acid (MA) measured at 25 °C. The blue dotted line in the panel (a) and (b) is a calculated “density curve” (see the text for detail). (c) A molecular schematic of stearic acid. The orange arrow represents the molecular dipole moment calculated by a quantum chemical calculation.
In this region, the monolayer compression corresponds to the collection of the island domains as confirmed by the Brewster angle microscopic study,22 which accounts for no increase of the surface pressure ($\pi \approx 0$). The domain is actually an aggregate of loosely packed SA molecules, but the aggregation property is apparently larger than MA because of the difference of the chain length.23

Once ΔV begins to increase, the slope should be influenced by changes of the molecular density and the orientation. Before attaining the LC region (i.e., in the G/LC region), fortunately, the orientation change can be ignored. To consider the density change, a theoretical “density curve” is calculated by Eq. 1.

$$\Delta V_{\text{density}} = \Delta V_0 A_0 / A.$$ \hspace{1cm} (1)

A is the surface area and A_0 is the end area of the G/LC region exhibiting V_0. The point, $(A_0, \Delta V_0)$ is read from the isotherm to be (0.254, 0.225), and the calculated density curve is presented by the blue dotted curve in Figure 1a. As a result, the density curve cannot quantitatively explain the ΔV--A curve at all, which straightforwardly implies that the third factor should be considered. To explain the sudden appearance of ΔV at about 0.35 nm2 molecule$^{-1}$, not only the hydrocarbon chain of SA, but also the head group should also be taken into account.

When the carboxylic group is fully hydrated, the dipole moment is effectively
shielded by the dipoles of surrounding water molecules. This explains that ΔV exhibits
nearly zero at a surface area larger than ca. 0.35 nm2 molecule$^{-1}$. On a further
compression, ΔV runs up to 0.23 V before π increases. This sudden appearance of ΔV is
understandable by considering the removal of the hydration water by the monolayer
compression. In other words, the dehydration about the carboxylic group is induced by
the monolayer compression, after which the molecules are aggregated resulting in the
increase of π. Therefore, the lift-off of π is always found at the surface area where the
increase of ΔV finishes. In the S region, no potential change is monitored, which is
reasonable when considering that almost no change in the density, orientation and
dehydration is expected in the very little change of the surface area.

In this manner, by considering the dehydration process, the variations of π and
ΔV on the compression are comprehensively explained. The relative position of the
increase of π and ΔV is thus found very useful to discuss the dehydration; whereas the
absolute value of ΔV is not so important.

On this fundamental mechanism, the isotherms of an L film of MA are next
discussed. When a monolayer of MA is compressed on pure water (pH 5.8), the $\pi-A$
isotherm shifts to a smaller area due to the dissolution of the molecules into the
subphase because the carboxylic group of MA are partially ionized24. To prevent the
matter, the isotherms of only MA were measured at pH 2.0. A $\pi-A$ isotherm of the MA at pH 2.0 is a little bit shifted to a larger area than that on pure water. Fortunately, however, $\Delta V-A$ curve also exhibits the same shift. Therefore, the discussion of the relative position between the $\pi-A$ and $\Delta V-A$ isotherms is impervious to pH.

The isotherms are presented in Figure 1b. The $\pi-A$ isotherm of the MA monolayer involves the LE and LE/LC phases in addition to the SA isotherm. This is because the molecular aggregation property of MA, having shorter alkyl chain, is weaker than that of SA.19

In the case of MA, ΔV keeps nearly zero until ca. 0.63 nm2 molecule$^{-1}$ and suddenly increases up to 0.15 V before π increases (Figure 1c). This can be explained by the dehydration model as found for SA. In the LE region, ΔV increases almost along the density curve (blue dotted curve in Figure 1c, calculated by Eq. 1 with $(A_0, \Delta V_0) = (0.544, 0.150)$), which suggests that the potential change can simply be attributed to the increase of molecular density only.

The LE/LC region is known to correspond to the molecular orientation change during the film compression.19 ΔV in the LE/LC region keeps almost a constant value. This means that a decrease of ΔV due to the orientation change cancels the density contribution. The decrease is attributed to the orientation change of MA having the
carboxylic group.

