
 
 

 

 

Study of laser propagation and soliton 

formation in strongly magnetized plasmas 

 

 

 

 

 

 

 

Feng Wu 

 

  



ii 
 

 

  



iii 
 

Abstract 

The laser plasma interactions in the presence of strong magnetic field have received attractions recently due 

to the success generation of kilo-tesla magnetic field. The introduction of perpendicular or parallel magnetic 

field could potentially benefit many applications, e.g. the plasma based particle acceleration, the harmonic 

generation, the tunable terahertz radiation generation and magnetically assisted fast ignition. This thesis is 

thus devoted to study the effects of strong parallel magnetic field on the laser plasma interactions, 

specifically on the various laser propagation modes and soliton formation by both the particle-in-cell (PIC) 

simulations and theoretical analysis. 

As an introduction, the relativistic dispersion relation and single particle orbit inside the relativistic laser 

field in the presence of strong magnetic field are first discussed. Then the effects of strong magnetic field 

on the laser propagation modes and heating in plasmas are studied by the PIC simulations. The various 

linear propagation modes (left and right hand circularly polarized waves, electron cyclotron wave) and their 

conversion in the inhomogeneous plasma areas are analyzed. A solitary wave with lower frequency 

compared to the incident laser frequency is observed in a density well, which greatly enhances the heating 

of the laser pulse. The parametric window of the laser intensity and magnetic field for the generation of 

solitons is identified. The soliton properties and stabilities are investigated. 

To have a better understanding of the solitons, the soliton formation in strongly magnetized plasmas is 

analyzed systematically in the framework of relativistic, warm fluid model. Three nonlinear ordinary 

differential equations describing the coupling between the longitudinal and transverse waves due to the 

density perturbation and relativistic effects are obtained. By assuming appropriate dispersion relations, the 

general criterion for the existence of solitons is found. Then the coupled soliton equations are solved 

numerically through the shooting method or the rational spectral method. Based on the soliton equations 

and numerical calculations, a variety of solitary waves including the continuous spectrum bright solitons, 

single-hump and multi-hump dark solitons are identified. Their properties and appearance with different 

magnetic fields and soliton frequencies are discussed. 

For the case of bright solitons, the parametric region of the magnetic field and soliton frequency for the 

existence of solitons are obtained in both cold and warm plasmas. The ion’s effects on the soliton formation 
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are investigated, where they are found to play an important role especially when the magnetic field is 

opposite to the soliton propagation direction. The numerical calculations show that in the limit of immobile 

ions, the bright soliton tends to be peaked and stronger as the magnetic field increases while it becomes 

broader and smaller as the soliton frequency increases. 

For dark solitons, the wavenumber is proved to be of great importance in determining the parametric region 

of magnetic field and soliton frequency required for the existence of solitons. In warm plasmas, dark 

solitons with multiple humps in both the scalar and vector potential profiles are observed. The numerical 

calculations without ion’s motion show that the dark soliton amplitude decreases with increasing magnetic 

field and decreasing soliton frequency. These tendencies are opposite to the bright solitons. However, for 

both bright and dark solitons, the temperature effects suppress the soliton amplitude. 

Keywords: propagation modes, dispersion relation, bright and dark soliton, dynamical systems theory, PIC 

simulations 
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1. Introduction 

Plasma, usually referred as the fourth state of matter, is a matter with macro spatiotemporal scales which 

contains enough free charged particles for its dynamics to be dominated by the electromagnetic forces. The 

term “plasma” was coined by Langmuir in 1928 to describe the ionized regions in gas discharges. Though 

on the earth, plasma only exists in limited areas such as the earth’s ionosphere, fire flames and lightning, it 

is the most abundant form of ordinary matter in the universe. For instance, the sun and stars are made of 

hot and dense plasmas and much of the interstellar space is filled with cold and rarefied plasmas. The 

parameters of the plasmas, e.g. density and temperature, can vary many orders of magnitude as illustrated 

by Fig. 1.1. 

From the second half of the twentieth century, much of the development of plasma physics was 

motivated by the pursuit of controlled thermonuclear fusion on the one hand and the astrophysical and space 

physics on the other hand. Nowadays, the plasma physics has developed into many fields of research and 

applications such as the space plasma physics, the low temperature industrial plasmas and the high 

temperature fusion plasmas. Among these sub-disciplines, the laser plasma interactions have always been 

one of the most active and exciting fields ever since the advent of laser in the 1960s. Specifically, in the 

past three decades, due to the rapid development of chirped pulse amplification (CPA) [1, 2] and Kerr lens 

mode-locking [3, 4] techniques, ultra-intense laser pulses with peak powers up to several petawatt (PW) 

became available. As a comparison, the total power of sunlight striking earth’s atmosphere is estimated 

around 174 PW. When such laser systems are focused onto micro spot sizes, they can generate 

electromagnetic intensities up to 1022𝑊𝑊/𝑐𝑐𝑚𝑚2. Such intensities can create novel states of matter and a 

variety of phenomena can occur including the wake field generation, ultrahigh magnetic field generation, 

relativistic self-focusing and transparency, nonlinear wave modulation, high harmonic radiation generation, 

electron and ion acceleration and so on (see Fig. 1.2). 

The ultra-intense laser plasma interactions can have many applications, e.g. the plasma based particle 

accelerator, the compact radiation source and the laser inertial confinement fusion. To accomplish and 

develop these applications, a profound and detailed understanding of the ultra-intense laser plasma 

interactions is necessary. 
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Fig. 1.1. The remarkable range of 

temperatures and densities of plasmas. 

Density increases upwards and 

temperature increases towards the right. 

The free electrons in a metal may be 

considered as an electron plasma. [Adapted 

from A. L. Peratt [5]]. 

 
Fig. 1.2. Sketch of ultra-intense laser plasma interactions. The electrons are preferentially pushed 

forward, followed by the ions, leading to a charge separation field. The plasma emits high energy 

electrons, ions and various radiations including high order harmonics, X-rays, gamma rays, terahertz 

radiation, etc. Also megagauss class magnetic fields can be produced by the enormous current density of 

the hot electrons. [Adapted from H. Daido [6]]. 
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1.1 Ultra-intense laser plasma interactions 

A key parameter in the discussion of the ultra-intense laser plasma interactions is the dimensionless laser 

amplitude 𝑎𝑎, which is defined as the normalized quiver momentum of the electron in the laser field,  

 𝑎𝑎 =
𝑒𝑒𝐸𝐸0

𝑚𝑚𝑒𝑒𝜔𝜔0𝑐𝑐
 (1.1) 

Here 𝜔𝜔0 and 𝐸𝐸0 are the round frequency and electric field of the laser, −𝑒𝑒 and 𝑚𝑚𝑒𝑒 are the electron charge 

and mass and 𝑐𝑐 is the speed of light. Another commonly used expression is, 

 
𝑎𝑎 = �

𝐼𝐼𝜆𝜆02

1.37 × 1018𝑊𝑊/𝑐𝑐𝑚𝑚2 ∙ 𝜇𝜇𝑚𝑚2 
�
1/2

  (1.2) 

Here a linearly polarized laser is assumed and the laser intensity 𝐼𝐼 = (𝑐𝑐 8𝜋𝜋⁄ )𝐸𝐸02 is in unit of 𝑊𝑊/𝑐𝑐𝑚𝑚2 and 

the wavelength 𝜆𝜆0 is in unit of microns. For circularly polarized laser, the value of the denominator in Eq. 

(1.2) is two times larger. For a 1𝜇𝜇𝑚𝑚 wavelength laser, the intensity is around 1018𝑊𝑊/𝑐𝑐𝑚𝑚2 when 𝑎𝑎~1. In 

this regime, the electron motion inside the laser field becomes relativistic. Note that the dimensionless 

amplitude 𝑎𝑎𝑖𝑖 ≡ 𝑒𝑒𝐸𝐸0 (𝑚𝑚𝑖𝑖𝜔𝜔0𝑐𝑐)⁄ , where 𝑚𝑚𝑖𝑖 is the ion mass, remains much less than unity. The intensity value 

corresponding to 𝑎𝑎𝑖𝑖~1  for a 1 𝜇𝜇𝑚𝑚  wavelength laser is about 5 × 1024𝑊𝑊 𝑐𝑐𝑚𝑚2⁄ .  Hence, for all the 

experiments performed up to now and nearly all the theoretical calculations the ions are non-relativistic. At 

even higher intensities, e.g. on order of 1029𝑊𝑊/𝑐𝑐𝑚𝑚2 for a 1𝜇𝜇𝑚𝑚 wavelength laser, the work done by the 

laser field over a Compton wavelength (𝜆𝜆 = ℎ 𝑚𝑚𝑒𝑒𝑐𝑐⁄  with ℎ the Planck constant) is comparable to 𝑚𝑚𝑒𝑒𝑐𝑐2. In 

this case, electron-positron pair can be produced from the vacuum. In this thesis, we only consider 𝑎𝑎 is of 

order unity, e.g. 𝐼𝐼 is around 1017 − 1020𝑊𝑊/𝑐𝑐𝑚𝑚2. 

1.1.1 Basic physical concepts 

Basically, there are two kinds of interactions between the charged particles and the intense laser waves. The 

first one is the laser single-particle interactions, e.g. the scattering of electromagnetic wave by a particle. 

The second is the laser plasma interactions where collective effects come to play. For illustrative purpose, 

we consider a laser propagating in the z direction with the amplitude 𝑬𝑬 = 𝐸𝐸0�cos(𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡) 𝛿𝛿𝑥𝑥𝒆𝒆𝑥𝑥 +

sin(𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡) 𝛿𝛿𝑦𝑦𝒆𝒆𝑦𝑦�. Here 𝜔𝜔0,𝑘𝑘0 are the frequency and wavenumber of the laser and 𝒆𝒆𝑥𝑥 ,𝒆𝒆𝑦𝑦 are the unit 

vectors in the x and y directions. (𝛿𝛿𝑥𝑥 , 𝛿𝛿𝑦𝑦)  are the factors describing the polarization direction, e.g. 

�𝛿𝛿𝑥𝑥 , 𝛿𝛿𝑦𝑦� = (1,0)  is for linearly polarization in the x  direction and �𝛿𝛿𝑥𝑥 , 𝛿𝛿𝑦𝑦� = (√2/2,√2/2)  is for 

circularly polarization. Note that 𝛿𝛿𝑥𝑥2 + 𝛿𝛿𝑦𝑦2 ≡ 1. 
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In the laser single particle interactions, the electron motion inside the laser field is governed by the 

Lorentz equation, 

 𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡

= −𝑒𝑒 �𝑬𝑬 +
𝒗𝒗
𝑐𝑐

× 𝑩𝑩� (1.3) 

with 𝒑𝒑, v the electron momentum and velocity and 𝑬𝑬,𝑩𝑩 the laser electric and magnetic field. In the non-

relativistic regime, e.g. 𝑎𝑎 ≪ 1, the electron motion inside the laser field is an oscillation at the laser 

frequency along the laser polarization direction. However, the magnetic field of the laser wave becomes 

significant when 𝑎𝑎 ≳ 1 and the electron will develop a motion along the laser propagation direction due to 

the 𝑣𝑣 × 𝐵𝐵 force. For linearly polarized laser, this longitudinal motion oscillates at double of the laser 

frequency and the amplitude is proportional to 𝑎𝑎2 whereas the transverse motion scales as 𝑎𝑎. Hence, when 

𝑎𝑎 > 1 the longitudinal motion dominates the transverse one. In the frame moving at the average electron 

velocity, this electron motion is an “8-figure” as shown in Fig. 1.3(a). For circularly polarized laser, the 

electrons do not oscillate in the propagation direction and the transverse motion is a circle. [7] 

 

Fig. 1.3. (a) The relativistic electron 

motion inside the linearly polarized 

laser field; the Lorentz force pushes 

the electrons forward which results 

in an “8-figure” motion in the 

average rest frame. (b) The laser 

intensity versus propagation (𝑧𝑧) and 

radial (𝑟𝑟 ) directions; the effective 

Lorentz force pushed the electrons 

out of the high intensity areas. (c) 

Plasmas density versus 𝑧𝑧 and r; the 

ponderomotive force pushes the 

electrons and the charge separation 

between electrons and ions produces 

a strong longitudinal static electric 

field which can be used to accelerate 

the electrons. [Adapted from H. 

Schwoerer [8]]. 
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One of the consequences of this relativistic “8-figure” motion is the harmonic generation, or nonlinear 

Thomson scattering. According to the classical electrodynamics, electrons with this kind of motion should 

emit radiations at multiples of the laser frequency. In other words, the incident laser wave is scattered by 

the electrons and the frequency of the first harmonic of the scattered radiation is same as the incident one 

in the reference frame where the electrons are at rest. Hence, if the electrons are initially from an energetic 

electron beams, the scattered wave can be up-shifted to the X-ray regime due to the Doppler effects. This 

mechanism provides a way to generate X-rays which can be used to resolve various physical, chemical or 

biological reactions with ultrashort spatiotemporal scales. 

For the plane laser wave, the electron returns to rest with some displacement in the z direction after 

the laser pulse passes over it. However, when the laser pulse has spatial or temporal dependences, e.g. the 

Gaussian laser pulse 𝐸𝐸 = 𝐸𝐸0 exp(−𝑟𝑟2 𝑟𝑟02⁄ ) cos(𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡) as shown in Fig. 1.3(b), the electrons can get 

energy from the laser field irreversibly by the so called ponderomotive force. Here 𝑟𝑟0 is the laser spot size. 

The mechanism of ponderomotive force is simple. Imaging an electron is initially at the optical axes 𝑟𝑟 = 0, 

it will accelerate outwards in the first half of the laser period but never return to the original position at the 

second half of the laser period due to the decrease of the laser intensity. Hence, electrons will gradually be 

expelled from the high intensity region and the ponderomotive force can be viewed as a radiation pressure. 

The derivation of ponderomotive force can be found by rewriting Eq. (1.3) in the form of vector potential 

𝑨𝑨 and scalar potential 𝜙𝜙, 

 𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡

=
𝑒𝑒
𝑐𝑐
𝝏𝝏𝑨𝑨
𝝏𝝏𝝏𝝏

+ 𝑒𝑒∇𝜙𝜙 −
𝒑𝒑
𝛾𝛾𝑚𝑚𝑒𝑒

× �∇ ×
𝑒𝑒
𝑐𝑐
𝑨𝑨�  (1.4) 

Here 𝑬𝑬 = −(1 𝑐𝑐⁄ )𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ − ∇𝜙𝜙, 𝑩𝑩 = ∇ × 𝑨𝑨  have been used and 𝛾𝛾 = �1 + (𝑝𝑝 𝑚𝑚𝑒𝑒𝑐𝑐⁄ )2  is the electron 

relativistic factor. If 𝛁𝛁 × (𝒑𝒑 − 𝑒𝑒𝑨𝑨 𝑐𝑐⁄ ) = 0 is satisfied, e.g. 𝒑𝒑 = 𝑒𝑒𝑨𝑨 𝑐𝑐⁄ + 𝛁𝛁𝑓𝑓 with 𝑓𝑓 an arbitrary function, 

using 𝑑𝑑 𝑑𝑑𝑡𝑡⁄ = 𝜕𝜕 𝜕𝜕𝑡𝑡⁄ + 𝒗𝒗 ∙ ∇, Eq. (1.4) can be written as [9], 

 𝜕𝜕
𝜕𝜕𝑡𝑡
�𝒑𝒑 −

𝑒𝑒
𝑐𝑐
𝑨𝑨� = 𝑒𝑒∇𝜙𝜙 −

𝒑𝒑
𝛾𝛾𝑚𝑚𝑒𝑒

× �∇× �
𝑒𝑒
𝑐𝑐
𝑨𝑨�� − �

𝒑𝒑
𝛾𝛾𝑚𝑚𝑒𝑒

∙ ∇� 𝒑𝒑

= 𝑚𝑚𝑒𝑒𝑐𝑐2∇�
𝑒𝑒𝜙𝜙
𝑚𝑚𝑒𝑒𝑐𝑐2

− 𝛾𝛾�
 (1.5) 

Here the identity ∇𝒑𝒑𝟐𝟐 2⁄ = 𝒑𝒑 × (∇ × 𝒑𝒑) + (𝒑𝒑 ∙ ∇)𝒑𝒑 has been used in obtaining the second equation. In one 

dimensional (1D) or three dimensional (3D) with broad laser spot size 𝑟𝑟0 ≫ 𝜆𝜆0  cases, the transverse 

canonical momentum is conserved or 𝒑𝒑⊥ = 𝑒𝑒𝑨𝑨 𝑐𝑐⁄ . Hence the left hand side of Eq. (1.5) represents the 

change of longitudinal momentum while on the right hand side 𝑒𝑒∇𝜙𝜙 is the electrostatic field force produced 

by the charge separation. Thus, the generalized nonlinear ponderomotive force is expressed as, 
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 𝑭𝑭 = −𝑚𝑚𝑒𝑒𝑐𝑐2∇𝛾𝛾 (1.6) 

For a linearly polarized laser, the relativistic factor is related to the dimensionless laser amplitude as 𝛾𝛾 =

1 + 𝑎𝑎2/2 and the ponderomotive force becomes  𝑭𝑭 = −𝑚𝑚𝑒𝑒𝑐𝑐2∇(𝑎𝑎2 2⁄ ). It is proportional to the negative 

gradient of the laser intensity. Since 𝑎𝑎 is inversely proportional to the particle’s mass, the ponderomotive 

force acting on the electrons is much larger than on the ions. Hence the electrons are easily to be pushed 

out of the high intensity laser region. 

