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1 Introduction

The gauge/gravity correspondence is a fascinating topic in the study of string theory. A

certain class of it preserving a conformal symmetry, in which a string theory is defined

on an anti-de Sitter (AdS) space and its dual is a conformal field theory (CFT), is called

the AdS/CFT correspondence [1–3]. A prototypical example is a duality between type IIB

string theory on the AdS5×S5 background and the four-dimensional N = 4 SU(Nc) super

Yang-Mills theory in the large Nc limit. Remarkably, the integrability structure exists be-

hind it and hence one can check the conjectured relations in a rigorous way by employing

various integrability techniques (For a big review, see [4]). In particular, the AdS5×S5

superstring is classically integrable in the sense of kinematical integrability [5]. The inte-

grability exposed in this case is, however, rarely exceptional and such a good property is

not equipped with general examples of the AdS/CFT (or gauge/gravity) correspondence.

Holographic interpretations in the gauge/gravity correspondence are usually concerned

with curved string backgrounds and hence classical motions of a string are described by

non-linear equations. But most of the non-linear equations are not integrable and therefore

the behavior of classical string solutions should become chaotic. More intriguingly, the

holographic counterpart of chaotic strings should exist on the gauge-theory side as well,

but it has not been clarified yet. If it has been done, then one could open up a new frontier

in the study of the gauge/gravity correspondence.
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A well-studied example of non-integrable backgrounds is AdS5 × T 1,1 [6], where T 1,1

is a five-dimensional Sasaki-Einstein space [7].1 Chaotic string solutions were found

in [11, 12] by computing Poincaré sections. The chaotic behavior remains even in a near-

Penrose limit [13]. Similar studies have been done for many backgrounds in the preceding

works [14–24].

Similarly, chaotic motions of D0-branes can also be studied as well as classical strings.

The D0-brane dynamics is described by a matrix model proposed by Banks, Fischler,

Shenker and Susskind (BFSS) [25]. Chaotic D0-branes in the BFSS matrix model were

studied in [26] by following a seminal paper on chaos in a classical Yang-Mills theory [27, 28].

In comparison to the BFSS case, a matrix model on a pp-wave background, which was

proposed by Berenstein, Maldacena and Nastase (BMN) [29], has a strong advantage that

there is no flat direction and all of the trajectories are definitely bounded. Classical chaos in

the BMN matrix model was shown in [30] by following [31]. The chaos at finite temperature

was also studied in [32, 33] in relation to the fast scrambler scenario [34]. A very recent

work [35] investigated chaotic motions of chiral condensates in a holographic QCD setup [35]

and displayed the dependence of Lyapunov exponent on the rank of gauge group Nc and

’t Hooft coupling λ.

A lot of achievements have been obtained for the chaotic behavior of strings and D-

branes as introduced above. Motivated by this progress, we are concerned here with an

application of Melnikov’s method [36] in the context of the gauge/gravity correspondence.

This method can show analytically the existence of chaos generated by a Smale horseshoe,

though its applicability is somewhat restricted. In this paper, we will present a string back-

ground to which Melnikov’s method is applicable. This is a brane-wave type deformation

of AdS5×S5 presented in [37]. By employing two reduction ansätze, we study two types of

coupled pendulum-oscillator systems. Then the Melnikov function is computed for each of

the systems in the standard way of Holmes and Marsden [38].

This paper is organized as follows. Section 2 gives a concise review of Melnikov’s

method and provides simple examples. In section 3, we introduce a brane-wave type defor-

mation of AdS5×S5, and study two ansätze. The associated Melnikov function is computed

for each of the cases. Section 4 is devoted to conclusion and discussion. In appendix A, the

definitions and useful identities of elliptic functions are summarized. Appendix B explains

a detailed computation of Melnikov function for a spinning string ansatz.

2 Melnikov’s method

In this section, we shall give a brief introduction of Melnikov’s method.2 This is an ana-

lytical method to argue the existence of classical chaos. The key ingredient in this method

is the so-called Melnikov function and its simple zero points are related to a discrete dy-

namical system, Smale’s horseshoe, which generates a certain class of chaos.

Let us concentrate on a continuous dynamical system composed of two particles which

has the Hamiltonian represented by a direct sum like H = H1(q1, p1) + H2(q2, p2). The

1The coset construction of T 1,1 has been completed with a supertrace operation [8–10].
2For a concise review, for example, see [39].
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Figure 1. A homoclinic orbit in the (q2, p2) phase space with a hyperbolic saddle point p and the

other two types of orbits. The concentric rings inside the homoclinic orbit describe oscillation while

the open trajectories outside it come from the infinity, surround the homoclinic orbit and go away

to the infinity again.

four-dimensional phase space is spanned by the coordinates qi (i = 1, 2) and the conjugate

momenta pi. We are concerned with evolution of qi and pi in time τ . It is also supposed

that H2 has a homoclinic orbit (figure 1) with a hyperbolic saddle point p. The existence

of the homoclinic orbit is surely crucial so as to apply Melnikov’s method. In other words,

this condition somewhat restricts the applicability of this method.

This system is integrable because the Hamiltonian is separable and one can solve

the equation of motion as a one dimensional Hamiltonian system. Then, once a certain

small perturbation is added to the integrable system, the integrability is broken and orbits

near the homoclinic one are likely to be chaotic (cf., KAM theorem [40–43]). When the

perturbation is turned on, the homoclinic orbit opens up in general as in figure 2, while

the saddle point survives up to a slight deviation of the location (i.e., the saddle is not

resolved but just moves a little bit). Then there still remain a stable manifold W s(p) and

an unstable one W u(p) which meats at the saddle point. The stable manifold is defined as

the set of points that get infinitely close to the saddle point by time evolution. Similarly,

the unstable manifold is the set of points getting closer to the saddle point by the inverse

evolution.3 In general, the two manifolds are separated after the system is perturbed, while

each of them is closed at the saddle point and forms a closed loop called a homoclinic orbit

(i.e., the degeneracy of the stable and unstable manifolds) in the non-perturbed system.

The idea of Melnikov’s method is to argue whether the stable manifold and the unstable

manifold have a point of transverse intersection, i.e., a transverse homoclinic point. When

the system is perturbed by a small interaction term εHint where ε is a small real parameter,

the orbits on these manifolds are expressed as perturbative expansions from the original

ones by an infinitesimal parameter ε. Then, one can define the separation between those

manifolds, which is proportional to the Melnikov function.

In particular, in the case that at least one transverse homoclinic point exists, a certain

class of chaos is generated by Smale’s horseshoe (see figure 3). The saddle point expands

small phase-space volume U around the saddle point p into long thin volume A along the

3For more rigorous definition, for example, see [44].
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(a) (b)

Figure 2. In the non-perturbed case (a), there is a homoclinic orbit, which is the degeneracy of the

stable and unstable manifolds around the saddle point p. In the perturbed case (b), the degeneracy

is resolved and the homoclinic orbit is broken up. Hence the stable and unstable manifolds are now

separated.

unstable manifold to p, W u(p), and its end tip reaches the stable manifold W s(p) at a

transverse homoclinic point q. Then the area B along the stable manifold is compressed

into a vicinity around the saddle point, U . This one cycle of process transforms U to a

U-shaped form, which looks like a horseshoe. To be more precise, two horizontal strips h1

and h2 in U which move to the intersections of A and B by successive Poincaré maps, are

mapped into two vertical strips v1 and v2 in U , as shown in figure 4. This is Smale’s horse-

shoe map. The Smale-Birkhoff homoclinic theorem states that this map has a hyperbolic

invariant set, which is a direct product of Cantor sets. By the repetition of this map, a

chaotic behavior appears near the saddle point and the transverse homoclinic points. If

the Melnikov function has a simple zero point, then the stable manifold and the unstable

manifold have a transverse intersection and the system exhibits chaos due to the above ar-

gument. Thus the criterion to determine whether chaos of Smale’s horseshoe type appears

or not is boiled down to a simple calculation of the Melnikov function.

In order to apply Melnikov’s method, it is convenient to transform a canonical pair,

say q1 and p1, into the action-angle variables I and Θ, while the others are kept so as

to preserve the homoclinic structure. Section 2.1 is devoted to the standard review of

Melnikov’s method. Some simple examples are presented in section 2.2. If the resulting

variables do not form a canonical pair, the Hamiltonian generally cannot be separated into

a direct sum, and hence Melnikov’s method has to be modified. Such a case often arises

in some studies of a string sigma model with an AdS-like geometry. This modification of

Melnikov’s method will be discussed in section 2.3.