At the near end of the LE/LC region, ΔV rapidly increases again. In the LC regions, the trends of the $\Delta V-A$ and $\pi-A$ isotherms are almost the same as those of SA. Therefore, the rapid increase is again attributed to the dehydration of the carboxylic group. As a conclusion, the dehydration of MA is suggested to occur twice stepwisely during the compression.

Analysis of MA–Rfn monolayers via Surface Potential Isotherms at 15 °C (Phase II): The $\pi-A$ isotherms of MA–Rf7 and MA–Rf9 (Figure 2a) in the present study are identical to those in the previous papers, including partially fluorinated alkanes, alcohols, in which no gas and LE region appear in the curves followed by a steep increase of π. This apparently implies that the MA–Rf7 and MA–Rf9 commonly have a spontaneous aggregation character. To discuss the $\Delta V-A$ isotherms of MA–Rfn (Figure 2a and 3), the molecular dipole moment of the compounds should be noted. Whereas the molecular dipole moment of SA and MA is nearly localized at the C=O group, MA–Rfn has a large dipole moment along the Rf–R bond represented as the large arrow in Figure 2b and the contribution of C=O is minor as a whole. Since the molecules of MA–Rf7 and MA–Rf9 in a monolayer at 15 °C (Phase II) are oriented perpendicular to the water surface, the dipole moment with a ‘downward’ direction should have a large
Figure 2. (a) The π–A (dashed line) and ΔV–A (solid line) isotherms of Langmuir monolayers of MA–Rf7 (orange) and MA–Rf9 (blue) at 15 °C (phase II). The ΔV–A isotherm of MA–Rf9 displayed in purple is measured with the KP at the position of (2) in Chart 1. (b) A molecular schematic of MA–Rf9. The orange arrow represents the molecular dipole moment. The blue atoms are fluorines.

In fact, as the monolayer is compressed, ΔV changes to a very large negative value (Figure 2a), which is specific to a diblock (Rf–R) compound. ΔV is constant at nearly zero at a surface area larger than ca. 0.70 nm2 molecule$^{-1}$. In the case of SA and
MA, the constant potential at nearly zero was attributed to the hydration of the carboxylic group. As for MA–Rf9, a more primitive phenomenon readily explains it, that is, the inhomogeneous distribution of the island domains. According to the SDA theory, the MA–Rf9 molecules aggregate spontaneously, and a stiff island domain are generated.4 When a monolayer of MA–Rf9 is compressed by the moving barrier, the stiff domains should be accumulated near the barrier; whereas the domains near the Kelvin probe at the position (1) in Chart 1 would be left un-compressed at the initial stage.

To confirm this speculation, the same measurements were carried out by displacing the Kelvin probe to the position (2) in Chart 1. As expected, ΔV decreases earlier (the purple dashed line in Figure 2a), which proves that the stiff domains near the barriers are collected to arrive at the position (2) earlier. The inhomogeneity model has thus been confirmed readily. MA–Rf7 (orange curve) exhibits a similar process, but the initial constant potential is a little shifted to a negative value, which will be discussed in detail in the next section.

During the decrease of ΔV, an “apparent plateau” appears just before the lift-off of π for both MA–Rf7 ($A \approx 0.5$) and MA–Rf9 ($A \approx 0.4$). The relative position of the change of π and ΔV straightforwardly implies that the cancel of the decreasing potential
should be attributed to the dehydration of the carboxylic group, since the dehydration
generates the positive increase of the potential.

In the case of SA and MA, the potential increase due to the dehydration cannot
be discriminated from the increasing density, since both changes exhibits positive
changes. On the other hand, in the case of an Rf–R diblock compound, the two changes
exhibit opposite potential changes, which make the dehydration process clearly visible.

On the other hand, the molecules of MA–Rf3 and MA–Rf5 having a shorter Rf
chain have a poor aggregation property, which is quite different from MA–Rf7 and
MA–Rf9. As found in the isotherms in Figure 3, \(\pi \) exhibits an apparent positive value
even at an initial compression, which indicates that molecules are lying on the water
surface. As discussed for normal MA shown in Figure 1b, the spread molecules do not
make island domains, but they are spread over the water surface homogeneously.

