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Abstract

The dielectric properties of proton(H)–deuteron(D) mixed crystals of the
hydrogen-bonded material 5-bromo-9-hydroxyphenalenone are studied using
a novel path integral Monte Carlo (PIMC) method that takes account of the
dipole induction effect depending on the relative proton configurations in
the surrounding molecules. The induced dipole is evaluated using the frag-
ment molecular orbital method with electron correlation included by second-
order Møller-Plesset perturbation theory and long-range corrected density
functional theory. The results show a greater influence of C− H · · ·O inter-
molecular weak hydrogen bonding on the induction than for results evaluated
with the Hartree-Fock method. The induction correction is incorporated into
the PIMC simulations with a model Hamiltonian that consists of long-range
dipolar interactions and a transverse term describing proton tunneling. The
relationship between the calculated phase transition temperature and H/D
mixing ratio is consistent with the experimental phase diagram, indicating
that the balance between the proton tunneling and the collective ordering is
appropriately described.
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1. Introduction

Ferroelectricity and antiferroelectricity are very important topics in con-
densed matter physics and chemistry. In particular, hydrogen-bonded mate-
rials that exhibit a large isotope effect on the phase transition temperature
have attracted much attention. Representative inorganic materials are the
potassium dihydrogen phosphate (KH2PO4) family, for which the paraelec-
tric (PE)–(anti)ferroelectric ((A)FE) phase transition temperature is almost
doubled by deuteration [1, 2].

In the field of organic electronics, significant progress has recently been
made [3–9]. Horiuchi et al. reported several hydrogen-bonded organic fer-
roelectric materials, some of which exhibit a ferroelectric phase above room
temperature [3, 5–7, 10–15]. Organic materials have the advantages of flex-
ibility and variability in design. One of the main effective strategies for
designing ferroelectric materials is to control the hydrogen bonding [14] in-
volved in proton transfer, the isotope effect, and enhancement of spontaneous
polarization.

5-Bromo-9-hydroxyphenalenone (C13H7O2Br, BHP, see Figure 1), which
belongs to the class of zero-dimensional hydrogen-bonded systems (intramolec-
ular O− H · · ·O bonds), also exhibits a prominent isotope effect. The deuter-
ated compound (5-bromo-9-deuteroxyphenalenone; BDP) exhibits a PE–
AFE phase transition via an incommensurate phase, while no phase tran-
sition has been observed down to 3 K in BHP [16–19]. From dielectric mea-
surements, it has been suggested that a quantum paraelectric state is realized
in BHP, in which the phase transition is suppressed by proton delocalization
via tunneling in the intramolecular hydrogen bond. Although there is debate
about the involvement of proton tunneling, the results of calorimetric, far-
infrared spectroscopic, incoherent neutron scattering, and structural studies
seem to support the quantum paraelectric state in BHP [20–23].

Compared with experimental studies, theoretical studies of hydrogen-
bonded ferroelectric materials are rather scarce. A three-site model has
been proposed to describe the isotope effect in zero-dimensional hydrogen-
bonded (anti)ferroelectric materials [24]. More realistic quantum chemical
calculations have been performed for several neighboring dimers of BHP
and 5-iodo-9-hydroxyphenalenone [25, 26], in which the tunneling and in-
teraction parameters were calculated to determine the ordered phase in the
low-temperature limit using the mean field approximation. To complement
these studies with the bulk properties of crystals, density functional theory
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Figure 1: Schematic diagram of intramolecular proton transfer in the BHP molecule.

calculations with plane-wave basis sets can be useful (e.g., see Figure 4 in
Ref. [27]). Nevertheless, there is still a gap in the discussion for understand-
ing the ferroelectric properties between studies of local molecular interactions
and long-range interactions that cause dielectric ordering.

These considerations led us to propose a novel computational scheme
that combines fragment molecular orbital (FMO) calculations with Monte
Carlo (MC) simulations, in which the former introduces to the latter elec-
tronic polarization effects induced by the various proton configurations of
surrounding molecules. In its application to the BHP crystal, we discovered
the importance of C− H · · ·O type intermolecular weak hydrogen bonding,
through which the relative configurations of adjacent intramolecular hydro-
gen bonds strongly affect dipole induction [27, 28]. This conflicts with the
prevailing presumption that BHP molecules are relatively isolated in the
crystal [16, 19]. We have previously demonstrated that dipole induction cor-
rection almost doubles the calculated phase transition temperature of the
BDP crystal and gives better agreement with experiments [27]. However,
this study did not explicitly take account of proton tunneling, which is an
appropriate assumption for BDP but not for BHP. Therefore, in this work
we extend the method to path integral MC (PIMC) method, which is one of
the quantum MC methods [29], to account for proton tunneling, and study
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the isotope effect on the dielectric phase transition behavior.
In the study of order–disorder type hydrogen-bonded ferroelectrics, the

transverse Ising model has often been successfully used to reproduce the iso-
tope effect [30–32]. By ignoring higher vibrational states in the relevant tem-
perature range, the problem is reduced to a two-level system with tunneling
between two degenerate localized states [33] 1. In this paper, the transverse
tunneling Hamiltonian is combined with our correction scheme for dipole
induction. We thus constructed the effective classical Hamiltonian via the
Suzuki–Trotter decomposition [34–36], and performed PIMC simulations to
calculate the temperature-dependence of the dielectric constant for homoge-
neous crystals with different values of the tunneling energy corresponding to
BHP, BDP, and their isotope mixtures.

