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Abstract 

A method is presented for generating linkage mechanisms consisting of frame members. 

A quadratic programming problem is solved to obtain an infinitesimal mechanism 

allowing a hinge rotating about an axis in arbitrarily inclined direction. The problem is 

equivalent to a plastic limit analysis problem with quadratic yield functions with respect 

to member-end moments and axial force. The directions of hinges are obtained from the 

ratios of member-end moments along the local axes. A finite mechanism is generated by 

carrying out geometrically nonlinear analysis and adding hinges, if necessary. 

Effectiveness of the proposed method is demonstrated through examples of 3-

dimensional mechanisms. 
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1. Introduction 

The methods of designing link mechanisms or linkage mechanisms are classified into 

analytical approaches (Artobolevsky, 1977; Freudenstein, 1995; Erdman, 1981; Patel and 

Ananthasuresh, 2007; Yan et al., 2012) and numerical approaches (Root and Ragsdell, 
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1976). The process of linkage design consists of type synthesis, number synthesis, and 

path (dimensional) synthesis. Type synthesis determines the type and connectivity of 

links, number synthesis determines the numbers of links and joints (hinges) to obtain a 

mechanism with the desired degree of kinematic indeterminacy, and path synthesis finds 

the locations of hinges and the shapes of links such that the prescribed path is followed 

by the mechanism. 

The path synthesis can be naturally formulated as a nonlinear programming problem 

to minimize the distance of path of the output node of linkage from the specified path. By 

contrast, the type synthesis and number synthesis are intrinsically formulated as 

combinatorial problems that can be solved using an integer programming approach 

(Zhang et al., 1984; Krishnamurty and Turcic, 1992) or a graph theoretical enumeration 

method (Kawamoto et al., 2004). 

Early studies of systematic procedures for type synthesis can be found in the surveys 

by Olson et al. (1985) and Erdman (1995). However, it is difficult to solve a combinatorial 

problem with many variables. It is also important to avoid solutions with large degrees of 

kinematic indeterminacy. Kim et al. (2007) incorporated a fictitious load and gave a small 

upper bound for the strain energy. Stolpe and Kawamoto (2005) found mechanisms with 

single-degree kinematic indeterminacy using the branch-and-bound method. The authors 

presented a design method of 3-dimensional mechanisms of partially rigid frame based 

on plastic limit analysis that is formulated as a linear programming problem (Ohsaki et 

al., 2014; Tsuda et al., 2013a, 2013b). However, in our previous studies, the hinges are 

restricted to rotate about specified orthogonal axes of local coordinates. Therefore, many 

hinges including universal joints are needed to generate the desired deformation. 

   The linkage mechanisms are closely related to developable or expandable structures 

in the fields of aerospace engineering and architectural engineering (Luo et al., 2008). 

Mobility of expandable structures are investigated based on symmetry conditions 

(Kovács et al., 2004; Schulze et al., 2014; Chen et al., 2005). Although the theorems 

derived using a group theoretic approach are general, they utilize analytical expressions 

for investigating the properties of small mechanisms. 

   The kinematic indeterminacy of linkage is computed using the mobility rule (Guest 

and Fowler, 2005; Schulze et al., 2014) for body-hinge mechanisms, or using the extended 

Maxwell’s rule (Fowler and Guest, 2000) for frames. However, for precise evaluation of 
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kinematic indeterminacy, especially for an overconstrained mechanism that has zero or 

negative kinematic indeterminacy derived from the above rules, the rank of compatibility 

matrix should be computed (Kangwai and Guest, 1999; Liu et al., 2013). 

In this paper, we extend our method based on linear programming problem to allow 

a hinge rotating about an axis in arbitrarily inclined direction from the local coordinates. 

A limit analysis problem with quadratic yield functions with respect to member-end 

moments and axial force are solved to generate a partially rigid frame with revolute joints. 

The directions of hinges are obtained theoretically from the optimality conditions. If 

extension exists in a member, the member is removed from the frame. The kinematic 

indeterminacy is defined based on the rank deficiency of the matrix defining equilibrium 

conditions including the hinge directions. It is shown in numerical examples that 3-

dimensional finite mechanisms can be found after carrying out large-deformation analysis 

and adding some torsional hinges, if necessary, to the infinitesimal mechanism obtained 

by solving the quadratic programming problem. 

 

2. Outline of method and definition of variables 

We consider a linkage consisting of frame members. Although our purpose is to present 

a method for designing linkage mechanisms, the structure is first modeled as a rigidly-

jointed frame that can have perfectly elastoplastic hinges at member-ends. A limit 

analysis problem based on the lower-bound theorem is solved to find the locations and 

directions of plastic hinges (Shames and Cozzarelli, 1997). The fully-plastic moment 

should be applied for rotating members around a plastic hinge. However, we simply 

replace the plastic hinges by revolute joints of a linkage mechanism rotating without 

external load. If extension exists in a member, the member is removed from the frame. 

