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The perfectly matched layer (PML) absorbing boundary is employed in the space-time finite integration (FI) method. Subgrid 

connections in 3D and 4D space-time are considered. Using the PML, the computational accuracy for 3D and 4D space-time subgrid 
methods are evaluated. The subgrid scheme given by the space-time FI method suppresses unphysical wave reflections compared with 
the subgrid scheme based on the spatial FI method. 
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I. INTRODUCTION 

HE ELECTROMAGNETIC field analysis of fine structure at 
sub-wavelength scales is required for advanced electronic 

and optical devices [1]. The analysis of these devices using the 
conventional FDTD method [2] incurs large computational 
cost because the spatial grid should be refined uniformly 
unless a sophisticated subgrid method [2] is used for an 
adaptive grid construction. 

The finite integration (FI) method [3]–[5] is an alternative 
choice for time-domain analysis using a spatial adaptive grid 
that produces a stable subgrid scheme [6]. The space-time FI 
method [7], [8] is an advanced version of the FI method that 
enables efficient electromagnetic field computations using an 
adaptive time-step. Ref. [9] proposed 3D and 4D space-time 
subgrid methods for the adaptive grid construction and 
provided comparisons with the spatial FI subgrid scheme [6]. 
However, the computational accuracy of the space-time 
subgrid scheme has not as yet been fully examined because 
only periodic spatial boundary conditions were implemented. 

This paper develops the connection scheme to the perfectly 
matched layer (PML) [10] for the space-time FI method and 
discusses the 3D and 4D connections to space-time subgrids 
constructing the Hodge dual grid [7]. 

II. SPACE-TIME FINITE INTEGRATION METHOD 

Points in the coordinate system are denoted by (w, x, y, z) = 
(x0, x1, x2, x3) where w = ct, ܿ ൌ 1/ඥߝ଴ߤ଴, and ߝ଴ and ߤ଴ are 
the permittivity and permeability of vacuum, respectively. The 
integral form of the Maxwell equations [7] is given as 
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where ሺ݆,	݇,	݈ሻ is a cyclic permutation of ሺ1,	2,	3ሻ, and  Ω௣ and 
Ωௗ  are hypersurfaces in space-time; ∂Ω௣  and ∂Ωௗ  denote the 
faces of the primal and dual grids, respectively; ρ is the 
electric charge density and Jj is the electric current density. 
The electromagnetic variables in the FI method are defined as 

݂ ൌ ׬ ௌ೛ܨ
, ݃ ൌ ׬	 ௌ೏ܩ

, (5) 

where ܵ௣ and ܵௗ are the faces of the primal and dual grids ∂Ω௣ 
and ∂Ωௗ . To express the constitutive equation simply, the 
Hodge dual grid [7] is introduced as 
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where ܿ௥ ൌ 1 ⁄௥ߤ௥ߝ√  is a constant determined for each pair ߢ ;
of ܵ௣  and ܵௗ ; and ߝ௥  and ߤ௥  are the relative permittivity and 
permeability, respectively. From (5) and (6), it follows that 

݂ ൌ ܼ݃ ⁄ߢ , where ܼ ൌ ඥߤ௥ߤ଴ ሺߝ௥ߝ଴ሻ⁄  is the impedance. A 
systematic formulation of the space-time FI method using 
incidence matrices is presented in [8].  

III. PML ABSORBING BOUNDARY CONDITION 

In the 3D space, all the components of the electric flux 
density and the magnetic flux density are divided into two 
subcomponents respectively such that 

௫ܦ ൌ ௫௬ܦ ൅  ௫௭, (7)ܦ
where Dxy and Dxz are the respective components of Dx 
propagating along the y and z-directions. Using these 
subcomponents, the space-time FI method updates the electric 
flux density in the PML as 
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where σy and σz are the electric conductivities in the y and z-
directions, respectively, Δw is the time-step, the subscripts are 
spatial indices for the ݔ ݕ , , and ݖ  directions, and the 
superscript is the temporal index. The time-marching scheme 
for the other variables is given similarly. 
 

 
(a)    (b) 

Fig. 1. 3D space-time subgrid of straight type: (a) corner part and (b) space-
time connection. 
 

