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The perfectly matched layer (PML) absorbing boundary is employed in the space-time finite integration (FI) method. Subgrid
connections in 3D and 4D space-time are considered. Using the PML, the computational accuracy for 3D and 4D space-time subgrid
methods are evaluated. The subgrid scheme given by the space-time FI method suppresses unphysical wave reflections compared with

the subgrid scheme based on the spatial FI method.

Index Terms— Boundary condition, electromagnetic wave absorption, finite integration method, time-domain analysis.

1. INTRODUCTION

THE ELECTROMAGNETIC field analysis of fine structure at
sub-wavelength scales is required for advanced electronic
and optical devices [1]. The analysis of these devices using the
conventional FDTD method [2] incurs large computational
cost because the spatial grid should be refined uniformly
unless a sophisticated subgrid method [2] is used for an
adaptive grid construction.

The finite integration (FI) method [3]-[5] is an alternative
choice for time-domain analysis using a spatial adaptive grid
that produces a stable subgrid scheme [6]. The space-time FI
method [7], [8] is an advanced version of the FI method that
enables efficient electromagnetic field computations using an
adaptive time-step. Ref. [9] proposed 3D and 4D space-time
subgrid methods for the adaptive grid construction and
provided comparisons with the spatial FI subgrid scheme [6].
However, the computational accuracy of the space-time
subgrid scheme has not as yet been fully examined because
only periodic spatial boundary conditions were implemented.

This paper develops the connection scheme to the perfectly
matched layer (PML) [10] for the space-time FI method and
discusses the 3D and 4D connections to space-time subgrids
constructing the Hodge dual grid [7].

II. SPACE-TIME FINITE INTEGRATION METHOD
Points in the coordinate system are denoted by (W, X, Y, z) =
°, x', X, X°) where w = ct, ¢ = 1/@, and &, and p, are
the permittivity and permeability of vacuum, respectively. The
integral form of the Maxwell equations [7] is given as

$r0, F = 0.950,6 = o, J (1)
F =-Y}, Edxdx! + X3, cB;dx*dx!, @)
G =X, Hidxdx" + X3_, cDydx*dxt, )
J = cpdxtdx?dx® — ¥3_, J;dx°dx*dx!, (4)
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where (j, k, 1) is a cyclic permutation of (1, 2, 3), and Q, and
Qg4 are hypersurfaces in space-time; 9€),, and 9, denote the
faces of the primal and dual grids, respectively; p is the
electric charge density and Jj is the electric current density.
The electromagnetic variables in the FI method are defined as

f=f5pF’g=deG’ (5)
where S, and S are the faces of the primal and dual grids d€,,
and 0Q,. To express the constitutive equation simply, the
Hodge dual grid [7] is introduced as
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where ¢, = 1/+/e-i,; Kk is a constant determined for each pair
of S, and Sy; and &, and , are the relative permittivity and
permeability, respectively. From (5) and (6), it follows that
f=2Zg/x, where Z = \/u,uo/(&-&) is the impedance. A

systematic formulation of the space-time FI method using
incidence matrices is presented in [8].

[II. PML ABSORBING BOUNDARY CONDITION

In the 3D space, all the components of the electric flux
density and the magnetic flux density are divided into two
subcomponents respectively such that

D, = ny + Dy, 7
where D,, and D,, are the respective components of Dy
propagating along the Yy and z-directions. Using these
subcomponents, the space-time FI method updates the electric
flux density in the PML as

Aw
1 1——=-0,Z 1
n+y _ 27y n—5
dxy i_lj_l k—l z2= Aw xy i_l]‘_l et 2
e 2T 2 1+TO—yZ ree2Y 2t 2
1
+ — h 1 1 — 1 1n
Aw ( z,i-5,jk—5 z,i-5j-1k—5 )’
1+%q5,2" #7272 27
27y
Aw
1 1——=-0,Z 1
Tl+§ _ 2 d n—E
Xz, j—lk—l - Aw Xz i_lj_l k_l
T2 2" 2 - re2Y 2T 2
1+ > 0,Z
- ; h o1.1."—h 1.1 ."),(8)
Aw y,i=5j—5k v i~5j-zk-1 J’
1+ 0,2 272 272



where oy and o, are the electric conductivities in the y and z-
directions, respectively, Aw is the time-step, the subscripts are
spatial indices for the x, y, and z directions, and the
superscript is the temporal index. The time-marching scheme
for the other variables is given similarly.
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Fig. 1. 3D space-time subgrid of straight type: (a) corner part and (b) space-
time connection.

Fig. 2. 3D space-time subgrid of staircase type: (a) spatial and (b) space-time

connections.
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Fig. 4. Discrepancy of B; compared with FDTD method: (a) §=0.01 and (b)
5=0.1.