The paper is organized as follows. In Section 2, we describe the Hamilto-
nian involving the tunneling effect and map it to an effective classical Hamil-
tonian for the MC simulations using the Suzuki–Trotter formula. Sections 3
and 4 present computational details and the simulation results. The last
section gives the conclusions of the study. Some technical details of the new
PIMC method are given in the Appendix.

2. Dipole–Dipole Interaction Hamiltonian with Tunneling Effect

We constructed the dipolar model system of the BHP molecular crystal in
a same manner as a previous study [27]. That is, using the crystal structure
data in Ref. [23], and positioning the molecular electric dipole moment p =
(px, py, pz) at the center of mass of each molecule in a Cartesian coordinate
system in which the x(y)-axis coincides with the crystallographic a(b)-axis.
In Figure 2, we show the schematic structure of the BHP crystal. We define
the transverse and longitudinal dipole moments (p⊥ and p∥, respectively) by

p⊥ =
√

p2x + p2z and p∥ = py. The transverse dipole moment is inverted by
proton transfer.

1The frequency of the typical O–H stretching mode is approximately
3000 cm−1(∼4300 K). As shown in the case of the square-well potential, the eigenenergy
in the potential is inversely proportional to the square of the width. Hydrogen bonding
extends the range of motion of the hydrogen atom by almost twice. Therefore, there
should be a gap of ∼1000 K between the tunneling-split states and the vibrational excited
state.
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Figure 2: Schematic structure of the BHP crystal. Each triangle represents a BHP
molecule and each inverted triangle represents an inverted BHP molecule. The arrange-
ment of the molecules is based on the crystal structure data in Ref. [23].

Taking into account the tunneling effect, the Hamiltonian is expressed as

H = −
N∑
j=1

Ωjσ
1
j

+
1

4πε0

∑
j<k

1

r3jk

[
pj · pk −

3(pj · rjk)(pk · rjk)
r2jk

]
,

(1)

with the dipole moment at site j described by

pj = (σ3
jpjx, pjy, σ

3
jpjz), (2)

where σα
i (α = 1, 3) are the Pauli spin matrices σ1 =

0 1
1 0

 and σ3 =1 0
0 −1

, rjk is the position vector from site j to k, ε0 is the vacuum per-

mittivity, Ωj is the tunneling frequency at site j, and rjk = |rjk|. In the
following, we use L (or R) for the two localized states (see Figure 1). The
states |L⟩ and |R⟩ are expressed as the eigenstate of the two-state system,

|L⟩ =

1
0

 and |R⟩ =

0
1

, respectively. The operator σ1 maps the state

from |L⟩ to |R⟩ and vice versa, and its coefficient Ωj provides the rate of tun-
neling from one state to the other. Thus, the first term of Eq. (1) describes
the proton tunneling. In Eq. (1), each molecular site can have different tun-
neling frequency to describe the H/D-mixed crystal. In addition, the states
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|L⟩ and |R⟩ are eigenstates of the operator σ3 with eigenvalues +1 and −1,
respectively. Therefore, Eq. (2) indicates that the transverse dipole moment
of the BHP molecule is inverted by proton transfer.

We use the Suzuki–Trotter formula [34–36]

eA+B = lim
M→∞

(
eA/MeB/M

)M
, (3)

to evaluate the partition function of the quantum Hamiltonian (1): Z =
Tr
{
e−βH}, where β is the inverse temperature. We can follow almost the

same procedure as the conventional transverse Ising Hamiltonian [32, 34, 37,
38], with a straightforward inclusion of our new dipole-correction scheme.
Using the complete set of eigenvectors of the operator σ3

j , we obtain

Z = lim
M→∞

ZM(β) (4)

= lim
M→∞

∑
{σ}

(
N∏
j=1

Aj

)M

× exp

[
M∑
l=1

(
−βJl

M
+

N∑
j=1

γjσj,lσj,l+1

)]
, (5)

with

Aj =

{
1

2
sinh

(
2βΩj

M

)}1/2

, (6)

γj =
1

2
log

[
coth

(
βΩj

M

)]
, (7)