2.1 Melnikov’s method in 4D systems — the standard case

First of all, we will briefly introduce the reduction method of a four-dimensional system with

qi (i = 1, 2) and the conjugate momenta pi to a two-dimensional system, as presented in [38].

The non-perturbed Hamiltonian H(0) is supposed to be a direct sum of two classically

– 4 –
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Figure 3. An illustrative explanation of Smale’s horseshoe in the phase space. This shows orbits

that used to be a homoclinic orbit now have an intersection, which is a transverse homoclinic point.

Due to the existence of the transverse homoclinic point, the yellow area U is mapped to the red area

A, and thereafter the blue area B is mapped to U . Note that these areas overlap with one another

and the colors in the overlapping regions are different from the original ones. The entire map is

regarded as a horseshoe map. A similar argument is applicable to the case with a heteroclinic orbit.

Figure 4. Smale’s horseshoe map. The horizontal and vertical axes indicate a stable and an

unstable manifold, respectively. The origin is a hyperbolic saddle point. The horizontal strips h1
and h2 are mapped onto the vertical strips v1 and v2. In the end, the initial square is transformed

to another square. These squares correspond to the region U in the phase space.

integrable systems like

H(0)(q1, p1, q2, p2) = H1(q1, p1) +H2(q2, p2)

and the interaction between them is turned on as a small perturbation εHint(q1, p1, q2, p2),

where ε is an infinitesimal real constant. That is, the total Hamiltonian H is given by

H(q1, p1, q2, p2) = H1(q1, p1) +H2(q2, p2) + εHint(q1, p1, q2, p2) . (2.1)

In the following, we assume that H1 is periodic in q1 and H2 has a homoclinic orbit. The

existence of the homoclinic orbit is crucial in Melnikov’s method.

Introducing the action-angle variables. It is convenient to transform q1 and p1 into

the angle-action variables Θ and I. Then the Hamiltonian H can be rewritten as

H(Θ, I, q2, p2) = H1(I) +H2(q2, p2) + εHint(Θ, I, q2, p2). (2.2)

– 5 –
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The Hamilton equations are given by

Θ̇ = ∂IH1 + ε ∂IHint , İ = −ε ∂ΘHint ,

q̇2 = ∂p2H2 + ε ∂p2Hint , ṗ2 = −∂q2H2 − ε ∂q2Hint , (2.3)

where the symbol “·” stands for the derivative with respect to τ . In addition, Hint is also

supposed to be periodic in Θ.

This dynamical system is essentially three-dimensional because the energy E is con-

served. Just for convenience, the unperturbed frequency is supposed to be positive, namely

Ω(I) = ∂IH1(I) > 0 .

When ε is sufficiently small, Θ becomes a monotonically increasing function from the first

equation in (2.3). Then, thanks to the τ -independence in the dynamical system, one can

set Θ as a new time for the system by deleting τ .

Reduction method. The next task is to reduce the remaining degree of freedom I. By

solving the energy conservation E = H(Θ, I, q2, p2), I is represented by

I = L(0)(q2, p2) + ε L(1)(q2, p2,Θ) +O(ε2) . (2.4)

Here L(0) and L(1) depend on E and hence these are also expressed as

L(0)(q2, p2) = H−1
1 (E −H2(q2, p2)) ,

L(1)(q2, p2,Θ) = −
Hint

(
Θ, L(0)(q2, p2), q2, p2

)
Ω
(
L(0)(q2, p2)

) . (2.5)

Then one can obtain a two-dimensional system which is composed of q2 and p2 with

“time” Θ:

q′2 = P (0) + ε P (1) +O(ε2) , p′2 = F (0) + ε F (1) +O(ε2) . (2.6)

Here the prime stands for the derivative with respect to Θ, and P (0), P (1), F (0) and F (1)

are given by, respectively,

P (0) =
1

Ω(L(0)(q2, p2))
∂p2H2(q2, p2) ,

P (1) =
∂p2Hint(Θ, L

(0), q2, p2)

Ω(L(0)(q2, p2))
−
[
∂IHint(Θ, L

(0), q2, p2) ,

+ Ω′(L(0)(q2, p2))L(1)(q2, p2,Θ)

]
∂p2H2(q2, p2)

Ω(L(0)(q2, p2))2
,

F (0) = − 1

Ω(L(0)(q2, p2))
∂q2H2(q2, p2) ,

F (1) = −∂q2Hint(Θ, L
(0), q2, p2)

Ω(L(0)(q2, p2))
+

[
∂IHint(Θ, L

(0), q2, p2) ,

+ Ω′(L(0)(q2, p2))L(1)(q2, p2,Θ)

]
∂q2H2(q2, p2)

Ω(L(0)(q2, p2))2
. (2.7)

Note that in the above computation we have used the expressions in (2.5) and the following

relations:

q′2 =
q̇2

Θ̇
, p′2 =

ṗ2

Θ̇
. (2.8)

– 6 –
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Melnikov’s method. We are now ready to introduce Melnikov’s method.

To explain the role of the Melnikov function in this method, we employ the Poincaré

map at Θ = Θ0 with a perturbation parameter ε by PΘ0
ε , where Θ0 is a value modulo the

period. By this Poincaré map, a point on a orbit at Θ0 is mapped to another on the orbit at

Θ0, modulo the period. Let us consider a small vicinity R around the transverse homoclinic

point on the orbit. This can be mapped to a neighborhood of the saddle point U by finite

numbers of forward or backward actions of PΘ0
ε . Since these forward and backward actions

can be connected at U and R, there is an integer N where (PΘ0
ε )N maps a point in U to

another in U itself. This is Smale’s horseshoe.

Therefore, what we have to do here is to show the existence of the transverse homoclinic

point. To verify the condition to ensure its existence, let us calculate a separation between

the stable and unstable manifolds passing through the saddle point, at Θ = Θ0. One can

express a solution of (2.6) on the stable manifold as

qs2(Θ,Θ0) = q
(0)
2 (Θ−Θ0) + ε q

s(1)
2 (Θ,Θ0) +O(ε2) ,

ps2(Θ,Θ0) = p
(0)
2 (Θ−Θ0) + ε p

s(1)
2 (Θ,Θ0) +O(ε2) (2.9)

for Θ0 ≤ Θ <∞, and on the unstable manifold as

qu2 (Θ,Θ0) = q
(0)
2 (Θ−Θ0) + ε q

u(1)
2 (Θ,Θ0) +O(ε2) ,

pu2(Θ,Θ0) = p
(0)
2 (Θ−Θ0) + ε p

u(1)
2 (Θ,Θ0) +O(ε2) (2.10)

for −∞ < Θ ≤ Θ0. Here the variables q
(0)
2 and p

(0)
2 describe a separatrix solution to (2.6)

at ε = 0. Also, let q
i(1)
2 and p

i(1)
2 lie on the normal to the unperturbed homoclinic orbit at

Θ0 for clarity. Then the separation at Θ0 can be defined as

d(Θ0) ≡ (−F (0), P (0)) · {(qu2 (Θ0,Θ0), pu2(Θ0,Θ0))− (qs2(Θ0,Θ0), ps2(Θ0,Θ0))}√
P (0) 2 + F (0) 2

= ε
P (0)(p

u(1)
2 (Θ0,Θ0)− ps(1)

2 (Θ0,Θ0))− F (0)(q
u(1)
2 (Θ0,Θ0)− qs(1)

2 (Θ0,Θ0))√
P (0) 2 + F (0) 2

+O(ε2) , (2.11)

where P (0) and F (0) are functionals of q
(0)
2 (Θ−Θ0) and p

(0)
2 (Θ−Θ0). This is the projection

to a vector (−F (0), P (0)) which is normal to the original homoclinic orbit (see figure 5),

i.e., this vector is orthogonal to (q
(0)
2
′, p

(0)
2
′) = (P (0), F (0)).

For convenience, let us introduce ∆i(Θ,Θ0) defined as

∆i(Θ,Θ0) ≡ P (0)p
i(1)
2 (Θ,Θ0)− F (0)q

i(1)
2 (Θ,Θ0) ,

where i = s and u. Then the derivative of ∆i(Θ,Θ0) is represented by

d

dΘ
∆i(Θ,Θ0) = P (0)F (1) − F (0)P (1) . (2.12)

– 7 –
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Figure 5. d(Θ0) is a distance between the stable and unstable manifolds.