IV. SPACE-TIME SUBGRID CONNECTION

Ref. [9] proposed straight-type and staircase-type subgrids
in the 3D and 4D space-times. However, the subgrid
connection in 4D space-time was not discussed in detail
because the 4D geometry is not always intuitively explainable.
This section gives an explicit description of the connecting
faces at the subgrid boundary.

A 3D space-time subgrid

The 3D straight-type and staircase-type space-time subgrids
are examined with the PML boundary condition. Fig. 1
illustrates the straight-type subgrid connection, where & is a
free parameter to locate the subgrid boundary. Ref. [9]
proposed the staircase-type subgrid connection (Fig. 2)
bending the edges and faces of the space-time grid.

Fig. 3 illustrates the computational domain having the
subgrid and PML. For simplicity, the permittivity and
permeability are set uniformly to unity by the normalization
replacing the variable F by F /\/uy/€y. The coordinates are
linearly transformed to normalize Ax to 1; the normalized
temporal step Aw is set to 0.5. The normalized initial
conditions are E; = E, = 0 and B; = exp {—[(x")*+(x?)*]/25}. Fig.
4 depicts the distributions of discrepancy AB; between B;
obtained employing the FDTD method and that obtained using
the 3D staircase-type space-time subgrid at ct = 100 with
6=0.01 and 0.1. Unphysical wave reflection caused by the
subgrid connection is reduced by the optimization of .
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Fig. 5. 4D straight-type subgrid connection: (a) faces Sy, Sy2, Sai, Sa2, and (b)
faces Sp3, Sp4, Sd3, Sd4.

B. 4D Straight-type subgrid

We use bases dx; satisfying dx*dx; = 8 to represent edges
and dxjAdx; to represent faces having subscripts i, j =0, 1, 2, 3,
where A denotes the wedge product.

Fig. 5 illustrates the straight-type subgrid connection, where
eight edges connect the node P: (0, 0, 0, 0) on the coarse grid
side and the eight nodes Q. ..: (FAW/4, 3AX/4, £AX/4, £AX/4)
on the fine grid side of dual grid. The edge to node Q-__ from
P is represented as AX(3dx;/4 — dx,/4 — dxs/4) — Awdx, /4. This
edge belongs to the faces Sy (i = 1, ..., 4) of the dual grid,

which are represented as

3Aw 3 1 1 Aw
Sdl = deo A [AX (Z dx1 - dez - de?,) — deo],

1 1 Aw
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3 1 1 Aw 3Ax
Sd3 = [Ax (del - ZdXz - ZdX3> _de():l ATdX3,
3 1 1 Aw
Sd4 = [Ax (del - dez - ZdX3) - deo]
Ax
A TdX3. (10)

Based on (6), the corresponding faces S, (i = 1,...,4) of the
primal grid are slanted:

1 1 1 1
Sp1 = Spz = Ax (dez +gdx1) A Ax (de3 +gdx1> (11)

Aw (c,Aw)?
Sp3 = Sp4 = de() - 6Ax d.xl
1 1
A Ax (dez +de1). (12)

Of the variables f; = [s,iF and g; = Js4G (i = 1,...,4), f, and f,
denote the magnetic fluxes whereas g, and @, are the

magnetomotive forces with
3CB1 - CBZ - CB3

fi= G ————, (13)
_ 3H1 - HZ - H3 _ 9CrAWf1
g1 = 3AxAw 16 = Az (14)

The dominant component of f; and f, is the electromotive force

but also contain magnetic fluxes such that

—Ax(3E, + E;) — AwcicB

f3 = Aw ( 2 112) r 3 ) (1 5)

Similarly, the dominant component of g; and g, is the electric

flux but g; and g, also include a magnetomotive force

dependence such that

—Ax(3cD; +c¢cD;) —AwH; — 9Axf;
16 T4 ZAw

C. 4D Staircase type subgrid

Fig.6 illustrates the staircase-type subgrid connection,
where the edges from node P to nodes Q. .. are bent at the
points R. . .: (xAwW/4, 0, *Ax/4, £Ax/4). Consequently, the
face Sy, has different direction from Sy, as

gs = 3Ax (16)

3 3 3
Sq1 = AxAw (§ dx,dx; — 16 dx,dx, — deodx3),

3 1 1
S4, = AxAw (§ dxpdr, — — dxodx, — — dxodx3>. 17)

The face Sy also has a different direction from Sy,

,( 3 3 3AxAw
Sa3 = (Ax) (—:?dxg,dx1 —Fdxzdx3> ST dxydx;,
Saa = (Ax)? (— §dx3dx1 - dezdxg,)
AxAw
- 16 dedX3 (18)
Based on (6), the corresponding faces S, (i = 1, ..., 4) are

slanted:
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Sp3 = AxAw (Z dxodx, + 3 dxodx1> — (c,Aw)? A dx;dx,,
1 1
Spa = AxAw (Z dxydx, + ﬁdxodxl)