Jl =
1

4πε0

∑
j<k

1

r3jk

p(l)
j · p(l)

k −
3
(
p
(l)
j · rjk

)(
p
(l)
k · rjk

)
r2jk

 , (8)

and
p
(l)
j = (σj,lpjx, pjy, σj,lpjz) , (9)

where σj,l = ±1 are the eigenvalues of the σ3 operator on site (j, l). The in-
dices j and l indicate the site in the crystal and that in the additional (Trot-
ter) dimension, respectively. We thus obtain the effective classical Hamilto-
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nian in the Mth Trotter approximation as

Heff(β) =
M∑
l=1

(
Jl
M

−
N∑
j=1

γj
β
σj,lσj,l+1

)

−M

2β

N∑
j=1

log

{
1

2
sinh

(
2βΩj

M

)}
. (10)

The appearance of the Trotter dimension indicates that the Hamiltonian
(Eq. (10)) represents a (3 + 1)-dimensional (N ×M) classical system. This
system is quite anisotropic: the interaction in the subsystem with each Trot-
ter index l (Trotter slice) is the M -fold diluted dipole–dipole interaction
Jl/M minus the nearest neighbor interaction with a strength of γj/β along
the Trotter direction.

The last term of Eq. (10), which originates from the factor Aj in Eq. (5),
has not been previously reported [32, 36–39]. This is because it does not
depend on the spin configurations and it is canceled in the calculation of the
expectation values of physical quantities. However, when we use the replica
exchange MC method [40], this term is essential for the following reason. In
the replica exchange MC method, a series of system replicas with different
temperatures are simultaneously and independently simulated, during the
course of which the configurations of replicas are exchanged. If the Metropolis
method is used, as in this work, the acceptance probability for the replica
exchange trial is given by

Pex = min {1, exp [(βk − βk+1)(Heff(βk)−Heff(βk+1))]} . (11)

Indeed, the effective Hamiltonians with two neighboring temperatures are
generally involved in the replica exchange simulations irrespective of the
sampling algorithm. Therefore, the last term in Eq. (10) cannot be omit-
ted. Actually, this term was found to significantly contribute to the replica
exchange process (see Appendix).

3. Computational Details

3.1. Evaluation of the Correction Factor

Prior to the MC simulations, we evaluated the correction factors for the
molecular dipole moments. The method is identical to that in Ref. [27]. The
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correction factors are defined as the relative changes of the dipole moment of
the central molecules in trimers, and they were constructed for every relative
position of the surrounding molecules in the crystal. Thus, the correction fac-
tors for transverse (∆p⊥) and longitudinal (∆p∥) components are expressed
as

∆p⊥ =
ptri⊥
pmon
⊥

− 1 (12)

and

∆p∥ =
ptri∥

pmon
∥

− 1, (13)

respectively. The superscript “mon” indicates the dipole moment of an iso-
lated monomer and “tri” indicates that of the central molecule in each trimer.

The dipole moment of the central molecule in the trimers is evaluated us-
ing the FMO-2 method [41], in which each monomer is treated as a fragment.
As we have previously demonstrated, the induced dipole moment is sensitive
to the intermolecular interactions of the trimer and the relative configura-
tions of the intramolecular hydrogen bonds because of the differences in the
electrophilicity of carbonyl and enolic oxygen atoms [27, 28].

We considered all 14 possible trimer configurations in the BHP crystal
structure, which are labeled A to N according to their relative position in
the crystal. The positional relations of the trimers are listed in Table 1 (also
see Supporting Information for the structures of the trimers and their posi-
tions). For each trimer, calculations were performed for all hydrogen transfer
positions in the two surrounding molecules (the configurations are denoted
hereafter as LL, LR, RL, and RR) with the hydrogen atom of the central
molecule in state L (which is sufficient because of the crystal symmetry).

The calculations of the dipole correction factors of Eqs. (12) and (13)
were performed using the GAMESS program package [42]. Since the cor-
rection factors are the effects of dipole induction in the molecular crystal,
the long-range intermolecular interaction may be significant. To effectively
take into account electron correlation and long-range interactions, we used
the LC-BOP (long-range-corrected Becke 1988 exchange functional with one-
parameter progressive correlation) functional with the range-separation pa-
rameter µ = 0.33 [43]. The basis set was cc-pVDZ for all atoms. We also
performed calculations at the MP2/cc-pVDZ level. The dipole moments of
the BHP monomer at these two levels of theory as well as at the restricted
Hartree–Fock (RHF) level with the 6-31G(d,p) basis set are listed in Table 2.
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Table 1: List of the trimers for the evaluation of correction factorsa