The \(\Delta V - A \) isotherms of the MA–Rf3 and MA–Rf5 monolayers are overlaid on
the \(\pi - A \) isotherms in Figure 3. The \(\Delta V \) curves of MA–Rf3 and MA–Rf5 decrease
significantly as compressed, which agrees with the density curve (blue dotted curve; \((A_0, \Delta V_0) = (1.211, -0.208)\)). This agreement confirms that the molecules are, in fact,
homogeneously spread over the water surface for both compounds.
Figure 3. The $\pi-A$ (dashed line) and $\Delta V-A$ (solid line) isotherms of Langmuir monolayers of MA-Rf3 (red) and MA-Rf5 (green) at 15 °C (phase II). The blue dotted line is a calculated density curve.

Here, we have to pay attention to a fact that ΔV exhibits a fairly large negative value “even before” the monolayer compression, which is apparently larger than that in Figure 2a. If the molecules are lying on the water surface, there is no need to exhibit a negative value considering various molecular rotational orientations of the lying molecule (Figure 4a–c). Water surface is known to have hydrogen-bond free (dangling) OH groups, which can receive a single Rf group via the dipole-dipole interaction. In
this manner, a single Rf group lying on the water surface would be highly stabilized via the dipole-interactive property. In addition, a single Rf group is not dissolved into a bulky water, since the Rf group has only the dipole-interactive character, and no hydrogen bonding one, which is unfavorable to break the hydrogen bonding network of the bulky water. As a result, a single Rf group is stably interacted with water ‘surface’ only.

Figure 4. (a)–(c) Three different rotational orientations of a lying MA–Rf3 molecule. (d) A schematic view of a dipole-interactive Rf group in the water surface based on the schematic (a).
The lying molecular scheme (Figure 4d) works well for explaining the potential isotherms. In this model, one side of the lying Rf group is attached to the water surface, and the rest half remains un-hydrated. This partial hydration model implies that each dipole moment on the hydrated side is shielded, and the negative potential should appear as a total irrespective of the rotational molecular orientation on the water surface.

Prediction of Phase Transition by the SDA theory: The analytical discussion made above is for a fixed temperature of 15 °C, i.e., Phase II. In the present section, the bulk material properties of monolayers in Phase IV are predicted on the SDA theory.

The SDA theory provides a criterion whether the spontaneous two-dimensional molecular aggregation of Rf groups takes place or not, which depends on the twisting angle of the Rf group reflecting the Rf length (Table 1). When the theoretical twisting angle is 90° or larger, they are expected to aggregate spontaneously. When referring to Table 1, below 19 °C, MA–Rf is spontaneously aggregated for \(n = 7 \) and 9 (marked by bold in Table 1); whereas only MA–Rf9 should be aggregated above 19 °C. This implies that only MA–Rf7 would exhibit an apparent change in both \(\pi-A \) and \(\Delta V-A \) isotherms when the measurement temperature is changed from 15 °C to 25 °C.
Table 1 Theoretical twisting angle of both ends of the CF₂ groups in an Rf group as a function of the number of CF₂ groups (Rf length) in Phases II and IV.

<table>
<thead>
<tr>
<th>No. of CF₂</th>
<th>Twisting angle /°</th>
<th>Phase II (<19 °C)</th>
<th>Phase IV (>19 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Un-twisted</td>
<td>Un-twisted</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 presents the π–A and ΔV–A isotherms of MA–Rfₙ monolayers on water at 25 °C. ΔV–A isotherms (solid lines) are particularly sensitive to the Rf length and temperature. As theoretically predicted on the SDA theory, only the ΔV–A isotherm of MA–Rf₇ (orange curve) is significantly changed from that in Figure 2a; whereas the rest curves are kept almost unchanged. The potential decrease below the surface area of 0.9 nm² molecule⁻¹ in Figure 5 is more apparent than that of Figure 2a. The early decrease implies that the molecules at 25 °C are more homogeneously spread on water than 15 °C. The decrease is suppressed at 0.7 nm² molecule⁻¹ or smaller, which indicates that dehydration happens in this region because π begins to increase after the suppress finishes in an exchanging fashion. In this manner, only the MA–Rf₇ monolayer exhibits different aggregate properties in both π–A and ΔV–A isotherms as predicted by the SDA theory.
Figure 5. The π–A (dashed line) and ΔV–A (solid line) isotherms of Langmuir monolayers of MA–Rf3 (red), MA–Rf5 (green), MA–Rf7 (orange) and MA–Rf9 (blue) at 25 °C (phase IV).