Here P (1) and F (1) are functionals of q
(0)
2 (Θ−Θ0), p

(0)
2 (Θ−Θ0), and explicit Θ. Note that

we have utilized the following relations:

∂P (0)

∂q2
= −∂F

(0)

∂p2
,

q
i(1)′
2 =

∂P (0)

∂q2
q
i(1)
2 +

∂P (0)

∂p2
p
i(1)
2 + P (1) ,

p
i(1)′
2 =

∂F (0)

∂q2
q
i(1)
2 +

∂F (0)

∂p2
p
i(1)
2 + F (1) . (2.13)

By employing the numerator in (2.11) , let us define the Melnikov function as

M(Θ0)≡P (0) ·(pu(1)
2 (Θ0,Θ0)−ps(1)

2 (Θ0,Θ0))−F (0) ·(qu(1)
2 (Θ0,Θ0)−qs(1)

2 (Θ0,Θ0)). (2.14)

Hence, as far as the leading order is concerned, the separation d(Θ0) is proportional to the

Melnikov function like

d(Θ0) = ε
M(Θ0)√

P (0) 2 + F (0) 2
+O(ε2) . (2.15)

By using ∆i, the Melnikov function (2.14) can be rewritten as

M(Θ0) = ∆u(Θ0,Θ0)−∆s(Θ0,Θ0)

=

∫ Θ0

−∞
dΘ

d

dΘ
∆u(Θ,Θ0) +

∫ ∞
Θ0

dΘ
d

dΘ
∆s(Θ,Θ0)

=

∫ ∞
−∞
dΘ(P (0)F (1) − F (0)P (1))(q

(0)
2 (Θ−Θ0), p

(0)
2 (Θ−Θ0),Θ) . (2.16)

Here we have used the following relations:

∆s(∞,Θ0) = ∆u(−∞,Θ0) = 0 .

– 8 –
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Note that near the saddle point, the derivatives of q2 and p2 are equal to zero. Hence

P (0)|Θ=±∞ = F (0)|Θ=±∞ = 0 and the above equations follow.4

Now the argument of the Melnikov function (2.16) is given by Θ0. It is more useful to

rewrite the Melnikov function as a function of τ , rather than Θ. Let us define I(0) as the

initial value of I. Then the time τ can be expressed as

τ =
Θ

Ω(I(0))
+O(ε) .

Finally, the Melnikov function is represented by

M(τ0) =

∫ ∞
−∞
dτ

1

Ω(I(0))
{H2, Hint}2(q

(0)
2 (τ − τ0), p

(0)
2 (τ − τ0), I(0), τ) +O(ε) , (2.17)

where q
(0)
2 and p

(0)
2 have been redefined as functions of τ , and { , }2 is the Poisson bracket

defined with q2 and p2 like

{f, g}2 ≡ ∂q2f ∂p2g − ∂p2f ∂q2g . (2.18)

According to Melnikov’s method, the existence of simple zeros in M(τ0) means that this

system has a horseshoe for sufficiently small ε lying near the homoclinic orbit of (q2, p2) on

the energy surface H = E.

2.2 Examples of computing Melnikov functions

It would be helpful to see examples of computing the Melnikov functions. Let us show here

two examples: 1) a dynamical system composed of a coordinate variable q and its conjugate

momentum p with a time-dependent perturbation, 2) a four-dimensional dynamical system

composed of two coordinate variables q1, q2 and their conjugate momenta p1, p2 with a

time-independent perturbation. These examples are discussed in detail in [39] and [38],

respectively.

More precisely speaking, the first example is a three-dimensional dynamical system.5

This case has not been covered in the previous subsection, but the computation scheme

is almost the same. A central difference is that the reduction process is not necessary.

It would really be instructive to study this case and to capture the essential idea of the

Melnikov function.

1) A three-dimensional dynamical system. We consider a pendulum system with a

periodic external force described by the Hamiltonian,

H =
1

2
p2 − cos q − ε q cos τ , (2.19)

and it depends on time τ explicitly. Then the Hamilton equations are given by

q̇ = p , ṗ = − sin q + ε cos τ . (2.20)

4Note that the definition of Melnikov function follows from the existence of just two ingredients: a set

of two equations of motion as in (2.6) and a non-perturbed homoclinic solution.
5When the Hamiltonian depends explicitly on time, the time is regarded as an additional direction of

the phase space.

– 9 –
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Here ε is an infinitesimal constant. Note that these equations can be regarded as those of

reduced systems like (2.6) by replacing τ with Θ. This point is also concerned with the

footnote 5.

When the perturbation is turned off (i.e., ε = 0) and the energy E is set to 1, this

system exhibits a separatrix solution given by

q(0)(τ) = ±2 Arctan(sinh τ) , p(0)(τ) = ± 2

cosh τ
. (2.21)

The pendulum simply oscillates around the stable fixed point q = 0 below E = 1, while

the pendulum rotates all the way above E = 1.

Then by substituting the reduced equations (2.20) and the homoclinic solution (2.21)

into the formula (2.17) , the Melnikov function can be computed as

M(τ0) =

∫ ∞
−∞
dτ p(0)(τ − τ0) cos τ

=

∫ ∞
−∞
dτ

2 cos τ

cosh(τ − τ0)
=

2π cos τ0

cosh
(
π
2

) . (2.22)

It has nontrivial simple zeros at τ0 = π/2 + πl (l ∈ Z). Hence, when E is close to 1, the

pendulum behaves in a weird manner — it switches oscillation and rotation randomly. This

is nothing but the origin of chaotic motion. Melnikov’s method tells us that this chaotic

motion is generated by Smale’s horseshoe.

2) A four-dimensional dynamical system. As the second example, let us look at a

simple pendulum-oscillator system with a small perturbation. This is a four-dimensional

dynamical system composed of q1, q2 and the conjugate momenta p1 and p2. By taking

εHint = ε (q2 − q1)2/2 as a perturbation term, the perturbed Hamiltonian is given by

H =
1

2

(
p2

1 + ω2q2
1

)
+
p2

2

2
− cos q2 +

ε

2
(q2 − q1)2 . (2.23)

Here ε is an infinitesimal parameter again and ω is a frequency of the oscillator.

When the perturbation is turned off (i.e., ε = 0), the system is completely separable:

the one is a simple oscillator and the other is a pendulum. The variables of the oscillator

q1 and p1 can be transformed into the action and angle variables, I and Θ. Then the

Hamiltonian can be rewritten as

H = ωI +
p2

2

2
− cos q2 +

ε

2

(
q2 −

√
2I

ω
sin Θ

)2

. (2.24)

For the unperturbed system, the oscillation can be written as Θ = ωτ , and the separatrix

solution of the unperturbed subsystem with (q2, p2) is the same as in the previous.

When the perturbation is turned on, the pendulum and oscillator systems begin to

interact each other weakly, and the pendulum feels the motion of the oscillator through

the interaction term. This situation is quite similar to the dynamical system (2.20). Thus,

as in section 3.1, the reduction method leads to a two-dimensional dynamical system to

which Melnikov’s method can be applied.
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In the present case, one can straightforwardly employ the formula (2.17). By putting

Hint and H2 =
p22
2 − cos q2 into (2.17), the Melnikov function can be evaluated as

M(τ0) =
1

ω

∫ ∞
−∞
dτ p

(0)
2 (τ − τ0)

[√
2I(0)

ω
sinωτ − q(0)

2 (τ − τ0)

]

=
1

ω

∫ ∞
−∞
dτ

√
2I(0)

ω

2 sinωτ

cosh(τ − τ0)
=

√
2I(0)

ω

2π sinωτ0

cosh(πω2 )
. (2.25)

It is easy to see that the Melnikov function (2.25) has simple zeros at τ0 = πl/ω (l ∈ Z).

Hence this system also exhibits chaotic motions generated by Smale’s horseshoe.

2.3 Melnikov’s method — a non-direct sum case

So far, we have considered Melnikov’s method in the standard case. For later purpose,

however, we need to generalize it slightly. The method we discuss here is a generalization

of the reduction method in [38].

