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Semiquantal analysis of adiabatic hydrogen transfer rate
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The reaction rate of adiabatic proton/hydrogen/hydride (H) transfers in condensed phase is
examined by combining the semiquantal time-dependent Hartree theory and the multidimensional
transition state theory, which takes into account the zero-point effect and the dynamical modulation
of the wavepacket width in the adiabatic transfer regime. By applying the theory to a model
potential consisting of a quartic double well coupled linearly and quadratically (symmetrically) to
external degrees of freedom, a set of compact analytical formulas was derived for the adiabatic H
transfer rate. The analysis suggests that the kinetic isotope effect on the H transfer rate may exhibit
a maximum as a function of the coupling strength to the external degrees of freedom measured by
the reorganization energy. © 2008 American Institute of Physics. [DOI: 10.1063/1.2903746]

I. INTRODUCTION

Quantum effects are essential in determining the rate of
hydrogen/proton/hydride (H) transfer reactions in condensed
phase. The mechanism may be classified into the so-called
adiabatic'™"* and nonadiabatic'' ™"’ regimes. The prototypes
of the latter include the intramolecular proton transfer
isomerizations, as in malonaldehyde and tropolone, where
the heavy atoms between which the H transfers are con-
strained with regard to both the distance and the valence
directions, so that the barrier along the H displacement is
high enough to hold at least a few H vibrational levels to
exhibit resonance tunneling splittings. On the other hand, in
the adiabatic case, the positions of the heavy atoms are more
flexible, as are typically seen in intermolecular H transfers,
so that they may approach close enough by thermal fluctua-
tion to reduce the barrier along the H displacement in such
ways that the picture of deep tunneling no longer applies, but
the H wavepacket adiabatically follows the modulation of
the potential coupled to the environment.” While the nona-
diabatic regime has been appropriately described by the per-
turbation theories based on the tight-binding picture:,l“’zo_25
which are similar to the electron transfer theories in treating
the environmental reorganization,%f28 theoretical description
of the adiabatic regime is not so well established. In particu-
lar, the dynamical fluctuation of the wavepacket width, af-
fected by the shape of the potential and the coupling to the
environment,” should be treated promptly beyond the tight-
binding picture.

The aim of this study is to develop a theory for the
adiabatic H transfer rate. To this end, we combine the semi-
quantal time-dependent Hartree (SQTDH) theory”*" and the
multidimensional transition state theory (MTST).>""** The
latter reproduces the Grote—Hynes theory33’34 for the non-
Markovian friction effect but cannot be applied to quantum
H transfers based on the classical mechanics. However, by

Present address: Department of Physics, Graduate School of Science,
Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. Electronic mail:
sakumichi @scphys.kyoto-u.ac.jp.

0021-9606/2008/128(16)/164516/9/$23.00

128, 164516-1

combining with the former, which provides an effective po-
tential including the zero-point and the wavepacket spread-
ing effects in an extended phase space, a rate formula taking
into account these quantum effects will be obtained.

The derived rate formula is then applied to examine the
kinetic isotope effect (KIE) on the H transfer rate. The KIE
has been mostly studied for the nonadiabatic H transfers®
rather than for the adiabatic cases presumably because the
effect is normally more prominent in the former. Nonethe-
less, our analysis suggests an intriguing qualitative behavior
in the adiabatic KIE: It may exhibit a maximum as a function
of the coupling strength to the environmental degrees of free-
dom, which is expressed in terms of the zero-time friction in
the generalized Langevin equation formalism and is mea-
sured by the reorganization energy.

In Sec. II, the SQTDH theory is summarized. We present
in Sec. III a set of rate formulas and examine its natures both
qualitatively and via numerical calculations. The KIE on the
adiabatic H transfer rate is studied in Sec. IV. Section V
concludes with a summary and perspectives.