In plasmas, one of the immediate effects of the ponderomotive force is the wake field generation. [10] 

The electrons are first pushed forward by the ponderomotive force until the laser pulse overtakes them and 

pushes them backwards. Due to the mass difference between the electrons and ions, density variation or 

charge separation will be generated as shown in Fig. 1.3(c). The restoring force causes the electrons to 

oscillate at the plasma frequency which leads to an electrostatic wake wave with its phase velocity nearly 

equals to the group velocity of the laser. In low-density plasmas, this velocity is close to the speed of light 

and electrons can be continuously accelerated in the wake wave. This acceleration mechanism is called as 

the wake field acceleration. Usually, the accelerated electrons are of quasi-thermal spectrum. However, by 

carefully controlling the laser and plasma parameters, in particular, matching the acceleration length to the 

dephasing length, high quality electron bunches with high average energy, narrow energy spread and low 

divergence can be generated. [11, 12, 13] The major advantage of this wake field acceleration is its ability 

to sustain extremely large acceleration gradients. For instance, the acceleration gradient (~100𝐺𝐺𝑒𝑒𝐺𝐺/𝑚𝑚) can 

be three orders of magnitude greater than that obtained in the conventional radio-frequency linacs 

(~100𝑀𝑀𝑒𝑒𝐺𝐺/𝑚𝑚). 

 
Fig. 1.4. (a) The laser intensity versus radial direction; (b) The phase velocity of the laser depends on the 

laser intensity; (c) The distortion of wave front due to different phase velocities. [Adapted from D. 

Umstadter [14]]. 
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In addition to the wake field generation, other effects may occur in the relativistic laser plasma 

interactions such as the relativistic self-focusing. At high laser intensities, the electron mass increases due 

to the relativistic effects and the plasma frequency 𝜔𝜔�𝑝𝑝𝑒𝑒 = 𝜔𝜔𝑝𝑝𝑒𝑒 𝛾𝛾1/2⁄ = �4𝜋𝜋𝑛𝑛0𝑒𝑒2 (𝛾𝛾𝑚𝑚𝑒𝑒)⁄  varies with the 

laser intensity. Here 𝑛𝑛0  is the unperturbed electron density and 𝜔𝜔𝑝𝑝𝑒𝑒 = (4𝜋𝜋𝑛𝑛0𝑒𝑒2 𝑚𝑚𝑒𝑒⁄ )1 2⁄  is the plasma 

frequency without relativistic effects. In unmagnetized plasmas, the dispersion relation for an 

electromagnetic wave is, 

 𝜔𝜔2 = 𝑘𝑘2𝑐𝑐2 + 𝜔𝜔�𝑝𝑝𝑒𝑒2  (1.7) 

As a result, the index of refraction  𝜂𝜂 ≡ 𝑐𝑐𝑘𝑘 𝜔𝜔⁄ = �1 −𝜔𝜔�𝑝𝑝𝑒𝑒2 𝜔𝜔2⁄ �1 2⁄  increases at higher laser intensity 

regions. Since the phase velocity of the wave is determined by 𝑣𝑣𝜙𝜙 ≡ 𝜔𝜔 𝑘𝑘⁄ = 𝑐𝑐 𝜂𝜂⁄ , the variation of phase 

speed will distort the wave front. For a Gaussian type laser pulse, this effect results in a self-focusing of the 

laser pulse as shown in Fig. 1.4. Meanwhile, since the ponderomotive force tends to expel the electrons 

forwards and radially to the lower intensity areas, it leads to a decreasing of electron density and an 

increasing of refractive index on the axis. This effect further enhances the self-focusing. The threshold 

power 𝑃𝑃𝑐𝑐 for the relativistic self-focusing can be found when the focus effects are balanced by the diffractive 

spreading, which is 𝑃𝑃𝑐𝑐 ≈ 17.4𝜔𝜔2 𝜔𝜔𝑝𝑝𝑒𝑒2� 𝐺𝐺𝑊𝑊. [15, 16] When the laser power 𝑃𝑃 ≫ 𝑃𝑃𝑐𝑐, relativistic focusing 

overcomes the diffractive effects and pulse filamentation may occur. Depending on the laser pulse and 

plasma conditions, the whole laser pulse can be self-focused or it may split into several filaments and each 

of them undergoes self-focusing. [17]. 

One of the immediate applications of the refractive index variation is the optical guiding in plasmas. 

A laser can be guided if the refractive index has a maximum on the axis or 𝜕𝜕𝜂𝜂 𝜕𝜕𝑟𝑟⁄ < 0. Such kind of 

refractive index profile can be achieved by modifying the relativistic factor 𝛾𝛾, e.g. through the relativistic 

self-focusing, or the density profile, e.g. through the preformed density channel or self-channeling. 

[12,18,19] Furthermore, the dependence of plasma frequency on the relativistic factor makes it possible for 

the ultra-intense laser to propagate into the over-dense plasmas. This is usually referred as the relativistic 

transparency. It can be seen from Eq. (1.7) that a laser can penetrate into the plasmas only when its 

frequency is larger than the plasmas frequency. Hence, for ultra-intense laser pulse, the cutoff frequency of 

the electromagnetic wave decreases as the laser intensity increases and relativistic transparency happens 

when 𝜔𝜔 > 𝜔𝜔�𝑝𝑝𝑒𝑒. 
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1.1.2 Magnetic field in laser plasma interactions 

During the intense laser plasmas interactions, not only the electric fields but also the various configurations 

of magnetic fields can be generated spontaneously. Simulations [20,21] and experiments [22] have shown 

that a poloidal magnetic field is generated by the current of relativistic electrons driven by the laser radiation 

in the laser propagation direction. These magnetic fields are quasi-static with amplitude the same order of 

the laser magnetic field and thus can affect the laser propagation, e.g. they can lead to a magnetic focusing 

in addition to the usual ponderomotive and self-focusing mechanisms. [23, 24] Furthermore, an axial 

magnetic field may be induced by a circularly polarized laser via the inverse Faraday effects [25] and a 

toroidal magnetic field is generated through the thermoelectric effects when there is a temperature gradient 

orthogonal to a density gradient. In these cases, magnetic field with strength up to kilotesla can be driven. 

Hence, plasmas are always magnetized during the laser plasma interactions. In additional to the self-

generated magnetic field, recently kilotesla external magnetic field has been demonstrated in a laboratory 

by a high power laser irradiated to a capacitor-coil target. [26] By applying such kind of strong and shaped 

magnetic fields, new frontiers in plasmas physics, solar physics, material science, etc. can be explored.  

The introduction of various configurations of magnetic field can affect the propagation of the laser 

pulse and the transport of the particles [27,28], which can benefit many potential applications. For instance, 

in laser fast ignition scheme, the collimation of the relativistic electron beam by an axial magnetic field has 

shown an increase in the coupling efficiency between the laser and fusion core. [29, 30, 31]. Also terahertz 

radiation [32,33,34] or harmonic radiation [35,36,37] can be generated when longitudinal or transverse 

magnetic field is imposed. In addition, it is proved that the magnetic field can provide some other 

mechanisms for particle acceleration. [38, 39, 40] Hence, the study of ultra-intense laser plasma interactions 

with self-consistently generated or externally imposed strong magnetic fields is of much importance. 

Despite the various configurations of the magnetic field, throughout this thesis we only consider the 

case where the external magnetic field is applied along the laser propagation direction. Such kind of 

magnetic field is of special importance in laser fast ignition, electron and ion acceleration, terahertz 

radiation, etc. 

1.1.3 Ultra-intense laser propagation in magnetized plasmas 

During the ultra-intense laser plasma interactions, the plasma parameters are altered by the wave. 

Meanwhile, the wave fields are also modified by the plasmas. Hence, the propagation of an intense 

electromagnetic wave should be studied consistently with all the dynamics including the wake field 

generation, self-focusing, pulse modulation, magnetic field generation, etc. Due to the complexity of the 
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problem, the theory on the evolution of an electromagnetic wave in a plasma is always studied by various 

simplifications, e.g. the quasi-static approximation or the weakly relativistic approximation. On the other 

hand, for intense laser pulse, the superposition principle to the waves is no longer applicable, say, the 

linearly polarized laser cannot be described as a linear combination of right and left hand circularly 

polarized waves, since the there is no way of generating the oscillations in the propagation direction by the 

circularly polarized waves alone. Hence, linearly polarized waves are especially complex compared to the 

circularly polarized case where the simplification of no harmonic contents cannot be made. Thus, particle-

in-cell (PIC) simulation becomes the very useful and important tool for understanding the various dynamics 

during the ultra-intense laser plasma interactions. 

In magnetized plasmas, the laser propagation modes strongly depend on the plasma densities, the 

magnetic field as well as the intensity and polarization of the laser pulse, e.g. if the magnetic field is along 

the wave propagation direction, the propagation modes can be the high frequency left and right hand 

circularly polarized waves (LCP and RCP), the electron cyclotron wave (Whistler mode), the Alfven waves, 

etc. When the magnetic field varies, these propagation modes can co-exist and convert to each other, which 

leads to abundant laser magnetized plasma physics. One of the important phenomena of the laser 

propagation is the soliton formation. [41, 42, 43] The solitons are finite size, self-trapped electromagnetic 

waves which consist of synchronously oscillating electric and magnetic fields plus a steady electrostatic 

field arising from the ponderomotive force of the oscillating fields. In laser plasma interactions, the solitons 

are usually generated in the wake of the laser pulse with strong plasma depletion. Inside the solitons, the 

dispersion effects are balanced by the nonlinearities due to the density redistribution and relativistic effects. 

Solitons in unmagnetized plasma have been observed in experiments by a proton imaging technique [41] 

as well as in PIC simulations [42, 43], where people find up to 30~40% of the laser energy can convert into 

the soliton or soliton-like structures. Hence, the soliton generation which represents an effective energy 

transfer process deserves special attentions.  

1.2 Solitons in laser plasmas interactions 

The solitary wave or soliton, first observed by the Scottish engineer John Scott Russell in 1834, is a 

localized wave which persists its shape and velocity during the propagation and interaction with other 

solitons. At that time, Russel’s observations contradicted the shallow water theory of Airy (1845) in that 

the solitons did not change their form. Later, Joseph Boussinesq (1871) and Lord Rayleigh (1876) showed 

that this was due to the cancellation between the dispersion and nonlinearity. In 1895, Korteweg and de 

Vries [44] developed the famous Korteweg-de Vries (KdV) equation describing the propagation of waves 
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on shallow water surfaces, which had the soliton solution and periodic cnoidal solutions. On the other hand, 

E. Fermi, J. R. Pasta and S. M. Ulam (FPU) [45] found a quasi-periodic behavior instead of the ergodic 

behavior when they were simulating the vibrating string in 1955. N. Zabusky and M. Kruskal [46] argued 

that it was the fact that soliton solutions can pass through one another without affecting the shapes that 

contributed to the quasi-periodicity of the waves in the FPU experiment. Soliton are solutions to many 

famous equations including the KdV equation, the nonlinear Schrodinger (NLS) equation, the coupled NLS 

equations and the sine-Gordon equation. Although solitons were originally discovered in water waves and 

lattice dynamics, they also appear in many other systems, such as the optical fibers, the magnets, the 

meteorology and the plasmas, e.g. see Fig. 1.5. 

1.2.1 Bright and dark solitons 

Generally, solitons evolve from the nonlinear change in the refractive index of the plasmas induced by the 

laser intensity distribution and electron density perturbation. When the nonlinear effects compensate the 

dispersion (in the case of temporal solitons) or diffraction (in the case of spatial solitons) effects, the pulse 

can propagate without change in shape. In this thesis, we mainly focus on the two different types of solitons 

in the plasmas: the bright soliton and the dark soliton. The bright and dark solitons are well-known in optics, 

where bright solitons are generated in optical fibers with negative or anomalous group velocity dispersion 

and dark solitons are formed in optical fibers with positive or normal group velocity dispersion. [48] The 

first observation of bright optical solitons was in 1980 by Mollenauer et al. [49] whereas by 1987 dark 

 
(a) 

 
(b) 

Fig. 1.5 (a) A morning glory cloud formation between Burketwon and Normanton, Australia [image 

credit: Wikipedia]; The morning glory cloud is a rare atmospheric solitary wave. (b) Recreation of a 

solitary wave on the Scott Russell Aqueduct on the Union Canal. [Photograph courtesy of Heriot-Watt 

University [47]] 
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solitons were formed in laboratory experiments [50]. In the moving frame with the soliton, the bright soliton 

envelop can be written as, [51] 

 𝑢𝑢(𝑥𝑥) = 𝐴𝐴0 sech(𝑥𝑥) (1.8) 

Here 𝐴𝐴0  is the soliton amplitude and sech𝑥𝑥  is the hyperbolic secant function. Hence, bright soliton 

describes a localized wave with intensity maximum at the center and zero at the infinity (see Fig. 1.6). For 

the dark soliton, it has the form, 

 

�
𝑢𝑢(𝑥𝑥) = 𝐴𝐴0[𝐵𝐵−2 − sech2(𝑥𝑥)]1 2⁄ exp[𝑖𝑖𝑖𝑖(𝑥𝑥)]

𝑖𝑖(𝑥𝑥) = sin−1 �
𝐵𝐵 tanh(𝑥𝑥)

[1 − 𝐵𝐵2 sech2(𝑥𝑥)]1 2⁄ �
 (1.9) 

Here |𝐵𝐵| ≤ 1 is a parameter represents the darkness and tanh 𝑥𝑥 is the hyperbolic tangent function. In the 

limiting case of 𝐵𝐵 = ±1, Eq. (1.9) is reduced to 𝑢𝑢(𝑥𝑥) = ±𝐴𝐴0 tanh 𝑥𝑥 which is referred as the fundamental 

dark soliton or black soliton. For |𝐵𝐵| < 1, the minimum intensity does not drop to zero and it is called as 

the grey soliton. Hence, dark solitons appear as holes of the intensity on a continuous wave background. 

One of the major differences between the bright and dark solitons is their phase dependence as shown in 

Fig. 1.6. The bright solitons are symmetric with a constant phase across the entire pulse, while the dark 

solitons undergo a phase jump 2 sin−1 𝐵𝐵. For the black soliton, the phase jump is π. 

 
Fig. 1.6. Intensity and phase as function of normalized coordinates x for bright and dark solitons. 

[adapted from W. J. Tomlinson et al. [51]] 
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1.2.1 Researches on solitons in unmagnetized plasmas 

The solitons in laser unmagnetized plasma interactions have been studied by many authors in experiments 

and simulations. In the uniform plasmas, the soliton velocity is much smaller than the group velocity of the 

laser and in fact it is almost zero. [42] The typical size of the soliton is of the order of the collisionless 

electron skin depth ~𝑐𝑐 𝜔𝜔𝑝𝑝⁄ . Eventually, the soliton decays due to the interaction with fast electrons. In non-

uniform plasmas, the soliton can propagate to the low density direction with an acceleration proportional 

to the gradient of the plasma density. [52] When the soliton approaches the plasma-vacuum interface, it 

will radiate away its energy in the form of low frequency electromagnetic waves due to the non-adiabatic 

interaction with the plasma boundary, resulting in a burst of electromagnetic radiation, which makes it 

possible for the detection of soliton generation and various applications. [53] Since the time of soliton 

generation is much shorter than the ion’s response time, ions can be assumed to be at rest during 

approximately 2𝜋𝜋 𝜔𝜔𝑝𝑝𝑖𝑖⁄  time scale. Here 𝜔𝜔𝑝𝑝𝑖𝑖 = �4𝜋𝜋𝑛𝑛𝑜𝑜𝑒𝑒2 𝑚𝑚𝑖𝑖⁄  is the ion plasma frequency and 𝑚𝑚𝑖𝑖 is the ion 

mass. At later time, the ponderomotive force starts to dig a hole in the ion density and the parameters of the 

soliton change. Such kind of slowly expanding solitons are referred as the post-soliton. [43, 53]. We 

mention that all the solitons observed in the simulations are of bright type. 

