
 

Study on the Application of 

Shear-wave Elastography to 

Thin-layered Media and Tubular Structure: 

Finite-element Analysis and  

Experiment Verification 
 

(Shear-wave Elastography法の 

薄板状と円筒状の媒質への適用に関する研究： 

有限要素解析と実験的検証) 

 

 

 

 

 

 

張 俊根 

Jang Jun-keun 



Study on the application of shear-wave elastography to thin-layered media

and tubular structure: Finite-element analysis and experiment verification

Jun-keun Jang*, Kengo Kondo, Takeshi Namita, Makoto Yamakawa, and Tsuyoshi Shiina

Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan

*E-mail: jangjunkeun@yahoo.co.jp

Received November 15, 2015; revised February 14, 2016; accepted March 23, 2016; published online June 14, 2016

Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally,
shear-wave velocity (CS) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated
CS. However, because shear waves in thin-layered media propagate as guided waves, CS cannot be accurately estimated using the conventional
TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both
experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional
TOF is ineffective for thin-layered media. In phantom experiments, CS results estimated using the two methods were compared for 1.5 and 2% agar
plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in
the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the
tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement
between LLDA (plate phantoms of 2mm thickness: 5.0m/s for 1.5% agar and 7.2m/s for 2% agar; tube phantoms with 2mm thickness and 2mm
inner radius: 5.1m/s for 1.5% agar and 7.0m/s for 2% agar; tube phantoms with 2mm thickness and 4mm inner radius: 5.3m/s for 1.5% agar and
7.3m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3m/s + 0.27 for 1.5% agar and 7.3m/s + 0.54 for 2% agar).

© 2016 The Japan Society of Applied Physics

1. Introduction

Many techniques have been developed to evaluate the elastic
properties of human soft tissue because elastic properties are
correlated with pathological changes of soft tissue.1,2) Ultra-
sound elastography is a noninvasive, precise technique used
to assess the stiffness of biological tissue.3–7) The two main
categories of ultrasound elastography are static elastography
and dynamic elastography. In static elastography, a strain
map is estimated and superimposed on a B-mode image to
distinguish suspicious lesions from normal tissue. This
strain map can be obtained by comparing consecutive
displacement distributions before and after quasi-static
compression induced by manually pressing an ultrasound
probe on the interrogated tissue.8,9) However, this technique
cannot provide the quantitative mapping of local stiffness due
to an inverse problem, and it depends on the operator’s skill
level.10,11) In contrast, dynamic elastography is based on the
fact that we can deduce Young’s modulus (E) of soft tissue
from shear-wave velocity (CS) using Eq. (1), where ρ denotes
density.12) Therefore, the accurate estimation of shear-wave
velocity in dynamic elastography is essential.

E ¼ 3�C2
S: ð1Þ

Shear waves can be generated using either an external
monochromatic vibrator13) or acoustic radiation force
(ARF).12) Shear-wave elastography (SWE), which is based
on ARF, has gained considerable attention because of its
quantitativeness, reproducibility, and simplicity of use.14)

This emerging modality has been validated for unbounded
homogeneous organs such as the breast and the liver.15,16)

These organs are assumed to be purely elastic infinite media,
so the influence of their boundary conditions can be
neglected. However, shear waves propagating into thin-
layered media (e.g., skin layer, cornea, and arterial wall)
suffer from dispersion effects, which means that their
propagation speeds differ at each frequency. Recently, leaky
Lamb dispersion analysis (LLDA), where shear waves

propagating into thin media were modeled as leaky Lamb
waves, has been proposed to overcome this problem.17)

However, it is still unclear why the conventional time-of-
flight (TOF) method is ineffective for estimating the shear-
wave velocity of thin-layered media. Moreover, it must to be
clarified whether and why LLDA can also be applied to a
tube structure such as an arterial wall, because Lamb waves
are originally guided waves propagating in a thin plate.

In this study, we performed experimental and finite-
element (FE) analyses to evaluate the effectiveness of LLDA
over the conventional TOF method. In FE analysis, we
investigated why the conventional TOF method is ineffective
for thin-layered media. In phantom experiments, the simu-
lation results were verified for 1.5 and 2% agar thin-layered
plates and thin-walled tube phantoms. Furthermore, whether
LLDA can be applied to a tubular structure was discussed.
We confined our attention to the structural effects of media
on CS estimation results; thus, effects of cyclic fluctuations
caused by heartbeat or respiration were not considered in this
study.

