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The assembled domain structure model (ADSM), is an energy-based macroscopic magnetization model of a core material. In this 
study, we used the ADSM to simulate the magnetization curves and magnetostriction of a GO silicon steel sheet under vectorial 
excitations and we measured the same sheet using the rotational single sheet tester with a three-element strain gage rosette. In the 
simulation, the target value of the average magnetization vector representing unidirectional or rotational magnetic flux is given as a 
known parameter. We obtained the magnetization state by finding the external magnetic field vector and state vectors, satisfying the 
criteria that the average magnetization vector equals the target value and that the total magnetic energy is locally minimized. The 
simulation reconstructed the magnetostriction produced by 90° domain-wall motion under unidirectional magnetization as well as the 
vectorial contraction and extension under rotational magnetization.  

 
Index Terms—cubic anisotropy, multiscale model, silicon steel sheet, magnetostriction.  

 

I. INTRODUCTION 

HE magnetic and mechanical behaviors of iron-core 
materials are strongly coupled, and mechanical stress 

affects magnetization properties. Magnetic properties are also 
affected by magnetostriction [1] induced by magnetization 
processes [2][3] such as magnetic domain-wall motion and 
magnetization rotation. Magnetostriction is also a cause of 
noise and vibration. To predict the magnetic behaviors of core 
materials, it is important to understand these magneto-
coupling effects. So far, to model the macroscopic 
magnetization property, several hysteresis models such as the 
vector Preisach model [8] and the vector play model [9] have 
been developed. Most of these models are phenomeno-
logically constructed based on the parameter fitting to 
measured magnetization properties. However, to extend these 
models taking magneto-coupling effects into account, 
magneto-mechanically coupled measurements are required 
with a vast set of magnetic and mechanical parameters. 

Several physical models have been proposed to predict 
macroscopic magnetization property from material constants 
without using measured BH loops. A multiscale model of 
reversible magneto-elastic behavior assuming magnetic 
domain equilibrium based on the probability function is 
presented in [4]. This model successfully reconstructed the 
magnetization curves and magnetostriction of grain-oriented 
(GO) silicon steel sheet [5]. Ito et al. [6] proposed a multiscale 
model called the assembled domain structure model (ADSM) 
constituted by the assembly of mesoscopic six-domain 
magnetic particles. The ADSM is a macroscopic model based 
on local minimization of total magnetic energy to represent the 
hysteretic behavior of a magnetic sheet. However, this model 
only simulated unidirectional magnetization, and the 
magnetostriction was not compared with measured results.  

In this study, using the ADSM we simulate the 
magnetization and magnetostriction of GO under vectorial 
excitations, then compare the simulated properties with 

properties measured using a rotational single-sheet tester with 
strain gages.  

II. MEASUREMENT OF MAGNETIZATION CURVES AND 

MAGNETOSTRICTION 

The magnetization curves and magnetostriction were 
measured with a rotational single-sheet tester, using a stator of 
a two-pole induction motor with strain gages. The circular 
sample was magnetized by two exciting coils, placed along the 
x- and y-directions. The excitation currents were controlled to 
set the magnetic flux density to be unidirectional or rotational. 
Magnetostriction at angles of 0°, 45°, and 90° from the rolling 
direction (RD) was measured on a three-element strain gage 
rosette. The magnetic flux density and magnetic field were 
measured on the B-coil and H-coil, respectively.  

The diameter of the sample was 7.6 cm, and the thickness 
was 0.3 mm. The width of the B-coil and H-coil were 3.8 cm. 
The distance between the sample and magnetic shield was 0.5 
cm.  

III. ASSEMBLED DOMAIN STRUCTURE MODEL 

A. SDSM and ADSM 

The ADSM, a way to describe macroscopic magnetization 
properties, is the assembly of simplified domain structure 
models (SDSMs) (Fig. 1). Each SDSM is regarded as a cell of 
the ADSM. The SDSM has six domains, where magnetization 
vectors in six domains are directed nearly parallel/antiparallel 
to the three easy axes of cubic anisotropy. The magnetization 
state of each cell is represented by the state vector x(j) = (θ1, 
… , θ6, ϕ1, … , ϕ6, r1, … , r5), where j is the cell index. The 
variables ri are the volume ratios of the domains, where r6 = 1 
– r1 – r2 – r3 – r4 – r5. The normalized magnetization vectors 
(m1, … , m6) is given by mi = (sinθicosϕi, sinθisinϕi, cosθi), 
where i is the index of the domains. The entire magnetization 
states are represented by the variable vector X, consisting of 
x(j)(j=1, …) in each cell.  
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The vector X is determined so as to locally minimize the 
normalized total magnetic energy e. The total normalized 
energy is the sum of the Zeeman energy, the crystalline 
anisotropic energy, the magnetostatic energy, and the 
magnetoelastic energy [see Appendix].  