Il. SQTDH THEORY

The SQTDH theory has been described previously.zg’30
For the wavefunction, it assumes a Hartree product of the
squeezed coherent state Gaussian wavepackets characterized
by the center and width parameters. The equations of motion
for the parameters are determined from the time-dependent
variational principle,‘m’41 which yields the equations of mo-
tion for both the center and width parameters in the form of
the classical Hamiltonian equations of motion. > We may
thus extend the phase space to include the width coordinates
and their conjugate momenta in addition to the center coor-
dinates. The wavepacket dynamics is viewed as a classical
motion on an effective potential in the extended phase space.
The theory has been examined on a quartic double-well
potential29’30 and the coupled Morse and the Lippincott—
Schroeder models of hydrogen bond.*>4¢

For simplicity, we set =1 and assume that the coordi-

© 2008 American Institute of Physics
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nates ¢y, ...,qy have been mass weighted. The trial wave-
function under the time-dependent Hartree ansatz is given by

f
V(gy, ... ,qp0) = L Ny exp[A(1)(g; - x(1))?
i=1
+ip(D(q; = x{1)], (1)

in which A; is the normalization factor and

- 1+2i5()m(1) (2)

The time-dependent parameters x;(f) and (r) describe the
centers and widths of the wavepackets. The parameters p,(r)
and ,(r) correspond to the conjugate momenta of x;(¢) and
5(1), respectively.29 Subject to the ansatz, the situations in
which the wavepacket description is inadequate, in particu-
lar, the nonadiabatic resonance tunneling case in a deep
double well, are beyond the scope of this approximation. The
problem of the TDH approach to the nonadiabatic H trans-
fers coupled to environmental degrees of freedom has been
previously examined.?’ The critical point is whether the bath
responds to the average force from the system (H transfer)
coordinate or a force different for different values of the
system coordinate. This suggests that the extension to the
multiconfiguration ansatz is needed for the nonadiabatic re-
gime but would be mitigated for the adiabatic cases where
the H wavepacket is delocalized over the low barrier along
the transfer coordinate, e.g., in strong hydrogen bonds.*>*

The time-dependent variational theory applied to the
trial wavefunction yields the equations of motion having the
classical Hamiltonian form,

xi=(9Hext/(9pi7 piz_ (?Hexl/[?xi’

8= 0H ./ 0m;, 1= — OH ey /IS,

with the extended Hamiltonian defined by

w
Hex(xi, 6,pi ) = 2 (l;l + —’+ 8_52) +(V)(x;.8), (4)

in which (V) is the expectation value of the potential,

,
W (x, 8) = w2 | T1dg;

i=1

1(q;,-x;)?

—%)wa, ). (5)

Xexp(—
This (V) includes nonlocal contributions due to the spreading
of the wavepacket, which will be seen in the analysis in the
next section to be the origin of the barrier lowering at the
saddle point. The quantum dynamics is thus investigated in
an extended phase space formed by (x;,d;,p;, ;). The key
quantity is the extended potential,
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~

hZ
Vext(xh 51 E
i=1 8ml

2t Vx6), (6)
which is defined in the configuration space (x;, §;). Note that
fi and the atomic masses m; have been retrieved in the first
term, which tends to broaden the wavepacket by forming a
potential wall developing along 6— +0, proportional to the
inverse of the mass, and vanishes in the classical limit
f— 0. The combination of this term and (V) yields the zero-
point energies.29

It would be interesting to note that the fourth-order
Taylor expansion of (V) gives an equivalent of the quantized
Hamilton dynamics-2 (QHD-2) theory*®*’ derived from
mixed quantum-classical Heisenberg equations of motion. It
has been shown that the QHD-2 theory can reproduce quan-
tum tunneling from the cubic metastable potential reasonably
well, which suggests that our SQTDH can also capture tun-
neling contributions near the barrier top. We also note that
the QHD is recently extended to the quantized cumulant dy-
namics theory50 by taking into account the higher order con-
tributions via the cumulant expansion technique.

lll. SEMIQUANTAL GROTE-HYNES THEORY
A. Model potential

For a model of H transfers in condensed phase, we con-
sider a double-well potential Vj(¢) with a symmetrically
coupled mode Q and a collection of linearly coupled bath
modes Q;,

MQ? D 2
V(‘], Q’ Ql) = VO(CI) + 2 (Q - Mquz)
MQ? c \?
> ( 0~ Mf).ﬂ) , (7
b
Volg)=— 2q?+ ~q*. (8)

2 4

This extends the well-studied “double-well plus harmonic
bath” model***'™? by adding the mode Q representing the
displacements of the heavy atoms between which the H
transfers. Its importance has been noted in previous
WOIkS,21'54759 mostly in the context of the nonadiabatic H
transfers. The linearly coupled modes Q; represent the envi-
ronmental polarization, whose equilibrium configurations de-
pend on the H transfer coordinate ¢g. By collectively describ-
ing the Q; in terms of the diabatic energy gap coordinate, it
has been shown by combined ab initio molecular orbital and
Monte Carlo calculations that the model of Eq. (7) ad-
equately describes the solvent couplings to the acid (HCI and
HF) ionization proton transfers in water. %!