Trimer Positionb Trimer Positionb

X Y Z X Y Z

A ±1.0 0.0 0.0 H ±0.5 −0.5 ±0.5
B 0.0 ±1.0 0.0 I ±0.5 0.5 ±0.5
C 0.0 −1.0 ±0.5 J ±0.5 −0.5 ∓0.5
D 0.0 1.0 ±0.5 K ±0.5 0.5 ∓0.5
E 0.0 0.0 ±1.0 L 0.0 0.0 ±0.5
F ±0.5 −0.5 0.0 M ±1.0 0.0 ±0.5
G ±0.5 0.5 0.0 N ±1.0 0.0 ∓0.5

a This table is reproduced from Table 1 in Ref. [27]. b The relative positions
of the molecular centers of the molecules that form trimers with a reference (0,
0, 0) molecule are shown. The H atom in the intramolecular hydrogen bond of
the reference molecule is arranged on the upper side in the longitudinal direction
(+b). The positions X, Y , and Z are in units of the lattice parameters a, b, and
c, respectively (the double sign applies in the same order).

The dipole moment significantly decreased by including electron correlation
(also see Table 4 in Ref. [27]). The dipole correction factors for the LC-BOP
functional and the MP2 level of theory will be compared in Section 4.1.

3.2. Path Integral Monte Carlo Simulations

Because the procedure for the classical MC case is described in Ref. [27],
we will only outline the features introduced in the present PIMC simulations.

The program for the PIMC simulations was developed by one of the
authors. In the MC simulations, we defined the MC unit cell to be two
crystallographic unit cells along the a- and b-axis and one crystallographic
unit cell along the c-axis (see Figure 3 in Ref. [27]). The number of dipoles in
real spaceN was 16NaNbNc, whereNa, Nb, andNc are the number of MC unit
cells along the a-, b-, and c-direction, respectively. As described in Section 2,
we introduced one additional dimension along the Trotter axis in the PIMC
simulations. Therefore, the total number of dipoles in the simulated system
was 16MNaNbNc. Periodic boundary conditions were applied to the system.

We used the replica exchange MC method [40] with the effective Hamil-
tonian (Eq. (10)). As mentioned in Section 2, the system described with the
effective Hamiltonian (Eq. (10)) is quite anisotropic in the Trotter direction.
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Table 2: Dipole moment of the BHP monomer

Computational level Dipole moment / Da∣∣pmon
⊥
∣∣ ∣∣pmon

∥

∣∣ ∣∣pmon
∣∣

LC-BOP/cc-pVDZ 0.585 2.015 2.098
RHF/6-31G(d,p) 0.742 2.928 3.020
MP2/cc-pVDZ 0.415 1.624 1.676

a 1 D = 3.336 ×10−30 C m.

Thus, the conventional single-spin-flip method is inappropriate for updating
each replica. We used the spin-cluster-flip method in Ref. [44] to update
each replica, in which M spins (dipoles) on the Trotter axis are treated as
a cluster. The index of the cluster in real space is selected randomly and
the next state of the cluster is determined from all possible 2M states of the
cluster by the heat bath method [45]. The probability with which we choose
state ν (ν = 1, 2, · · · , 2M) is written as

wν =
e−βH(ν)

eff∑2M

µ=1 e
−βH(µ)

eff

, (14)

where H(µ)
eff is the effective Hamiltonian of the cluster in state µ. We define 1

MC step as N trials of the cluster flip (i.e., each cluster is selected once on
the average).

The number of replicas for the exchange MC method was 96, and these
replicas were distributed in the temperature ranges 5–55 K for BHP and 5–
70 K for BDP and the mixtures. The temperature intervals of the replicas
were set so that the inverse temperature points {βk} would be distributed at
uniform intervals (see Appendix). The initial configurations of the replicas
were randomly selected and all replicas were thermalized without replica-
exchange. After the thermalization, data were collected for analysis. We
performed 10 000 MC steps for the thermalization and 100 000 MC steps
for the sampling. The replica-exchange trial during the sampling process
was made every 5 MC steps with the probability defined by Eq. (11). The
system size (in real space) investigated here was (Na, Nb, Nc) = (3, 3, 6),
which corresponds to N = 864 dipoles, and the number of Trotter slices
M was from 2 to 12 to extrapolate to M → ∞. The cutoff radius for the
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dipole–dipole interaction was set to 20 Å, which is the same as that used in
a previous study [27].

The dipole moments were corrected every MC step using the results de-
scribed in Section 4.1. For every site j, we compose the trimers in Table 1
so that site j is the central molecule of each trimer. According to the config-
urations of the hydrogen atoms of the surrounding molecules (LL, LR, RL,
or RR), the correction factor is applied to the dipole moment. We define the
corrected dipole moment of site j as

pjµ =

(
1 +

∑
trimer

∆pµ

)
pmon
µ (µ =⊥, ∥). (15)

Although we applied the correction factors of all 14 directions of the
interaction for the transverse component, the correction factors for the lon-
gitudinal component were not taken into account because the latter is almost
independent of the relative configurations of the hydrogen atoms (see Sec-
tion 4.1).