 
Fig. 2. 3D space-time subgrid of staircase type: (a) spatial and (b) space-time 
connections. 

 
Fig. 3. Computational domain showing subgrid and PML. 
 

 
Fig. 4. Discrepancy of ܤଷ compared with FDTD method: (a) δ=0.01 and (b) 
δ=0.1. 
 

IV. SPACE-TIME SUBGRID CONNECTION 

Ref. [9] proposed straight-type and staircase-type subgrids 
in the 3D and 4D space-times. However, the subgrid 
connection in 4D space-time was not discussed in detail 
because the 4D geometry is not always intuitively explainable. 
This section gives an explicit description of the connecting 
faces at the subgrid boundary. 

A. 3D space-time subgrid 

The 3D straight-type and staircase-type space-time subgrids 
are examined with the PML boundary condition. Fig. 1 
illustrates the straight-type subgrid connection, where δ is a 
free parameter to locate the subgrid boundary. Ref. [9] 
proposed the staircase-type subgrid connection (Fig. 2) 
bending the edges and faces of the space-time grid. 

Fig. 3 illustrates the computational domain having the 
subgrid and PML. For simplicity, the permittivity and 
permeability are set uniformly to unity by the normalization 

replacing the variable F by ܨ	/ඥߤ଴ ⁄଴ߝ . The coordinates are 
linearly transformed to normalize ∆ݔ  to 1; the normalized 
temporal step ∆ݓ  is set to 0.5. The normalized initial 
conditions are E1 = E2 = 0 and B3 = exp{−[(x1)2+(x2)2]/25}. Fig. 
4 depicts the distributions of discrepancy ΔB3 between B3 
obtained employing the FDTD method and that obtained using 
the 3D staircase-type space-time subgrid at ct = 100 with 
δ=0.01 and 0.1. Unphysical wave reflection caused by the 
subgrid connection is reduced by the optimization of δ. 

 

 
Fig. 5. 4D straight-type subgrid connection: (a) faces Sp1, Sp2, Sd1, Sd2, and (b) 
faces Sp3, Sp4, Sd3, Sd4. 

 

B. 4D Straight-type subgrid 

We use bases dxi satisfying dxkdxi = δk
i to represent edges 

and dxi˄dxj to represent faces having subscripts i, j = 0, 1, 2, 3, 
where ˄ denotes the wedge product. 

Fig. 5 illustrates the straight-type subgrid connection, where 
eight edges connect the node P: (0, 0, 0, 0) on the coarse grid 
side and the eight nodes Q± ± ±: (±Δw/4, 3Δx/4, ±Δx/4, ±Δx/4) 
on the fine grid side of dual grid. The edge to node Q− − − from 
P is represented as Δx(3dx1/4  dx2/4  dx3/4)  Δwdx0 /4. This 
edge belongs to the faces Sdi (i = 1, …, 4) of the dual grid, 
which are represented as 
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Based on (6), the corresponding faces Spi (i = 1,…,4) of the 
primal grid are slanted: 
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Of the variables fi = ∫SpiF and gi = ∫SdiG (i = 1,…,4), f1 and f2 
denote the magnetic fluxes whereas g1 and g2 are the 
magnetomotive forces with 
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The dominant component of f3 and f4 is the electromotive force 
but also contain magnetic fluxes such that 
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Similarly, the dominant component of g3 and g4 is the electric 
flux but g3 and g4 also include a magnetomotive force 
dependence such that 
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C. 4D Staircase type subgrid 

Fig.6 illustrates the staircase-type subgrid connection, 
where the edges from node P to nodes Q± ± ± are bent at the 
points R± ± ±: (±Δw/4, 0,  ±Δx/4, ±Δx/4). Consequently, the 
face Sd1 has different direction from Sd2 as 
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The face Sd3 also has a different direction from Sd4, 
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Based on (6), the corresponding faces Spi (i = 1, …, 4) are 
slanted: 
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Fig. 6. 4D staircase-type subgrid connection. 