By applying the SQTDH theory to Eq. (7), the extended
potential is derived as
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2

h
Vex[(x,X,X,»; 5,A,Ai) = <V>(X,X,Xi; 5,A,Ai) + )
8mo
ﬁ2
" smA?

hZ
+2

= 8MAY

©)

in which (x,X,X;) and (5,A,A),) are the wavepacket centers
and widths for (¢,Q,0,), and

<V>(X9X7Xi; 55 A9Ai)

1 1
=V(x,X,X,) + EMQZAZ + EM,-Q?A,?

3, 3D o_a !
+ —DX+5bx +MQZ 2+2m§(0)

3 2?
+4<b+MQZ)64. (10)
The linearly coupled modes are represented by the parameter
£(0) defined by m{(0)=3,C?/MQ7, which stems from the
time-dependent friction kernel m{(t) 2 (Cz/ M QZ)COS Ot
in the semiquantal generalized Langevin equations. 0 1t
is also related to the reorganization energy, as shown in
Sec. 1II C.

B. Analytical rate formulas

The analysis of the reactant well bottom and the saddle
point of V,, in the framework of the MTST yields the reac-
tion rate taking into account the quantum effects via the
SQTDH model. We assume that the Hessian matrices should
be derived from the function V. (x,X,X;) obtained by mini-
mizing along the wavepacket width coordinates &, A, and
{A;}. An analogous “local adiabatic elimination” of the fluc-
tuating coordinates has been examined® to find excited
states via the Einstein-Bohr—Sommerfeld-type ‘requantiza-
tion” of the wavepacket dynamics. The details on the well
bottom and the saddle point and their Hessian matrices are
described in the Appendix. Compact analytical formulas are
derived in weak and strong bath coupling cases given by
m{(0)<a and m{(0) > a, respectively.

Weak bath coupling case. The semiquantal reaction rate
for the weak coupling case [m{(0)<a] is derived as

peak _ Pweak \/li’Za—3Bﬁ/w%
SQCGH™ > N B m(0)

exp(= BE, )

(11)

in  which B=b+4D?*/3MQ?, B'=b+2D*/MQ? and
a=2aB'/b+m{(0). These may be viewed as the coefficients
a and b in V), affected by the coupling to the external modes.
The effective barrier height in Eq. (11) is given by

_ (a-mg(0)* # \/Z
E  =E-—————"——\[— 12
byweak — b 12B 2 N’ (12)

where E,=a?/4b corresponds to the classical barrier height.
It is reduced by the second and third terms due to the quan-
tum effects. The second term represents the saddle point low-
ering, while the third term comes from the zero-point energy
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in the reactant well. The second term does not vanish in the
limit 7 — 0, as the width of the wavepacket remains finite at
the saddle point of the double-well potential (Appendix).
Consequently, the effective potential at the saddle point cap-
tures the nonlocal contributions via Eq. (5) to acquire the
lower energy than the classical value. This is robust in the
current framework as the more accurate approximation only
introduces terms of order %% and higher.63 Interestingly, the
present picture on the barrier lowering seems to be different
from those based on the centroid path-integral
appro.'clchesm’65 in that the former does not vanish as #—0.
However, the picture depends on the coupling strength, such
that, on the other hand, in the strong coupling case examined
below [Eq. (16)], the semiquantal barrier height reduces to
the classical one as #—0.%

Basically, both the second and third terms of Eq. (12)
originate from the zero-point effects at the well bottom and
the saddle point, apart from the differences in details as dis-
cussed above, in particular, the essential roles of the wave-
packet broadening in the former. In this regard, the basic
picture should be in accord with those from the previous
simulations.>**"¢!