2. Statement of the problem

Figure 1 illustrates SWE measurements for three phantoms
with the same agar concentration: bulk phantom [Fig. 1(a)],
thin-layered plate phantom [Fig. 1(b)], and thin-walled tube
phantom [Fig. 1(c)]. These results were measured using a
modified Aixplorer® ultrasound system (Supersonic Imagine)
and an SL15-4 linear array probe. Although all of the
homogeneous phantoms were made of the same concen-
tration of 1.5% agar, mean values of Young’s modulus (E)
and shear-wave velocity (CS) differed. CS in Fig. 1 was
derived from the Young’s modulus measured using the
Aixplorer® ultrasound system because this ultrasound system
yields E from the estimated CS. Moreover, the measurements
for thin-layered plate and thin-walled tube phantoms
indicated a lower degree of evaluation than that for the bulk
phantom. This discrepancy in CS resulted from the structural
effects of the interrogated media. Therefore, we reviewed
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conventional CS estimation and LLDA, compared the CS

results estimated by the two methods, and discussed the
effectiveness of LLDA over TOF.

3. Shear wave velocity estimation

3.1 Time-of-flight method
Because shear waves propagate along the lateral direction in
the setup depicted in Fig. 2(a), the travel time (Δt) of shear
waves and the distance (Δd) between two reference pixels
(ref 1 and ref 2) located at the same depth are needed to
estimate CS (= Δd=Δt) at the center black-filled pixel being
interrogated. First, we designated the two reference pixels
equally spaced from the interrogated pixel [Fig. 2(a)].
Second, the travel time between the two reference pixels
was calculated by performing a cross-correlation on axial
particle velocity data with respect to time [Fig. 2(b)]. Finally,
these procedures were repeated for the entire pixel area of
the particle velocity data to estimate the CS distribution.
However, this method can be applied to only unbounded
media whose boundary conditions can be neglected.

3.2 LLDA
The frequency of shear waves induced by ARF typically
ranges from 1 to 2000Hz; therefore, shear wavelength
becomes 1 to 20mm in human soft tissue. Shear waves in
thin-layered organs (e.g., skin layer, cornea, and arterial wall)
whose thickness (≤1mm) is smaller than shear wavelength,
propagate as guided waves, especially Lamb waves. These
organs are surrounded by soft tissue whose Young’s modulus
is typically ≤10 kPa or similar to that of a fluid where shear
waves cannot propagate; thus, shear waves propagating into
thin organs can be modeled by leaky Lamb waves. Fur-
thermore, an axially applied ARF induces mainly antisym-
metric modes in thin organs [Fig. 3(b)], and the frequency
component of shear waves is mainly located in the low-
frequency region. This study thus focused on the first
antisymmetric mode (A0) of leaky Lamb waves.17)
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Fig. 1. (Color online) SWE measurements (Young’s modulus, E) for 1.5% agar bulk phantom (a), 1.5% agar thin-layered plate (b), and 1.5% agar thin-
walled tube phantom (c). The shear-wave velocity (CS) in the ROI was calculated from CS ¼ ffiffiffiffiffiffiffiffiffiffiffi
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Fig. 2. (Color online) Scheme of the conventional TOF method: reference
pixel designation (a) and travel time estimation (b).
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Fig. 3. Symmetric mode (a) and antisymmetric mode (b) of leaky Lamb
waves. Here, u denotes the displacement vector in the plate.
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The most notable characteristic of guided waves is
dispersion effects, which means that their propagation speeds
differ at each frequency. First, theoretical dispersion curves of
the A0 mode were numerically calculated using Eq. (2),
where CL is the longitudinal velocity of the thin medium, CS

is the shear wave velocity of the thin medium, C0 is the
longitudinal velocity of the surrounding fluid, ρ is the thin
medium density, ρ0 is the surrounding fluid density, h is the
thickness of the medium, k is the wave number, and f is the
frequency. The dispersion equation, however, contains a
complex term; therefore, its absolute value was obtained, and
then a minimization algorithm was applied to the absolute
value [Fig. 4(a)] to calculate theoretical dispersion curves
[Fig. 4(b)].18) Finally, the theoretical curves were fitted to the
experimental curves to estimate shear-wave velocity using
the least-mean-squares method. For curve fitting, root-mean-
square error (RMSE) was defined by Eq. (3), where V is the
theoretical dispersion curve, ~V is the experimental dispersion
curve, and N is the number of data.