This way, the plastic collapse mechanism obtained by solving the limit analysis problem 

turns out to be the infinitesimal mechanism of a linkage (Ohsaki et al., 2014). Large-

deformation analysis is carried out to add more hinges, if necessary, to obtain a finite 

mechanism. 

The local member coordinates are defined as shown in Fig. 1(a). The two nodes 

(member-ends) of member k  are denoted by a and b. Axis 1 is directed from node a to 
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node b, and axes 2 and 3 are the principal axes of the cross-section. The global coordinates 

are denoted by ( , , )x y z . 
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Figure 1:  Definition of member coordinates and independent member-end forces;  

(a) local and global coordinates, (b) six independent member-end forces.  

 

The member-end forces are defined as shown in Fig. 1(b). Let ( )kN and ( )kT  denote 

the axial force and torsional moment, respectively, of member k . We assume no load is 

distributed along the member. The axial forces at nodes a and b satisfy the equilibrium 

condition; therefore, the forces in the direction of axis 1 at nodes a and b have the same 

magnitude and the opposite directions. Similarly, the torsional moments at nodes a and b 

have the same magnitude and the opposite directions. The bending moments around axes 

2 and 3, respectively, at node { , }i a b  of member k  are denoted by ( )
2
k

iM  and  

( )
3
k

iM . The member-end shear forces in the directions of axes 2 and 3 are eliminated, as 

functions of bending moments, using the equilibrium equations as described in Appendix 
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A1. Accordingly, each member has six independent components of member-end forces 

as shown in Fig. 1(b).  

Let 1 6( , , )T
mf ff   denote the vector of member-end forces of m  members; i.e., 

each component of f  corresponds to ( )kN , ( )
2
k

aM , ( )
3
k

aM , ( )
2
k

bM , ( )
3
k

bM , or ( )kT  

( 1,2, , )k m  . The nodal load vector is denoted by 1( , , )T
np pp  , where n is the 

number of degrees of freedom (DOFs) after removing the fixed DOFs. The equilibrium 

matrix is given as 1 6( , , )mH h h , where ih  is defined using the direction cosines of 

the local axes and member length. H  is obtained by assembling matrices in Eq. (A2) in 

Appendix of all members, which are transformed to global coordinates. Then the 

equilibrium equation is written as follows: 

Hf p      (1) 

The generalized member-end strain vector is denoted by 1 6( , , )T
mc cc  ; i.e., ic  

corresponds to member extension and member-end rotations around axes 1, 2, 3, 

respectively, if if  is axial force, torsional moment, and bending moments around axes 

2 and 3. The vector c  is related to the nodal displacement vector 1( , , )T
nu uu   

through the compatibility matrix 1 6( , , )T T
mH h h  as  

Tc H u     (2) 

 

3. Quadratic programming problem for generating linkage mechanism 

Fig. 2 shows an example of planar mechanism, where a filled circle denotes a rotational 

hinge. By removing two members and adding four hinges, node B moves upward as a 

result of leftward displacement of node A.  

       

(a)                   (b) 

Figure 2:  An example of planar mechanism; (a) initial frame, (b) deformation of 

mechanism. 
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Since a member-end force is related to one of the components of f , it is regarded as 

a function of f  as ( ) ( )kN f , ( )
2 ( )k

aM f , ( )
3 ( )k

aM f , ( )
2 ( )k

bM f , ( )
3 ( )k

bM f , or ( ) ( )kT f . To 

generate a mechanism that undergoes a desired deformation by solving a limit analysis 

problem, input loads are applied at the nodes in the direction of forced deformation, while 

output loads are applied at the nodes that move in the desired directions. The load vectors 

that have nonzero values in the components corresponding to the input and output DOFs, 

respectively, and 0 in other components are denoted by inp  and outp . 

To formulate a plastic limit analysis problem with quadratic yield functions for 

generating linkage mechanisms, we assign yield functions for member-end moments and 

axial force, respectively. Upper bounds representing squares of yield axial force and fully 

plastic moment, respectively, are given for the square of axial force and the sum of 

squares of three components of moments at each member-end. The optimization problem 

for maximizing the load coefficient in  corresponding to the input loads in the presence 

of output loads is formulated as follows: 

in

6

out in in
1

( ) 2 ( ) 2 ( ) 2
2 3 m

( ) 2
f

maximize  

subject to  

                 ( ( )) ( ( )) ( ( )) ,

( 1, , ; { , })

                 ( ( )) , ( 1, , )

m

i i
i

k k k
j j

k

f

T M M w

k m j a b

N w k m











 

  

 

 

 h p p

f f f

f




　                         