In this subsection, we are interested in the Melnikov function in more intricate dynam-

ical systems. In general, one of Hi’s may depend on the other one. Namely, we have in our

mind the Hamiltonian of the following type

H(qi, pi, τ) = H1(q1, p1, H2(q2, p2)) + εHint(qi, pi, τ) , (2.26)

where the entire Hint is supposed to be periodic in τ hereafter. Then a system composed of

q1 and p1 continues to feel a potential due to the energy of H2, even though the perturbation

is turned off, i.e., ε = 0. In such a system, one can formally change q1 and p1 to I and Θ

(keeping q2 and p2 unchanged) . But I and Θ fail to be a canonical pair.

The Hamilton equations are given by

q̇1 = ∂p1H1 + ε ∂p1Hint ,

ṗ1 = −∂q1H1 − ε ∂q1Hint ,

q̇2 = ∂H2H1∂p2H2 + ε ∂p2Hint ,

ṗ2 = −∂H2H1∂q2H2 − ε ∂q2Hint . (2.27)

Now we have to take account of an additional equation coming from the explicit time-

dependence of the Hamiltonian:

Ḣ(qi, pi, τ) = ε ∂τHint(qi, pi, τ) . (2.28)

For a moment, let us consider the case with ε = 0. Then the variables of the system

become separable. When we concentrate on H1 by setting H2 as a constant h, the action-

angle variables can be written as

I = I(q1, p1, h) , Θ = Θ(q1, p1, h) . (2.29)

Here I and Θ satisfy

∂q1I∂p1H1 − ∂p1I∂q1H1 = 0 , ∂q1Θ∂p1H1 − ∂p1Θ∂q1H1 = Ω(h) , (2.30)
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and inversely,

q1 = q1(I,Θ, h) , p1 = p1(I,Θ, h) . (2.31)

Let us return to the interacting case (ε 6= 0). By using the relations (2.29) and (2.31),

I and Θ can be used as new variables, instead of q1 and p1, even if ε is turned on. Although

the new variables are not canonical, one can still track their time evolution through

İ = ε (∂p1Hint ∂q1I − ∂q1Hint ∂p1I + (∂p2Hint ∂q2H2 − ∂q2Hint ∂p2H2) ∂H2I) ,

Θ̇ = Ω + ε (∂p1Hint ∂q1Θ− ∂q1Hint ∂p1Θ + (∂p2Hint ∂q2H2 − ∂q2Hint ∂p2H2) ∂H2Θ)

= Ω + εΩ(1)(qi, pi, τ) . (2.32)

In general, Ω depends on H2 and is assumed to be a positive constant. Furthermore,

suppose that a ratio of Ω and the period of Hint is rational for a reason explained later.

Then, τ can be expressed as

τ =
Θ

Ω
+O(ε)

and Hint is periodic in Θ to the leading order in ε. Since the τ -dependence appears only in

Hint, τ can be replaced by Θ/Ω as far as the quantities are computed up to the first order

of ε. When ε is sufficiently small, Θ̇ becomes positive; hence Θ may be regarded as a new

time coordinate for the system again.

Now it is a turn to reduce the degrees of freedom from qi, pi, τ,H to q2, p2, H.

Let us first remove τ in Hint by τ = Θ/Ω and the derivative with respect to τ by Θ̇ d
dΘ .

The next step is to rewrite functions of q1 and p1 in terms of I, Θ and H2. Namely, the

concerned quantities are rewritten as follows:

G1(H2(q2, p2), I,Θ) := ∂H2H1(q1, p1, H2(q2, p2)) ,

H̃int(q2, p2, I,Θ) := Hint(qi, pi, τ) +O(ε) ,

Gint,p(q2, p2, I,Θ) := ∂p2Hint(qi, pi, τ) +O(ε) ,

Gint,q(q2, p2, I,Θ) := ∂q2Hint(qi, pi, τ) +O(ε) ,

Gint,τ (q2, p2, I,Θ) := ∂τHint(qi, pi, τ) +O(ε) ,

Ω̃(q2, p2, I,Θ) := Ω(1)(qi, pi, τ) . (2.33)

Finally, one can eliminate I through the relation

I = L(0)(H2(q2, p2), H) + ε L(1)(q2, p2, H,Θ) +O(ε2) , (2.34)

with the help of the following implicit function:

H = H1(I,H2) + ε H̃int(q2, p2, I,Θ) +O(ε2) . (2.35)

The resulting expressions are given by

q′2 = P (0) + ε P (1) +O(ε2) , p′2 = F (0) + ε F (1) +O(ε2) ,

H ′ = ε
Gint,τ (q2, p2, L

(0),Θ)

Ω
+O(ε2) , (2.36)

– 12 –



J
H
E
P
0
9
(
2
0
1
6
)
1
0
3

where we have introduced the following quantities:

P (0) =
G1(H2, L

(0),Θ)

Ω
∂p2H2(q2, p2) ,

P (1) =
Gint,p(q2, p2, L

(0),Θ)

Ω
−
[
G1(H2, L

(0),Θ)

Ω2
Ω̃(q2, p2, L

(0),Θ)

− ∂IG1(H2, L
(0),Θ)

Ω
L(1)(q2, p2, H,Θ)

]
∂p2H2(q2, p2) ,

F (0) = −G1(H2, L
(0),Θ)

Ω
∂q2H2(q2, p2) ,

F (1) = −Gint,q(q2, p2, L
(0),Θ)

Ω
+

[
G1(H2, L

(0),Θ)

Ω2
Ω̃(q2, p2, L

(0),Θ)

− ∂IG1(H2, L
(0),Θ)

Ω
L(1)(q2, p2, H,Θ)

]
∂q2H2(q2, p2). (2.37)

Now three variables: q2, p2 and H are concerned with our analysis. Here there are some

comments. The first is that H is a slow variable compared to the other two. The second

is that P (1) and F (1) are periodic in Θ because the ratio of Ω and the period of Hint

has been taken to be rational. This periodicity is required in Melnikov’s method; hence

the rational condition has been supposed just below (2.32) . Finally when H satisfies

appropriate conditions, the reduced system (2.37) exhibits a horseshoe for sufficiently small

ε, as we will show below.

Because the energy H is not conserved, one needs to check whether the Poincaré map

would map a volume element on a surface with constant energy to the same surface or

another surface but close to the original. Let us assume that there is N where (PΘ0
ε )N has

a horseshoe. N is related to ε, and the limit ε→ 0 makes 1/N go zero. The average change

of energy by (PΘ0
ε )N is

∆H =

∫ πN

−πN
dΘH ′ =

∫ πN/Ω

−πN/Ω
dτ Ḣ , (2.38)

where the bar stands for the average over explicit Θ with the other variables fixed. The

integral over Θ is performed by all dependence of Θ including implicit one. It is sufficient

to evaluate this on the homoclinic orbit because the region where a horseshoe structure

appears is close to the homoclinic orbit for small ε. Now, we assume that, for a certain

value of H,

∆H = 0 with any N sufficiently large. (2.39)

Then, (PΘ0
ε )N maps the energy surface to itself to leading order in ε. This means that

there exists a map from a vicinity near the saddle point to itself under this condition.6

Before defining the Melnikov function in this case, one needs to remove the explicit

Θ-dependence in P (0) and F (0). Since H and H2 are nearly constant as far as the Poincaré

6There is another type of condition that is not used in this paper. See [38] for further information.
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section is concerned, one can expand those in ε as

H(Θ) = H(0) + εH(1)(Θ) +O(ε2) , (2.40)

and

H2(Θ) = H
(0)
2 + εH

(1)
2 (q2, p2,Θ) +O(ε2) . (2.41)

Here, explicit Θ dependence in H
(1)
2 comes from that in the separatrix solution. With

an assumption that G1(H
(0)
2 , L(0)(H

(0)
2 , H(0)),Θ) is positive-definite, we now define a new

time T by

dT

dΘ
=
G1(H

(0)
2 , L(0)(H

(0)
2 , H(0)),Θ)

Ω
.