k20 þ k2 ¼ 2�f

C0

� �2

;

k2L þ k2 ¼ 2�f

CL

� �2

;

k2S þ k2 ¼ 2�f

CS

� �2

;

Vðk; f Þ ¼ ðk2 � k2SÞ2 sin
kLh

2

� �
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½VðnÞ � ~VðnÞ�2

N
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: ð3Þ

4. Finite-element analysis

Figure 5 illustrates a bulk model [Fig. 5(a)] and a thin-
layered plate model [Fig. 5(b)] of PZFlex® (Weidlinger
Associates). PZFlex® is a time-domain FE analysis package
for solving acoustic wave propagation and acoustic field
problems in 2D and 3D tissue models.19) Both models were
assumed to be linearly elastic, homogeneous materials. Here,
CL was 1540m=s, ρ was 1000 kg=m3, the temporal sampling
frequency was 10 kHz, and the spatial resolution was 500 µm.
To induce shear waves in a thin-layered plate to propagate
as leaky Lamb waves, the outer region of the 1mm plate
(CS = 10m=s) was surrounded by a fluid (CS = 0m=s)
[Fig. 5(b)]. First, the axially applied pressure (1 Pa amplitude
and 150 µs pulse duration) generated shear waves propagat-
ing in the lateral direction. Second, axial particle velocity
data were obtained by FE analysis without noise. Finally, ĈS

was estimated using the two methods described in the
previous section and compared with CS defined in the FE
model (i.e., CS = 10m=s). In addition, we investigated why
the general TOF method used in this study cannot accurately
estimate the shear-wave velocity of thin-layered media by
analyzing shear waves in both models at the time domain.

5. Phantom experiment

5.1 Phantom preparation
Thin-layered plate and thin-walled tube phantoms were
prepared to verify the FE analysis results experimentally and
to determine whether LLDA, which is based on leaky
Lamb waves (i.e., guided waves propagating in a thin plate
surrounded with fluid) can also be applied to a tubular
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Fig. 4. (Color online) Absolute value of dispersion equation of the first
antisymmetric mode of leaky Lamb waves (a) and dispersion curve obtained
from a minimization algorithm (b) when CL = 1540m=s, CS = 10m=s, and
h = 1mm.
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Fig. 5. (Color online) Bulk model (a) and thin-layered plate model (b) of
FE analysis.
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structure. The phantoms were made of 1.5 and 2% agar with
1% polymer as ultrasonic scatterers. The surrounding material
of the plate phantoms was 5% gelatin [Figs. 6(a) and 6(b)],
and the tube phantoms were immersed in water [Figs. 7(a)
and 7(b)]. The thickness of the plate phantom measured using
B-mode images was 2.0mm [Fig. 6(c)] and that of the tube
phantom was 2.1mm [Fig. 7(c)]. The inner diameter of the
tube phantom was 8mm. Moreover, the effect of the inner
radius of the tube was discussed by additionally performing
experiments for 1.5 and 2% agar tube phantoms of 2.0mm
thickness and 2.0mm inner radius. Here, a 1-point ARF,
which was applied at the middle point of the agar plate
[Fig. 6(c)] and the anterior wall of the agar tube [Fig. 7(c)],
was sufficient to generate shear waves propagating along
the thin media, because the energy of shear-wave compo-
nents is confined to the thin media, even though longitudinal
components leak into the surroundings.

5.2 Experimental setup and post-processing
In-phase quadrature (IQ) data were obtained using a modified
Aixplorer® ultrasound system (Supersonic Imagine) and
an SL15-4 linear array probe. The center frequency was
7.5MHz; the pushing duration of ARF was 150 µs; and the
frame rate was 10 kHz. After obtaining IQ data using the
Aixplorer® ultrasound system, we computed axial particle

velocity by performing 2D autocorrelation on the IQ data.20)

The ĈS results were then estimated using TOF and LLDA
and compared with SWE results measured using the
Aixplorer® ultrasound system for agar bulk phantoms. The
SWE measurements were 5.3m=s ± 0.27 for 1.5% agar and
7.3m=s ± 0.54 for 2% agar.