The reactive frequency phye, in Eq. (11) is obtained as
the solution of

2
/5(#) +200) - 5(#) (13)

where 2 is the Laplace transformed friction kernel,

Z
MQZ(Z +Qz> (14)

mi(z) = 2
It is noted that Eq. (13) is slightly different from the classical
Grote—Hynes equation in that the square of the barrier fre-
quency is replaced by £(0).

Strong bath coupling case. In the strong coupling case
with m{(0)>a, we find

!/_
e — Msir 4a - 6Bfi/Vma
SQCH™ 2 N 2 — 3Bh/Nm(m{(0) - a)

exp(- BE, ),
(15)

in which

w h ml{0)-a % |a
Eb,slr:Eb+5 T—E ; (16)

In contrast to the weak coupling case, E o reduces to Ej, in
the limit 7 — 0. This pertains to the fact that the determining
factor here is the bath coupling which tends to suppress the
wavepacket spreading.29 The reactive frequency ., is given
as the solution of

:\/@+l<a— S )-Z(“) (17)
4 m\ 2ym(mE(0) - a) 2
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Again, in contrast to the weak coupling case, w, includes
the quantum correction of order %' to the classical Grote—
Hynes theory. This correction vanishes in the limit #—0,
reducing to the classical Grote—-Hynes result as a/m corre-
sponds to the square of the classical barrier frequency.

C. Converting the parameters to dimension of energy

Equations (11)—(17) present the first main result of this
work. However, it would be useful to convert the rather ob-
scure parameters such as a, b, D, and {(0) to quantities of
well-characterized dimensions. We thus convert them to the
dimension of energy via

2a 2a
w= ., E)\: _mg(o)s
m b

2 2
: a a

E- = = _’
" a(b+2DYMO?) T 4B’

(18)

in which w is the frequency at the well bottom, E, is the
reorganization energy of the linearly coupled bath modes,
and Ei is the barrier height in the section of V(¢q,Q) at
Q=0 which reflects the coupling strength D of the symmetri-
cally coupled mode.

The semiquantal barrier height is thus rewritten in the
weak coupling case (E,/E,<8) as

EF —E Ey(1 _E)\/SEb)z ﬁ_w ﬂ Lﬂ
bweak ~ b & - ks + :
1+2EJE, 2 VE, 16E,
(19)

In the strong coupling case (E,/E,>8), we find

% fiw 1 IE)\ Eb IE)\
Ef =B+ —| \[5l o2 -1] -/ Z+—2.
St 2 2 SEb Eb 16Eb

(20)

The prefactors in Egs. (11) and (15) can be similarly con-
verted.

Equations (19) and (20) show an interesting dependence
on the parameters Ei and E\. When E, is large, Eq. (20) is
approximated as

h E 2E
Brw=Erm E—(IE—) @)
A b

indicating monotonic increase in E: along Ef, On the other
hand, when E, is small, Eq. (19) gives
E ho |E
El = E- =222, (22)
el 1+2E/E;, 2 VEj

in which the second and third terms may compete as func-
tions of Ej. It follows that the behavior of EZ along E; de-
pends on the magnitude of w. In particular, when  is small,
the dependence of EZ on E}; changes from decreasing to in-
creasing functions as E\ becomes larger. This is seen in the
numerical solutions in Fig. 1 discussed in the next section.

J. Chem. Phys. 128, 164516 (2008)
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FIG. 1. Dependence of the semiquantal barrier height EZ . on the param-
eters E, [(a)—(c)] and E} [(d)—(f)] for hydrogen [(a) and (d)sj deuterium [(b)
and (e)], and tritium [(c) and (f)] for which %w/E,=0.9542, 0.6747, and
0.5509, respectively. In (d)—(f), the values of E,/E, are 0.0 (solid), 3.0 (long
dashed), 6.0 (short dashed), and 9.0 (dotted).

D. Numerical solution of the barrier height

The compact analytical expressions presented in the pre-
vious section may be useful for qualitative discussions.
Nonetheless, numerical solutions are straightforwardly ob-
tained by finding the minima of Egs. (A2) and (A5) in the
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FIG. 2. Comparison between the analytical and numerical solutions for the
deuterium with E}/E,=0.8.