Then, functions periodic in Θ are periodic in T as well if

Tperiod ≡
∫ π

−π
dΘ

dT

dΘ
(2.42)

is finite since G1(H
(0)
2 , L(0)(H

(0)
2 , H(0)),Θ) is periodic in Θ. One finds the equations of

motion of q2 and p2 finally become

dq2

dT
= P(0) + εP(1) +O(ε2) ,

dp2

dT
= F (0) + εF (1) +O(ε2) , (2.43)

where we have introduced the following quantities:

P(0) = ∂p2H2(q2, p2) ,

P(1) =
Gint,p(q2, p2, L

(0),Θ(T ))

G1(H
(0)
2 , L(0),Θ(T ))

− G(q2, p2, H,Θ(T )) ∂p2H2(q2, p2) ,

F (0) = −∂q2H2(q2, p2) ,

F (1) = −Gint,q(q2, p2, L
(0),Θ(T ))

G1(H
(0)
2 , L(0),Θ(T ))

+ G(q2, p2, H,Θ(T )) ∂q2H2(q2, p2) ,

G(q2, p2, H,Θ) =
Ω

G1(H
(0)
2 , L(0),Θ)

[
G1(H

(0)
2 , L(0),Θ)

Ω2
Ω̃(q2, p2, L

(0),Θ)

− ∂IG1(H
(0)
2 , L(0),Θ)

Ω

(
L(1)(q2, p2, H,Θ)

+ ∂H2L
(0)H

(1)
2 (q2, p2,Θ) + ∂HL

(0)H(1)(Θ)
)

− ∂H2G1(H
(0)
2 , L(0),Θ)

Ω
H

(1)
2 (q2, p2,Θ)

]
. (2.44)

Because this is a one-dimensional system, to which one can apply Melnikov’s method,

the Melnikov function is straightforwardly defined as

M(T0) ≡
∫ ∞
−∞
dT (P(0)F (1) −F (0)P(1))(q

(0)
2 (T − T0), p

(0)
2 (T − T0), H(0), T ) . (2.45)

Here q
(0)
2 and p

(0)
2 are the separatrix solution to (2.43) at ε = 0, and H(0) is the initial

total energy.
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Let us rewrite (2.45) as a function of τ , rather than T . We define τ0 as

τ0 ≡ Θ(T0)/Ω +O(ε)

and denote the value of H2 with the separatrix solution by H
(0)
2 . Then, by using the

following notations:

q
(0)
1 (τ) = q1

(
L(0)(H

(0)
2 , H(0)),Ωτ,H

(0)
2

)
,

p
(0)
1 (τ) = p1

(
L(0)(H

(0)
2 , H(0)),Ωτ,H

(0)
2

)
, (2.46)

the Melnikov function can be rewritten as

M(τ0) =

∫ ∞
−∞
dτ {H2, Hint}(q(0)

1 (τ), p
(0)
1 (τ), q

(0)
2 (τ − τ0), p

(0)
2 (τ − τ0), H(0), τ)

+O(ε) . (2.47)

This function is proportional to the separation of the stable and unstable manifolds at

τ = τ0 near the surface of H = H(0) because ∆H = 0 is assumed. Hence, Melnikov’s

method says that the existence of simple zeros in M(τ0) indicates that this system has a

horseshoe for sufficiently small ε lying near the homoclinic orbit of (q2, p2) and near the

energy surface H = H(0).

3 A brane-wave deformation of AdS5×S5

In this section, we shall consider an application of Melnikov’s method in the context of

String Theory. In other words, we are concerned with an appropriate string background

to which Melnikov’s method is applicable.

An example of such backgrounds is a brane-wave type deformation of the AdS5×S5

background constructed in [37]. The background is composed of the metric and the five-

form field strength

ds2 = ds2
AdSpp + ds2

S5 ,

ds2
AdSpp = L2

[
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− η2

z2a
f(µ, θ) (dx+)2

]
, (3.1)

ds2
S5 = ds2

CP2 + (dχ+ ω)2 ,

F5 = 4[ωAdS5 + ωS5 ] ,

where a satisfies a = (l+2)/2 with l an integer greater than 0. The dilaton is constant and

the other fluxes are zero. Here the metric of round S5 is expressed as a U(1) fibration over

CP2, where χ is the local coordinate on the Hopf fibre and ω is the one-form potential for

the Kähler form on CP2. The metric of CP2 and ω are given by

ds2
CP2 = dµ2 + sin2 µ

(
Σ2

1 + Σ2
2 + cos2 µΣ2

3

)
, ω = sin2 µΣ3 , (3.2)
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where Σa (a = 1, 2, 3) are defined as

Σ1 ≡
1

2
(cosψ dθ + sinψ sin θ dφ) , Σ2 ≡

1

2
(sinψ dθ − cosψ sin θ dφ) ,

Σ3 ≡
1

2
(dψ + cos θ dφ) .

The remaining task is to fix an arbitrary function f(µ, θ). A remarkable point is that

the metric (3.1) is a pp-wave type deformation; hence the only non-trivial equation of

motion is the (+,+)-component of the equations of motion for the metric. Thus all we

have to do is to solve the following constraint:

4(a2 − 1)f(µ, θ) +
4

sin2 µ

(
cot θ∂θf(µ, θ) + ∂2

θf(µ, θ)
)

+ (3 cotµ− tanµ) ∂µf(µ, θ) + ∂2
µf(µ, θ) = 0 . (3.3)

Note here that this constraint (3.3) is obviously satisfied when a = 1 and f(µ, θ) is a

constant. This case corresponds to the undeformed AdS5×S5. It is easy to derive the

general solution of (3.3), but some simple ones are enough for our purpose here. Hereafter,

we will concentrate on two solutions given by

f(µ, θ) =

{
sin2 µ cos θ for a = 2

(1− 6 cos2 µ+ 5 cos4 µ) cos θ for a = 3
. (3.4)

Here the overall constant can be absorbed by rescaling η ; hence we have simply set it to 1.

We will study the motion of a string propagating on the background presented above.

To show classical chaos in the bosonic sector, we will not touch on the fermionic sector.

In addition, to make our analysis simpler, we will adopt two ansätze. In the following, we

will compute Melnikov’s function under each of the ansätze.

3.1 A reduction ansatz: an oscillating string

In this subsection, we will consider an oscillating string ansatz.

Let us perform a coordinate transformation [45]:

x+ =
1

m
tan

(
mx̃+

)
, x− = x− +

m

2

[
(x̃1)2 + (x̃2)2 + z̃2

]
tan

(
mx̃+

)
,

xi =
x̃i

cos (mx̃+)
(i = 1, 2) , z =

z̃

cos (mx̃+)
. (3.5)

Note here that the points with mx̃+ = nπ (n ∈ Z) are singular. After this transformation,

the system gets restricted and a certain part of the deformed AdS background is magnified.

The resulting metric is given by

ds2 = L2

[
−2dx̃+dx̃− −m2(x̃i 2 + z̃2)(dx̃+)2 + (dx̃i)2 + dz̃2

z̃2

− η2

z̃2a
cos2a−4(mx̃+) f(µ, θ) (dx̃+)2 + ds2

S5

]
. (3.6)

Note here that the undeformed AdS5 is also deformed to a pp-wave type metric.
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In the following, we are concerned with a string theory defined on this background.

We will concentrate on the bosonic part and study the classical action of Polyakov type

with the light-cone gauge.

For simplicity, let us take the following ansatz:

x̃+ = τ , x̃1 = x̃2 = 0 , z̃ = Z(τ) ,

µ = µ(τ) , φ = nσ , θ = χ = ψ = 0 . (3.7)

Here n ∈ Z is a winding number along the φ-direction. Note that this ansatz is consistent

with the original equations of motion.

From now on, let us set a = 3 for simplicity and the function f(µ, θ) is given in (3.4).

This is just because the case with a = 2 is integrable under the ansatz (3.7) and hence the

case with a = 3 is the simplest and non-integrable, though the case with a > 3 would be

non-integrable as well.

Then the light-cone Hamiltonian is simplified as7

Hlc =
1

2

[
p2
Z +m2Z2 +

1

Z2

(
p2
µ +

n2L4

4
sin2 µ

)
+
η2f(µ, 0)

Z4
cos2(mτ)

]
. (3.8)

This is nothing but a coupled pendulum-oscillator system. It should be remarked that the

Hamiltonian (3.8) has the explicit τ -dependence due to the singular coordinate transfor-

mation (3.5) . The unperturbed Hamiltonian is

H1 =
1

2
p2
Z +

1

2
m2Z2 +

H2

Z2
, (3.9)

where H2 is the Hamiltonian of a pendulum system,

H2 =
1

2
p2
µ +

n2L4

8
sin2 µ . (3.10)

The perturbation term is given by

η2Hint = η2 f(µ, 0)

2Z4
cos2(mτ) , (3.11)

where η is assumed to be infinitesimal. For this system, one can compute the Melnikov

function by following the generalized method developed in section 2.3.