6. Result and discussion

6.1 FE simulation results
Figure 8 depicts axial particle velocity data of the bulk model
[Figs. 8(a) and 8(b)] and plate model [Figs. 8(c) and 8(d)] in
the FE analysis, and their lateral profiles extracted from a
depth of 5.5mm at a simulation time of 4.5ms. In the bulk
model, the propagation pattern of shear waves indicated
typical bulk waves [Fig. 8(b)]. In contrast, the plate model
exhibited complex propagation patterns of guided waves
[Fig. 8(d)]. This is because the transverse components of
shear waves were reflected at the boundaries and interfered
with other shear waves propagating in the plate (CL =
1540m=s, CS = 10m=s), while the longitudinal components
leaked into the surrounding media (CL = 1540m=s, CS =
0m=s). As a result, the shear waves in the thin plate
propagated as guided waves, in particular, leaky Lamb
waves. Figure 9 presents the ĈS results estimated using the
general TOF method for the bulk model, and Fig. 10 presents
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Fig. 6. (Color online) Thin-layered plate phantom: schematic
representation (a), phantom photo (b), and B-mode image of a 1.5% agar
plate (c).
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Fig. 7. (Color online) Thin-layered tube phantom: schematic
representation (a), phantom photo (b), and B-mode image of the anterior wall
of 1.5% agar tube (c).
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those estimated using TOF and LLDA methods for the plate
model. The distance (Δd) of the reference pixels for both
Figs. 9 and 10 was set to 4mm. TOF accurately estimated
shear-wave velocity for the bulk model {i.e., mean ĈS for the
entire region of the model agreed with CS [Fig. 9(a)] and ĈS

at the black-filled pixel = Δd=Δt = 4mm=0.4ms = 10m=s}.
For the plate model, however, the mean ĈS did not agree
with CS [Fig. 10(a)] owing to the complex propagation
pattern of shear waves in the plate [Fig. 10(b)]. This

Pressure

(b)

(a)

Pressure

1mm Plate

(c)

(d)

Fig. 8. (Color online) Axial particle velocity data of a bulk model (a) and
a thin-plate model (c) at the simulation time of 4.5m=s. Lateral profiles of the
bulk model (b) and the plate model (d) at a depth of 5.5mm. The waves
located between 30 and 40mm in width were reflected waves at the left-side
boundary.
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Fig. 9. (Color online) ĈS distribution estimated by TOF for a bulk model
(a). Axial particle velocity data at two reference pixels with respect to time
(b). (Mean ĈS and SD denote the mean value of ĈS and the standard
deviation for the entire region, respectively.)
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Fig. 10. (Color online) ĈS distribution estimated by TOF for a plate
model (a). Axial particle velocity data at two reference pixels with respect to
time (b). Result of LLDA for the plate model. (Mean ĈS denotes the mean
value of ĈS in the dashed box.)
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complexity can lead to an erroneous time lag (Δt), which was
estimated using cross-correlation. This erroneous time lag
resulted in an incorrect shear-wave velocity estimation (i.e.,
ĈS at the black-filled pixel = Δd=Δt = 4mm=0.63ms =
6.3m=s ≠ CS). In contrast, the estimated ĈS using LLDA
coincided perfectly with CS [Fig. 10(c)].

6.2 Experiment results of TOF
Figure 11 illustrates the shear-wave velocity distributions
estimated using TOF for plate and tube phantoms. The
distance between reference pixels for all cases was set to
4mm, which is the same as that in the FE simulation. The
mean ĈS of all phantoms was lower (3.23m=s ± 1.06 for
1.5% agar plate, 4.45m=s ± 1.33 for 2% agar plate, 3.65
m=s ± 1.06 for 1.5% agar tube, and 4.49m=s ± 1.39 for 2%
agar tube) than the SWE measurement values (5.3m=s ±
0.27 for 1.5% agar and 7.3m=s ± 0.54 for 2% agar). The
lower degree of evaluation of the mean ĈS for plate and tube
phantoms than for the bulk phantom is also observed in
Fig. 1. This discrepancy can be explained by the erroneous
time lag discussed in the previous section.

6.3 Experiment results of LLDA
For LLDA, we extracted one line of axial particle velocity
data from the middle depth of the agar plate and the anterior
wall of the agar tube [Figs. 12(a) and 13(a)], and performed
2D fast-Fourier transform (FFT) [Figs. 12(b), 13(b), and
13(e)] on the extracted data to obtain experimental dispersion
curves. After detecting the energy maxima on the dispersion
curves, we calculated phase velocity (CP) using CP = f=k,
where f is the frequency and k is the wave number.
Figure 12(c) illustrates the fit results for 1.5 and 2% agar
plate phantoms. The ĈS for 1.5% agar was estimated to be
5.0m=s (RMSE = 0.13), and that for 2% agar was estimated
to be 7.2m=s (RMSE = 0.12). No significant discrepancies in
shear-wave velocity between the LLDA estimation results
and the SWE measurements were observed.