  (3) 

where mw  and fw  are the weight coefficients for moment and axial force, respectively, 

and   is a scaling parameter. Note that our purpose is to generate a mechanism by 

solving a limit analysis problem. Therefore, the parameters may be artificial, and do not 

have to represent real properties of the frame. It should also be noted that problem (3) is 

formulated for the initial undeformed state of the frame; therefore, only infinitesimal 

mechanism with constant lengths of existing members can be obtained. However, based 

on our experience, addition of torsional hinges is very effective for converting an 

infinitesimal mechanism to a finite mechanism. 
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Let u , ( )k
j  ( { , })j a b , and ( )

0
k  denote the Lagrange multipliers for the first, 

second, and third constraints, respectively. The Lagrangian   of problem (3), which is 

converted to a minimization problem, is formulated as 

 

6

in out in in
1

( ) ( ) 2 ( ) 2 ( ) 2
2 3 m

1 { , }

( ) ( ) 2
0 f

1

  

        + ( ( )) ( ( )) ( ( ))

( ( ))

Tm

i i
i

m
k k k k

j j j
k j a b

m
k k

k

f

T M M w

N w

 

 

 



 



 
      

 

    

  



 



p p h u

f f f

f　  +

  (4) 

The following relations are obtained from the optimality conditions (KKT 

conditions): 

 Normalization of u : 

 

in

0






     in1 0T  p u      (5) 

 For if  corresponding to bending moment: 

( )
0

k
jpM





         

   
( ) ( )2 ( ) 0, ( 1, , ; { , }; 2,3)T k k

i jp jM k m j a b p     h u f   (6) 

 For if  corresponding to torsional moment: 

( )
0

kT





         

    
( ) ( ) ( )2 ( )( ) 0, ( 1, , )T k k k

i a bT k m     h u f     (7) 

 For if  corresponding to axial force: 

( )
0

kN





         

   
( ) ( )

02 ( ) 0, ( 1, , )T k k
i N k m   h u f      (8) 
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 Complementarity conditions: 

( ) 2 ( ) 2 ( ) 2 ( )
2 3 m

( )

[( ( )) ( ( )) ( ( )) ] 0,

                               0, ( 1, , ; { , })

k k k k
j j j

k
j

T M M w

k m j a b

 



   

  

f f f


  (9) 

( ) 2 ( ) ( )
f 0 0 [( ( )) ] 0, 0, ( 1, , )k k kN w k m     f     (10) 

Let ( )k
jp  denote the rotation angle of node j  ( { , })a b  about the local axis p  

( 1, 2,3)  of member k , which is a component of the hinge rotation vector. The torsional 

angle ( )
1

k  around axis 1 is defined as  

( ) ( ) ( )
1 1 1

k k k
b a         (11) 

From (2), (6), (7), and (11), we have 

 Bending: 

( ) ( ) ( )2 , ( 1, , ; { , }; 2,3)T k k k
i i jp jp jc M k m j a b p      h u    (12) 

 Torsion: 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 ( ),  ( 1, , )T k k k k k k

i i b a a bc T k m          h u   (13) 

Therefore, the directions of hinges ( )k
ar  and ( )k

br  at nodes a and b, respectively, of 

member k  are obtained as follows: 

( ) ( )
1

( ) ( ) ( ) ( )
2 2

( ) ( )
3 3

2

k k
a

k k k k
a a a a

k k
a a

T

M

M


 


   
   

    
   
   

r ,  

( ) ( )
1

( ) ( ) ( ) ( )
2 2

( ) ( )
3 3

2

k k
b

k k k k
b b b b

k k
b b

T

M

M


 


   
   

    
   
   

r   (14) 

i.e., the components of rotation vector at a member-end are proportional to the bending 

and torsional moments. 

   Note again that the parameters for limit analysis are artificial, and do not have to 

represent the real yield force or fully plastic moments. Furthermore, the plastic hinge and 

member-end moment do not have to be co-axial in the process of plastic limit analysis of 

a frame. However, it is important to confirm that the direction of the hinge is obtained 

from Eq. (14) to find the hinge direction of a mechanism. 
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This way, the direction of a hinge is obtained by solving the quadratic programming 

problem, and a mechanism with inclined hinges is generated. Note from (9) that ( )k
j  

vanishes and no hinge is generated, if the yield condition for the moments is not satisfied 

with equality. A member is to be removed if member extension exists, i.e., ( )
0 0k  . 