In the non-perturbed case (i.e., η = 0), H2 can be regarded as a constant h because

{Hlc, H2} = 0. Then the Hamiltonian can be rewritten in terms of the action-angle vari-

ables by performing a canonical transformation to (I,Θ):

Z =

√√√√2I +
√

2h+ 2
√
I(
√

2h+ I) cos Θ

m
,

pZ = −

√√√√ 4mI(
√

2h+ I)

2I +
√

2h+ 2
√
I(
√

2h+ I) cos Θ
sin Θ . (3.12)

7Here we have used a formula of the light-cone Hamiltonian obtained by solving the Virasoro constraints.

For example, see [46, 47].
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The resulting Hamiltonian is expressed in terms of (I,Θ) as follows:8

Hlc|η=0 = E = 2mI +m
√

2h . (3.13)

Here we have introduced the energy E. From the equation of motion of (I,Θ),

I =
1

2

(
E

m
−
√

2h

)
= const. , Θ = 2m(τ − τ1) . (3.14)

Now Z is written as a function of τ through the transformation (3.12) ,

Z(0)(τ) =

√
E

m2

√
1 +

√
1− 2hm2

E2
cos[2m(τ − τ1)] . (3.15)

In order to calculate the Melnikov function, the separatrix solution of the pendulum

system H2 is necessary. If one takes

dT

dτ
=

1

Z2
, (3.16)

then P(0) and F (0) in (2.43), in this system, are given by

P(0) = pµ ,

F (0) = −n
2L4

8
sin 2µ , (3.17)

and the equations of motion for the pendulum system with time T by

dµ

dT
= pµ ,

dpµ
dT

= −n
2L4

8
sin 2µ , (3.18)

which can easily be solved by

µ = 2 Arctan

[
tanh

nL2

4
T

]
.

By integrating (3.16) , the following solution is obtained,

T (τ) =
1√
2h

Arctan

[
E −

√
E2 − 2hm2

√
2hm2

tan[m(τ − τ1)]

]
.

The new period (2.42) becomes Tperiod = π/
√

2h. Now, with T (τ), the separatrix solution

can be rewritten as

µ(0)(τ) = 2 Arctan

[
tanh

nL2

4
T (τ)

]
. (3.19)

Note that its energy h is h(0) = n2L4/8.

8The appearance of the square root in (3.13) is conceivable because the third term in (3.9) can be

regarded as a centrifugal force with a angular momentum Lo under the identification h ' L2
o.

– 18 –



J
H
E
P
0
9
(
2
0
1
6
)
1
0
3

One must check the energy condition (2.39) . The equation of the energy is

Ḣlc = −η2 f(µ, 0)

4(Z(0)(τ))4
sin(2mτ) +O(η4) . (3.20)

Its average on the homoclinic orbit is given by

Ḣlc = −η2mf(µ(0), 0)

8π

∫ π/m

−π/m
dτ

sin(2m(τ + τ1))

(Z(0)(τ))4
+O(η4)

' η2 2m2f(µ(0), 0)

(nL2)2
A sin(2mτ1) . (3.21)

Here Hlc is an approximation in the region sufficiently near

m
√

2h(0) =
1

2
mnL2 .

We also use the following expression,

A ≡
√

E

mnL2
− 1

2
,

which is sufficiently small.

Then, the change of the energy by a Poincaré map with N shifts of time by the period

2π/m is estimated as

∆Hlc = η2 2m2

(nL2)2
A sin(2mτ1)

∫ τ1+πN
m

τ1−πNm
dτ f(µ(0), 0)

→ η2A

(nL2)2

(
2πN − 16

3

)
sin(2mτ1) , (3.22)

at N →∞. In the above calculation, we have omitted the subleading order in A and used

an approximate relation

T ' 2m

nL2
(τ − τ1) .

The equation (3.22) suggests that the total energy generally changes monotonically. Even-

tually, we can expect this change from the beginning because the frequency of the factor

oscillating explicitly in the perturbed Hamiltonian coincides with the frequency of un-

perturbed Z. Hence, it possibly provides a “resonance” source. The condition (2.39) is

however satisfied when

τ1 =
π

2m
l (l ∈ Z) .

If a string with this condition starts its trajectory from the vicinity near the homoclinic

point, then the energy will not change drastically when the string comes back to the vicinity

near the homoclinic point.

Now that we can apply the Melnikov’s method explained in section 2.3 , the Melnikov

function (2.47) is computed as

M(τ0) =

∫ ∞
−∞

dτ {H(0)
2 , Hint}(τ − τ0) . (3.23)
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Here H
(0)
2 is defined as H

(0)
2 ≡ H2(µ(0), p

(0)
µ ). This Poisson bracket is reduced to

{H(0)
2 , Hint}(τ − τ0)

= −1

2

dµ(0)

dT
sin
[
2µ(0)(τ − τ0)

]
(1− 5 cos[2µ(0)(τ − τ0)])(Z(0)(τ))−4 cos2(mτ) . (3.24)

Then the Melnikov function is calculated as

M(τ0) = −nL
2

4

∫ ∞
−∞

dτ

(Z(0)(τ))2

sin 2µ(0)(τ)

cosh[nL
2

2 T (τ)]
(1− 5 cos[2µ(0)(τ)])

× (Z(0)(τ))2(Z(0)(τ + τ0))−4 cos2[m(τ + τ0)]

= −nL2

∫ ∞
−∞

dT

(
3

sinh[nL
2

2 T ]

cosh3[nL
2

2 T ]
− 5

sinh[nL
2

2 T ]

cosh5[nL
2

2 T ]

)
× (Z(0)(τ(T )))2(Z(0)(τ(T ) + τ0))−4 cos2[m(τ(T ) + τ0)]

= − 4πm

3nL2 sinhπ

[
sin[2m(τ0 + τ1)]

− 4A

(
sin(2mτ0) +

16

coshπ
(sin[2m(2τ0 + τ1)]− sin[2m(τ0 + τ1)])

)]
+O(η2, A2) . (3.25)

To derive the above expression, we have used the following approximation of T and τ

τ ' τ1 +
nL2

2m
T +

A

m
sin(nL2T ) +O(A2) . (3.26)

This Melnikov function has simple zeros at least when A is sufficiently small for any τ1.

Thus the result indicates the existence of chaos generated by a Smale’s horseshoe for

trajectories satisfying ∆Hlc = 0, that is,

τ1 =
π

2m
l (l ∈ Z) .

Although such trajectories are quite rare, trajectories with ∆Hlc ∼ 0 remain in a small

range of the energy after performing each of the Poincaré maps if the observation time is

taken to be sufficiently short.

3.2 A reduction ansatz: a spinning string

In this subsection, we consider a spinning string ansatz.

In order to obtain a desired ansatz, we convert the Poincaré coordinate of the AdS

part to the global coordinate by performing the following transformation:

1

z
= L(cosh ρ sin t+ sinh ρ cos ξ cos η) ,

L

z
x± =

L√
2

(cosh ρ cos t± sinh ρ cos ξ sin η) ,

L

z
x1 = L sinh ρ sin ξ sin ζ ,

L

z
x2 = L sinh ρ sin ξ cos ζ . (3.27)
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As in the previous subsection, we will study the bosonic part of the Polyakov action. As

a remark, we will take here the spatial direction of the string-world-sheet to be infinite (i.e.,

an infinitely long string), rather than the usual closed string. With the gauge condition

t = κτ , let us consider the following ansatz:

t = κτ , ρ = ρ(σ) , ξ =
π

2
, η = −κτ , ζ = ω1τ ,

µ = µ(σ) , φ = ω2τ , θ = χ = ψ = 0 . (3.28)

Because we are considering an infinite string, there is no need to impose a boundary

condition on µ(σ). The relevant part of the metric is rewritten as

ds2 = L2

[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dζ2 − η2L

2a−2

2
f(µ, 0) cosh2a ρ sin2a−4 t dt2

+dµ2 +
1

4
sin2 µ dφ2

]
. (3.29)

For simplicity, we concentrate on the case with a = 2 hereafter. The function f(µ, θ)

is given in (3.4) . Note here that this case is not integrable under the ansatz (3.28) in

comparison to the previous ansatz (3.7) .

Then the Lagrangian density is given by

L = −1

2

[
κ2 cosh ρ2 + ρ′2 − ω2

1 sinh2 ρ+ η2κ
2

2
f(µ, 0) cosh4 ρ+ µ′2 − ω2

2

4
sin2 µ

]
, (3.30)

where the prime here is defined as the derivative with respect to σ. L has been absorbed

into κ, σ, ωi, and η so that ρ and µ are canonically normalized. Also, we impose a condition

on κ and ω1 like

ω2
1 > κ2 (3.31)

so that the system should be bounded.