The theory of relativistic electromagnetic solitons in a cold plasma was first studied by Kozlov et al 

[54] in an envelope approximation. They proved the existence of small amplitude solitons under quasi-

neutral approximation and found that relativistic amplitude solitons only existed when the charge separation 

was essential and the large amplitude solitons could have a discrete velocity spectrum. Their work has been 

extended by Kaw et al [55], Poornakala et al [56] and Farina et al [57, 58, 59] where ion’s motion effects 

are investigated and different types of solitons are demonstrated. In the limit of quasi-neutral approximation, 

bright solitons exist when the soliton group velocity 𝐺𝐺 exceeds a threshold and below which dark solitons 

occur. Collisionless electromagnetic shock waves are also found at critical velocities. Large amplitude 

solitons with several humps in the vector potential profile and one hump in the scalar potential profile are 

also observed and the soliton spectrum varies with different number of humps. Solitons can break up at 

certain velocities and the breaking of solitons provides an additional mechanism for particle acceleration, 

e.g. the estimated ion energy could reach the order of 70Mev [58].The soliton in warm plasma case was 

treated by Lontano et al [60] in a quasi-neutral approximation and Poornakala et al [61] in a weakly 

relativistic approximation. It was found that temperature effects played a crucial role when the soliton group 

velocity was small, e.g. comparable to the thermal speed of the particles. Specifically, the finite temperature 

effects made it possible for the existence of the non-drifting solitons and this kind of soliton was prohibited 

in cold plasma if ion’s motion was taken into account. In the absence of ions, the exact solution for non-

drifting solitons in cold plasmas was given by Esirkepov et al [62]. Sanchez-Arriaga et al. [63] studied the 
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parametric domain for the dark solitons and also their stabilities. A review can be found in Ref 59, where 

different types of solitons and their properties under different soliton velocities are shown. Note that all of 

these works mentioned above are constrained to the relation 𝐺𝐺𝑣𝑣𝜙𝜙 = 𝑐𝑐2, where  𝑣𝑣𝜙𝜙 ≡ 𝜔𝜔 𝑘𝑘⁄  is the soliton 

phase velocity and 𝜔𝜔, 𝑘𝑘 are the soliton frequency and wavenumber. Sanchez-Arriaga et al [64] first consider 

the case when this relation breaks up and find that a phase modulation exists. 

The stabilities of the solitons in unmagnetized plasmas were also studied in the past. [65, 66, 67] It 

was found that, in 1D geometry, single hump bright solitons without ion’s motion were stable and multi-

hump bright soliton could break up due to the forward Raman scattering. [68, 69] In 2D simulations, all 

solitons suffered from the transverse instabilities. [70] 

1.2.2 Researches on solitons in magnetized plasmas 

Compared with the systematic and abundant research results in unmagnetized plasmas, the studies of 

solitons in magnetized plasma are much less and insufficient. Pioneering works were mainly on the 

nonlinear propagation of electromagnetic waves parallel to the magnetic field in plasmas. Karpman et al. 

[71, 72] derived the nonlinear Schrodinger equation for the envelope of a high frequency wave modulated 

by the effects of low frequency perturbations. The relativistic nonlinearities and parallel electron flow 

contributions were later incorporated by Berezhiani et al. and Shukla et al. [73,74]. Hasegawa [75] 

developed the coupling equations governing the electron cyclotron wave by the reductive perturbation 

method. Shukla et al. [76] studied the nonlinear coupling of Whistler wave with ion cyclotron oscillations. 

In general, a pair of nonlinear equations coupling the wave amplitude and electrostatic density perturbations 

can be derived from these models by assuming a slowly-varying envelop approximation. As a result, a 

stationary soliton solution can be obtained. Rao et al. [ 77] adopted this method to discuss the parameter 

domain for large amplitude solitons in cold plasmas, however they neglected the longitudinal momentum 

of the electrons and the ion current density effects. The standing bright soliton solution without ion’s motion 

effects in cold plasmas was considered by Farina et al [78]. Different from the above researchers, Borhanian 

et al [79] employed a multi-scale perturbation method to solve the Maxwell-fluid equations in the weakly 

relativistic limit, where they also obtained a nonlinear Schrodinger-type equation to govern the soliton 

vector potential. 

1.3 Outline of the thesis 

As discussed in the previous sections, the ultra-intense laser plasma interactions in the presence of strong 

parallel magnetic field are of great importance in many applications including the magnetically assisted fast 
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ignition, the wake field acceleration, terahertz radiation, etc. In all of these applications, the laser pulse 

needs to propagate a long distance in the under-dense plasmas. However, the details about the propagation 

modes, specifically the soliton formations in magnetized plasmas still remain unclear. Since a substantial 

part of the laser energy can be transformed into the solitons before it can interact with the target, it is very 

important and necessary to figure out the underlying physics of the solitons. 

In this thesis, the effects of strong magnetic field on the laser plasma interactions, specifically on the 

various laser propagation modes and soliton formations are studied numerically through a PIC simulation 

and analytically by solving the soliton equations. The uniform external magnetic field is applied along the 

laser propagation direction. The outline of the thesis is as follows, 

 In chapter 2, we first introduce the single particle orbit inside the relativistic linearly and circularly 

polarized laser field in the presence of strong parallel magnetic field. Then the relativistic dispersion 

relation for the electromagnetic waves is discussed. Specifically, the shrink and disappearance of the 

Whistler mode under the ultra-relativistic regime is investigated. 

 In chapter 3, the simulation results performed by the extended particle based integrated code (EPIC3D) 

are shown. We mainly focus on the laser heating efficiency and soliton formation with different 

magnetic fields and laser intensities and polarizations. The linear propagation modes, namely the right 

hand circularly polarized wave (RCP), the left hand circularly polarized wave (LCP) and the Whistler 

wave are analyzed theoretically in the inhomogeneous plasmas areas. The soliton mechanism and 

properties, e.g. the stabilities and the position dependence are studied.  

 In chapter 4, the coupled soliton equations are derived in the framework of relativistic warm fluid 

model. Different dispersion relations for bright and dark solitons are assumed from the boundary 

conditions and the Hamiltonian of the system is found. The theory of dynamical systems as well as the 

concepts of fixed point, bifurcation, homoclinic and heteroclinic orbit and manifold are interpreted at 

the end of the chapter. 

 In chapter 5, the bright soliton generation in magnetized plasmas is systematically studied based on 

the coupled soliton equations. The parametric domain of magnetic field and soliton frequency for the 

existence of bright solitons is identified in cold and warm plasmas, respectively. Ion’s effects on this 

parametric domain are investigated and the small amplitude soliton solution is obtained under the 

quasi-neutral limit. The numerical methods, namely the shooting and rational spectral methods, are 

presented to solve the soliton equations and compute the manifolds. Based on the numerical 

calculations, the dependences of soliton amplitude and density on the magnetic field, soliton frequency, 

temperature and ion’s motion are investigated. 
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 In chapter 6, the dark soliton formation in magnetized plasmas is presented. The parametric domain of 

the magnetic field, soliton frequency and wavenumber for the existence of dark solitons is identified 

in both and warm plasmas. Specifically, the temperature effects on the single hump and multi-hump 

dark solitons are investigated. 

 In chapter 7, the meaning of our research is pointed. The main results are concluded and several open 

problems are proposed for the extension of this work. 

 In the appendix, the validity of the Hamiltonian of the system and the existence conditions of the 

additional fixed points for the bright and dark solitons are shown. We also benchmark the shooting 

method with the rational spectral scheme to confirm their correctness. 
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2. Single particle orbit and dispersion relation in 

magnetized plasmas 

The introduction of magnetic field can affect the charged particle’s motion and thus the plasma’s response 

to electromagnetic perturbations. In principle, the theory of laser plasma interaction should simultaneously 

treat the interactions between the field and particles self-consistently. However, due to the complexity of 

this problem, some simplifications should be made. One of the simplifications commonly used is to neglect 

the forces among the particles, and the reaction of the particles on the field, e.g. the particle’s radiation, 

which leads to the single particle orbit theory. Since the collective effects of the plasma are ignored, the 

single particle orbit theory can only be used to the weakly coupled plasmas in short time scale. However, 

the charged particle’s motion is the basis of understanding the various physical processes in plasmas and it 

is also very important to the physics of particle accelerator, electron optical imaging and so on. In this 

chapter we first introduce the single particle motion inside the relativistic laser field in the presence of 

parallel magnetic field. The Lagrangian mechanics is used and the system is completely integrable. Then 

the linear dispersion relation in strongly magnetized plasmas with the inclusion of relativistic effects is 

discussed in the framework of fluid model. 

2.1 Single particle motion in relativistic laser field 

The single particle orbit inside the relativistic laser field without magnetic field is well known. [7] For 

linearly polarized laser, the particle has the “8-figure” structure in the average rest frame, while for 

circularly polarized laser, the orbit is a circle. In the presence of magnetic field, the particle’s motion will 

be changed. 

2.1.1  Linearly polarized laser 

Considering a linearly polarized laser represented by 𝑬𝑬 = 𝐸𝐸𝐿𝐿 cos(𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡)𝒆𝒆�𝑥𝑥, propagates in an uniform 

cold plasma with density 𝑛𝑛0 in the presence of a constant magnetic field 𝑩𝑩0 applied parallel to the direction 

of the propagation z, where 𝐸𝐸𝐿𝐿, 𝑘𝑘0, 𝜔𝜔0 are the amplitude, wavenumber and frequency of the laser field 

respectively. The corresponding vector and scalar potentials can be chosen as 𝑨𝑨 = (𝑐𝑐𝐸𝐸𝐿𝐿 𝜔𝜔0⁄ ) sin(𝑘𝑘0𝑧𝑧 −
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𝜔𝜔0𝑡𝑡)𝒆𝒆�𝑥𝑥 + 𝐵𝐵0𝑥𝑥𝒆𝒆�𝑦𝑦  and  𝜙𝜙 = 0 . Notice that the electric and magnetic fields can be calculated by 𝑬𝑬 =

−(1 𝑐𝑐⁄ )𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ − ∇𝜙𝜙 and 𝑩𝑩 = ∇ × 𝑨𝑨. The Lagrangian of the particle in this field is, 

 
𝐿𝐿(𝒓𝒓,𝒗𝒗, 𝑡𝑡) = −𝑚𝑚𝑐𝑐2�1−

𝑣𝑣2

𝑐𝑐2
+
𝑞𝑞
𝑐𝑐
𝑨𝑨 ∙ 𝒗𝒗 − 𝑞𝑞𝜙𝜙

= −𝑚𝑚𝑐𝑐2�1−
𝑣𝑣2

𝑐𝑐2
+
𝑞𝑞𝐸𝐸𝐿𝐿𝑣𝑣𝑥𝑥
𝜔𝜔0

sin(𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡) +
𝑞𝑞𝑣𝑣𝑦𝑦
𝑐𝑐
𝐵𝐵0𝑥𝑥

 (2.1) 

Here 𝑞𝑞, 𝑚𝑚, 𝒗𝒗, 𝛾𝛾, 𝑐𝑐, are the particle charge, mass, velocity, relativistic factor and speed of light. Note that 

the particle charge is defined with sign, e.g. for electrons 𝑞𝑞 = −𝑒𝑒 . Since the Lagrangian doesn’t depend on 

y and it only depends on the combination of 𝜂𝜂 = 𝑘𝑘0𝑧𝑧 − 𝜔𝜔0𝑡𝑡 = 𝑘𝑘0(𝑧𝑧 − 𝑐𝑐𝑡𝑡), we have, 

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

= 0 =
𝑑𝑑𝑃𝑃𝑦𝑦
𝑑𝑑𝑡𝑡

;                         
𝜕𝜕𝐿𝐿
𝜕𝜕𝑡𝑡

+ 𝑐𝑐
𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

= 0 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

+ 𝑐𝑐
𝑑𝑑𝑃𝑃𝑧𝑧
𝑑𝑑𝑡𝑡

 

Here 𝑷𝑷 = 𝐩𝐩 + (𝑞𝑞 𝑐𝑐⁄ )𝑨𝑨  is the canonical momentum and 𝒑𝒑 = 𝛾𝛾𝑚𝑚𝒗𝒗  is the kinetic momentum with 𝛾𝛾 =

(1 − 𝑣𝑣2 𝑐𝑐2⁄ )−1 2⁄  and 𝑑𝑑 = �𝑚𝑚2𝑐𝑐4 + 𝑐𝑐2𝑝𝑝2 is the Hamiltonian. In deriving the above equations we have 

used the relation 𝜕𝜕𝐿𝐿 𝜕𝜕𝑡𝑡⁄ = −𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡⁄  since the Hamiltonian 𝑑𝑑  does not contain 𝑡𝑡 explicitly. The above 

equations give two integrals of motion,  

 𝑝𝑝𝑦𝑦 +
𝑞𝑞
𝑐𝑐
𝐵𝐵0𝑥𝑥 = 𝑐𝑐1 (2.2) 

 𝑑𝑑 − 𝑐𝑐𝑃𝑃𝑧𝑧 = �𝑚𝑚2𝑐𝑐4 + 𝑐𝑐2𝑝𝑝2 − 𝑐𝑐𝑝𝑝𝑧𝑧 = 𝑐𝑐2 (2.3) 

𝑐𝑐1 and 𝑐𝑐2 are two constants depending on the initial conditions. Meanwhile, the equations of motion in the 

x and z directions are, 

 𝑑𝑑𝑃𝑃𝑥𝑥
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑝𝑝𝑥𝑥 +

𝑞𝑞𝐸𝐸𝐿𝐿
𝜔𝜔0

sin 𝜂𝜂� =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑥𝑥

=
𝑞𝑞𝑣𝑣𝑦𝑦
𝑐𝑐
𝐵𝐵0 (2.4) 

 𝑑𝑑𝑃𝑃𝑧𝑧
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑝𝑝𝑧𝑧
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

=
𝑞𝑞𝐸𝐸𝐿𝐿𝑣𝑣𝑥𝑥
𝑐𝑐

cos𝜂𝜂 (2.5) 

Using 𝜔𝜔0
−1 , 𝑘𝑘0−1 , 𝑚𝑚𝑐𝑐 and 𝑚𝑚𝑐𝑐2  to normalize the time, space, momentum and energy, Eqs. (2.2) – (2.5) 

become, 

 𝑝𝑝𝑦𝑦 + 𝑏𝑏𝑥𝑥 = 𝑐𝑐1; 𝛾𝛾 − 𝑝𝑝𝑧𝑧 = 𝑐𝑐2;
𝑑𝑑𝑝𝑝𝑥𝑥
𝑑𝑑𝑡𝑡

= −𝑎𝑎 cos𝜂𝜂
𝑑𝑑𝜂𝜂
𝑑𝑑𝑡𝑡

+
𝑝𝑝𝑦𝑦
𝛾𝛾
𝑏𝑏;

𝑑𝑑𝑝𝑝𝑧𝑧
𝑑𝑑𝑡𝑡

=
𝑎𝑎𝑝𝑝𝑥𝑥
𝛾𝛾

cos𝜂𝜂 .
 (2.6) 
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Here 𝑎𝑎 =  𝑞𝑞𝐸𝐸𝐿𝐿 (𝑚𝑚𝜔𝜔0𝑐𝑐)⁄  and 𝑏𝑏 =  𝑞𝑞𝐵𝐵0 (𝑚𝑚𝜔𝜔0𝑐𝑐)⁄ . Note that we have the identify 𝑑𝑑𝜂𝜂 𝑑𝑑𝑡𝑡⁄ = (𝑝𝑝𝑧𝑧 − 𝛾𝛾) 𝛾𝛾⁄ =