The following auxiliary quadratic programming problem is solved to find a lower 

bound of the parameter   in a similar manner as Ohsaki et al. (2014): 

6

out
1

( ) 2 ( ) 2 ( ) 2
2 3 m

( ) 2
f

maximize  

subject to  

                 ( ( )) ( ( )) ( ( )) , ( 1, , ; { , })

                 ( ( )) , ( 1, , )

m

i i
i

k k k
j j

k

f

T M M w k m j a b

N w k m








    

 

 h p

f f f

f





 (15) 

Let ̂  denote the optimal objective value of problem (15). The member-end forces 

of the optimal solution are also denoted by a hat. Equilibrium equation is written as 

6

out
1

1 ˆ
ˆ

m

i i
i

f
 

 h p      (16) 

which leads to an obvious relation that the member-end forces for outp  are ˆ1/   of 

those for out̂p . Since the left-hand-sides of the inequality constraints of problem (15) 

are increasing functions of the member-end forces, some of the inequality constraints are 

satisfied with equality at the optimal solution. Let mK  and fK  denote the sets of such 

constraints for moments and axial forces, respectively, i.e., 

( ) 2 ( ) 2 ( ) 2
2 3 m m

( ) 2
f f

ˆ ˆ ˆˆ ˆ ˆ( ( )) ( ( )) ( ( )) , ( ; { , })

ˆˆ( ( )) , ( )

k k k
j j

k

T M M w k K j a b

N w k K

    

 

f f f

f
  (17) 

We denote the member-end forces for outp  by a tilde, i.e., ˆˆ(1/ )f f . Then, the 

following relations hold: 
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( ) 2 ( ) 2 ( ) 2
2 3 m m2

( ) 2
f f2

1
( ( )) ( ( )) ( ( )) , ( ; { , })

ˆ

1
( ( )) , ( )

ˆ

k k k
j j

k

T M M w k K j a b

N w k K





    

 

f f f

f

    


  (18) 

Therefore, if 2ˆ1/   is assigned in problem (3) without input loads, i.e., in 0  , 

then the member-end forces f  satisfy the inequality constraints in the sets mK  and fK  

of problem (3) with equality. Hence, 2ˆ1/   ensures existence of a feasible solution 

in problem (3). This way, a conservative lower bound of   is obtained as L 2ˆ1 /  , 

which means that a feasible solution of problem (3) may exist even for   that is less 

than L , if the absolute values of left-hand-sides of all constraints in mK  and fK  

decrease as in  is increased from 0. 

By solving the limit analysis problem (3), a collapse mechanism is obtained; 

therefore, a linkage mechanism can be obtained by replacing a plastic hinge by a revolute 

joint. Since the mechanism considered here is a bar-and-joint system, the degree of 

kinematic indeterminacy is computed using the standard approach for bar-and-joint 

systems, rather than the mobility rule of linkage.  

Let m̂  denote the number of members after removing those with nonzero 

extensional strain in the solution of problem (3). The number of joints including the 

supports after removing the unnecessary members, the number of constrained DOFs at 

supports, and the number of released DOFs, which is equal to the number of hinges are 

denoted by ĵ , k, and d, respectively. Then, the degree of kinematic indeterminacy of 

mechanism, denoted by q, is calculated as 

ˆ ˆ6 6q j m d k        (19) 

   Alternatively, the degree of kinematic indeterminacy can be computed using the rank 

of the equilibrium matrix. Suppose H  represents the equilibrium matrix after removing 

the rows corresponding to the fixed DOFs and the columns corresponding to the member-

end forces and moments of non-existing members, which are also removed from the 

member-end force vector f . For an inclined hinge in the direction of ( )k
ar  at node a of 
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member k, the condition for the corresponding vector of member-end moments ( )k
af  is 

written as 

( ) ( ) 0k T k
a a r f     (20) 

A similar relation can be formulated for node b. The conditions (20) for all hinges are 

assembled as T R f 0 , which leads to the equilibrium equations of the structure with 

hinges as 

Gf 0      (21) 

where  

 
  
 

H
G

R
    (22) 

Let rg  and cg  denote the numbers of rows and columns, respectively, of matrix G . 

The rank r  of the rectangular matrix G  is computed by carrying out singular value 

decomposition. The degrees of statical indeterminacy and kinematic indeterminacy are 

obtained from cg r  and rg r , respectively. 

4. Numerical examples 

Mechanisms with inclined joints are generated to demonstrate the validity of the proposed 

method. In the following examples, the units of force and length are N and m, respectively, 

which are not written explicitly, because the size of frame model can be scaled arbitrarily, 

and no force is needed for deformation of a linkage mechanism. The optimization library 

SNOPT Ver. 7.2 (Gill et al., 2002) is used for solving the quadratic programming problem. 

Singular value decomposition of matrix G  is carried out using MATLAB R2013a 

(MathWorks, 2013) 

Since only small deformation is considered in the process of generating a mechanism 

by solving the optimization problem (3), ABAQUS Ver. 6.13 (Dassault Systèmes, 2014) 

is used for investigating the properties in large-deformation range. Geometrically 

nonlinear pseudo-static analysis is carried out by increasing the path parameter t, which 

represents an input displacement component of each model, from 0 to 1 corresponding to 

initial and final configurations, respectively. The material is steel with Young’s modulus 
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200 GPa, and each member is divided into two beam elements. The zero-length element 

called CONN3D2 is used with hinge property representing the revolute joint. The units 

of force and length are shown in the results of geometrically nonlinear analysis. 