If one regards σ as time, “Hamiltonian,” which governs the σ-dependence of ρ and µ,

can be defined as

H ≡ 1

2

(
p2
ρ + (ω2

1 − κ2) sinh2 ρ+ p2
µ +

ω2
2

4
sin2 µ− η2κ

2

2
f(µ, 0) cosh4 ρ

)
. (3.32)

Thanks to the condition (3.31) , the second term is positively definite. The classical solution

should satisfy the Virasoro constraints,

0 = −κ2 cosh ρ2 + ρ′2 + ω2
1 sinh2 ρ+ µ′2 +

ω2
2

4
sin2 µ− η2κ

2

2
f(µ, 0) cosh4 ρ . (3.33)

Note that this condition (3.33) is exactly the same as the equation for a Noether charge

for the translation along the σ-direction in (3.30) where the charge is κ2/2. Thus there

is not any contradiction as far as the total “energy” is κ2/2. Moreover, as far as the

Virasoro constraints are satisfied, the ansatz (3.28) is consistent with the original equations

of motion. In the following, we treat σ like time and use the symbol “τ”, instead of σ.
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This system is regarded as a coupled pendulum-oscillator system. The Hamiltonian of

an oscillator system is given by

Hosc =
1

2

(
p2
ρ + (ω2

1 − κ2) sinh2 ρ
)
, (3.34)

and that of a pendulum system is

Hpen =
1

2

(
p2
µ +

ω2
2

4
sin2 µ

)
. (3.35)

While the latter system is a usual pendulum one, the former is oscillated in a squared

hyperbolic sine potential. The interaction term is written as

η2Hint = −η2κ
2

4
f(µ, 0) cosh4 ρ , (3.36)

where η is assumed to be infinitesimal. When η = 0, the Hamiltonian system is a direct sum

of two systems where one is an oscillator and the other has a homoclinic orbit. Hence to

compute the Melnikov function, we can follow the standard method described in section 2.1.

The solution of the oscillator system with its energy E is

ρ(τ) = −i am

(
i
√

2E τ, i

√
ω2

1 − κ2

2E

)
'

√
2E

ω2
1 − κ2

sin

[√
ω2

1 − κ2 τ

]
, (3.37)

where the function am(x, k) is the Jacobi amplitude function, defined as the inverse of the

elliptic integral of the first kind F (x, k) as

x = F (am(x, k), k) , F (x, k) =

∫ x

0

dy√
1− k2 sin2 y

. (3.38)

The last expression in (3.37) is obtained as an approximation when E is sufficiently small.

Let us compute the Melnikov function by using the separatrix solution of the pendulum

system,

µ(0)(τ) = 2 Arctan

[
tanh

ω2(τ − τ0)

4

]
. (3.39)

The energy of this solution is ω2
2/8. As the total energy is κ2/2, the value of E is estimated

as (4κ2 − ω2
2)/8, if the interaction term is negligible.

The present case does not require the energy condition because the system is not

disturbed by an external force. Hence the Melnikov function defined in (2.17) is given by

M(τ0) =

∫ ∞
−∞
dτ {H(0)

pen, Hint}(τ − τ0) , (3.40)

where H
(0)
pen is defined as H

(0)
pen ≡ Hpen(µ(0), p

(0)
µ ). The Poisson bracket is now reduced to

{H(0)
pen, Hint}(τ − τ0) =

κ2

4
µ̇(0)(τ) sin

(
2µ(0)(τ)

)
nd4

(
ω′1τ, s

)
, (3.41)

ω′1 =
√

2E + ω2
1 − κ2 , s =

√
2E/ω′21 < 1 ,
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where we have used the following identities:9

cos[am(ix, ik)] = cn(ix, ik) = nd

(√
1 + k2 x,

1√
1 + k2

)
.

Note here that due to the condition (3.31) , ω1 is real and s < 1.

The final step is to perform the integration with respect to τ . It is really complicated

and messy; hence the detailed calculation is explained in appendix B. After a lengthy

calculation, the Melnikov function is given by

M(τ0) =
πκ2

2

∞∑
k=0

{
32E

ω′21 ω
2
2

nd
(
ω′1τ0, s

)
sd
(
ω′1τ0, s

)
cd
(
ω′1τ0, s

)
g′′1

(
(2k + 1)

π

ω2

)

−
∞∑

l=−∞
Im

[
g2

(
τ0 −

((2l + 1)K + i(2k + 1)K ′)

ω′1

)]}
, (3.42)

where we have introduced the following quantities

s′ ≡
√

(ω2
1 − κ2)/ω′21 < 1 , K ≡ K(s) = F (π/2, s) , K ′ ≡ K(s′) = F (π/2, s′) ,

and the functions g1 and g2 are defined as, respectively,

g1(τ) ≡ − nd (ω′1τ, s
′) sd (ω′1τ, s

′) cd (ω′1τ, s
′)[

1− 2E(ω2
1−κ2)

ω′4
1

sd2 (ω′1τ0, s) sd2 (ω′1τ, s
′)
]4

[
nd2

(
ω′1τ0, s

)
cd2

(
ω′1τ, s

′)

−
(

2E

ω′21

)2

sd2
(
ω′1τ0, s

)
cd2

(
ω′1τ0, s

)
sd2
(
ω′1τ, s

′) nd2
(
ω′1τ, s

′)] ,
g2(τ) ≡ −ω2

2

24
(

1− 2E
ω′2
1

)2
ω′41 cosh6(ω2τ

2 )

[
16(ω′21 − E + ω2

2) + (8(ω′21 − E)− 13ω2
2) cosh(ω2τ)

+ (−8(ω′21 − E) + ω2
2) cosh2(ω2τ)

]
.

The factor sd(ω′1τ0) cd(ω′1τ0) in the first term of (3.42) has non-trivial zeros periodically at

τ0 = Kl/ω′1, where l is integer. Then g′′1((2k + 1)π/ω2) also depends on τ0 and has a non-

zero value at general τ0. Although Im[g2(τ0 + ((2l+ 1)K + i(2k+ 1)K ′)/ω′1)] in the second

term is not periodic in τ0, its absolute value decreases exponentially as τ0 goes to infinity.

Then it gets smaller than the maximum of the absolute value of the first term when τ0

is sufficiently large. Furthermore, when E is small enough, the second term is negligible,

and it is easier to see simple zeros as explained in appendix B. Thus the Melnikov function

has simple zeros at sufficiently large τ0, and hence this system exhibits classical chaos

associated with Smale’s horseshoe.

9For the definition of elliptic functions, see appendix A.
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4 Conclusion and discussion

In this paper, we have considered an application of Melnikov’s method in the context of

the gauge/gravity correspondence. In particular, we have presented a string background

to which Melnikov’s method is applicable. This is a brane-wave type deformation of the

AdS5×S5 background. By employing two reduction ansätze, we have studied two types of

coupled pendulum-oscillator systems. Then the Melnikov function has been computed for

each of the systems and the existence of chaos has been shown analytically.

A strong advantage of Melnikov’s method is that the existence of classical chaos can be

shown analytically and the mechanism is explained as a Smale’s horseshoe. The Melnikov

functions here have been computed on the string-theory side. One of the most interesting

question is what is the gauge-theory interpretation of the Melnikov function. This func-

tion knows all about the classical chaotic string solutions, including the associated fractal

structure. According to the standard AdS/CFT dictionary, classical string solutions should

correspond to composite operators on the gauge-theory side. The information on the frac-

tal structure would be crucial in determining the alignment of component fields in the

associated composite operators. Hence the Melnikov function may play an important role

in determining the associated composite operators in some manner.

From more technical aspects, it is significant to consider a generalization to include

the friction. Recall that an external force was induced with the oscillating ansatz. If the

friction could be introduced as well, one can realize the system with the energy injection

and dissipation. Such a system is not a conserved system but dissipative. The chaos in the

conserved systems is well described by the KAM theorem [40–43] and its characteristic is

profoundly understood. The chaos in the dissipative systems, however, has a richer struc-

ture such as strange attractors. It is really intriguing to realize strange attractors on the

string-theory side and consider the physical interpretation of its gauge-theory counter part.

It would also be nice to look for other string backgrounds to which Melnikov’s method

is applicable. We have just presented one example here. It is interesting to consider some

applications of Melnikov’s method for black hole solutions in relation to the information

loss process. It may be a good issue to clarify the relation between the event horizon and

the Melnikov function.