−𝑐𝑐2 𝛾𝛾⁄ . Hence, Eq. (2.6) is reduced to the forced oscillation equation, 

 𝑑𝑑2𝑝𝑝𝑥𝑥
𝑑𝑑𝜂𝜂2

+
𝑏𝑏2

𝑐𝑐22
𝑝𝑝𝑥𝑥 = 𝑎𝑎 sin𝜂𝜂 (2.7) 

Depending on different values of 𝑏𝑏 𝑐𝑐2⁄ , this equation may have resonance and non-resonance solutions. In 

the next, we assume the particle is initially located at the origin and at rest, e.g. 𝑐𝑐1 = 0 and 𝑐𝑐2 = 1. 

a) Non-resonance solution 

If 𝑏𝑏 ≠ ±1, we can have the non-resonance solution, 

𝑝𝑝𝑥𝑥 =
𝑎𝑎

𝑏𝑏2 − 1
sin 𝜂𝜂 + 𝑐𝑐3 sin𝑏𝑏𝜂𝜂 + 𝑐𝑐4 cos𝑏𝑏𝜂𝜂 

Here 𝑐𝑐3, 𝑐𝑐4 are undetermined factors and they can be determined by the initial condition, 𝑝𝑝𝑥𝑥 = 0 and  
𝑑𝑑𝑝𝑝𝑥𝑥
𝑑𝑑𝜂𝜂 �𝜂𝜂=0

= −𝑎𝑎 cos𝜂𝜂 − 𝑏𝑏𝑝𝑝𝑦𝑦�𝜂𝜂=0 = −𝑎𝑎 =
𝑎𝑎

𝑏𝑏2 − 1
+ 𝑐𝑐3𝑏𝑏 

Hence 𝑐𝑐4 = 0, 𝑐𝑐3 = −𝑎𝑎𝑏𝑏 (𝑏𝑏2 − 1)⁄ . Then the particle’s momenta are, 

 

�
𝑝𝑝𝑥𝑥 =

𝑎𝑎
𝑏𝑏2 − 1

(sin𝜂𝜂 − 𝑏𝑏 sin𝑏𝑏𝜂𝜂); 𝑝𝑝𝑦𝑦 = −
𝑎𝑎𝑏𝑏

𝑏𝑏2 − 1
(cos𝜂𝜂 − cos𝑏𝑏𝜂𝜂);

𝑝𝑝𝑧𝑧 =
1
2
�

𝑎𝑎
𝑏𝑏2 − 1

�
2

[𝑠𝑠𝑖𝑖𝑛𝑛2𝜂𝜂 + 𝑏𝑏2𝑐𝑐𝑐𝑐𝑠𝑠2𝜂𝜂 + 𝑏𝑏2 − 2𝑏𝑏(sin𝜂𝜂 sin𝑏𝑏𝜂𝜂 + 𝑏𝑏 cos𝜂𝜂 cos𝑏𝑏𝜂𝜂)].
 (2.8) 

The momentum in x-y plane has two frequencies: the laser frequency and the cyclotron frequency. The 

particle’s orbit can be integrated directly using the relation 𝒑𝒑 = 𝛾𝛾 𝑑𝑑𝒓𝒓 𝑑𝑑𝑡𝑡⁄ = −𝑑𝑑𝒓𝒓 𝑑𝑑𝜂𝜂⁄  to get, 

⎩
⎨

⎧𝑥𝑥 =
𝑎𝑎

𝑏𝑏2 − 1
(cos𝜂𝜂 − cos𝑏𝑏𝜂𝜂); 𝜕𝜕 =

𝑎𝑎
𝑏𝑏2 − 1

(𝑏𝑏 sin𝜂𝜂 − sin𝑏𝑏𝜂𝜂);

𝑧𝑧 = −
1
2
�

𝑎𝑎
𝑏𝑏2 − 1

�
2
�
𝜂𝜂
2

(1 + 3𝑏𝑏2) +
𝑏𝑏2 − 1

4
sin 2𝜂𝜂 − 𝑏𝑏 �

𝑏𝑏 + 1
𝑏𝑏 − 1

sin(𝑏𝑏 − 1)𝜂𝜂 +
𝑏𝑏 − 1
𝑏𝑏 + 1

sin(𝑏𝑏 + 1)𝜂𝜂�� .
 

 (2.9) 

Obviously, the motion is no longer planar. If 𝑏𝑏 = 0, Eqs. (2.8) and (2.9) reduce to the zero magnetic field 

case, which describes an “8-figure” motion in the average at rest frame, 

 

�
𝑝𝑝𝑥𝑥 = −𝑎𝑎 sin 𝜂𝜂 ; 𝑝𝑝𝑦𝑦 = 0; 𝑝𝑝𝑧𝑧 =

1
2
𝑎𝑎2𝑠𝑠𝑖𝑖𝑛𝑛2𝜂𝜂;

𝑥𝑥 = −𝑎𝑎(cos𝜂𝜂 − 1); 𝜕𝜕 = 0; 𝑧𝑧 = −
1
4
𝑎𝑎2 �𝜂𝜂 −

1
2

sin 2𝜂𝜂� .
 (2.10) 

b) Resonance solution 

The resonance case happens when 𝑏𝑏 = ±1 or the cyclotron frequency equals to the laser frequency. In 
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this case, the particle will get energy from the laser continuously. The momenta and orbit can be calculated 

in the limit of 𝑏𝑏 → ±1 of Eqs. (2.8) and (2.9), 

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑥𝑥 = −

𝑎𝑎
2

(𝜂𝜂 cos𝜂𝜂 + sin𝜂𝜂); 𝑝𝑝𝑦𝑦 = −
𝑎𝑎
2
𝜂𝜂 sin 𝜂𝜂 ; 𝑝𝑝𝑧𝑧 =

𝑎𝑎2

8
(𝜂𝜂2 + sin2 𝜂𝜂 + 𝜂𝜂 sin 2𝜂𝜂);

𝑥𝑥 =
𝑎𝑎
2
𝜂𝜂 sin 𝜂𝜂 ; 𝜕𝜕 =

𝑎𝑎
2

(sin𝜂𝜂 − 𝜂𝜂 cos𝜂𝜂); 𝑧𝑧 = −
𝑎𝑎2

8 �
𝜂𝜂3

3
+
𝜂𝜂
2
−
𝜂𝜂 cos 2𝜂𝜂

2 � .
 

(2.11) 

The comparison of particle’s orbit for the resonance and non-resonance as well as the zero magnetic 

field cases are shown in Fig 2.1. It can be seen that the usual “8-figure” plane motion (Fig 2.1(c)) in 

unmagnetized case has now changed to 3 dimensional. Notice that the particle’s orbit in the x-y plane is 

closed or periodical only when 𝑏𝑏 is a rational number. 

  

 

Fig 2.1. The electron’s trajectory for the non-

resonance case (a), the resonance case (b) and zero 

magnetic field case (c) in the linear polarized laser 

field. The electron is initially at rest at the origin. 

The parameters are a)  𝑏𝑏 = −0.5 ; b)  𝑏𝑏 = −1 ; 

c) 𝑏𝑏 = 0 and 𝑎𝑎 = −1 for all plots. Notice that the 

orbit in the x-y plane is periodical only when 𝑏𝑏 is a 

rational number. 
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2.1.2 Circularly polarized laser 

A similar calculation can be made for the circularly polarized laser. Here we take the right hand circular 

polarized laser as an example. In this case, the vector potential becomes 𝑨𝑨 = (𝑐𝑐𝐸𝐸𝐿𝐿 𝜔𝜔0⁄ ) sin𝜂𝜂 𝒆𝒆�𝑥𝑥 +

[𝐵𝐵0𝑥𝑥 − (𝑐𝑐𝐸𝐸𝐿𝐿 𝜔𝜔0⁄ ) cos𝜂𝜂]𝒆𝒆�𝑦𝑦 and the scalar potential 𝜙𝜙 remains zero. The Lagrangian is 

 𝐿𝐿(𝒓𝒓,𝒗𝒗, 𝑡𝑡) = −𝑚𝑚𝑐𝑐2�1 − 𝑣𝑣2 𝑐𝑐2⁄ +
𝑞𝑞𝐸𝐸𝐿𝐿𝑣𝑣𝑥𝑥
𝜔𝜔0

sin 𝜂𝜂 +
𝑞𝑞𝑣𝑣𝑦𝑦
𝑐𝑐
�𝐵𝐵0𝑥𝑥 −

𝑐𝑐𝐸𝐸𝐿𝐿
𝜔𝜔0

cos𝜂𝜂�. (2.12) 

There are also two integrals of motion similar to Eqs. (2.2) and (2.3), and the equations of motion become, 

 
𝑐𝑐2
𝑑𝑑𝑝𝑝𝑦𝑦
𝑑𝑑𝜂𝜂

= 𝑏𝑏𝑝𝑝𝑥𝑥 − 𝑎𝑎𝑐𝑐2 sin𝜂𝜂 ; 𝛾𝛾 − 𝑝𝑝𝑧𝑧 = 𝑐𝑐2;

𝑐𝑐2
𝑑𝑑𝑝𝑝𝑥𝑥
𝑑𝑑𝜂𝜂

= −𝑏𝑏𝑝𝑝𝑦𝑦 − 𝑎𝑎𝑐𝑐2 cos𝜂𝜂 ; 𝑐𝑐2
𝑑𝑑𝑝𝑝𝑧𝑧
𝑑𝑑𝜂𝜂

= −𝑎𝑎�𝑝𝑝𝑥𝑥 cos𝜂𝜂 + 𝑝𝑝𝑦𝑦 sin 𝜂𝜂�.
 (2.13) 

Then the forced oscillation equation for 𝑝𝑝𝑥𝑥 is, 

 𝑑𝑑2𝑝𝑝𝑥𝑥
𝑑𝑑𝜂𝜂2

+
𝑏𝑏2

𝑐𝑐22
𝑝𝑝𝑥𝑥 = 𝑎𝑎 �1 +

𝑏𝑏
𝑐𝑐2
� sin 𝜂𝜂. (2.14) 

For the left hand circularly polarized laser, the sign of the second term in the parentheses of the right hand 

side of Eq. (2.14) is negative. Again we assume the particle is initially at rest at the origin, then 𝑐𝑐2 = 1. 

a) Non-resonance solution 

For the non-resonance solution, 𝑏𝑏 ≠ 1. The particle’s momenta and orbit are, 

⎩
⎨

⎧𝑝𝑝𝑥𝑥 =
𝑎𝑎

𝑏𝑏 − 1
(sin 𝜂𝜂 − sin𝑏𝑏𝜂𝜂); 𝑝𝑝𝑦𝑦 = −

𝑎𝑎
𝑏𝑏 − 1

(cos𝜂𝜂 − cos𝑏𝑏𝜂𝜂); 𝑝𝑝𝑧𝑧 = �
𝑎𝑎

𝑏𝑏 − 1
�
2

[1 − cos(𝑏𝑏 − 1)𝜂𝜂];

𝑥𝑥 =
𝑎𝑎

𝑏𝑏 − 1
�cos𝜂𝜂 −

1
𝑏𝑏

cos𝑏𝑏𝜂𝜂� −
𝑎𝑎
𝑏𝑏

; 𝜕𝜕 =
𝑎𝑎

𝑏𝑏 − 1
�sin 𝜂𝜂 −

1
𝑏𝑏

sin𝑏𝑏𝜂𝜂� ; 𝑧𝑧 = −�
𝑎𝑎

𝑏𝑏 − 1
�
2
�𝜂𝜂 −

sin(𝑏𝑏 − 1)𝜂𝜂
𝑏𝑏 − 1

� .
 

(2.15) 

For the zero magnetic field case 𝑏𝑏 = 0, Eq. (2.15) is reduced to, 

 
�
𝑝𝑝𝑥𝑥 = −𝑎𝑎 sin 𝜂𝜂 ; 𝑝𝑝𝑦𝑦 = 𝑎𝑎(cos𝜂𝜂 − 1); 𝑝𝑝𝑧𝑧 = 𝑎𝑎2(1 − cos𝜂𝜂);

𝑥𝑥 = −𝑎𝑎 cos𝜂𝜂 ; 𝜕𝜕 = −𝑎𝑎(cos𝜂𝜂 − 𝜂𝜂); 𝑧𝑧 = −𝑎𝑎2(𝜂𝜂 − sin𝜂𝜂).
 (2.16) 

It describes a circle with moving center at (0,𝑎𝑎𝜂𝜂) in the x-y plane. Interestingly, a special case happens 

when 𝑏𝑏 = −1, 
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⎩
⎨

⎧𝑝𝑝𝑥𝑥 = −𝑎𝑎 sin 𝜂𝜂 ; 𝑝𝑝𝑦𝑦 = 0; 𝑝𝑝𝑧𝑧 =
𝑎𝑎2

4
(1 − cos 2𝜂𝜂);

𝑥𝑥 = 𝑎𝑎(1 − cos𝜂𝜂); 𝜕𝜕 = 0; 𝑧𝑧 = −
𝑎𝑎2

4
�𝜂𝜂 −

1
2

sin 2𝜂𝜂� .
 (2.17) 

Eq. (2.17) is exactly the same as (2.10). Hence, in the average at rest frame, the motion is the “8-figure” 

structure which is same as the linearly polarized laser without magnetic field. In this case, the circularly 

polarization effects are canceled by the cyclotron effects of the particles. 

b) Resonance solution 

If 𝑏𝑏 = 1, resonance happens and the particle’s momenta and orbit are, 

  

  
Fig 2.2. The electron’s trajectory for the non-resonance case (a), the special case (b), the resonance case 

(c) and zero magnetic field case (d) in the right hand circularly polarized laser field. The electron is 

initially at rest at the origin. The parameters are a) 𝑏𝑏 = −0.5; b) 𝑏𝑏 = −1; c) 𝑏𝑏 = 1; (d)  𝑏𝑏 = 0 and 𝑎𝑎 =

−1 for all plots. 
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�
𝑝𝑝𝑥𝑥 = −𝑎𝑎𝜂𝜂 cos𝜂𝜂 ; 𝑝𝑝𝑦𝑦 = −𝑎𝑎𝜂𝜂 sin𝜂𝜂 ; 𝑝𝑝𝑧𝑧 = 𝑎𝑎2𝜂𝜂2 2⁄ ;

𝑥𝑥 = 𝑎𝑎(𝜂𝜂 sin𝜂𝜂 + cos𝜂𝜂) − 𝑎𝑎; y = −𝑎𝑎(𝜂𝜂 cos𝜂𝜂 − sin𝜂𝜂); z = −
1
6
𝑎𝑎2𝜂𝜂3.

 (2.18) 

In Fig 2.2, we show the electron’s orbits for various magnetic fields in the right hand circularly 

polarized laser field. The figures (a), (b), (c) and (d) correspond to the general case, the special case, the 

resonance case and the zero magnetic field case, respectively. 

One of the applications of these exact expressions for the particle’s orbit is to calculate the radiation 

from this relativistic motion, e.g. the scattering of a laser pulse by the electrons. Such radiation becomes 

non-ignorable when the laser intensity is ultra-high, say, 𝐼𝐼 > 1023𝑊𝑊/𝑐𝑐𝑚𝑚2. 

2.2 Electromagnetic waves in magnetized plasmas 

When there is some perturbations in the plasmas, the electromagnetic field can propagate away in the form 

of waves. In this section, we introduce the waves propagating parallel to the constant external magnetic 

field in the linear regime. 