4. Results and Discussion

4.1. Relative Changes of the Dipole Moment

Figure 3 shows the relative changes of the transverse and longitudinal
dipole moments obtained from the FMO calculation. In addition to the LC-
BOP/cc-pVDZ and MP2/cc-pVDZ results, we also plot the previous results
with RHF/6-31G(d,p) as a reference [27]. In this figure, the horizontal axis
represents the labels of the trimers (see Table 1 and Supporting Information)
and the vertical axis represents the relative changes of the transverse (Fig-
ure 3(a)) and longitudinal (Figure 3(b)) components of the dipole moment
defined by Eqs. (12) and (13).

It has been found that the transverse component is mainly affected from
three directions [27]: F, I, and L in Figure 3(a). With regard to trimers F and
I, we reported the existence of intermolecular C− H · · ·O hydrogen bond-
ing from the geometric features, natural population analysis, and Atoms-in-
Molecules analysis [27, 28]. The large variation of the transverse component
is because of the difference in the electrophilicity of the carbonyl and eno-
lic oxygen atoms of surrounding molecules involved in the intermolecular
hydrogen bonding. The difference causes the bias in the atomic charge of
the central molecule of the trimer, which results in dipole induction. In the
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case of trimer L, π–π stacking interactions are involved. We suggest that
the change of the electronic structure between the molecular planes by pro-
ton transfer causes the variation of the transverse component. However, the
longitudinal component in Figure 3(b) is insensitive to changes of the rela-
tive configurations of hydrogen atoms. This result is reasonable because this
direction is perpendicular to that of proton transfer [27, 28].

Compared with the results obtained using RHF/6-31G(d,p), the range
of changes using LC-BOP/cc-pVDZ is slightly larger. However, as shown in
Table 2, the absolute dipole moment calculated using LC-BOP/cc-pVDZ is
smaller than that calculated with RHF/6-31G(d,p). Thus, it is suggested
that the dipole moment in the crystal calculated using LC-BOP/cc-pVDZ
will also be smaller than that calculated using RHF/6-31G(d,p).

From Figure 3(a), the transverse component calculated using MP2/cc-
pVDZ shows a large variation. This is because of the definition of the relative
change (Eq. (12)). As shown in Table 2, the dipole moment of the isolated
monomer pmon

⊥ , which appears in the denominator in Eq. (12), calculated
with MP2/cc-pVDZ is smaller than that calculated using the other methods.
Therefore, relative changes are emphasized in Figure 3. The relationship
between the dipole moment and the relative changes is further discussed in
Section 4.4 in conjunction with the dielectric phase transition temperature.

4.2. Pure BHP Crystal

Here, we describe the PIMC simulation of the pure BHP crystal. In
Sections 4.2 and 4.3, we focus on the results obtained using LC-BOP/cc-
pVDZ. The qualitative discussion also applies to the results using MP2/cc-
pVDZ. The quantitative differences will be mentioned in Section 4.4.

The values of Ωj were set to the experimentally determined value of ΩH =
60 K for all j [22]. The temperature range was set from 5 to 55 K. In
Figure 4, we plot the static dielectric constant ε = 1 + χ as a function of
temperature T , where the susceptibility χ is calculated from the fluctuation
of the x components of polarization, which corresponds to the experimentally
measured direction[16, 17]:

χ =
4
(
⟨(
∑

j pjx)
2⟩ − ⟨

∑
j pjx⟩2

)
NV ε0kBT

, (16)

where kB is the Boltzmann constant, V is the volume of the unit cell, and
the brackets ⟨ ⟩ denote the MC average.
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Figure 3: Relative change of (a) the transverse and (b) the longitudinal component of
the dipole moment. In each type of trimer, four values corresponding to the combination
of the configurations of the hydrogen atoms of the surrounding molecules (LL, LR, RL,
and RR) are plotted. The bars represent the range between the maximum and minimum
values for each type of trimer. For the labels on the horizontal axis, see the Supporting
Information.
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Figure 4: Plot of the dielectric constant ε = 1+ χ with Ωj = 60 K for all j (BHP crystal)
against temperature T . The symbol ∞ (solid black circles) indicates the points obtained
by extrapolation according to Eq. (17).

The dielectric constant for the quantum system was evaluated by ex-
trapolating the data at each temperature to the limit M → ∞ using the
well-known convergence relationship

A(M) = A∞ +
A2

M2
+O

(
1

M4

)
, (17)

where A(M) is the average of any quantum operator A taken with respect to
the effective Hamiltonian in the Mth Trotter approximation [35, 46]. This
relationship also holds for the operators affected by the dipole correction,
because the correction factors are determined uniquely for every state in the
system and thus the “dipole-corrected” operators are unique.