Appendix. With the energy parameters introduced in the pre-
vious section, the relevant dimensionless parameters are
E,/E,, Ef,/E,,, and fiw/E;,, among which fiw/E, is directly
related to the isotope effect. The other parameters such as a
and E, may be regarded to be independent of the isotopes.
The numerical calculations were carried out for hydrogen
(H), deuterium (D), and trititum (T) with Aw/E,=0.9542,
0.6747, and 0.5509, respectively. These numbers were cho-
sen such that the deuterium corresponds to the intermediate
barrier case in Ref 30 and the others satlsfy the ratio
Wy Wp: wT—l/\'mH 1/\mD l/va 1:1/72: 1/\3 and
that the adiabatic regime applies. The choice thus contains
some arbitrariness rather than being designed for specific
systems. We anticipate that some additional considerations,
e.g., on the necessity of the “counter terms” in Eq. (7),
C,-Zqz/ 2M iQf, would be needed for examinations of particu-
lar chemical systems.

The results of the calculations are displayed in Fig. 1. It
is seen that the barrier height increases along the coupling
strength to the bath. It is also noted that different behaviors
among the isotopes are seen in the small coupling region of
E,/E,=<4. On the other hand, the barrier decreases along the
parameter D except for the small bath coupling limit (E,
=0). The qualitative discussions in the previous section
about the dependence of EZ on E; are thus numerically con-
firmed, in particular, the decrease in the quantum barrier
height along E;/E, in Figs. 1(e) and 1(f) when E,=0 is due
to the dominance of the second term in Eq. (22). These ob-
servations are behind the main results that will be shown
later in Fig. 3.

Figure 2 compares the analytical and numerical solu-
tions. It is seen that the deviation is large around E,/E,=8
naturally because the premises of the approximations do not
apply there. We also see finite deviations outside that region,
which come from the neglected terms of higher and lower
orders in &. In the limit Ey, — oo, the analytical and numerical
solutions exactly agree, as we find §— 0 [see Egs. (A5)—(A7)
in the Appendix], and both converge to the classical value E,
as in Eq. (20). On the other hand, in the limit £, — 0, a finite
deviation remains because & does not go to infinity as the
system is bound in a potential. It is actually straightforward
to evaluate this deviation to the second order in %, which was
found to largely improve the agreement for a model without
the O mode. ™

J. Chem. Phys. 128, 164516 (2008)

IV. KINETIC ISOTOPE EFFECT
A. Analytical solution

We now analyze the KIE, ksqou(D)/ksqan(H)
=exp{- ,B(E (D)-E (H))} which is influenced by the cou-
plings to the external degrees of freedom. In the weak cou-
pling case, Eq. (19) gives

1 /E 1E,
b, weak(D) b, weak(H) _h(wH wD) 16 Eb

(23)

where wyp=V2a/myp. Since wy>wp, we find that
k Sk . .

E b,wea}((D?_E e . (H) increases monotomcally.along the re-

organization energy E,. On the other hand, in the strong

coupling case, Eq. (20) gives

1 E 1 E
E; (D)- EM(H>=5ﬁ<wH—wD>{\/ : 16EZ

1(1E,
- 2<8E,, lﬂ @4

When E, is sufficiently large, we may approximate the last

factor as
|E 2F
E, E;

Ey, LE\_ \/l<lﬂ
E; 16E, 2\8E,
(25)

indicating that E r(D)— (H) is a monotomcally de-
creasing function of E\. Tt follows that E (D)- E (H) should
exhibit a maximum along E,. We note that th1s was found
from the two limits E, —0 and E\ — %, where the analytical
expressions of E b weak and EF b AT€ the most accurate. Obvi-
ously, the picture carries over for the H/T and D/T isotope

effects.

B. Numerical analysis

The approximate analytical arguments in the previous
section is confirmed by the numerical solutions displayed in
Fig. 3. It is seen that E (D) E (H) has a maximum for the
range of E,, values exammed We also compare in Fig. 4 the
analytical and numerical solutions. The quantitative discrep-
ancy is due to the neglected terms of (fw/E,)*> and the
higher orders in 7. Nonetheless, the analytical solutions
promptly describe the qualitative behavior in the weak and
strong coupling regions. As noted in Fig. 2, the analytical
and numerical solutions exactly agree in the E) — limit,
while a finite (and correctable) deviation remains in Ey — 0,
and the KIE vanishes in the former where the barrier height
reduces to the classical value.