2.2.1 Dispersion relation 

The field in the plasmas should satisfy the Maxwell equations and the fluid equations, which are, 

 𝜕𝜕𝑛𝑛𝑠𝑠
𝜕𝜕𝑡𝑡

+ ∇ ∙ (𝑛𝑛𝑠𝑠𝒗𝒗𝒔𝒔) = 0; (2.19a) 

 𝜕𝜕𝒑𝒑𝒔𝒔
𝜕𝜕𝑡𝑡

+ 𝒗𝒗𝒔𝒔 ∙ ∇𝒑𝒑𝒔𝒔 = 𝑞𝑞𝑠𝑠 �𝑬𝑬 +
1
𝑐𝑐
𝒗𝒗𝒔𝒔 × 𝑩𝑩� ; (2.19b) 

 
∇(∇ ∙ 𝑬𝑬) − ∇2𝑬𝑬 +

1
𝑐𝑐2
𝜕𝜕2𝑬𝑬
𝜕𝜕𝑡𝑡2

= −
4𝜋𝜋
𝑐𝑐2
𝜕𝜕𝑱𝑱
𝜕𝜕𝑡𝑡

; (2.19c) 

 𝑱𝑱 = � 𝑛𝑛𝑠𝑠𝑞𝑞𝑠𝑠
𝒑𝒑𝒔𝒔
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

. (2.19d) 

Here the sum ∑ stands for a summation over particle species 𝑠𝑠. In 1D case ∇≡ 𝒆𝒆�𝑧𝑧(𝜕𝜕 𝜕𝜕𝑧𝑧⁄ ). The density, 

velocity, relativistic factor, momentum, charge, mass are denoted as 𝑛𝑛𝑠𝑠,𝒗𝒗𝒔𝒔, 𝛾𝛾𝑠𝑠,𝒑𝒑𝒔𝒔,𝑞𝑞𝑠𝑠,𝑚𝑚𝑠𝑠 for sth particle as 

usual and the current, electric and magnetic fields are 𝑱𝑱,𝑬𝑬 and 𝑩𝑩. 

Introduce the symbols 𝑓𝑓± = 𝑓𝑓𝑥𝑥 ± 𝑖𝑖𝑓𝑓𝑦𝑦 for 𝑓𝑓 = 𝐸𝐸,𝐵𝐵, 𝑣𝑣, Eq. (2.19) has the following two exact solutions, 

[80] 
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𝐸𝐸± = 𝐸𝐸𝐿𝐿𝑒𝑒±𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑧𝑧); 𝐵𝐵± = ±
𝑖𝑖𝑘𝑘𝑐𝑐
𝜔𝜔
𝐸𝐸±; 𝑣𝑣𝑠𝑠± = ∓

𝑖𝑖𝑞𝑞𝑠𝑠𝐸𝐸±(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝜔𝜔(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ ) ;

𝐸𝐸𝑧𝑧 = 0; 𝐵𝐵𝑧𝑧 = 𝐵𝐵0; 𝑣𝑣𝑠𝑠𝑧𝑧 = 𝑣𝑣𝑠𝑠𝑠𝑠;

𝑛𝑛 = 𝑛𝑛𝑠𝑠0; 𝛾𝛾𝑠𝑠 = (1 − 𝑣𝑣𝑠𝑠2 𝑐𝑐2⁄ )−1 2⁄ ; 𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2 = �
�𝜔𝜔𝑝𝑝𝑠𝑠2 𝛾𝛾𝑠𝑠⁄ �(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄

𝑠𝑠

.

 

(2.20a) 

(2.20b) 

(2.20c) 

or 

𝐸𝐸± = 𝐸𝐸𝐿𝐿𝑒𝑒∓𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑧𝑧); 𝐵𝐵± = ±
𝑖𝑖𝑘𝑘𝑐𝑐
𝜔𝜔
𝐸𝐸±; 𝑣𝑣𝑠𝑠± = ±

𝑖𝑖𝑞𝑞𝑠𝑠𝐸𝐸±(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝜔𝜔(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 − Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ ) ;

𝐸𝐸𝑧𝑧 = 0; 𝐵𝐵𝑧𝑧 = 𝐵𝐵0; 𝑣𝑣𝑠𝑠𝑧𝑧 = 𝑣𝑣𝑠𝑠𝑠𝑠;

𝑛𝑛 = 𝑛𝑛𝑠𝑠0; 𝛾𝛾𝑠𝑠 = (1 − 𝑣𝑣𝑠𝑠2 𝑐𝑐2⁄ )−1 2⁄ ; 𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2 = �
�𝜔𝜔𝑝𝑝𝑠𝑠2 𝛾𝛾𝑠𝑠⁄ �(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 − Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄

𝑠𝑠

.

 

(2.21a) 

(2.21b) 

(2.21c) 

Here 𝐸𝐸𝐿𝐿 ,𝐵𝐵0 are arbitrary constant electric and magnetic field amplitudes, 𝑣𝑣𝑠𝑠𝑠𝑠 and Ω𝑐𝑐𝑠𝑠 = 𝑞𝑞𝑠𝑠𝐵𝐵0 (𝑚𝑚𝑠𝑠𝑐𝑐)⁄  are 

the constant drift velocity and cyclotron frequency for sth particle, respectively. Solutions (2.20) and (2.21) 

describe a right or left hand circularly polarized wave with electric field 𝐸𝐸𝐿𝐿  and an external magnetic 

field 𝐵𝐵0 in the plasmas. In different frequency limit, the electromagnetic wave can be the Whistler wave, 

the Alfven wave or the high frequency electromagnetic waves (RCP or LCP). Notice that the frequency 𝜔𝜔 

and wavenumber 𝑘𝑘 should satisfy the dispersion relation, 

 
𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2 = �

�𝜔𝜔𝑝𝑝𝑠𝑠2 𝛾𝛾𝑠𝑠⁄ �(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 ± Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄

𝑠𝑠

. (2.22) 

Here the plasma frequency 𝜔𝜔𝑝𝑝𝑠𝑠 is denoted as 𝜔𝜔𝑝𝑝𝑠𝑠2 = 4𝜋𝜋𝑛𝑛𝑠𝑠𝑞𝑞𝑠𝑠2 𝑚𝑚𝑠𝑠⁄ .  

The verification of solutions (2.20) and (2.21) is easy. We take solution (2.20) as an example. First 

notice that 𝛾𝛾𝑠𝑠  is constant since 𝑣𝑣𝑠𝑠2 = 𝑣𝑣𝑠𝑠+𝑣𝑣𝑠𝑠− + 𝑣𝑣𝑠𝑠𝑠𝑠2  is constant. Hence Eq. (2.19a) is always satisfied. 

Meanwhile, the longitudinal and transverse components of Eq. (2.19b) become, 

 𝜕𝜕𝑝𝑝𝑠𝑠𝑧𝑧
𝜕𝜕𝑡𝑡

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑝𝑝𝑠𝑠𝑧𝑧
𝜕𝜕𝑧𝑧

= 𝑞𝑞𝑠𝑠 �𝐸𝐸𝑧𝑧 +
1
𝑐𝑐 �
𝑣𝑣𝑠𝑠𝑥𝑥𝐵𝐵𝑦𝑦 − 𝑣𝑣𝑠𝑠𝑦𝑦𝐵𝐵𝑥𝑥�� ; (2.23a) 

 𝜕𝜕𝑝𝑝𝑠𝑠+
𝜕𝜕𝑡𝑡

+ 𝑣𝑣𝑠𝑠𝑧𝑧
𝜕𝜕𝑝𝑝𝑠𝑠+
𝜕𝜕𝑧𝑧

= 𝑞𝑞𝑠𝑠 �𝐸𝐸+ +
𝑖𝑖
𝑐𝑐

(−𝑣𝑣𝑠𝑠+𝐵𝐵𝑧𝑧 + 𝑣𝑣𝑠𝑠𝑧𝑧𝐵𝐵+)� ; (2.23b) 

 𝜕𝜕𝑝𝑝𝑠𝑠−
𝜕𝜕𝑡𝑡

+ 𝑣𝑣𝑠𝑠𝑧𝑧
𝜕𝜕𝑝𝑝𝑠𝑠−
𝜕𝜕𝑧𝑧

= 𝑞𝑞𝑠𝑠 �𝐸𝐸− +
𝑖𝑖
𝑐𝑐

(𝑣𝑣𝑠𝑠−𝐵𝐵𝑧𝑧 − 𝑣𝑣𝑠𝑠𝑧𝑧𝐵𝐵−)�. (2.23c) 

The left hand side of Eq. (2.23a) is zero and the right hand side of Eq. (2.23a) is also zero, since 
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𝑣𝑣𝑠𝑠𝑥𝑥𝐵𝐵𝑦𝑦 − 𝑣𝑣𝑠𝑠𝑦𝑦𝐵𝐵𝑥𝑥 =
1
2𝑖𝑖

(−𝑣𝑣𝑠𝑠+𝐵𝐵− + 𝑣𝑣𝑠𝑠−𝐵𝐵+) =
𝑘𝑘𝑐𝑐
2𝜔𝜔

(𝑣𝑣𝑠𝑠+𝐸𝐸− + 𝑣𝑣𝑠𝑠−𝐸𝐸+) ≡ 0. 

Hence, Eq. (2.23a) always holds. On the other hand, the left hand side of Eqs. (2.23b) and (2.23c) is, 

 
𝐿𝐿 = ±𝑖𝑖(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)𝑝𝑝𝑠𝑠± =

𝑞𝑞𝑠𝑠𝐸𝐸±(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)2

𝜔𝜔(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ ). (2.24) 

The right hand side of Eqs. (2.23b) and (2.23c) is, 

 
𝑅𝑅 = 𝑞𝑞𝑠𝑠𝐸𝐸± �1 −

𝑞𝑞𝑠𝑠𝐵𝐵0(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐𝜔𝜔(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ ) −

𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠
𝜔𝜔

�

= 𝑞𝑞𝑠𝑠𝐸𝐸±
(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)2

𝜔𝜔(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ ) = 𝐿𝐿.
 (2.25) 

Thus, Eq. (2.19b) also holds. Notice that the longitudinal component of Eq. (2.19c) is always zero and the 

transverse component of Eq. (2.19c) is, 

 
−∇2𝐸𝐸± +

1
𝑐𝑐2
𝜕𝜕2𝐸𝐸±

𝜕𝜕𝑡𝑡2
= �𝑘𝑘2 −

𝜔𝜔2

𝑐𝑐2 �
𝐸𝐸± = −�

4𝜋𝜋𝑛𝑛𝑠𝑠𝑞𝑞𝑠𝑠
𝑐𝑐2𝑠𝑠

𝜕𝜕𝑣𝑣𝑠𝑠±

𝜕𝜕𝑡𝑡

= −�
𝜔𝜔𝑝𝑝𝑠𝑠2

𝑐𝑐2𝑠𝑠

(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠)
𝛾𝛾𝑠𝑠(𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠 + Ω𝑐𝑐𝑠𝑠 𝛾𝛾𝑠𝑠⁄ )𝐸𝐸±.

 (2.26) 

Hence, if the dispersion relation (2.20c) is satisfied, Eq. (2.20) is the solution to Eq. (2.19). Similar 

procedure can used to prove that Eq. (2.21) is also the solution to Eq. (2.19). 

2.2.2 Relativistic effects 

Now let’s look at the case when ion’s motion is negligible and the drift velocity 𝑣𝑣𝑒𝑒𝑠𝑠 is zero. In this case, 

the relativistic factor and the dispersion relation are, 

 
𝛾𝛾𝑒𝑒2 = 1 +

𝛾𝛾𝑒𝑒2𝜔𝜔𝐸𝐸
2

(𝛾𝛾𝑒𝑒𝜔𝜔 ± 𝜔𝜔𝑐𝑐𝑒𝑒)2 ; (2.27) 

 
𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2 =

𝜔𝜔𝑝𝑝𝑒𝑒2

𝛾𝛾𝑒𝑒 ± 𝜔𝜔𝑐𝑐𝑒𝑒 𝜔𝜔⁄
; (2.28) 

Here  𝜔𝜔𝐸𝐸 = 𝑒𝑒𝐸𝐸𝐿𝐿 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄  and 𝜔𝜔𝑐𝑐𝑒𝑒 = −Ω𝑐𝑐𝑒𝑒 = 𝑒𝑒𝐵𝐵0 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄ . Eq. (2.27) is a fourth-order equation of  𝛾𝛾𝑒𝑒 . 

Combining Eqs. (2.27) and (2.28), we find, 

 𝜔𝜔(𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2)
𝜔𝜔𝑝𝑝𝑒𝑒2 𝜔𝜔 ∓ 𝜔𝜔𝑐𝑐𝑒𝑒(𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2)

= �1 − �
𝑒𝑒𝐸𝐸𝐿𝐿
𝑚𝑚𝑒𝑒𝜔𝜔𝑐𝑐

�
2
�
𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2

𝜔𝜔𝑝𝑝𝑒𝑒2
�
2

�
1 2⁄

≡ 𝛾𝛾𝑒𝑒−1. (2.29) 
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For infinitesimal perturbations, e.g.  𝐸𝐸𝐿𝐿 = 0 , Eq. (2.29) returns to the usual non-relativistic dispersion 

relation, 

 
𝜔𝜔2 − 𝑘𝑘2𝑐𝑐2 =

𝜔𝜔𝑝𝑝𝑒𝑒2

1 ± 𝜔𝜔𝑐𝑐𝑒𝑒 𝜔𝜔⁄
 (2.30) 

In Fig. 2.3(a), the non-relativistic dispersion relation Eq. (2.30) for 𝜔𝜔𝑝𝑝𝑒𝑒 = 2𝜔𝜔0 and 𝜔𝜔𝑐𝑐𝑒𝑒 = 1.53𝜔𝜔0 

with 𝜔𝜔0 the laser frequency is plotted. The high frequency right and left hand side circularly polarized 

electromagnetic waves (RCP and LCP) and the electron cyclotron wave (Whistler) are all shown. Since we 

have neglected the ion’s motion, Alfven branch is not included. In Fig. 2.3(b), we compare the dispersion 

relations in the relativistic and nonrelativistic cases with the same parameters. It is shown that with the 

inclusion of relativistic effects, both the frequencies of RCP and LCP components decreases and the RCP 

is more affected than the LCP component. This is because the rotation of electric field of the RCP wave is 

the same direction as the electron’s motion. Hence, relativistic effects are more likely to appear. 

Interestingly, the electron cyclotron branch is found to shrink dramatically and in the ultra-relativistic 

regimes totally disappears. In the weakly relativistic regime, a new branch with larger wavenumber 

 
Fig. 2.3. (a) The dispersion relation in the nonrelativistic case without ion’s motion; The high frequency 

right and left hand side circularly polarized electromagnetic waves (RCP and LCP) as well as the electron 

cyclotron wave are shown. (b) The comparison of relativistic and nonrelativistic dispersion relations with 

different laser amplitudes. Here 𝑎𝑎 = 𝜔𝜔𝐸𝐸 𝜔𝜔0⁄ . The black line is for non-relativistic case and red and blue 

lines are for 𝑎𝑎 = 0.1 and 0.5, respectively. The parameters are 𝜔𝜔𝑐𝑐𝑒𝑒 = 1.53𝜔𝜔0 and 𝜔𝜔𝑝𝑝𝑒𝑒 = 2𝜔𝜔0.  
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compared to the electron cyclotron mode appears and it connects to the electron cyclotron mode at some 

critical point. Beyond this point, both the new branch and Whistler mode do not exist. 

The shrink of the electron cyclotron mode is due to the relativistic increase of the electron mass. To 

see this, we expand Eq. (2.27) in the regime of 𝛾𝛾𝑒𝑒 ≫ 1, [81] 

 𝛾𝛾𝑒𝑒 ≈ (∓𝜔𝜔𝑐𝑐𝑒𝑒 ± 𝜔𝜔𝐸𝐸) 𝜔𝜔⁄ ≫ 1. (2.31) 

Substituting Eq. (2.31) into Eq. (2.28), we find the dispersion relation becomes, 

 
𝜔𝜔 = �

𝜔𝜔𝑝𝑝𝑒𝑒4

4𝜔𝜔𝐸𝐸2
+ 𝑘𝑘2𝑐𝑐2�

1 2⁄

±
𝜔𝜔𝑝𝑝𝑒𝑒2

2𝜔𝜔𝐸𝐸
. (2.32) 

Clearly, the electron cyclotron branch disappears since these two modes described by Eq. (2.32) are the 

LCP and RCP components in the ultra-relativistic approximation. The cut off frequency for LCP drops to 

zero whereas the cut off frequency for RCP becomes 𝜔𝜔𝑝𝑝𝑒𝑒2 𝜔𝜔𝐸𝐸⁄  due to relativistic transparence. Both of them 

approach the asymptotic line 𝜔𝜔 = 𝑘𝑘𝑐𝑐 at large wavenumbers. 