We found that fitting to Eq. (17) only applies for data points above
the temperature of the peak of each M , and these data points are thus
used for the extrapolation. The extrapolated points are shown in Figure 4
(black filled circles). Figure 4 shows that the extrapolated dielectric constant
monotonically increases as the temperature decreases. A peak of dielectric
constant corresponds to a phase transition, and thus our result indicates that
phase transition is not observed down to ∼ 6 K.

To evaluate the phase transition temperature in BHP crystal, we investi-
gated the relationship between the temperature at the peak and the number
of Trotter slices M . Figure 5 shows the plot of the temperature at the peak
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Figure 5: Relationship between the temperature at the peak of the dielectric constant
Tc(M) and the number of Trotter slices 1/M in the case of the BHP crystal (Ωj = 60 K
for all j). The data from M = 5 to 12 were used because the data with the smaller M are
less relevant and subject to larger error in reading the peak position.

for each M in Figure 4, Tc(M), as a function of 1/M . It is reasonable that
the temperature at the peak is inversely proportional to M , because, as men-
tioned in Section 2, the interaction in real space is M -fold diluted. Then, we
fitted the data to the function:

Tc(M) =
p

M
+ Tc(∞), (18)

and found that p = 60.0 ± 0.5 K and Tc(∞) = 0.1 ± 0.6 K, which includes
the error due to the discrete temperature interval of the data in Figure 4.
The value of Tc(∞) corresponds to the estimated peak temperature in the
full quantum system (M → ∞) and it indicates that the phase transition
does not occur down to ∼ 1 K, which is in agreement with the experimental
results. However, the calculated absolute value of ε in the low temperature
region overestimates the experimental value [17]. One possible reason for
this could be that the experimental result is the dynamic dielectric constant
measured by applying an AC electric field, which may suppress the quantum
fluctuations, while our result is the static dielectric constant.

4.3. Pure BDP Crystal

Next, we simulated the case of the pure BDP crystal. The values of Ωj

were set to ΩD = 10 K for all j, which has been estimated from the spectro-
scopically measured ratio ΩH/ΩD of the mother compound 9-hydroxyphenalenone [47].
The temperature range was set from 5 to 70 K.
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Figure 6: Plot of the dielectric constant ε = 1+χ with Ωj = 10 K for all j (BDP crystal)
against temperature T . The symbol ∞ (black solid circles) indicates the points obtained
by extrapolation according to Eq. (17).

Figure 6 shows the temperature dependence of the dielectric constant for
each M . One common peak is observed at approximately 45 K for all M ,
which corresponds to the phase transition temperature Tc. This transition
temperature is slightly lower than the value of 50 K reported in a previous
study calculated with correction factors at the RHF level [27], and it is in
better agreement with the experimental value of 37 K.

In the temperature region above 30 K, the values of ε from different
M agree well. In the low-temperature region, however, the dielectric con-
stant gradually increases with increasing M . The extrapolated plot in this
region shows that the dielectric constant increases with decreasing temper-
ature. This behavior is not directly related to the experimentally measured
peak around 20 K that is considered to originate from the incommensurate-
commensurate phase transition [17]. We rather attribute this behavior to
quantum fluctuations because of the tunneling term, whose strength ΩD is
comparable to this temperature region. We will further discuss this point in
the following section.

4.4. Crystals with Intermediate Values of ΩH and ΩD

Finally, we also investigated the case of homogeneous crystals with inter-
mediate values of Ω, assuming the case of the BHP/BDP-mixed crystal. To
relate the tunneling frequency and the H/D ratio in the system, we define
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Figure 7: Dielectric constant extrapolated along the Trotter direction. The triangles,
circles, and inverted triangles are the results of the uniform systems with Ωeff = 25, 35, and
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are also plotted. The arrows indicate the phase transition temperatures defined as the
inflection point of the ε–T curve. The terms up to the fourth order in Eq. (17) were used
for the extrapolation.

the effective tunneling frequency Ωeff as

Ωeff = xHΩH + (1− xH)ΩD, (19)

where xH is the proton concentration ratio (i.e., H:D = xH : 1− xH).
In Figure 7, we show the calculated dielectric constants for Ωeff = 10

(xH = 0.0, pure BDP), 25 (xH = 0.3), 35 (xH = 0.5), 45 (xH = 0.7), and
60 K (xH = 1.0, pure BHP). As Ωeff increases, the temperature at the peak
decreases from ∼ 45 K in the BDP crystal with Ωeff = 10 K to there being no
peak (or bending) at Ωeff = 60 K. From these results, we redefine the phase
transition temperature Tc as the inflection point of the ε–T curve, which is
shown by the arrows in Figure 7.