 
(a)                                                    (b) 

 
Fig. 7. Corner correction 
 

D. Corner correction 

Ref. [11] proposed a symmetric correction for the corner 
variables (Fig. 7), where the orthogonality (6) may not be 
satisfied. The electromotive forces (ex, ey) and the electric 
fluxes (dx, dy) are given by the first and second of (5), 
respectively. When the parameter δ ≠ 0, the face for ex (or ey) 
is not orthogonal to the face for dx (dy). Based on the vectorial 
relation [Fig. 7(b)], a symmetric correction is appropriate: 
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having no asymmetry arising in the impedance matrix. 
Because the face for ex (ey) is slanted along the x0-direction 
(Fig. 5), δ’ is given by δ + (crΔw)2/(12Δx) for the straight-type 
grid. The magnetic variables at the corners are similarly 
corrected symmetrically, 
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where (bx, by) and (hx, hy) are the magnetic fluxes and magneto 
motive forces and δ’’= δ − Δx/12. An eigenvalue analysis [11] 
showed that the 4D subgrid schemes for the straight and 
staircase types are conditionally stable with and without the 
symmetric correction. 
 

 
Fig. 8. Schematic of the waveguide. 
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V. NUMERICAL ASSESSMENT 

The waveguide (Fig. 8) is used to evaluate the 4D staircase-
type subgrid scheme with corner corrections with δ = 0.12. For 
simplicity, the permittivity and permeability are set uniformly 
to unity by normalization in the same way as in IV.A. The 
normalized spatial domain size is 240 ൈ 48 ൈ 24 including a 
subgrid domain of 120 ൑ ଵݔ ൑ 180 , 12 ൑ ଶݔ ൑ 36 , and 
6	൑ ଷݔ ൑ 18. The inlet field values are given to excite the 
TE10 mode. The PML absorbing boundary condition is applied 
at the exit. 

Figs. 9(a) and (b) shows the propagation of the incident 
wave ܧଷ

୧୬  and ܤଶ
୧୬ , respectively, at ݔ଴ ൌ 240 , which is 

simulated with (Δx, Δw) = (1, 0.4); the normalized frequency 
is 0.05 measured by the normalized coordinate x0. Fig. 9(c) 
depicts the propagation of the reflected wave ܤଶ

୰ୣ at x0 = 240, 
which is unphysically yielded by the subgrid connection at x1 
= 120. For comparison, Fig. 9(d) shows the reflected wave 
obtained by the subgrid scheme based on the spatial FI method 
given in [6]. The space-time FI subgrid reduces the maximal 
ଶܤ|

୰ୣ| by a factor of 0.4 compared with the spatial FI scheme. 
To evaluate theses unphysical reflections, the Poynting 

vectors of the incidence and reflected waves are averaged 
along the x2-x3 cross-section; these vectors are denoted by 
pin(x1) and pre(x1), respectively and their maximal absolute 
values along the x1-direction are pin

mx and pre
mx. Fig. 10 

compares the square root of pre
mx / p

in
mx obtained by the spatial 

FI subgrid scheme and the proposed space-time FI subgrid, 
where (Δx, Δw) = (2, 0.8), (1, 0.4), (0.5, 0.2) and three subgrid 
domains below are examined: 

(a) [120, 180] × [12, 36] × [6, 18], 
(b) [140, 200] × [16, 40] × [6, 18], 
(c) [140, 200] × [12, 36] × [8, 20]. 

 

 
Fig. 9. Propagation of ܧଷ and ܤଶ. (a) Incident wave ܧଷ

௜௡. (b) Incident wave 
ଶܤ
௜௡. (c) Reflected wave ܤଶ

௥௘ obtained employing staircase-type subgrid. (d) 
Reflected wave ܤଶ

௥௘ obtained employing special FI subgrid in [6]. 
 

For comparison, Fig. 10 also shows the result given by the 
space-time FI subgrid without the corner correction and with δ 

= 0.08. The space-time FI subgrid scheme yields smaller 
unphysical wave reflections than the spatial FI subgrid. The 
corner correction improves the accuracy.  
 

Fig. 10. The magnitude of reflected wave normalized by the incidence wave. 
 

VI. CONCLUSION 

The PML absorbing boundary condition is introduced in a 
natural manner into the space-time FI method. The 4D space-
time subgrid connections of the straight and staircase types are 
discussed in the framework of the Hodge dual grid. The space-
time FI method using the staircase-type subgrid reduces 
unphysical wave reflection compared with the conventional 
subgrid based on the spatial FI method.  
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