To verify the above results, we performed a PIC simulation to check the propagation modes. The 

simulation is done by the extended particle based integrated code (EPIC3D). The EPIC3D code is a three-

dimensional (3D), fully relativistic electromagnetic particle-in-cell code in which various atomic and 

relaxation processes, such as the field and impact ionizations, Coulomb collision as well as the radiation 

reaction are involved. [82,83] These physical components can be turned on or off independently for 

different research purposes. Here, the EPIC3D code ignoring the ionization and collision processes is 

adopted. The simulation is set up as follows. The system size is 15.36μm in the y direction, which 

corresponds to 𝐿𝐿𝑦𝑦 = 3072  in normalized unit of 0.005μm. A continuous plane laser wave with the 

wavelength of 𝜆𝜆0 = 0.82µm  and the frequency of 𝜔𝜔0 = 2.3 × 1015 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄  is excited by the antenna 

current near the boundary. The laser is linearly polarized in the 𝑥𝑥 direction. The intensity of the laser wave 

varies from 5.1 × 1015 W cm2⁄  to 2 × 1018 W cm2⁄ , corresponding to normalized values from 𝑎𝑎 = 0.05 

to 𝑎𝑎 = 1.0. A fully ionized carbon plasma with electron and ion temperature 0.5kev is initially set in the 

region between 𝜕𝜕 = 1024 and 2048. The plasma is uniform with density 𝑛𝑛𝑒𝑒 = 6.64 × 1021𝑐𝑐𝑚𝑚−3 which 

corresponds to four times of the cut off density 𝑛𝑛𝑐𝑐 = 1.66 × 1021𝑐𝑐𝑚𝑚−3  or  𝜔𝜔𝑝𝑝𝑒𝑒 = 2𝜔𝜔0 . The external 

magnetic field is also applied in the y direction with amplitude 𝐵𝐵0 = 20𝑘𝑘𝑘𝑘 and the corresponding electron 

cyclotron frequency is 𝜔𝜔𝑐𝑐𝑒𝑒 = 1.53𝜔𝜔0 . Under these conditions, the electron ion collision frequency is 

about 𝑣𝑣𝑒𝑒𝑖𝑖~1013𝑠𝑠−1, which is much smaller than the laser frequency as well as the cyclotron frequency. 

Hence, neglecting the collision process is feasible in our simulations. 
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In Fig. 2.4, we show the propagation of the wave and density for different laser intensities at 𝑡𝑡 =

120.3𝑓𝑓𝑠𝑠. It can be seen that when the laser intensity is small, e.g. 𝑎𝑎 = 0.05 and 0.1 in Fig. 2.4(a) and (b), 

the laser can propagate into the over-dense plasma as short wavelength waves. And at the rear plasma-

vacuum boundary, the wavelength returns to the incident laser wavelength. Notice that the amplitude of the 

transmitted wave is about half of the incident laser, hence in the non-relativistic or weakly relativistic 

regimes, half of the linearly polarized laser can penetrate into the over-dense plasma as the right hand side 

circularly polarized electron cyclotron mode. When the laser intensity becomes large, e.g. 𝑎𝑎 = 1 in Fig. 

2.4(d), there is no propagation mode. At the intermediate regime with 𝑎𝑎 = 0.5 in Fig. 2.4(c), only a small 

portion of the laser wave can propagate into the over-dense plasma. In fact, such penetration only happens 

at the early time. At later time, e.g. 𝑡𝑡 > 170𝑓𝑓𝑠𝑠, this propagation mode disappears. These observations are 

qualitatively consistent with the predictions. 

To further investigate the propagation modes, we have shown in Fig. 2.5(a) the fast Fourier 

transformation (FFT) results of the electric field depicted in Fig. 2.4(a) and (b). The FFT region is between 

 
Fig. 2.4. The electric field of the laser and electron density at 𝑡𝑡 = 120.3𝑓𝑓𝑠𝑠 with laser intensities (a) 𝑎𝑎 =

0.05; (b) 𝑎𝑎 = 0.1; (c) 𝑎𝑎 = 0.5; and (d) 𝑎𝑎 = 1.  
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𝜕𝜕 = 1400 and y = 2000. In Fig. 2.5(b), the enlarged plot of the dispersion relations for 𝑎𝑎 = 0.05 √2⁄  and 

0.1 √2⁄  are shown. It should be mentioned that in the simulation the laser is linearly polarized, hence the 

effective intensity for the right hand circularly component should be divided by a factor of √2. It can be 

seen from Fig. 2.5(a) that the propagation modes have the 3.0𝑘𝑘0 component for both 𝑎𝑎 = 0.05 and 𝑎𝑎 = 0.1. 

Also there is another peak at around 4.4𝑘𝑘0 when 𝑎𝑎 = 0.1. On the other hand, the theory predicts that in 

both cases there are two propagation modes: one with longer wavelength at around 𝑘𝑘1 = 2.93𝑘𝑘0, which fits 

the simulation very well; and the other with shorter wavelength at 𝑘𝑘2 = 9.2𝑘𝑘0 for 𝑎𝑎 = 0.05, which is not 

found in the simulation and 𝑘𝑘2 = 6.4𝑘𝑘0 for 𝑎𝑎 = 0.1, which is a little different from the simulation. These 

differences may come from the difficulty for PIC simulations to resolve the very short wavelength waves 

on the one hand and the non-applicable of the fluid model in the intense laser regime on the other hand. 

2.3 Summary 

In this chapter, we have obtained the exact expressions of the charged particle’s orbit inside the relativistic 

laser field in the presence of strong parallel magnetic field. Such expressions can be used to calculate the 

  
Fig. 2.5. (a) The spectrum of the wavelength for the propagation modes depicted in Fig. 2.4(a) and (b). 

The spectrum analysis is done between the region 𝜕𝜕 = 1400 and y = 2000 (b) The enlarged plot of the 

dispersion relations for 𝑎𝑎 = 0.05/√2 and 𝑎𝑎 = 0.1/√2. Notice that in the simulation the laser is linearly 

polarized, hence the effective intensity for the right hand circularly component should be divided by a 

factor of √2. 
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radiations from the particles which become important when the laser intensity exceeds 1023𝑊𝑊/𝑐𝑐𝑚𝑚2. Then 

the relativistic dispersion relation for the magnetized plasmas are discussed. Specifically, a new branch is 

found in the weakly relativistic regime and the electron cyclotron mode shrinks and totally disappears in 

the ultra-intense regimes. Our PIC simulations qualitatively fit the theoretical predictions. 
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3. Simulation of laser plasma interactions in the 

presence of strong magnetic field  

In this chapter, we investigate the various propagation modes in strongly magnetized plasmas in both the 

linear and nonlinear regimes by the EPIC3D code. The conversion of the propagation modes and their 

polarizations as well as the effects on plasma absorption rate are studied. Both 1D and 2D simulations are 

performed with different magnetic field strengths and laser polarizations and intensities. The linear 

propagation modes namely the left and right hand side circularly polarized (LCP and RCP) modes and 

electron cyclotron mode (Whistler mode) are analyzed in the inhomogeneous density areas. Specifically, 

the nonlinear propagation mode—soliton in magnetized plasmas is observed, which greatly enhances the 

laser heating efficiency. The laser intensity and magnetic field regions where the electron cyclotron 

resonance heating (ECRH) and soliton induced enhanced heating dominate respectively are identified. By 

the end of the chapter, the characteristics and stabilities of the solitons are investigated. 

3.1 Laser heating in magnetized plasmas 

To investigate the laser plasma interactions in the presence of strong magnetic field, we have employed the 

EPIC3D code [82, 83] as introduced in the previous chapter. In this section, we mainly present the 1D 

simulation results and the 2D results are discussed in the last section. 

3.1.1 Simulation setup 

The simulation is set up as follows. The system size is 15.36μm in the y direction, which corresponds to 

𝐿𝐿𝑦𝑦 = 3072 in normalized unit of 0.005μm. The Gaussian shaped laser pulse with the wavelength of 𝜆𝜆0 =

0.82µm, the frequency of 𝜔𝜔0 = 2.3 × 1015 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄  and the duration of 40fs is excited by the antenna 

current near the left boundary. The laser is plane wave and linearly polarized (LP) in the 𝑥𝑥 direction unless 

otherwise specified. The peak intensity of the laser pulse varies from 2.1 × 1016 W cm2⁄  to 8.2 ×

1018 W cm2⁄ , corresponding to normalized values from 𝑎𝑎 = 0.1 to 𝑎𝑎 = 2.0. A fully ionized carbon plasma 

with electron and ion temperature 𝑘𝑘𝑒𝑒 = 𝑘𝑘𝑖𝑖 =  0.5𝑘𝑘𝑒𝑒𝑣𝑣 is initially set in the region between 𝜕𝜕 = 500 and 
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2500 and a pre-profile of density with 𝑛𝑛𝑒𝑒(𝜕𝜕) = 0.63𝑛𝑛𝑐𝑐 exp[(𝜕𝜕 − 1500) 164⁄ ] is assumed from 𝜕𝜕 = 500 

to 1500, as shown in Fig. 3.1. Here, 𝑛𝑛𝑐𝑐 = 1.66 × 1021𝑐𝑐𝑚𝑚−3  is the cut off density for the laser wave. 

Periodic boundary conditions are employed for particles in both x and y directions as well as the waves in 

the x direction, and in the y direction the waves are outgoing. The external strong uniform magnetic field 

𝐵𝐵0  is applied along the 𝜕𝜕 direction. The minimum adopted magnetic field is 2kT corresponding to an 

electron cyclotron frequency at 𝜔𝜔𝑐𝑐𝑒𝑒 = 0.15𝜔𝜔0. Notice that the collision frequency between the electrons 

and ions are 𝑣𝑣𝑒𝑒𝑖𝑖~1013𝑠𝑠−1, which is much smaller than the laser frequency as well as the smallest cyclotron 

frequency. Hence, in the simulations we have neglected the collision processes. 

3.1.2 Plasma absorption rate and polarization 

The laser absorption rate is used to evaluate the laser heating efficiency during the propagation of the laser 

pulse in the magnetized plasma, as summarized in Fig. 3.2. The absorption rate is calculated by the ratio of 

the energy increment of electrons and ions to half of the antenna energy. It is found that, the dependence of 

heating efficiency on the laser intensity is different with the magnetic field. Generally, larger amplitude 

laser in the plasma with strong magnetic field has higher heating efficiency. However, for not so strong 

magnetic field, there exists a region of moderate laser intensity where enhanced heating occurs, e.g. 𝑎𝑎 =

0.4~0.8 for 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘, as shown in Fig. 3.2(a). The enhanced laser heating region moves towards the 

lower intensity direction as the magnetic field increases and disappears as the magnetic field approaches 

the value where the electron cyclotron resonance happens. Afterwards, the heating efficiency is almost 

independent of the laser intensity. Hence, the absorption is characterized mainly by the ECRH in the high 

magnetic field regime. This is also evidenced by Fig. 3.2(b) in which, for high power laser, (𝑎𝑎 = 2.0), the 

heating efficiency increases up to a peak as the magnetic field increases. Note that there is a little decay at 

the beginning when the magnetic field is weak. The corresponding magnetic field of the peak is consistent 

 

Fig. 3.1. The initial electron density profile. 

The laser irradiates from the left boundary 

and the external magnetic field is along the y 

direction. Periodic boundary conditions are 

employed for particles and laser is outgoing 

in y direction. The uniform plasma density is 

about 0.63𝑛𝑛𝑐𝑐 with 𝑛𝑛𝑐𝑐 the cutoff density. 
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with the electron cyclotron resonance. Theoretically, it is estimated around 𝐵𝐵0 = 13𝑘𝑘𝑘𝑘, which is slightly 

lower than the observation in Fig. 3.2(b). The difference may result from the relativistic correction of the 

electron cyclotron frequency. 

In Fig. 3.2(b), the cases of LCP and RCP laser pulses with intensity 𝑎𝑎 = 0.707 are also plotted to show 

the polarization effects on the heating efficiency. The total energy of the LCP and RCP lasers is the same 

as the linearly polarized one with 𝑎𝑎 = 1.0. In the absence of magnetic field, i.e., 𝐵𝐵0 = 0𝑘𝑘𝑘𝑘 , linearly 

polarized laser has slightly higher heating efficiency compared to the LCP or RCP laser because of the 

ponderomotive oscillations in the longitudinal direction. However, when the magnetic field is present, the 

heating efficiency decreases with magnetic field for LCP lasers due to the easier penetration, whereas the 

RCP laser has an increasing heating efficiency since the ECRH effects become more and more significant. 

Interestingly, the enhanced heating efficiency peak appears again around 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘 for the laser 

pulse with moderate amplitude, i.e., 𝑎𝑎 = 0.5, as shown in Fig. 3.2(b). In the 1D simulations, the peak 

efficiency is about 37%, comparable to the ECRH efficiency. In fact, a localized mode, namely a solitary 

wave is observed at this parameter. Fig. 3.3 shows the time evolution of the laser magnetic field amplitude 

with 𝑎𝑎 = 0.5 at the pre-plasma (𝜕𝜕 = 1000), uniform plasma (𝜕𝜕 = 2000) and vacuum (𝜕𝜕 = 2750) regions 

 

Fig. 3.2. Plasma absorption rate for 

different magnetic fields (a) and laser 

intensities and polarizations (b). Here 

RCP (LCP) means right (left) hand 

circularly polarized laser. The other 

lasers are linearly polarized (LP). 
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for different magnetic fields. The Fig. 3.3(a) is without magnetic field for comparison. While the time 

oscillations of the laser field at 𝜕𝜕 = 1000 (black solid lines) in each plot exhibit the linearly polarization of 

the incident laser pulse, their disappearance at 𝜕𝜕 = 2000 (red dashed lines) and 2750 (blue dash-dotted 

lines) in Fig. 3.3(c) signifies a polarization conversion from linearly to circularly polarized one. Note that 

the blue dash-dotted lines indicate that the laser pulses have passed through all the observation locations 

with pulse length of 40fs. The prolonged red dashed lines in Fig. 3.3(b) imply that part of the laser wave 

has converted into the solitary wave. Meanwhile, since there is no peak at 𝜕𝜕 = 2750 after 𝑡𝑡 = 140 fs, the 

solitary wave has been trapped at 𝜕𝜕 = 2000 for a long time and totally absorbed, which contributes to the 

peak of heating efficiency in Fig. 3.2(b). In Fig. 3.3(d), the laser passes through all the points and the 

oscillations at 𝜕𝜕 = 2000 and 2750 imply that the laser has changed to elliptically polarized compared to 

Fig. 3.2(a) and Fig. 3.2(c). 

 
Fig. 3.3. Time evolution of laser magnetic field amplitude at the pre-plasma 𝜕𝜕 = 1000 (solid), the 

uniform plasma 𝜕𝜕 = 2000 (dash), and the vacuum 𝜕𝜕 = 2750 (dash-dotted) for (a) 𝐵𝐵0 = 0𝑘𝑘𝑘𝑘; (b) 𝐵𝐵0 =

3.8𝑘𝑘𝑘𝑘 , (c)  𝐵𝐵0 = 10𝑘𝑘𝑘𝑘  and (d) 𝐵𝐵0 = 18𝑘𝑘𝑘𝑘  with 𝑎𝑎 = 0.5 . The time oscillations imply the linearly 

polarization of the incident laser field. 
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Fig. 3.4. The initial and final velocity distributions for different magnetic fields with 𝑎𝑎 = 0.5. (a) 𝐵𝐵0 =

2𝑘𝑘𝑘𝑘 ; (b) 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘 ; (c) 𝐵𝐵0 = 7𝑘𝑘𝑘𝑘  and (d) 𝐵𝐵0 = 15𝑘𝑘𝑘𝑘 . The initial distributions are Maxwell-

Boltzmann for 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 and 𝑣𝑣𝑧𝑧. The final distributions are taken at a long enough time when the laser or 

solitons disappear. In (b), the soliton induced enhanced heating is dominant and in (d) the ECRH is 

dominant. 

3.1.1 Velocity distribution 

To further investigate the plasma absorption rate with magnetic field, we have shown in Fig. 3.4 the 

comparison of initial and final velocity distributions with different magnetic fields for 𝑎𝑎 = 0.5. The initial 

distribution is Maxwell-Boltzmann. The four figures in Fig. 3.4 (a)-(d) correspond to the no heating case 

(𝐵𝐵0 = 2𝑘𝑘𝑘𝑘); the soliton induced heating case (𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘); the transition from soliton to ECRH case (𝐵𝐵0 =

7𝑘𝑘𝑘𝑘) and the ECRH dominated case (𝐵𝐵0 = 15𝑘𝑘𝑘𝑘). It can be seen that when where is weak magnetic field, 

the energy is first deposited in the longitudinal direction and as the magnetic field increases the energy 

starts to deposit in the transverse direction. Furthermore, the distribution function in the x direction is 

exactly the same as the one in the z direction due to the cyclotron effects. Notice that the total heating 
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efficiencies for Fig. 3.4(b) and Fig. 3.4(d) are almost the same. In the ECRH dominant regime, e.g. Fig. 