 

Model 1 

We first consider a simple four-bar model as shown in Fig. 3(a), where the numbers with 

and without parentheses are member and node numbers, respectively. Each member has 

the unit length. All translational and rotational displacement components except z-

directional displacement are constrained at node 1, and z-directional displacement is 

constrained at nodes 2, 3, 4, and 5.  

 

         

(a)                     (b) 

Figure 3:  A simple four-bar model (Model 1): (a) plan view and node/member 

numbers, (b) diagonal view and input/output loads. 

A mechanism is obtained so that the output nodes 3 and 5 move to left and right, 

respectively, as a result of pulling the input node 1 in z-direction. For this purpose, the 

input load is given at node 1, and the output loads are applied at nodes 3 and 5, as shown 

in Fig. 3(b). The weight coefficients mw  and fw  are 10.0 and 1000.0, respectively. A 

large value is given for fw , because member removal is not necessary for this model. 

The problem (15) is solved to find the load factor ˆ 3.1622  ; i.e., 

L 21/ (3.1622) 0.1000   . 

Optimization problem (3) is solved to find the hinge locations as indicated with thick 

lines in Fig. 4(a). Suppose the local axis 1 is directed from the center node (node 1) for 

3

4
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y
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(4)

(3)

(2)
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4
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5
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out 1.0p =
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all members. The hinges of members 2 and 4 at node 1 are inclined as shown in Fig. 4(b) 

and (c), while those of members 1 and 3 are directed to axis 2 as shown in Fig. 4(c).  

 

 

(a) 

1

2

3
(2)

a2θ

(2)

a3θ

        

(b)                                (c) 

Figure 4:  Locations and directions of hinges of Model 1; (a) hinge locations, (b) 

direction of hinges of members 2 and 4, (c) direction of hinges of members 1 and 3. 

The degree of inclination varies with the parameter  . The values of (2)
2aM , (2)

3aM , 

(2)
2a , and (2)

3a  for 0.2  , 0.4, and 0.6 are listed in Table 1. The value of (2)T  is 

omitted, because it vanishes for all cases. Note that (2)
2aM  and (2)

3aM  are obtained 

directly from the optimal values of variables, and (2)
2a  and (2)

3a  are computed from the 

nodal displacements u , which are obtained as the Lagrange multipliers, and the 

compatibility equations (2). It is confirmed that (2) (2) (2) (2)
3 2 3 2/ /a a a aM M    is satisfied so 

that the axis of rotation of the hinge coincides with the axis of bending moment of the 

plastic hinge. 
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4
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1
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y
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(4)

(3)

(2)

1

2
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Table 1:  Values of (2)
2aM , (2)

3aM , (2)
2a , and (2)

3a  for 0.2  , 0.4, and 0.6  

of Model 1. 

  (2)
2aM  (2)

3aM  (2)
2a  (2)

3a  

0.2 1.00000 1.00000 1.00000 .00000 
0.4 1.73205 1.00000 1.00000 0.57735 
0.6 2.23607 1.00000 1.00000 0.44721 

 

The values of m̂  and ĵ  are 4 and 5, respectively. One DOF is constrained at each 

of supports 2and five DOFs are constrained at node 1, i.e., 9k  . Four DOFs are 

released around node 1, i.e., 4d  . Therefore, the value of q  obtained from Eq. (19) 

is 6 5 6 4 4 9 1      . The values of rg , cg , and r  are 25, 24, and 24, 

respectively; i.e., the structure has single-degree kinematic indeterminacy. 

 

(3)

(4)

(2)

(1)

                         

t = 0.0    t = 0.6    t = 0.85 

(a) 

(3)

(4)

(2)

(1)

                     

t = 0.0    t = 0.6    t = 0.85 

 (b)  

Figure 5:  Deformation process of Model 1 ( 0.4  ); (a) diagonal view, (b) top view. 
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Large-deformation analysis is carried out using ABAQUS. Each member has pipe 

cross-section with radius 50 mm and thickness 2 mm. In this example, the value of t 

corresponds to the z-directional displacement at node 1, which is regarded as the input 

displacement. The deformation process for 0.4   is shown in Fig. 5. It is seen from 

Fig. 5(b) that members 2 and 4 rotate about node 1. 

The relation between the input displacement t and the z-directional reaction force at 

node 1 is plotted in Fig. 6. The solid, dotted, and chained lines correspond to 0.2  , 

0.4, and 0.6, respectively. It is seen from the figure that no force is needed until the input 

displacement t, which is equal to the height of node 1, reaches the values 0.707, 0.866, 

and 0.913, respectively, for 0.2  , 0.4, and 0.6. 