We hope that Melnikov’s function would provide a new tool in studying the

gauge/gravity correspondence.
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A Elliptic functions

We shall summarize the definitions of elliptic functions and useful identities utilized in

section 3. Firstly, Jacobian elliptic functions are defined as follows:

sn(x, k) ≡ sin[am(x, k)] , cn(x, k) ≡ cos[am(x, k)] ,

dn(x, k) ≡
√

1− k2 sn2(x, k) , (A.1)

where am(x, k) is the Jacobi amplitude function defined in (3.38). Furthermore, we define

functions additionally as below:

sd(x, k) ≡ sn(x, k)

dn(x, k)
, cd(x, k) ≡ cn(x, k)

dn(x, k)
,

nd(x, k) ≡ 1

dn(x, k)
. (A.2)

There are addition theorems for the Jacobian elliptic functions. For example, nd(x, k)

satisfies the following equation:

nd(x+ y, k) =
nd(x, k) nd(y, k) + k2 sd(x, k) sd(y, k) cd(x, k) cd(y, k)

1 + k2k′2 sd2(x, k) sd2(y, k)
. (A.3)

Lastly, we present useful identities of Jacobian elliptic functions,

cn(ix, k) =
1

cn(x, k′)
, sn(x, k) =

1

k
sn

(
kx,

1

k

)
, (A.4)

where k′ =
√

1− k2. One can show these identities by using the integral expressions of the

elliptic functions.

B Melnikov function with a spinning string ansatz

We shall present here the calculation of the Melnikov function (3.42) in detail.

Let us first write down the expressions of µ̇(0) and sin
(
2µ(0)

)
like

µ̇(0)(τ) =
ω2

2 cosh ω2(τ−τ0)
2

,

sin
(

2µ(0)(τ)
)

= sin

(
4 Arctan

[
tanh

ω2(τ − τ0)

4

])
=

2 sinh ω2(τ−τ0)
2

cosh2 ω2(τ−τ0)
2

. (B.1)

Then the Melnikov function is given by

M(τ0) =
κ2ω2

4

∫ ∞
−∞
dτ A(ω2τ)B(ω′1(τ + τ0)) , (B.2)

where we have introduced the following new quantities:

A(x) ≡
sinh x

2

cosh3 x
2

, B(x) ≡ nd4 (x, s) . (B.3)

The integration in (B.2) can be evaluated by summing up the contributions coming from

the poles of A(ω2τ) and B(ω′1(τ + τ0)). In the following, let us evaluate the poles from A
and B, respectively.
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1) the contributions coming from the poles of A. First of all, we shall evaluate the

contributions coming from the poles of A.

Note that A(x) has triple poles at x = (2k + 1)πi (k ∈ Z), and its coefficient is −8.

Hence, to compute the residue, one needs to evaluate the second-order derivative of B(x).

Because A(ω2τ) is an odd function and the integration range runs from −∞ to ∞,

only the odd part of B(ω′1(τ + τ0)) can contribute to the integral. Hence the calculation of

derivatives of B(x) is simplified to some extent. In addition, by employing a relation (A.3)

of the Jacobian elliptic function nd, one finds that the odd part of B(x+ x0) is given by

4s2 nd(x0) sd(x0) cd(x0) nd(x) sd(x) cd(x)

(1 + s2s′2 sd(x0) sd(x))4

(
nd(x0) nd(x) + s4 sd(x0) cd(x0) sd(x) cd(x)

)
.

Note here that all of the second arguments of the elliptic functions are given by s (but

those are omitted just for simplicity).

2) the contributions coming from the poles of B. The next task is to evaluate the

contributions coming from the poles of B.

The Jacobian elliptic function nd(x, s) has two single poles inside the fundamental unit

cell. Two periods of nd(x, s) are given by K and 4iK ′, where K = K(s) and K ′ = K(s′).

Note here that s < 1 and s′ < 1 by construction in the present case; hence K and K ′ are

real numbers.

Depending on the value of the residue, there are two kinds of poles. The first residue

is given by −i/s′ for the poles at

x
(l,k)
1 ≡ (2l + 1)K + i(4k + 1)K ′ (k, l ∈ Z) .

The second residue is +i/s′ for the poles at

x
(l,k)
2 ≡ (2l + 1)K + i(4k + 3)K ′ (k, l ∈ Z) .

Hence the asymptotic behaviors near these poles are given by

nd(x, s) =
−i

s′(x−x(l,k)
1 )

− i(s
2−2)

6s′
(x−x(l,k)

1 )+O((x−x(l,k)
1 )3) around x = x

(l,k)
1 ,

nd(x, s) = −

(
−i

s′(x−x(l,k)
2 )

− i(s2−2)

6s′
(x−x(l,k)

2 )+O((x−x(l,k)
2 )3)

)
around x = x

(l,k)
2 .

Now that B(x) has quadruple and double poles at x = (2l + 1)K + i(2k + 1)K ′, it is

necessary to compute the third-order and first-order derivatives of A(x) in order to evaluate

the residue around these poles.

Doing the integration. Let perform the τ -integration in (B.2). To perform this integral,

we need to consider a contour integral. Generally, the contour depends on the behavior

of the integrand. The contour is closed on the upper-half plane with a semicircle in the

counterclockwise direction when the integrand of (B.2) goes to zero in the limit τ → ∞.

Similarly, the contour should be closed on the lower-half plane with a semicircle in the
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clockwise direction depending on the behavior of the integrand in the limit τ → ∞. By

denoting these contours by Cu and Cl, respectively, the Melnikov function (B.2) can be

rewritten as

M(τ0) =
κ2ω2

8

(∫
Cu

+

∫
Cl

)
dτ A(ω2τ)B(ω′1(τ + τ0)) . (B.4)

The integration along the upper contour Cu is composed of two contributions: 1) the

contributions from the poles of A(ω2τ), namely,

ω2τ = (2k + 1)πi (k ≥ 0) ,

and 2) the contributions from the poles of B(ω′1(τ + τ0)), namely,

ω′1(τ + τ0) = (2l + 1)K + i(2k + 1)K ′ (k ≥ 0) .

The former is given by

πκ2

4

32E

ω′21 ω
2
2

nd
(
ω′1τ0, s

)
sd
(
ω′1τ0, s

)
cd
(
ω′1τ0, s

) ∞∑
k=0

g′′1

(
(2k + 1)

π

ω2

)
, (B.5)

and the latter is

πiκ2

4

∞∑
k=0

∞∑
l=−∞

g2

(
τ0 −

((2l + 1)K + i(2k + 1)K ′)

ω′1

)
. (B.6)

Similarly, one can evaluate the contributions coming from the lower-half plane. Its contri-

butions from the poles of A(ω2τ) and B(ω′1(τ + τ0)) are ω2τ = −(2k + 1)πi (k ≥ 0) and

ω′1(τ + τ0) = (2l+ 1)K− i(2k+ 1)K ′ (k ≥ 0), respectively. Thus, the integration along the

lower contour Cl is evaluated as the same as (B.5) for the former contribution thanks to

the oddness of function g1, and the complex conjugate of (B.6) for the latter contribution,

respectively. Then after summing up the integration along Cu and Cl, one finds that (3.42)

has finally been derived.

Approximation works well. When E is sufficiently small, one can readily derive an

approximate form of the Melnikov function. The leading term is given by

M(τ0) =
κ2ω2

4

∫ ∞
−∞
dτ

sinh ω2τ
2

cosh3 ω2τ
2

(
1+

4E

ω2
1−κ2

sin2

[√
ω2

1−κ2(τ+τ0)

])
+O(E2). (B.7)

Now that the τ -integration can be performed easily, the resulting expression is given by

M(τ0) =
8πκ2E sin

[
2
√
ω2

1 − κ2τ0

]
ω2

2 sinh
2π
√
ω2
1−κ2

ω2

+O(E2) . (B.8)

Then it is obvious that M(τ0) has non-trivial simple zeros at

τ0 =
π

2
√
ω2

1 − κ2
l .
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Thus the conclusion that classical chaos exists does not change even with a small energy

approximation.

Note here that the approximation is made for the integrand before performing the

τ -integration. One can also reproduce the same expression by expanding the exact for-

mula (3.42) in terms of small E. That is, the order of the τ -integration and the small E

expansion is irrelevant to the final result.
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