3.4(d), the main body of the distribution function is Maxwell and there is energetic tails. This means small 

portion of the electrons are heated to very high velocities. In the region where soliton is generated, e.g. Fig. 

3.4(b), the distribution function strongly deviates from the Maxwell. In this case, more electrons are heated 

to moderate energies. 

As discussed in the previous chapter, the propagation modes of the laser pulse in magnetized plasma 

strongly depend on the magnetic field strength. In the next two section, we will analysis the various linear 

and nonlinear propagation modes in magnetized plasmas. 

3.2 Linear propagation modes 

The linear propagation modes of the laser pulse along the magnetic field direction can be described 

generally by following the wave equation in the limit of cold plasmas, [84] 

 𝜕𝜕2𝐸𝐸±

𝜕𝜕𝜕𝜕2
+
𝜔𝜔0
2

𝑐𝑐2 �
1−

𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔0(𝜔𝜔0 ± Ω𝑐𝑐𝑒𝑒)�𝐸𝐸± = 0. (3.1) 

Here Ω𝑐𝑐𝑒𝑒 = 𝑞𝑞𝑒𝑒𝐵𝐵0 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄  and 𝑞𝑞𝑒𝑒 = −𝑒𝑒. The electric field component is written as 𝐸𝐸± = 𝐸𝐸𝑧𝑧 ± 𝑖𝑖𝐸𝐸𝑥𝑥, in which 

‘±’represent the RCP and LCP waves, respectively. This equation can be solved exactly in the pre-plasma 

region (𝜕𝜕 = 500~1500 ) with density profile of 𝑛𝑛𝑒𝑒 = 𝑛𝑛0 exp[(𝜕𝜕 − 𝜕𝜕0) 𝐿𝐿⁄ ] . Here, 𝜕𝜕 = 𝜕𝜕0  is the left 

boundary of the plasma and 𝑛𝑛0 is the uniform plasma density. In the simulations, 𝜕𝜕0 = 500, 𝐿𝐿 = 164 and 

𝑛𝑛0 = 0.63𝑛𝑛𝑐𝑐. Using the variable transformation, 

 ξ± = 2
𝜔𝜔0𝐿𝐿
𝑐𝑐

𝜔𝜔𝑝𝑝𝑒𝑒0
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2𝐿𝐿
�, (3.2) 

Eq. (3.1) can be rewritten as the modified Bessel equation in form, 
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𝜕𝜕𝜉𝜉±
2 + 𝜉𝜉±
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2 −
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𝑐𝑐2 �𝐸𝐸± = 0. (3.3) 

Here 𝜔𝜔𝑝𝑝𝑒𝑒0
2 = 4𝜋𝜋𝑛𝑛0𝑞𝑞𝑒𝑒2 𝑚𝑚𝑒𝑒⁄ . The general solution of Eq. (3.3) is, 

 𝐸𝐸± = 𝑐𝑐1±𝐼𝐼𝜈𝜈(ξ±) + 𝑐𝑐2±𝐾𝐾𝜈𝜈(ξ±) (3.4) 

𝑐𝑐1± , 𝑐𝑐2±  are integration constants depending on the boundary conditions. 𝐼𝐼𝜈𝜈(ξ±)  and 𝐾𝐾𝜈𝜈(ξ±)  are the 

modified Bessel functions of the second kind with the order 𝜈𝜈 = ±𝑖𝑖 2𝜔𝜔0𝐿𝐿 𝑐𝑐⁄ . Eq. (3.4) describes the linear 

propagation and polarization properties of the electromagnetic waves in strongly magnetized 
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inhomogeneous plasmas. With different magnetic field, the laser propagation and absorption behaves 

differently depending on the linear propagation modes characterized by the polarizations. 

3.2.1 LCP and RCP modes 

In the case with weaker magnetic field strength, i.e., |Ω𝑐𝑐𝑒𝑒| < ω0, the laser cannot access into the high 

density plasma. As 𝜉𝜉± → ∞, it gives 𝐼𝐼𝜈𝜈(𝜉𝜉±) → 𝑒𝑒𝜉𝜉± �2𝜋𝜋𝜉𝜉±�  and 𝐾𝐾𝜈𝜈(𝜉𝜉±) → 𝑒𝑒−𝜉𝜉±�𝜋𝜋 2𝜉𝜉±⁄ . Hence 𝑐𝑐1± = 0. 

Assuming a linearly polarized laser with 𝐸𝐸𝑧𝑧 = 0  and 𝐸𝐸𝑥𝑥 = 𝐸𝐸0  at 𝜕𝜕 = 𝜕𝜕0  initially, the electric field 

components can be written as, 
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⎪
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 (3.5) 

Here ξ±0 = 2(𝜔𝜔0𝐿𝐿 𝑐𝑐⁄ )�𝜔𝜔𝑝𝑝𝑒𝑒 [𝜔𝜔0(𝜔𝜔0 ± Ω𝑐𝑐𝑒𝑒)]1/2⁄ �. It should be emphasized that the boundary conditions 

used here are artificial since the polarization direction keeps rotating as the laser propagates. As a result, 

the laser field at 𝜕𝜕 = 𝜕𝜕0 also rotates due to the reflection. However, there still exists a moment probably 

taken as an initial time when the imposed boundary conditions are satisfied. Eq. (3.5) shows that 𝐸𝐸𝑧𝑧 ≡ 0 

when 𝐵𝐵0 = 0 , so that the laser keeps linearly polarized. However, when 𝐵𝐵0 ≠ 0 , 𝐸𝐸𝑧𝑧  increases or the 

Faraday rotation takes place. The rotating angle of the polarization direction can be calculated through the 

 

Fig. 3.5. (a) The spatial profile 

of 𝐸𝐸𝑥𝑥  (left axis) and initial 

density profile (right axis); (b) 

the spatial profile of 𝐸𝐸𝑧𝑧 . The 

parameters are 𝐵𝐵0 = 2kT,𝑎𝑎 =

0.05 and 𝑛𝑛0 = 13.3𝑛𝑛𝑐𝑐. 
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ratio between 𝐸𝐸𝑧𝑧 and 𝐸𝐸𝑥𝑥. Note that in the over-dense area, both the RCP and LCP components decay as 

�𝜋𝜋 2ξ±⁄ 𝑒𝑒−ξ±. However, the RCP component decays faster than the LCP since ξ+ is always larger than ξ−. 

Resultantly, for a proper high density plasma only the LCP component may be able to propagate into the 

main plasmas. Hence, the incident linearly polarized propagation mode may convert into the LCP wave 

with 𝐸𝐸𝑧𝑧 ≈ −𝑖𝑖𝐸𝐸𝑥𝑥. This analytical result is consistent with the numerical observation on the disappearance 

of the time oscillations at y=2000 and 2750 in Fig. 3.3(c). Furthermore, such decay and conversion 

characteristics of different propagation modes may be helpful to understand the dependence of the laser 

heating efficiency on the magnetic field strength observed in Fig. 3.2(b), where the heating efficiency 

decreases in the weak magnetic field region due to the above mode conversion. 

To further verify the solution Eq. (3.5), a PIC simulation for 𝐵𝐵0 = 2kT  or |Ω𝑐𝑐𝑒𝑒| = 0.153𝜔𝜔0  is 

performed with the same initial density profile as in the analysis. The pre-plasma area is extended to 𝜕𝜕 =

2000 to examine the cutoff of linearly polarized continuous laser so that the uniform plasma becomes over-

dense (the uniform plasmas density is 13.3𝑛𝑛𝑐𝑐). A rather weak laser intensity is chosen (𝑎𝑎 = 0.05) to avoid 

the nonlinearity in the simulation. Fig. 3.5 clearly exhibits that 𝐸𝐸𝑧𝑧 is amplified and both the RCP and LCP 

components cut off successively as the density increases. 

3.2.2 Electron cyclotron mode (Whistler mode) 

In the case with stronger magnetic field |Ω𝑐𝑐𝑒𝑒| > 𝜔𝜔0, ξ− is real for the LCP wave. Then, 𝑐𝑐1− remains zero. 

However, for the RCP wave, ξ+ is imaginary so that both 𝐼𝐼𝜈𝜈(𝜉𝜉+) and 𝐾𝐾𝜈𝜈(𝜉𝜉+) are kept. For simplicity, an 

initial condition with 𝐸𝐸𝑧𝑧 = 0 and 𝐸𝐸𝑥𝑥 = 𝐸𝐸0 at 𝜕𝜕 = 𝜕𝜕0 is still assumed, then the electric field can be written 

as, 
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 (3.6) 

Here 𝐼𝐼𝜈𝜈𝑅𝑅 = 𝑅𝑅𝑒𝑒[𝐼𝐼𝜈𝜈(𝜉𝜉+)], 𝐼𝐼𝜈𝜈𝐼𝐼 = 𝐼𝐼𝑚𝑚[𝐼𝐼𝜈𝜈(𝜉𝜉+)], 𝐾𝐾𝜈𝜈𝑅𝑅 = 𝑅𝑅𝑒𝑒[𝐾𝐾𝑣𝑣(𝜉𝜉+)], 𝐾𝐾𝜈𝜈𝐼𝐼 = 𝐼𝐼𝑚𝑚[𝐾𝐾𝑣𝑣(𝜉𝜉+)]. The subscript ‘0’ stands 

for the value taken at 𝜕𝜕 = 𝜕𝜕0. The superscripts ‘R’ and ‘I’ denote the real and imaginary parts, respectively. 

Eq. (3.6) shows that the linearly polarized laser converts into an elliptical one and the ellipticity varies 

spatially. This is consistent with the results shown in Fig. 3.3(d). As 𝜉𝜉± → ∞, the RCP wave decays with 

1 �ξ+⁄ , while the LCP wave decays with 𝑒𝑒−ξ−�𝜋𝜋 2ξ−⁄ . Hence, in the over-dense plasma, the RCP 

component can propagate much deeper than LCP component. In this case, the linearly polarized laser may 
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convert into an electron cyclotron mode which oscillates in space as 𝑒𝑒𝑖𝑖|ξ+|. The laser wave behaves more 

like a right hand circularly polarized one since 𝐸𝐸𝑧𝑧 ≈ 𝑖𝑖𝐸𝐸𝑥𝑥.  

To validate the theoretical analysis, a PIC simulation for 𝐵𝐵0 = 18kT and with other parameters same 

as in Fig. 3.5 is carried out as shown in Fig. 3.6. It can be seen that the laser wave penetrates into the over-

density plasma area as a short wavelength electron cyclotron mode. At 𝜕𝜕 = 2000, the laser wave can be 

extended approximately in the propagation direction with a relation of 𝐸𝐸+ ∝ 𝑒𝑒𝑖𝑖0.237𝑦𝑦. It is comparable to 

the theoretical prediction 𝐸𝐸+ ∝ 𝑒𝑒𝑖𝑖0.228𝑦𝑦 . The difference for 𝐸𝐸𝑧𝑧  at the left boundary results from the 

assumption of the artificial boundary conditions in Eq. (3.6). 

Eq. (3.1) describes the linear propagation modes with different magnetic fields in the limit of cold 

plasmas. However, the nonlinear dynamics may become dominant under certain conditions even if the laser 

intensity is not very strong, as exhibited in the parameter window for moderate laser intensities in Fig. 3.2, 

where solitary waves are generated in the uniform density area. This is because in the presence of magnetic 

field, the ponderomotive force depends on not only the laser intensity but also the magnetic field. In the 

next section, we will discuss the nonlinear propagation mode‐soliton in magnetized plasmas. 

 

Fig. 3.6. (a) The spatial 

profile of 𝐸𝐸𝑥𝑥  (left axis) and 

initial density profile (right 

axis); (b) the spatial profile of 

𝐸𝐸𝑧𝑧. The parameters are 𝐵𝐵0 =

18kT,𝑎𝑎 = 0.05  and 𝑛𝑛0 =

13.3𝑛𝑛𝑐𝑐. 
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3.3 Nonlinear propagation modes (soliton) 

The soliton is generated due to the cancellation between the nonlinearities and the dispersion effects due to 

the finite electron inertia. Generally, the nonlinearities in laser plasma interactions come from the 

relativistic correction of particle’s mass and the redistribution of plasma density due to the ponderomotive 

force. In the presence of magnetic field, both of the two nonlinearities are affected by the magnetic field 

(see Chapter 4). Hence, solitons can be generated at relatively weak laser intensity region. 

3.3.1 Soliton generation in magnetized plasma 

To clarify the soliton formation mechanism, the spatiotemporal evolution of the soliton is depicted in Fig. 

3.7 with 𝑎𝑎 = 0.5 and 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘. It can be seen that a standing soliton is generated at 𝜕𝜕 = 2000 with a 

plasma density cavity. The soliton is long-lived in 1D simulations with almost zero propagation velocity 

and a quite narrow width, e.g., about one laser wavelength. The mechanism of the soliton generation is as 

follows [59]. First the density perturbation is generated after the laser pulse due to the ponderomotive force 

and the laser starts to lose energy. Meanwhile, the laser frequency decreases (see Fig. 3.9) because this 

 
Fig. 3.7. The time evolution of a standing soliton at 𝑡𝑡 = 119.6𝑓𝑓𝑠𝑠 (a), 𝑡𝑡 = 135.6𝑓𝑓𝑠𝑠 (b), 𝑡𝑡 = 139.1𝑓𝑓𝑠𝑠 (c) 

and 𝑡𝑡 = 161.1𝑓𝑓𝑠𝑠 (d) with 𝑎𝑎 = 0.5 and 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘. 
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energy transfer is an adiabatic process and the ratio between the wave energy density and the frequency is 

conserved. Once the laser frequency falls below the plasma frequency, the laser wave becomes trapped in 

the density cavity, forming a solitary wave. In magnetized plasmas, the group velocity 𝑣𝑣𝑔𝑔 of the laser pulse 

is, 

 
𝑣𝑣𝑔𝑔 =

𝑑𝑑𝜔𝜔
𝑑𝑑𝑘𝑘

=
2𝑘𝑘𝑐𝑐2

2𝜔𝜔 −𝜔𝜔𝑝𝑝𝑒𝑒2 Ω𝑐𝑐𝑒𝑒/(𝜔𝜔 + Ω𝑐𝑐𝑒𝑒)2
. (3.7) 

In the weak magnetic field regime |Ω𝑐𝑐𝑒𝑒 𝜔𝜔⁄ | ≪ 1, 𝑑𝑑𝑣𝑣𝑔𝑔 𝑑𝑑𝜔𝜔⁄ < 0, the group velocity decays with the 

frequency. Hence, the soliton wave propagates with very low velocity. In fact, in the simulations it is almost 

zero in the uniform plasmas. As a result, the laser can be absorbed efficiently in the standing density well. 

In the case of weakly relativistic limit, the frequency downshift is approximately proportional to the density 

perturbation and laser intensity. Meanwhile it has a positive correlation with the magnetic field strength 

[71]. Hence, as the magnetic field increases, the laser intensity needed for the soliton formation reduces. In 

some cases, e.g. when the soliton is generated in the inhomogeneous areas, the density perturbation is not 

large enough to trap the laser wave and the soliton can collapse after its generation or moves away. In this 

case, the heating efficiency decreases compared to standing soliton cases. In Fig. 3.8, we show an example 

of the moving soliton generated near the pre-plasma region for 𝐵𝐵0 = 4.5𝑘𝑘𝑘𝑘 and 𝑎𝑎 = 1.0. 

 
Fig. 3.8. The time evolution of a moving soliton at 𝑡𝑡 = 164.1𝑓𝑓𝑠𝑠 (a), 𝑡𝑡 = 174.1𝑓𝑓𝑠𝑠 (b), 𝑡𝑡 = 181.1𝑓𝑓𝑠𝑠 (c) 

and 𝑡𝑡 = 191.1𝑓𝑓𝑠𝑠 (d) with 𝑎𝑎 = 1.0 and 𝐵𝐵0 = 4.5𝑘𝑘𝑘𝑘. 
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3.3.2 Soliton spectra 

To study in detail about the soliton structures, we have plotted in Fig. 3.9 (a) and (b) the spatial profiles of 

the electric fields and densities for 𝑎𝑎 = 0.5 and 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘. It can be seen that, at the initial phase of the 

soliton formation, only the electrons are able to response to the field and there is strong electrostatic field 

inside the soliton. Afterwards, the ponderomotive force starts to dig a hole in the ion density and the quasi-

neutrality state is achieved. In Fig. 3.9(c), the frequency spectra of the laser field at 𝜕𝜕 =1000, 2000 and 

2750 are analyzed. At 𝜕𝜕 = 1000 and 2750, there is only one peak round the incident laser frequency. 