We qualitatively explain the Ω-dependence of the phase transition tem-
perature seen in Figure 7 using the mean field theory (MFT) of the transverse
Ising model, which has previously been applied to an inorganic H/D-mixed
system [48, 49]. In MFT, the phase transition temperature is given by

1

|J |
=

xH

ΩH

tanh

(
ΩH

kBTc

)
+

1− xH

ΩD

tanh

(
ΩD

kBTc

)
, (20)
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filled symbols), and the numerical calculations based on the MFT of the transverse Ising
model (red dotted and purple dashed lines), which are compared with the experimental
results (black solid lines). The blue, green, and yellow solid lines are merely guides to the
eye. PE, IC, and C represent paraelectric, incommensurate, and commensurate, respec-
tively. The parameter values used in the MFT calculations were ΩH = 60 K, ΩD = 10 K,
and J = −38 or −45 K. The effective tunneling frequency Ωeff is defined in Eq. (19). The
experimental data are taken from Ref. [51].

where J is the molecular field parameter defined by
∑

j Jij [50]. In a previous
study, we found that the molecular field parameter J was the same order of
magnitude as the phase transition temperature obtained using classical MC
simulations [27]. Therefore, we estimate J to be approximately −45 K from
the result of the BDP crystal (see Figure 6). Using the parameter values J ,
ΩH, ΩD, and xH, we numerically solved Eq. (20) for Tc.

Figure 8 shows the resultant phase diagram along with experimental re-
sults (black solid lines) [51]. The results of the PIMC simulations using
both LC-BOP/cc-pVDZ and MP2/cc-pVDZ are also plotted. Here, we com-
pare the results of our calculations with the experimental paraelectric (PE)–
incommensurate (IC) phase transition temperature, which reflects the typical
strength of the intermolecular interactions in the crystal. In the result of the
MFT calculation with J = −45 K (purple dashed line), Tc ∼ 45 K at xH = 0
(Ωeff = ΩD), which corresponds to the BDP crystal. Moreover, the results
show that no phase transition occurred at xH = 1 (Ωeff = ΩH), which corre-
sponds to the BHP crystal. This is consistent with the results obtained from
the PIMC simulations. However, there is a discrepancy between the results
of PIMC and MFT in the intermediate region of xH. Furthermore, in MFT,
even if we adjust J so that Tc at xH = 0 coincides with the experimental
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value (J = −38 K, red dotted line), we could not describe the curvature
of the xH–Tc curve. In contrast, the curvature of the results of the PIMC
simulations (blue and green solid lines) is similar to the experimental results
(black solid lines).

It is noteworthy that our result using PIMC with MP2/cc-pVDZ is quan-
titatively consistent with the experimental result, especially in the small xH

region. The resultant critical temperature is 39 K at xH = 0, while the experi-
mental value is 37 K. The values of the enhanced transverse dipole moment in
the AFE phase are 0.893 (LC-BOP/cc-pVDZ) and 0.854 D (MP2/cc-pVDZ).
In a previous paper, we reported that the value with a lower computational
level (RHF) was 0.98 D [27]. Although all of the values are approximately
0.9 D, the components of the dipole moment are different. At the low compu-
tational level, the transverse dipole moment of the monomer pmon

⊥ is relatively
large, but the correction factors are small. In contrast, at the high computa-
tional level, pmon

⊥ is relatively small, but the correction factors are large (see
Table 2 and Figure 3). Using MP2/cc-pVDZ, the dipole moment increased
by 0.854/0.415 = 2.06 times as compared with that of the isolated molecule,
which indicates a strong influence of weak intermolecular hydrogen bonding
in the organic molecular crystals. In the intermediate region of xH, how-
ever, our PIMC simulation underestimates the transition temperature. In
our calculation, we evaluated the dipole moment and the correction factors
with one fixed crystal structure (neutron diffraction data at 10 K [23]), and
these parameter values were used in the PIMC simulations. However, the
actual molecular conformations and crystal structures may depend on the
temperature. Proper modeling of the softness of the molecular crystal may
also affect the results, although the effect would be rather subtle such that
the direction of change is not trivial.

To gain further insight into the curvature of the phase diagram, we also
performed PIMC simulations without the dipole correction but with a trans-
verse dipole moment of 0.854 D in the AFE phase at the MP2/cc-pVDZ
level. The result is shown by the yellow triangles and solid line in Figure 8.
The curvature of the xH–Tc curve is almost the same as the other PIMC
results. Therefore, we conclude that the good agreement of the curvature
of the PIMC results with experiment is due to the inclusion of long-range
interactions.
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5. Concluding Remarks

We have investigated the tunneling effect on the dielectric properties
of the hydrogen-bonded material BHP by extending our MC method with
FMO-derived dipole corrections to the PIMC method. In the case of the pure
BHP crystal, the results show that the phase transition does not occur down
to ∼ 1 K, which is consistent with experiment, as the phase transition is sup-
pressed by quantum fluctuations due to the tunneling effect of the hydrogen
atoms. In contrast, in the case of the pure BDP crystal, the phase transition
occurs at approximately 45 K, and the transition temperature is not affected
by tunneling. This is also consistent with the experimental results.