The ADSM assumes that the pinning effect, caused by 
pinning sites such as crystal defects and crystal grain 
boundaries, is represented by a uniform pinning field. The 
uniform pinning field is represented using the vector stop 
hysteron [7]. Accounting for the pinning field similarly to the 
demagnetization field, the effect of the pinning field is added 
to ∂e/∂X as –hp∂m(j)/∂x(j), where hp is the pinning field 
normalized by the anisotropy field and m(j) is the average 
magnetization vector of the cell j. The magnetization states are 
obtained by solving ∂e/∂X = 0.  

 Sudo et al. [7] obtained a local minimum by numerically 
integrating an artificial state equation given as 

YX td/d , YXY  /d/d et  (1) 
until reaching the steady state, where Y is an intermediate 
variable vector and β is a damping coefficient. Equation (1) 
can be interpreted as the system of equations of motion where 
the inertia and the damping factors for the motion of 
magnetization vectors and domain walls are artificially given 
to obtain a stable equilibrium in a simple way.  
  In the simulation under vectorial excitations, the target value 
of the average normalized magnetization vector ma = (max, may, 
0) representing unidirectional or rotational magnetic flux is 
given as a known parameter. Under rotational excitation, for 
example, ma is set as (macosθ, masinθ, 0), where ma is constant 

and θ changes from 0 to 2π. The magnetization state is 
obtained by finding the variable vector X and the normalized 
external magnetic field h = (hx, hy, 0), satisfying mave = ma and 
∂e/∂X = 0, where mave is the average normalized 
magnetization vector of all cells. We obtained the 
magnetization state by numerically integrating (1) and another 
artificial state equation given as 

xx d/d gth  , yy d/d gth  , 

xhavexaxx )(d/d gmmRtg  , (2) 

yhaveyayy )(d/d gmmRtg  , 

where R is a constant, gx, and gy are intermediate variables, 
and βh is a dissipation coefficient. 

B. Calculation of magnetostriction 

The components of the magnetostriction tensor ε′ with 
respect to the cubic crystal system are obtained as 
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where (α1,i, α2,i, α3,i,) is the direction cosine of the 
magnetization vectors of domain i with respect to the three 
easy axes. By transforming the coordinates from the 
coordinate system based on crystal orientation to one with 
coordinate axes along the RD, the transverse direction (TD), 
and the thickness direction, we obtain the magnetostriction 
tensor ε with respect to the coordinate system based on the RD 
and TD.   

The total magnetostriction in the material is calculated by 


N 6

global
1

j i

irN
 , (4) 

where N is the number of cells.  

IV. MEASURED AND SIMULATED RESULTS 

A. Results along the RD and TD 

Figures 2 and 3 show the measured magnetization curves 
and magnetostriction curves of the low-grade GO silicon steel 
along the RD and TD. Magnetostriction parallel to the 
magnetization direction (ε || m) and perpendicular to the 
magnetization direction are portrayed in Fig. 3. Large 
magnetostriction appeared under magnetization along the TD, 
while it was very small under magnetization along the RD.   
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Fig. 2. Measured BH loops along RD and TD. 
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Fig. 3.  Measured magnetostriction along RD and TD.  
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Fig. 4. <100> pole figure of the crystal orientation used in the simulation.
(ND is an abbreviation of the normal direction.) 

SDSM

(a) Simplified domain structure model   (b)Assembled domain structure model

Fig. 1. Assembled domain structure model. 
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Figure 4 shows a pole figure of the crystal orientation used 
in the simulation, where <100> directions of all the cells are 
plotted. The easy axes are assumed to be distributed within 
10°. Figures 5 and 6 show simulated magnetization curves and 
magnetostriction curves with the anisotropy constant K = 
3.8×104 Jm−3, along with the magnetostriction constants λ100 = 
2.3×10−5, λ111 = –5.0×10−6, μ0MS = 2.2 T. We assume a tensile 
stress of 4 MPa, induced by the insulation coating, along the 
RD. The radius of the vector stop hysteron is 0.01, and the 
magnitudes of the pinning field along the RD and TD are 
2.0×10−3 and 5.0×10−3, respectively. 8×8×1 cells are used 
where the cell has a dimension ration of 1:1:10−4.  