Let   denote the angle of the hinge direction vector from the x-axis at node 1 of 

member 2, e.g., for 0.2  , tan 1.0 /1.0 1.0    leads to / 4  . We can see that 

member 2 exist in xz-plane when cos 0.707t   , because the length of member 2 is 

1.0. Therefore, node 3 should be released from xy-plane when t  is increased further 

from 0.707. Since we assume elastic material for the members, the reaction force becomes 

nonzero as t approaches 1 as seen in Fig. 6. 
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Figure 6:  Relation between z-directional input displacement at node 1 and 

corresponding reaction force of Model 1; solid line: 0.2  , dotted line: 0.4  , 

chained line: 0.6  . 
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The relation between t and the x-directional displacement at node 5, which is regarded 

as the output displacement, is plotted in Fig. 7. The solid, dotted, and chained lines 

correspond to 0.2  , 0.4, and 0.6, respectively. It is seen from the figure that the output 

displacement increases as members 2 and 4 rotate around node 1; however, it decreases 

as four members become close to the vertical axis. The maximum output displacements 

are calculated as sin , which are 0.707, 0.500, and 0.408 for 0.2  , 0.4, and 0.6, 

respectively. The model for 0.2   has the largest output displacement, because the 

direction of the hinge axis is closest to z-direction among three cases. 
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Figure 7:  Relation between z-directional input displacement at node 1 and  

x-directional output displacement at node 5 of Model 1; solid line: 0.2  , dotted line: 

0.4  , chained line: 0.6  . 

Model 2 

We next consider a square grid with unit member length as shown in Fig. 8. Nodes 2 and 

4 are supported in y- and z-directions, and nodes 3 and 5 are supported in x- and z-

directions. The weight coefficients mw  and fw  are 10.0 and 1000.0, respectively, also 

for this model. A mechanism is generated so that the output nodes 69 move in z-direction 

as a result of pulling the input node 1 in negative z-direction. Problem (15) is solved to 

find the load factor ˆ 8.6395  ; therefore, L 21/ (8.6395) 0.01340   . 
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Figure 8:  A simple square-grid model (Model 2): (a) plan view and node/member 

numbers , (b) diagonal view and input/output loads. 

 

The input and output loads are applied at the input and output nodes, respectively, to 

solve problem (3) for 0.1  . However, we found that the number of hinges is too 

small, if problem (3) is simply solved. Therefore, the z-coordinate of node 1 is decreased 

by 0.01 and the z-coordinates of nodes 69 are increased by 0.01 to generate the hinges 

as indicated with thick lines in Fig. 9(a). The directions of hinges in global coordinates at 

the connections of member 5 to nodes 2 and 6 (nodes a and b of member 5) are listed in 

Table 2. As seen from the table, various hinge directions are obtained by varying the 

parameter  . 

 

Table 2:  Directions of hinges in global coordinate system at the connection of member 

5 to nodes 2 and 6 of Model 2.  

  Node 2 (node a of member 5) Node 6 (node b of member 5) 
x y Z x y Z 

0.1 0.91137 0.41137 0.01336 0.41137 0.41137 0.81336 
0.2 1.20711 0.70711 0.20711 0.70711 0.70711 1.00000 
0.3 1.36603 0.86603 0.61966 0.86603 0.86603 1.22474 

 

Large-deformation analysis is carried out using ABAQUS. Each member has pipe 

cross-section with radius 50 mm and thickness 2 mm. Relation between negative z-

directional input displacement at node 1 and corresponding reaction force is plotted in 

Fig. 10, which indicates that this mechanism is not a finite mechanism. Therefore, we 
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added eight torsional hinges as indicated with × in Fig. 9(b) to generate a finite 

mechanism. Note that a torsional hinges can be placed at anywhere along the member 

with the same effect.  

 

       

(a)                               (b) 

Figure 9:  Locations of hinges of Model 2; (a) infinitesimal mechanism obtained by 

solving problem (3), (b) finite mechanism after adding eight torsional hinges. 
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Figure 10:  Relation between z-directional input displacement at node 1 and 

corresponding reaction force of Model 2 ( 0.1  ) before adding torsional hinges. 

 

The deformation process is shown in Fig. 11 for 0.1  . Nodes 69 move to the 

center and contact with each other at 0.85t  . The values of m̂  and ĵ  are 12 and 9, 

respectively. Two DOFs are constrained at each of supports 2i.e., 8k  , and 24 

DOFs are released, i.e., 24d  . Therefore, the value of q  obtained from Eq. (19) is 
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6 9 6 12 24 8 2       , which means that the mechanism is overconstrained. To 

investigate more details, singular value decomposition is carried out for G  to find that 

the values of rg , cg , and r  are 62, 72, and 61, respectively; i.e., the structure has 11 

statical indeterminacy and single-degree kinematic indeterminacy.  