Next, we applied LLDA to tubular structures of 4mm
inner radius as shown in Fig. 13. The simulation for a tubular

structure needs a 3D FE analysis, and hence, it is difficult
because of its computational cost. In that case, experiments
using tube phantoms may be effective. Circumferential waves
appeared in the extracted particle velocity data [Fig. 13(a)],
in contrast to those of the plate phantom [Fig. 12(a)]. Thus,
the multiple behaviors of both lateral and circumferential
waves were also observed in the 2D FFT result as shown in
Fig. 13(b). These multiple behaviors made it difficult to
detect the maxima of the main zero-order antisymmetric (A0)
Lamb-like mode. Therefore, the circumferential waves were
eliminated by applying a 2D window [Fig. 13(c)] that was
designed to preserve the content of lateral waves as shown in
Fig. 13(d). After this processing, the 2D FFT of windowed
velocity data was obtained as shown in Fig. 13(e).
Figure 13(f) illustrates the fitting results for 1.5 and 2% agar
tube phantoms. Some discrepancies can be seen between the
experiment dispersion curves and the fitted ones especially in
the low frequency region [Fig. 13(f)]. The discrepancies
resulted from the omission of the low frequency in the 2D
FFT result [Fig. 13(e)] due to the unavoidable deletion of
some lateral waves, and=or from the overlapping of circum-
ferential waves [Figs. 13(a) and 13(d)]. To quantitatively
assess this estimation error, the full bandwidth (FBW) of

Mean CS = 3.23 m/s ± 1.06

<1.5% Agar Plate>

Mean CS = 4.45 m/s ± 1.33

<2% Agar Plate>

Mean CS = 3.65 m/s ± 1.06

<1.5% Agar Tube>

Mean CS = 4.49 m/s ± 1.39

<2% Agar Tube>

(a) (b)

(c) (d)

Fig. 11. (Color online) CS estimation results of TOF for 1.5% plate (a),
2% plate (b), 1.5% tube (c), and 2% tube (d). (Mean CS denotes the mean
value of CS in the dashed box.)

Fi ed Curves

(a)

(b)

(c)
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Fig. 12. (Color online) LLDA results for the agar-plate phantoms. Axial
particle velocity extracted at the middle depth of the 1.5% agar plate (a). 2D
FFT result (b). Curve-fitting results of 1.5 and 2% agar plates (c).
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LLDA was divided into two sections: the lower half-
bandwidth (LHBW) and the upper half-bandwidth (UHBW).
In the case of tubes, FBW ranged from 0 to 1200Hz and
LHBW from 0 to 600Hz. As shown in Fig. 13(f), the
discrepancies between the experiment dispersion curves and
the fitted ones were mainly located in the region of LHBW,
so the curve fit was performed only for UHBW and the
RMSE for LHBW represented the estimation error caused
by the deletion of lateral waves and=or the overlapping of
circumferential waves. The ĈS for 1.5% agar was 5.3m=s
(RMSE for FBW = 0.16, RMSE for LHBW = 0.20), and that
for 2% agar was 7.3m=s (RMSE for FBW = 0.21, RMSE for
LHBW = 0.26). Although RMSE for FBW was larger than
that of plate phantoms, the LLDA results for tube phantoms
also agreed well with the SWE measurements.

The effect of inner radius was also discussed for 1.5 and
2% agar tube phantoms of 2mm inner radius as shown in
Fig. 14. Figures 14(a) and 14(b) represent the axial velocity
data, where triangles with a dashed line were the extracted
lateral waves, for 1.5 and 2% agar tube phantoms,
respectively. Figures 14(c) and 14(d) illustrate the results of
curve fitting. The ĈS for 1.5% agar was 5.1m=s (RMSE for
FBW = 0.47, RMSE for LHBW = 0.62), and that for 2%
agar was 7.0m=s (RMSE for FBW = 0.61, RMSE for
LHBW = 0.80). No significant discrepancies between the
LLDA estimation results and the SWE measurements were
observed even though RMSE for FBW was larger than that

of the tube of 4mm inner radius. The experimental results of
the estimated ĈS using TOF and LLDA are summarized in
Table I.