Figure 7 portrays the simulated magnetization process of a 
SDSM cell of the material, which represents the volume ratios 
of the domains only schematically, and its domain boundaries 
do not reflect real domain walls.  

Magnetization along the RD is produced mainly by 180° 
domain-wall motion. In this cell, there is a small submergence 
angle between the [100] direction and the surface of sheet. 

Accordingly, magnetic poles appear on the surface of the sheet 
when the cell is magnetized along the RD by 180° domain-
wall motion. To cancel these magnetic poles, domains form 
that are magnetized along the [001] and [010] directions. 
These lancet domains reduce the magnetostriction along the 
RD. The increase in magnetostriction under high magnetic 
flux is caused by the magnetization rotation.  

Magnetization along the TD is produced mainly by the 90° 
domain-wall motion. Accordingly, large magnetostriction 
appears.  

B. Results along the intermediate directions 

Figures 8 and 9 show the measured and simulated 
magnetization curves along the directions angled 15°, 30°, 45°, 
and 60°  from the RD. At applied fields over 300 A/m, the 
magnetic flux density saturates. This magnetic flux density is 
high along the 0° direction and low along the 60° direction,  
because the RD is close to the [100] direction and because the 
55° direction from the RD is close to the [111] direction.  

Fig. 8.  Measured BH loops under alternating magnetic flux. 
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Fig. 6. Simulated magnetostriction along RD and TD. 
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Fig. 5. Simulated BH loops along RD and TD. 

Fig. 9.  Simulated BH loops under alternating magnetic flux. 
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(c) 45° (d) 60°

Fig. 10.  Measured magnetostriction under alternating magnetic flux. 

 
 

Fig. 7.  Magnetization process of a SDSM cell : (a) RD and (b) TD. 
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Figures 10 and 11 show the measured and simulated 
magnetostriction. Under magnetization along the 15°, 30°, 45° 
directions, the magnetostriction is small because the 
magnetization is produced mainly by 180° domain-wall 
motion. Under magnetization along the 60° direction, the 
magnetostriction is large because the magnetization is 
produced mainly by 90° domain-wall motion.  

C. Results under the rotational magnetization condition 

Figures 12 shows the measured and simulated loci of the H 
vector under the rotational magnetization condition, with a 
magnetic flux density of 1.5, 1.6, or 1.7 T. To magnetize along 
the 55° direction, a large magnetic field is needed, while along 
the 0° direction only a very small field is needed.  

Figures 13 shows the measured and simulated loci of 
principal strain of magnetostriction. The lines ε(+) and ε(–) are 
the tensile strain and compressive strain, respectively. The GO 
silicon steel sheet was contracted and extended along the RD 
and TD, respectively. The simulated magnetic properties agree 
well with the measured properties.  

V. CONCLUSION 

Using the ADSM, we simulated magnetization curves and 
magnetostriction under alternating magnetic flux along several 
directions and under rotational magnetization. The simulated 
properties agreed well with the measured properties.  

APPENDIX 

The normalized total magnetic energy e consists of the 
Zeeman energy, the crystalline anisotropic energy, the 
magnetostatic energy, and the magnetoelastic energy [6]. 
Normalized energy components in domain i are given as 
‒2rih∙mi, ri(α1,i

2α2,i
2 + α2,i

2α3,i
2 + α3,i

2α1,i
2), ‒rihst∙mi, and 

‒riσ:ε/K, respectively, where h and hst are the applied and 
demagnetizing fields normalized by the anisotropy field, σ is 
the applied stress tensor, and K is the anisotropy constant. The 
demagnetizing field is given by the convolution of 
magnetization vectors and demagnetization coefficients [7].  

It is known that the pinning field can be modeled by the 
play hysteron for the input of magnetic field [10]. Accordingly 
it is rewritten with the stop hysteron for the input of 
magnetization (or domain wall position). In this study, its 
magnitude is determined based on the measured coercive field. 
More details are explained in [6].  
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(a) 15° (b) 30°

(c) 45° (d) 60°

Fig. 11. Simulated magnetostriction under alternating magnetic flux. 

(a) (b)

Fig. 13. Loci of principal strain of magnetostriction : (a) measured (b)
simulated.  

(a) (b)

Fig. 12. Loci of H vector : (a) measured (b) simulated. 