Reproducibility of ΔV–A isotherm measurements is another useful index to check the homogeneity of the monolayer. When a monolayer of homogeneously spread molecules is compressed, the ΔV–A measurements shows a good reproducibility; whereas a monolayer of island domains shows a poor reproducibility. Figure 6 shows
three traces for each $\pi-A$ and $\Delta V-A$ isotherm of MA–Rf3 and MA–Rf7. As shown in Figure 6a, MA–Rf3 at 15 °C shows an extremely high reproducibility, and the same trend is also found at 25 °C (data not shown), which is consistent with a fact that a short Rf compound does not show an apparent aggregation. On the other hand, MA–Rf7 shows a good reproducibility at 25 °C; whereas the reproducibility is lost at 15 °C in the area range of 0.4–0.6 nm2 molecule$^{-1}$, which straightforwardly implies that the molecules are aggregated to generate island domains at 15 °C, while they are spread homogeneously at 25 °C. The results are perfectly consistent with the theoretical prediction on the SDA theory (Table 1).
Figure 6. The π–A (dashed lines) and ΔV–A (solid lines) isotherms of the monolayers of (a) MA–Rf3 and (b) MA–Rf7. Three repeatedly measured results are overlaid for checking the reproducibility. Only the results at 15 °C are presented for better visibility in (a), since no difference was found for both 15 °C and 25 °C.

The reader may be interested in the results of MA-Rf9 at 25 °C, since the suppression of the potential decrease during the monolayer compression is not obvious (Figure 5) when comparing to the results at 15 °C. On closer inspection, however, the suppression gradually appears along the potential decrease. Since the reproducibility of this isotherm was high, the hydrated water should smoothly and gradually be removed at 25 °C on the compression probably due to a high molecular mobility at a higher temperature.
Conclusions: Through the comparative study of the surface potential (ΔV)–surface area (A) isotherm of a monolayer of a carboxylic acid involving a normal alkyl and a perfluoro alkyl (Rf) group with a different length, the dehydration process is found to be a key to understand the isotherms, which is a progress to the conventional discussion on only the molecular density and orientation changes [15]. The ‘dehydration’ effect would be useful for understanding the properties of a Langmuir monolayer of a wide range of compounds, not only for Rf compounds. In particular for an Rf containing diblock compound, the dehydration process is apparently visible in the isotherm, which greatly helps us to discuss the surface pressure (π–A) isotherm, too. As a result, the ΔV measurements have proved to be powerful to discriminate whether the compound has a spontaneous molecular aggregation property or not. In addition, a lying Rf-R diblock molecule has been revealed to have a “dipole-interactive property” on the Rf group. A “single” Rf group is interacted with the water surface, but it is not dissolved in the bulky water. In other words, the water surface has proved to have a unique chemical field to be interacted with an Rf group. Regardless, a further molecular orientation study is expected to fully confirm the discussion in this study. To do that, we are planning an additional study using the polarization modulation-infrared reflection-absorption spectrometry (PM-IRRAS) technique, which can measure IR spectra of a Langmuir
monolayer on the water surface in situ [23,24].
ACKNOWLEDGMENT

This work was financially supported by Grant-in-Aid for Young Scientists (B) [No. 26810075(TS)] and Grant-in-Aid for Scientific Research (A) (No. 15H02185 (TH)) from Japan Society for the Promotion of Science, the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant no. 2015-87 (MS)), and the “Element Innovation” Project by the Ministry of Education, Culture, Science, Sports and Technology of Japan (MEXT), for which the authors thanks are due.

REFERENCES:

18. Kang, Y. S.; Lee, D. K.; Kim, Y. S. A Study on Temperature Dependency and in

30. Bernett, M. K.; Zisman, W. A. The Behavior of Monolayers of Progressively