Another improvement from the previously reported method is the reeval-
uation of the dipole correction parameters at higher computational levels
of theory. This resulted in a greater influence of intermolecular hydrogen
bonding and better agreement of the phase transition temperature with ex-
periment.

We also simulated homogeneous crystals with intermediate values of Ω
assuming average values according to the composition of the BHP/BDP mix-
ture. As a result, the phase diagram of the transition temperature Tc versus
the mixing ratio agreed with experimental curve.

Although this work used the effective tunneling frequency for the iso-
tope mixture, our Hamiltonian (Eq. (1)) can actually describe a microscopic
mixture with different Ωj values for every site j. Therefore, at the cost
of calculating a sufficient number of statistical samples, we will be able to
obtain the relationship between the microscopic domain structure (the dis-
tribution of H- and D-compounds) in the crystal and quantum fluctuations.
To proceed in this direction, improvements in computational efficiency are
required. In particular, the bottleneck of the calculation is the spin-cluster-
flip algorithm, whose computational cost exponentially increases as 2M and
sufficiently large M is required for extrapolation to M → ∞. Use of alterna-
tive cluster-flip methods, such as those that take the M → ∞ limit prior to
the simulation [52], and O(N) algorithms [53] for the long-range interactions
may be helpful. Works in these directions are currently underway and will
be reported in due course.
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Appendix A. Effect of the Last Term in Effective Hamiltonian on
the Replica Exchange Process

In the appendix, we discuss the contribution of the last term of the ef-
fective Hamiltonian (Eq. (10)) to the replica-exchange process. Let us write
Eq. (10) as

Heff(β) = F (β) +G(β), (A.1)

where

F (β) =
M∑
l=1

(
Jl
M

−
N∑
j=1

γj
β
σj,lσj,l+1

)
, (A.2)

and

G(β) = −M

2β

N∑
j=1

log

{
1

2
sinh

(
2βΩj

M

)}
. (A.3)

Then, the calculated value for the acceptance probability (Eq. (11)) is given
by

exp [(βk − βk+1)∆F (βk, βk+1)]

× exp [(βk − βk+1)∆G(βk, βk+1)] , (A.4)

where
∆F (βk, βk+1) = F (βk)− F (βk+1), (A.5)

and
∆G(βk, βk+1) = G(βk)−G(βk+1). (A.6)

By setting that ∆β = βk − βk+1 (or ∆T = Tk+1 − Tk, where kBTk = 1/βk

and we take βk > βk+1 for convenience) is equal for all k, we can plot Eq. (A.4)
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Figure A.9: Plot of the second factor of Eq. (A.4) with ∆T = 0.52, Ωj = 60 for all j,
N = 864, and M = 8.

as a function of temperature. We found that the second factor in Eq. (A.4)
is ∼ 107 times smaller than the first factor and determines the behavior in
the low-temperature region for our system in the case of constant ∆T . In
Figures A.9 and A.10, we plot the second factor of Eq. (A.4) for constant ∆T
and ∆β, respectively. The Trotter number was set to 8, and the conditions for
the other parameters were chosen to be to the same as those used in the PIMC
simulation of the pure BHP crystal (see Sections 3.2 and 4.2). Figure A.9
shows that, in the case of constant ∆T , the factor is extremely small in
the low temperature region, where almost all trials for replica exchange will
be rejected. This problem is less significant in the case of constant ∆β
where the factor increases up to ∼ 10−2 as the temperature is decreased
(Figure A.10). Its decrease in the direction of increasing temperature does
not cause a problem because thermally-induced configuration changes are
sufficient in this temperature region without replica exchange.

The above result indicates that the temperature interval between neigh-
boring replicas is very important for MC simulations of quantum systems
with the replica exchange method, because of the appearance of the extra
term (Eq. (A.3)). Hukushima proposed a way to determine temperature
points {βk} with an iterative procedure from the initial temperature set
based on the one criterion that the acceptance probability for the replica
exchange trial is equal for every pair of replicas at neighboring temperatures
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Figure A.10: Plot of the second factor of Eq. (A.4) with ∆β = 0.0019, Ωj = 60 for all j,
N = 864, and M = 8.

(see Appendix in Ref. [54]). However, it was found that when the initial
temperature set has regular intervals of β, the temperature set reverts to
the initial temperature set of {βk} after a few iteration steps, as long as the
linear interpolation is used to evaluate Heff(β) at any temperature in the
iteration process. In addition, when the initial temperature set has regular
intervals of T , the temperature set approaches the equidistant distribution
of β. Therefore, the equidistant set of β is an efficient choice for the replica
exchange MC method.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at
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