Note that the hinges at nodes 69 are inclined in diagonal directions. The number of 

hinges is 24, while 28 hinges are needed in the previous results by Ohsaki et al. (2014), 

where only the hinges in the directions of local axes are allowed.  

 

                 

t = 0.0                 t = 0.25                         t = 0.41 

         

t = 0.61                    t = 0.85 

Figure 11:  Deformation process of finite mechanism of Model 2 ( 0.1  ). 

 

Model 3 

Finally, we consider a 3-dimensional model as shown in Fig. 12. Nodal coordinates are 

listed in Table 3. Displacements are fixed in x- and z-directions at nodes 1 and 2, in x-

direction at node 3, and in y-direction at node 7. The connectivities of 24 members are 

listed in Table 4. 
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Figure 12:  Diagonal view of a 3-dimensional model (Model 3). 

 

Table 3:  Nodal coordinates of Model 3. 

Node X y z 
1 4.0 1.0 0.5 
2 4.0 1.0 0.5 
3 4.0 0.0 0.5 
4 2.0 1.0 0.5 
5 2.0 1.0 0.5 
6 2.0 0.0 0.5 
7 0.0 0.0 0.0 
8 3.0 0.0 0.5 
9 3.0 0.5 0.0 
10 3.0 0.5 0.0 

 

Table 4:  Connectivities of members of Model 3. 

Member Node a Node b Member Node a Node b 
1 1 2 13 1 8 
2 2 3 14 2 8 
3 1 3 15 4 8 
4 1 4 16 5 8 
5 2 5 17 2 9 
6 3 6 18 3 9 
7 4 5 19 5 9 
8 5 6 20 6 9 
9 4 6 21 1 10 
10 4 7 22 3 10 
11 5 7 23 4 10 
12 6 7 24 6 10 

 

A mechanism is generated so that the output node 7 moves in negative z-direction as a 

result of moving nodes 1 and 2 in positive and negative y-directions, respectively; i.e., the 

distance between nodes 1 and 2 is decreased. The weight coefficients mw  and fw  are 
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10.0 and 1.0, respectively. A small value is given for fw , because member removal is 

necessary for this model. Problem (15) is solved to find the load factor ˆ 3.1574  ; i.e., 

L 21/ (3.1574) 0.1003   . 

The input and output loads are applied to solve problem (3) for 0.2  . From the 

Lagrange multipliers at the optimal solution, it is found that members 1, 4, 5, 6, 13, and 

14 are to be removed. As a result, members 15 and 16 are removed, because they have no 

effect on stiffness of the structure. The remaining members are shown in Fig. 13, where 

the dotted lines with numbers in parentheses are the removed members. Members 2, 3, 

17, 18, 21, and 22, connecting nodes (2,3), (1,3), (2,9), (3,9), (1,10), and (3,10), 

respectively, have hinges at both member ends. The hinge directions in global coordinates 

are listed in Table 5. 
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Figure 13:  Remaining members of Model 3 after solving problem (3); dotted lines 

with numbers in parentheses: removed members. 

 

Table 5:  Hinge directions in global coordinates of Model 3. 

Member Node X y z 

2 
2 0.20114 0.08385 0.39053 
3 0.11373 0.17126 0.39716 

3 
1 0.20114 0.08385 0.39053 
3 0.11373 0.17126 0.39716 

17 
2 0.00228 0.39570 0.20838 
9 0.01829 0.39976 0.19964 

18 
3 0.33734 0.13130 0.26261 
9 0.44373 0.02491 0.04982 

21 
1 0.00228 0.39570 0.20838 

10 0.01829 0.39976 0.19964 

22 
3 0.33734 0.13130 0.26261 

10 0.44373 0.02491 0.04982 
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Large-deformation analysis is carried out using ABAQUS. Each member has pipe 

cross-section with radius 10 mm and thickness 1 mm. Forced displacements of 0.4 m and 

0.4 m in x-direction are given at nodes 1 and 2, respectively, while the path-parameter t 

is increased from 0 to 1. Deformation at t = 0.0, 0.3, 0.5, and 1.0, when the output 

displacement is 0.0, 0.3182, 0.4710, and 0.7151, respectively, are shown in Fig. 14. 

 

    

t = 0                    t = 0.3 

    

t = 0.5                    t = 1.0 

Figure 14:  Deformation process of Model 3. 

 

The linkage mechanism obtained by solving problem (3) has 9 nodes and 16 

members, i.e., ˆ 16m  , ˆ 9j  . Two DOFs are constrained at nodes 1 and 2, and one DOF 

is constrained at nodes 3 and 7i.e., 6k  , and 12 DOFs are released, i.e., 12d  . 

Therefore, the value of q  obtained from Eq. (19) is 6 9 6 16 12 6 36       . 