As can be expected, the circumferential waves in
Fig. 14(a) appeared earlier in the time domain than those in
Fig. 13(a) since the radius decreased. Therefore, this earlier
appearance of circumferential waves made it difficult to
separate the lateral waves from the circumferential waves.
The effect of radius became apparent in the dispersion curves
[Figs. 14(c) and 14(d)] where the discrepancies in the lower
frequency region indicated a higher degree of evaluation than
those of tubes of 4mm inner radius. Moreover, the RMSE for
LHBW increased as the tubes became stiffer for both the
cases of Figs. 13 and 14. This implies that the approximation
based on the LLDA model degrades when the curvature
radius is smaller than the shear wavelength (∵λS = CS=f).
This tends to occur at low frequencies because the curvature
radius can be smaller than the shear wavelength at low
frequencies. In fact, it was also reported that the dispersion
curves of tubes will differ from those of plates especially in
the low frequency region as the tube radius decreases.21) As a
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Fig. 13. (Color online) LLDA results for the agar-tube phantoms of 4mm
inner radius. Axial particle velocity extracted at the middle depth of the 1.5%
agar tube (a). 2D FFT results of both lateral and circumferential waves (b).
2D window for extracting only lateral waves (c). Extracted lateral waves (d).
2D FFT result of only lateral waves (e). Curve-fitting results of 1.5 and 2%
agar tubes (f).
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2D Window 2D Window

Fig. 14. (Color online) LLDA results for the agar-tube phantoms of 2mm
inner radius. Axial particle velocity and the 2D widow for the 1.5% agar tube
(a). Axial particle velocity and the 2D widow for the 2% agar tube (b).
Dispersion curve of the 1.5% agar tube (c). Dispersion curve of the 2% agar
tube (d).

Table I. Comparison of CS results estimated by TOF and LLDA for plate
and tube phantoms of 2mm thickness.

Phantom type
SWE measurement
for bulk phantom

(m=s)

TOF
(m=s)

LLDA
(m=s)

Agar 1.5%

Plate

5.3 ± 0.27

3.28 ± 1.06 5.0

Tubea) 3.65 ± 1.06 5.3

Tubeb) — 5.1

Agar 2%

Plate

7.3 ± 0.54

4.45 ± 1.33 7.2

Tubea) 4.49 ± 1.39 7.3

Tubeb) — 7.0

a) 4mm inner radius.
b) 2mm inner radius.
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result, these findings suggest that a higher frequency interval
for curve fitting will be needed as the tube becomes smaller
in inner radius and=or stiffer. In other words, shear waves of
higher frequencies will be needed to accurately estimate
shear-wave velocity when the tube radius becomes much
smaller than the shear wavelength and=or the tube becomes
stiffer.

Another limitation of the application of LLDA to tubular
structures should be considered. We proposed a 2D window
to extract lateral waves that are necessary for estimating
shear-wave velocity in the long axis direction of the tube.
However, the slope of the window with respect to the time
domain needed to be altered dynamically for different inner
radii and stiffnesses. This automatic construction of the 2D
window currently cannot be achieved, so this problem should
be studied further.

Future studies should focus on the effects of various
geometric parameters (e.g., inner radius and thickness) and
heartbeat on shear-wave velocity estimation for thin-layered
and thin-tubular media using LLDA, as well as on automatic
alteration of a 2D window. Furthermore, it is also challenging
to estimate CS or E in the cross-sectional direction of a tube
using circumferential waves.

7. Conclusions

In this study, we evaluated the conventional TOF and LLDA
methods for estimating the shear-wave velocity of thin-
layered media by FE analysis and agar phantom experiments
with various structures (plate or tube) and stiffnesses of
phantoms. The LLDA method was confirmed to be effective
for estimating the shear-wave velocity of a thin medium. In
contrast, the conventional TOF method is ineffective for thin
media owing to erroneous time estimation for complex
guided waves. Furthermore, we showed that LLDA can be
applied to tubular structures by eliminating circumferential
waves using a 2D window. The effects of the inner radius and
stiffness (or shear wavelength) of a tube on the LLDA
performance were also discussed experimentally. Future
studies should focus on the effects of various geometric
parameters and heartbeat. The estimation of shear-wave
velocity in the cross-sectional direction of tubular structures
is also a challenging topic.
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