V. CONCLUDING REMARKS

In this work, a theory for the adiabatic H transfer rate
has been developed by combining the SQTDH theory and
the MTST, taking into account the zero-point effects and the
nonlocal spreading of the wavefunction in the adiabatic re-
gime coupled to the external degrees of freedom. A set of
compact analytical formulas has been derived in the limits of
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FIG. 3. Numerical solutions for the isotope effect E:(D,T)—E*(H) [(a) and
(b)] and kgqgu(D,T)/ksqau(H) at the temperature kyT=E,/ IOT(C) and (d)].

weak and strong couplings to the environment. The analysis
has suggested that the KIE on the adiabatic H transfer rate
may exhibit a maximum as a function of the coupling
strength to the external degrees of freedom. Although we
have not yet seen experimental evidence or signature, this
might be observed with controlled external pressulre(’7 and
vis<:osity.68’69 A more detailed analysis for its origin and the
conditions in which to enhance or suppress the peak would
be needed to offer further clues for experimental examina-
tions.

It is also desired to extend the approach toward more
realistic and complex systems than the model of Eq. (7),

J. Chem. Phys. 128, 164516 (2008)
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< numeric
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FIG. 4. Comparison between the numerical and analytical solutions of
E;(D)-E;(H) for Ej/E,=0.8.

which would be possible in various ways. One of the most
straightforward would be to generalize from the quartic
double well to more generic forms of the potential. In this
regard, encouraging results have been obtained on the struc-
tural correlations and the geometric isotope effects of the
hydrogen bond structure.*® Another direction in which to
proceed would be to combine the SQTDH theory with the
reaction path/surface Hamiltonian approaches,”‘lz"g’19 be-
cause their application to the adiabatic regime seems rather
scarce. Moreover, in cases where the choice of the reaction
coordinate is not as obvious, e.g., in the collective multiple
proton transfers in protic liquids, it will become necessary to
properly account for the correlations among different degrees
of freedom. While the thawed Gaussian wavepacket
approach,70 which is closely related to the present model,
will appropriately handle this aspect, analogous treatment in
the present framework will require additional considerations
and approximations in order to maintain the extended Hamil-
tonian form. Works along this issue with applications are
currently under way and will be reported elsewhere. We en-
visage that the present model study would serve as a basic
reference for these extensive applications.
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APPENDIX: NORMAL MODE ANALYSIS OF MTST

We first minimize Eq. (9) along X, {X;}, A, and {A},
which straightforwardly gives

b, 1
Veu(x:6) =— gxz + Zx“ + 5(— a+m{(0) +3Bx?) &

(A1)

where we defined B=b+4D?/3MQ>. E, is a constant con-
sisting of the zero-point energies of the eliminated modes
and other constants that are rather irrelevant for the current
formulation, and hence will be omitted. The smaller number
of arguments in V. (x;8) implies that the full
Ve, X,X;;8,A,A;) has been minimized along the omitted
arguments, a convention which will be followed hereafter.

Reactant well bottom. The minimum of V., (x; §) along x
is found to be
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3BB’ S R |
—54+ aéz—a—+

Vext( 5) == 4b " 8m 52 >

(A2)
in which we defined B'=b+2D*/MQ? and «a=2aB’/b
+m{(0). Here, (a—3B&)/b>0 is necessary for the mini-
mum to exist, which we assume to be satisfied. Because the
value of ¢ that gives the minimum of V,,, is regarded to be

small,*® we may approximate as
2 2
a- h° 1
Vexi(8) = —a52 E + @g (A3)

Therefore, the minimum is found at 8°=#/ 2\,% to be

yo a_2+é\/2
< 4p 2 \Nm”

Saddle point: Weak bath coupling case. Since the saddle
point is located at x=0 due to the symmetry of the present
model, we shall minimize along 6,

(A4)

3B , a-m¢(0) h?
Vex[(x=0;5)=754— 5 52+8m52.

(A5)

The solution depends on the strength of the coupling to the
bath via the sign of a—m{(0).