However, the rigid part consisting of 10 members 712, 19, 20, 23, and 24 can be replaced 

by rigidly connected two members between nodes 7 and 9 as well as nodes 7 and 10. 

Therefore, the value of q  reduces to 0. However, we found from singular value 

decomposition that the values of rg , cg , and r  are 60, 90, and 59, respectively; i.e., 

the structure has 31 statical indeterminacy and single-degree kinematic indeterminacy. 
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Figure 15:  Simplified mechanism of Model 3; numbers in parentheses: remaining 

members. 
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Figure 16:  Kinematic chain of simplified mechanism of Model 3; (a) 3-dimensional 

model (revolute joints in members 3, 21, and 22 connnecting nodes (1,3), (1,10), and 

(3,10), respectively, are not shown); (b) graphical representation; ‘P’: triangular plate, 

‘W’: wall containing nodes 1, 2, and 3; Cy and Cz: cylindrical joints along y- and z-

axes, respectively; line without any notation: revolute joint; numbers with and without 

parentheses: member numbers and node numbers, respectively. 

 

We replace the rigid part consisting of nodes 7, 9, and 10 by a rigid triangular plate 

defined by nodes 7, 9, and 10 as shown in Fig. 15. Suppose nodes 1, 2, and 3 are attached 

to a wall through cylindrical joints to restrict rigid-body motions. The 3-dimensional 

model of the kinematic chain associate with this mechanism is shown in Fig. 16(a), where 

the revolute joints in members 3 and 21 connnecting nodes (1,3) and (1,10), respectively, 



24 

 

are not shown for clarity of presentation. The graphical representation is drawn in Fig. 

16(b), where ‘P’ is the triangular plate, ‘W’ is the wall containing nodes 1, 2, and 3, and 

Cy and Cz are the cylindrical joints along y- and z-axes, respectively. The line without 

any notation represents a revolute joint. The numbers with and without parentheses are 

member numbers and node numbers, respectively. 

 

5. Conclusions 

A new method has been presented for generating a mechanism by solving a quadratic 

programming problem. The following conclusions are obtained from this study: 

1. A mechanism with hinges in arbitrarily inclined directions can be found by solving a 

quadratic programming problem. The problem is regarded as a limit analysis problem 

with quadratic yield functions of the member-end moments and axial force. The 

plastic hinge is regarded as a revolute joint in a linkage mechanism. A member is 

removed if the yield condition for member force is satisfied with equality. This way, 

a frame with partially released joints with small numbers of hinges and members can 

be obtained. 

2. The hinge directions are obtained from the optimality conditions of the quadratic 

programming problem. Since the lower bound theorem is used, the variables are 

member-end moments and axial force. The nodal displacements and generalized 

strains including the hinge rotation and member extension are obtained as the 

Lagrange multipliers at the optimal solution. It is theoretically derived from the 

optimality conditions that the components of a hinge direction vector are proportional 

to the member-end moments and the magnitude of rotation is equal to the value of 

the generalized strain.  

3. Since only small deformation is considered in the problem formulation, large 

deformation analysis should be carried out to add some hinges, if necessary, to 

generate a finite mechanism. By allowing inclined hinges, the number of hinges can 

be reduced from the results of the previous study, where only the hinges around the 

local axes are allowed.  
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Appendix 

A1. Derivation of equilibrium matrix 

The shear forces in the directions of local coordinates 2 and 3 at member-end a  of 

member k  are defined as ( )
2
k

aQ  and ( )
3
k

aQ , respectively, as shown in Fig. A1. The shear 

forces ( )
2
k

bQ  and ( )
3
k

bQ  at member-end b  are defined similarly. 

   Let ( )kL  denote the length of member k . From equilibrium conditions of the 

member, the following equations are to be satisfied: 

( ) ( )
2 2

( ) ( )
3 3

( ) ( ) ( ) ( )
2 3 3

( ) ( ) ( ) ( )
3 2 2
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Figure A1:  Definition of member-end shear forces. 



28 

 

 

Let ( )k
aip  denote the nodal load at node a  in the direction of local coordinate i  of 

member k . The moments about the axis of local coordinate i  is denoted by ( )k
aim . The 

loads ( )k
bip  and moments ( )k

bim  at node b  are defined similarly. From Eq. (A1), the 

shear forces ( )
2
k

aQ , ( )
2
k

bQ , ( )
3
k

aQ , and ( )
3
k

bQ  are expressed in terms of ( )
2
k

aM , ( )
2
k

bM , ( )
3
k

aM , 

and ( )
3
k

bM , and the following equilibrium equation is derived: 
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  (A2) 

which is written in a matrix-vector form as 

( ) ( ) ( )k k kp H f      (A3) 

Eq. (A3) is transformed to the global coordinates, and assembled to derive the 

equilibrium equation (1). 