1
—(c,Aw)? 22 dx; dx,. (20)

Al Q- £ e AT P i
ANz anvgy 2R
7 N | Iy | 7 S = N |
A - 2N % h ’ % 7
. pZd | - L, 7 R | {2 52
caal ;f:,/ I *:717/
|~ 4 |- ’
1 il 3 1 s
Lz ! e o
N xR N XA
v w
Fig. 6. 4D staircase-type subgrid connection.
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Fig. 7. Corner correction

D. Corner correction

Ref. [11] proposed a symmetric correction for the corner
variables (Fig. 7), where the orthogonality (6) may not be
satisfied. The electromotive forces (e, €,) and the electric
fluxes (dy, dy) are given by the first and second of (5),
respectively. When the parameter & # 0, the face for e, (or ey)
is not orthogonal to the face for dy (d,). Based on the vectorial
relation [Fig. 7(b)], a symmetric correction is appropriate:

ex1 ZAwpi—¢§ =& 1[ds

[ey - E[ -5 1- 5'] [dy]’ @D
having no asymmetry arising in the impedance matrix.
Because the face for e (ey) is slanted along the x’-direction
(Fig. 5), &’ is given by & + (C,AW)*/(12Ax) for the straight-type
grid. The magnetic variables at the corners are similarly
corrected symmetrically,

[hx _ A_W[1 A ]'1 [b]
hy ZAx 6" 1-6" by ’

where (by, by) and (hy, hy) are the magnetic fluxes and magneto
motive forces and 3= & — Ax/12. An eigenvalue analysis [11]
showed that the 4D subgrid schemes for the straight and
staircase types are conditionally stable with and without the
symmetric correction.
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Fig. 8. Schematic of the waveguide.




V. NUMERICAL ASSESSMENT

The waveguide (Fig. 8) is used to evaluate the 4D staircase-
type subgrid scheme with corner corrections with 6 = 0.12. For
simplicity, the permittivity and permeability are set uniformly
to unity by normalization in the same way as in IV.A. The
normalized spatial domain size is 240 X 48 X 24 including a
subgrid domain of 120 < x! <180, 12 <x? <36, and
6 < x3 < 18. The inlet field values are given to excite the
TE,y mode. The PML absorbing boundary condition is applied
at the exit.

Figs. 9(a) and (b) shows the propagation of the incident
wave EI" and BI', respectively, at x° =240, which is
simulated with (AX, Aw) = (1, 0.4); the normalized frequency
is 0.05 measured by the normalized coordinate x°. Fig. 9(c)
depicts the propagation of the reflected wave B5€ at X’ = 240,
which is unphysically yielded by the subgrid connection at x'
= 120. For comparison, Fig. 9(d) shows the reflected wave
obtained by the subgrid scheme based on the spatial FI method
given in [6]. The space-time FI subgrid reduces the maximal
|B3¢| by a factor of 0.4 compared with the spatial FI scheme.

To evaluate theses unphysical reflections, the Poynting
vectors of the incidence and reflected waves are averaged
along the Xx*-x’ cross-section; these vectors are denoted by
p"(x") and p"(x'), respectively and their maximal absolute
values along the x'-direction are P"mx and Py Fig. 10
compares the square root of p*.x / p"mx Obtained by the spatial
FI subgrid scheme and the proposed space-time FI subgrid,
where (Ax, Aw) = (2, 0.8), (1, 0.4), (0.5, 0.2) and three subgrid
domains below are examined:

(a) [120, 180] x [12, 36] x [6, 18],

(b) [140,200] x [16, 40] x [6, 18],

(c) [140, 200] x [12, 36] x [8, 20].

(a)

Fig. 9. Propagation of E5 and B,. (a) Incident wave Ei". (b) Incident wave
B3". (c) Reflected wave B3¢ obtained employing staircase-type subgrid. (d)
Reflected wave B3° obtained employing special FI subgrid in [6].

For comparison, Fig. 10 also shows the result given by the
space-time FI subgrid without the corner correction and with &

= 0.08. The space-time FI subgrid scheme yields smaller
unphysical wave reflections than the spatial FI subgrid. The
corner correction improves the accuracy.
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Fig. 10. The magnitude of reflected wave normalized by the incidence wave.

VI. CONCLUSION

The PML absorbing boundary condition is introduced in a
natural manner into the space-time FI method. The 4D space-
time subgrid connections of the straight and staircase types are
discussed in the framework of the Hodge dual grid. The space-
time FI method using the staircase-type subgrid reduces
unphysical wave reflection compared with the conventional
subgrid based on the spatial FI method.
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