PV x'? PV Jox' 9X' FVolox' X,
PV X' 0x" PV IX'? PV X' X
Kyt = | Vo 0X[x" PV 0X[0X' PVl X}
PV IX\0OX' PV IX\OX
PVexdx'> = 2Dxl g/ Nm*M - C\/[NmM,
b ZDX‘;/SH/ \‘J’sz QZ 0
= —Cl/\rli 0 Q%
i — Cy/NmM y 0 0
in which
P _ L[, _3Bh 4D % 2
Text _ 25, _
x'?  m Vna  mMQ? o MQ?
and
2 m ) 3Bh
Xyl = | 2a———|.
well = 5y \ﬂ%

Therefore, we find

92H 2.

i=1

3Bﬁ>

\ma

1
det Kwell = (261 -
m

J. Chem. Phys. 128, 164516 (2008)

When the coupling to the bath is weak, the value of &
yielding the saddle point becomes large, so we may neglect
the last term A%/8m&” in Eq. (AS5). Therefore, with the weak
coupling condition m{(0)<a, we find the saddle point po-
tential at &*=(a—m{(0))/3B,

(a— mg(O))z.

Vext(x = 0) =- 12B

(A6)

Saddle point: Strong bath coupling case. When the cou-
pling to the bath is strong [m{(0)>a], the value of & giving
the saddle point becomes small and we may neglect the first
term (3B/4)8" in Eq. (A5). The saddle point is then found to

be
m{(0) —a 0)—a
ext(x 0) = 2 "

at 8°=h/2ym(0)—a. In contrast to the weak coupling case,
both ¢* and the barrier lowering are of order fi!', and hence
vanish in the classical limit 7z — 0.

Hessian matrix at reactant well. As noted in Sec. 111 B,
we derive the Hessian matrices from V. (x,X,X, ,-). Aﬂer
converting to the mass- weighted coordinates, x'=\mx,
X'=yMX, and X = \MX,, we find the Hessian matrix at the
well bottom,

(A7)

PV Ox' IX 5y
PV X' 9X),

PV o X}
-Cy/ \mM N

0

0 , (A8)
Q3.

(A9)
(A10)
(A11)

Hessian matrix at saddle point. As the saddle point is located at x=0, the symmetrically coupled mode X’ is decoupled
from the other degrees of freedom, so it is convenient to rearrange the rows and columns as
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PV X'* PV X' X' PV X' X PV X' 9X),
PV X' X' PVl x> PVelox' X, PV ' Xy
Kodwerk = | PVerd IX[0X' PV X[ x" PV X2
PV OXNOX' PV IX X PV o X3
, 2D?
- 0 0 0 0
3MB'’
N C2
0 - 40)+ X i~ CiNmMy = Co\mM, — CyNmM,y
i=1 [kt
- (A12)
0 - Cl/\' li Q% 0
0 - C2/ \*”mMz 0 Q%
0 — CyNmMy 0 0 Q3
Similarly, in the strong coupling case, we find
0? 0 0 0 0
0  FPVyldx'* —Cy/NmM, —Cy/NmM, — CyNmM y
0 -C/NmM, O} 0 0
Ksad,str = I 2 s (A13)
0 - Cz/ Y mM2 0 QZ 0
0 —CyNmMy 0 0 o)
[
where 1 I\ i
k =——— "% exp(- BE
ST 2 Hi:l)\gla)d pCA b)
>V, 1 3B c? det K
_rezmz__ a= 7 + 2 5 |- (Al4) =L e exp(— BE)), (A17)
ox m 2Vm(mf(0) —a) o ML); 27 V —det Ky b

Due to the decoupling of the X', the treatment is in part
similar to the classical Grote—Hynes case. We find the fol-
lowing for the weak and strong coupling cases:

1 2 "
det K, =——(02- ) o]l @? Al5
€ sad,weak m( 3MB, mg( )E i ( )
and
N
1 3Bh
dethadslr=__<a_,’=)QZHQi2'
' m 2Vm(m{(0) — a) il

(A16)

Reaction rate. Given the eigenvalues of the Hessian ma-
trices in terms of the mass-weighted coordinates at the reac-
tant well bottom and the saddle point, {()\Ef,)e)")z, ...} and
{2, ()\i;()i)z, ...}, the reaction rate is expressed as

in which the reactive frequency u is determined from Egs.
(13) and (17). The classical limit of this framework’'*
yields the result equivalent to the Grote—Hynes theory.
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