However, a broad lower frequency spectrum appears besides the laser frequency at 𝜕𝜕 =2000. Note that the 

intensity of this low frequency peak is higher than that of the incident laser frequency. Meanwhile, the 

intensities corresponding to the laser frequency at 𝜕𝜕 = 2000 and 2750 have almost the same level. Hence, 

the results show that while small part of the incident laser propagates through the plasma, the major part is 

converted into a standing solitary wave. Notice that the solitons have harmonic frequencies. 

  

 

Fig. 3.9. (a) The spatial profile of the electric field 

and density at 𝑡𝑡 = 200𝑓𝑓𝑠𝑠 and (b) 𝑡𝑡 = 254𝑓𝑓𝑠𝑠. At 

the initial phase of soliton formation, ions are fixed 

and afterwards the ponderomotive force starts to 

dig a hole in the ion density. (c) The wave 

frequency spectrum at 𝜕𝜕 = 1000, 2000, and 2750. 

The parameters are 𝑎𝑎 = 0.5, 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘 and Z =

6 is the ion charge number. 
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3.3.3 Soliton position 

The soliton position in the uniform density area is an interesting and meaningful issue, since we may 

potentially use the soliton generation to control the energy deposition position in the plasmas. Some factors 

relevant to the soliton position are studied as shown in Fig. 3.10 and Fig. 3.11. Fig. 3.10 shows the soliton 

position dependence on the laser intensity and magnetic field. The soliton position shifts from the rear 

boundary to the front one when one increases the laser intensity or magnetic field. This may result from the 

 

Fig. 3.10. The soliton positon dependence 

on the laser intensity (a) and magnetic field 

strength (b). In (a) 𝐵𝐵0 = 3.5𝑘𝑘𝑘𝑘, and in (b) 

𝑎𝑎 = 0.5. 

  

 

Fig. 3.11. The soliton positon dependence 

on uniform plasma length (a) and 

characteristic length of the pre-plasma (b). 

The parameters are 𝑎𝑎 = 0.5 , 𝐵𝐵0 = 3.5𝑘𝑘𝑘𝑘 

for (a) and 𝐵𝐵0 = 3.8𝑘𝑘𝑘𝑘 for (b). “L1”, “L2” 

and “L3” in (b) represent the cases without 

pre-plasma, with pre-plasma of 

characteristic length 82 and 164, 

respectively. 
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dependence of the frequency downshift on the magnetic field and laser intensity, which may be 

characterized by a threshold for the soliton formation: one of the two factors increases, the other needed for 

soliton generation decreases. On the other hand, we have extended the system size to 𝐿𝐿𝑦𝑦 = 4096 and 

changed the characteristic length of the pre-plasma, as shown in Fig. 3.11. The “L1”, “L2” and “L3” in Fig. 

3.11(b) represent the cases without pre-plasma, with pre-plasma of characteristic length 82 and 164, 

respectively. It is observed that the soliton position is independent of the system size, but shifts towards the 

front boundary as the characteristic length of the pre-plasma increases. The detailed mechanism of the 

soliton positon on the density profile still remains unknown and needs to be resolved in the future. 

The dependence of soliton position on laser intensity and magnetic field helps us to understand the 

shape of the curve for 𝐵𝐵0 = 10𝑘𝑘𝑘𝑘 in Fig. 3.2(b), where it starts like a soliton induced enhanced heating 

region but shifts to ECRH. Generally, there are two mechanisms contributing for the heating: ECRH and 

the soliton induced enhanced heating. When the laser intensity is weak, both the ECRH heating and the 

enhanced heating is small. (The magnetic field for ECRH is about 13kT, which is larger than 10kT). As the 

laser intensity increases, the nonlinear effect or soliton induced enhanced heating comes to play. Since the 

magnetic field is so strong that the soliton position is now expected to be in the pre-plasma area. In fact, we 

do observe some cavity-like density perturbations in the pre-plasma area around 𝑎𝑎 = 0.3 or 0.4 for 𝐵𝐵0 =

10𝑘𝑘𝑘𝑘 (which is similar to Fig. 3.8(c)). However, due to the inhomogeneity of pre-plasma, the laser pulse is 

not well-trapped and these perturbations disappear or move away and they do not develop into the standing 

cavities as shown in Fig. 3.9(a). Hence, the enhanced soliton heating reduces as the laser intensity increases. 

However, the ECRH becomes more and more significant since the electron cyclotron frequency decreases 

due to the relativistic effects. 

3.4 Solitons in 2D simulations 

We have also studied the soliton dynamics associated with the laser heating efficiency in 2D simulations. 

The system size in the x direction is extended to 4μm and 8μm to include the transverse effects. The laser 

pulse is the plane wave and the other parameters are the same as 1D cases. Fig. 3.12 shows the comparison 

of the heating efficiencies in the 1D and 2D (Lx =4μm) simulations with different magnetic fields for 𝑎𝑎 =

0.5. It can be seen that the soliton induced enhanced heating efficiency decreases slightly, however the 

ECRH efficiency remains the same. In fact, in 2D simulations, the soliton breaks up into some individual 

small ones soon after its generation. This is different from the 1D case where the soliton can survive for a 

long time before dissipating in the plasma. 
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In Fig. 3.13, we plot the spatiotemporal profiles of the electric field of the solitons for Lx =8μm, where 

the upper and right subplots correspond to the intersections of the y and x directions, respectively. A strip-

like soliton is observed at around 𝑡𝑡 = 139𝑓𝑓𝑠𝑠 at the same positon as in the 1D case (see Fig. 3.7) and after 

that it breaks into some small ones, as shown by the right subplots in  Fig. 3.13(b). The width of these small 

solitons is about 1.6μm, nearly twice of the laser wavelength and they radiate their energy in the form of 

electromagnetic wave quickly. Note that, this cloud of soliton formation is different from the solitons in the 

usual unmagnetized case, where the laser pulse first changes its form due to the nonlinear processes such 

as self-focusing and energy depletion and afterwards solitons are formed at the position of filaments. In our 

simulations, a quite uniform strip-like soliton can be obtained at the early time due to the relatively low 

laser intensity and small solitons are formed probably by some transverse instabilities. Moreover, the 2D 

simulations with Lx =4μm or 8μm have shown a converged wavelength of the solitons in the x direction. 

Hence, it could be bravely postulated that the 1D model is qualitatively available to explore the soliton 

dynamics in strongly magnetized plasmas. In the next chapter we will derive the coupled soliton equations 

in the 1D geometry. 

3.5 Summary 

In this chapter, the absorption mechanism and various propagation modes of the laser pulse under different 

laser intensities in strongly magnetized plasma have been studied based on PIC simulations and theoretical 

analyses. Results generally show that Faraday rotation can take places in weakly magnetized plasmas and 

the polarized laser wave may convert into an electron cyclotron mode as the magnetic field increases. For 

linearly polarized incident laser, the polarization changes with both the electron density and magnetic field 

 

Fig. 3.12. The comparison of heating efficiency 

in 1D and 2D simulations versus magnetic 

fields for 𝑎𝑎 = 0.5. The system size is 4μm in 

the x direction for 2D simulations 
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due to the different decay rates of the LCP and RCP components. As a result, the laser heating efficiency 

strongly depends on the magnetic field. Most interestingly, it is found that for some certain magnetic fields 

and laser intensities, a solitary wave with a very short width and a lower frequency compared to the incident 

laser may be formed in a density well, which can greatly enhance the absorption of the laser energy. 2D 

simulations also confirmed this enhancing effect. As the magnetic field increases, the parametric window 

for the solitons moves towards the lower laser intensity. This may result from the frequency downshift due 

to the nonlinear effects. Once the laser frequency falls below the plasma frequency, the laser pulse becomes 

trapped in the density cavity, forming a solitary wave. 

The soliton properties and some relevant factors to soliton position are also studied. It is found that the 

soliton position depends on the characteristic length of the pre-plasma rather than the uniform plasma length. 

Furthermore, the soliton position moves from the rear boundary to the front one as the laser intensity or 

magnetic field increases. In 1D simulations, the soliton is of long-living time, however in 2D simulations 

the soliton can break up into some individual small ones soon after its generation. As a result, the heating 

 

Fig. 3.13. The generation of the 

solitons with 𝑎𝑎 = 0.5  and 𝐵𝐵0 =

3.8𝑘𝑘𝑘𝑘  in the 2D simulations for 

𝐿𝐿𝑥𝑥 = 8𝜇𝜇𝑚𝑚  at (a) 𝑡𝑡 = 139𝑓𝑓𝑠𝑠 ; and 

(b) 𝑡𝑡 = 157𝑓𝑓𝑠𝑠 . The top suplot in 

(a) and (b) correspond to 𝑥𝑥 = 732 

and the right subplot in (a) and (b) 

correspond to 𝜕𝜕 =2000 and 1920, 

respectively 
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efficiency decreases compared with the 1D simulations. Considering the high efficiency of energy transfer 

by the solitons, the soliton generation in strongly magnetized plasmas may play an important role in fast 

ignition, laser-plasma based particle acceleration as well as other potential applications. 
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4. Soliton equations in magnetized plasmas 

In this chapter, we deduce the coupled soliton equations in magnetized plasmas with finite temperature and 

ion’s effects taken into account. The soliton is treated in the framework of relativistic fluid model, where 

the scalar potential  𝑖𝑖 , the vector potential 𝑨𝑨  and the phase modulation 𝜃𝜃  are used to describe the 

longitudinal and transverse waves with appropriate boundary conditions. The Hamiltonian of the system is 

obtained and different dispersion relations for the bright and dark solitons are derived according to the 

boundary conditions. Based on the dynamical systems theory, the soliton solutions in phase space are 

actually the homoclinic or heteroclinic orbits of the four-dimensional (𝐴𝐴,𝐴𝐴′,𝑖𝑖,𝑖𝑖′) reversible autonomous 

Hamiltonian system. Since the homoclinic or heteroclinic orbits lie in the intersection of the stable and 

unstable manifolds of the same or different fixed point(s), the general criterion for the existence of solitons 

is obtained. In this chapter, the theory of dynamical systems as well as the concepts of some important 

terminologies, e.g. the fixed point, bifurcation, homoclinic and heteroclinic orbit, stable and unstable 

manifold, are introduced. 

4.1 Coupled soliton equations 

The coupled soliton equations can be derived from the Maxwell equations (Coulomb gauge ∇ ∙ 𝐀𝐀 = 0) 

and the fluid equations, 

 ∆𝑖𝑖 = −4𝜋𝜋(𝑛𝑛𝑒𝑒𝑞𝑞𝑒𝑒 + 𝑛𝑛𝑖𝑖𝑞𝑞𝑖𝑖); (4.1) 

 
∆𝑨𝑨 −

1
𝑐𝑐2
𝜕𝜕2𝑨𝑨
𝜕𝜕𝑡𝑡2

−
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝑡𝑡
∇𝑖𝑖 = −

4𝜋𝜋
𝑐𝑐

(𝑛𝑛𝑒𝑒𝑞𝑞𝑒𝑒𝒗𝒗𝑒𝑒 + 𝑛𝑛𝑖𝑖𝑞𝑞𝑖𝑖𝒗𝒗𝑖𝑖); (4.2) 

 𝜕𝜕𝑷𝑷𝑠𝑠
𝜕𝜕𝑡𝑡

= −∇(𝑞𝑞𝑠𝑠𝑖𝑖 + 𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐2) + 𝒗𝒗𝑠𝑠 × [∇ × 𝑷𝑷𝑠𝑠] +
𝑞𝑞𝑠𝑠
𝑐𝑐
𝒗𝒗𝑠𝑠 × 𝑩𝑩0 −𝑚𝑚𝑠𝑠𝒗𝒗𝜔𝜔𝑠𝑠2 ∇ln𝑛𝑛𝑠𝑠; (4.3) 

 𝜕𝜕𝑛𝑛𝑠𝑠
𝜕𝜕𝑡𝑡

+ ∇ ∙ (𝑛𝑛𝑠𝑠𝒗𝒗𝑠𝑠) = 0. (4.4) 

Here 𝑷𝑷𝑠𝑠 = 𝒑𝒑𝑠𝑠 + (𝑞𝑞𝑠𝑠𝑨𝑨) ⁄ 𝑐𝑐 is the canonical momentum for 𝑠𝑠 species (𝑠𝑠 = 𝑒𝑒, 𝑖𝑖). 𝑨𝑨 and 𝑖𝑖 are the vector and 

scalar potential, and 𝑛𝑛𝑠𝑠, 𝑚𝑚𝑠𝑠, 𝑞𝑞𝑠𝑠, 𝛾𝛾𝑠𝑠, 𝒑𝒑𝑠𝑠, 𝒗𝒗𝑠𝑠, 𝒗𝒗𝜔𝜔𝑠𝑠, are the density, mass, electrical quantity, relativistic factor, 

kinetic momentum, velocity and thermal velocity, respectively. 𝑩𝑩0 is the ambient magnetic field and 𝑐𝑐 is 
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the speed of light. 𝑞𝑞𝑒𝑒 = −𝑒𝑒, 𝑞𝑞𝑖𝑖 = 𝑒𝑒. Assuming the wave propagation and external magnetic field 𝑩𝑩0 are 

along the 𝑥𝑥  direction and in 𝜕𝜕 and 𝑧𝑧 directions the system is uniform, then 𝜕𝜕𝑦𝑦 = 𝜕𝜕𝑧𝑧 = 0. For localized 

soliton wave, the Coulomb gauge gives 𝐴𝐴𝑥𝑥 = 0. The transverse component of Eq. (4.2) becomes, 

 𝜕𝜕2𝐴𝐴⊥
𝜕𝜕𝑥𝑥2

−
1
𝑐𝑐2
𝜕𝜕2𝐴𝐴⊥
𝜕𝜕𝑡𝑡2

=
4𝜋𝜋𝑒𝑒
𝑐𝑐

(𝑛𝑛𝑒𝑒𝑣𝑣𝑒𝑒⊥ − 𝑛𝑛𝑖𝑖𝑣𝑣𝑖𝑖⊥). (4.5) 

The subscript “⊥” stands for the transverse components 𝑓𝑓⊥ = 𝑓𝑓𝑦𝑦 + 𝑖𝑖𝑓𝑓𝑧𝑧  with 𝑓𝑓 = 𝐴𝐴,𝑝𝑝𝑠𝑠, 𝑣𝑣𝑠𝑠  and  𝑃𝑃𝑠𝑠 . The 

longitudinal and transverse components of Eq. (4.3) are, 

 𝜕𝜕𝑝𝑝𝑠𝑠𝑥𝑥
𝜕𝜕𝑡𝑡

= −
∂
𝜕𝜕𝑥𝑥

(𝑞𝑞𝑠𝑠𝑖𝑖 + 𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐2) +
1
2
�
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠

∂𝑃𝑃𝑠𝑠⊥∗

𝜕𝜕𝑥𝑥
+

𝑝𝑝𝑠𝑠⊥∗

𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠

∂𝑃𝑃𝑠𝑠⊥
𝜕𝜕𝑥𝑥

� − 𝑚𝑚𝑠𝑠𝑣𝑣𝜔𝜔𝑠𝑠2
∂ln𝑛𝑛𝑠𝑠
𝜕𝜕𝑥𝑥

; (4.6) 

 𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑝𝑝𝑠𝑠⊥ +

𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴⊥� = −𝑣𝑣𝑠𝑠𝑥𝑥 �

∂
𝜕𝜕𝑥𝑥

�𝑝𝑝𝑠𝑠⊥ +
𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴⊥�� − 𝑖𝑖𝐵𝐵0

𝑞𝑞𝑠𝑠
𝑐𝑐
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠

. (4.7) 

Here the superscript “∗” represents the conjugate. The soliton solution can be generally expressed as, 

𝐴𝐴⊥~𝐴𝐴( 𝜉𝜉)𝑒𝑒𝑥𝑥𝑝𝑝[𝑖𝑖𝜔𝜔𝑖𝑖 + 𝑖𝑖𝜃𝜃(𝜉𝜉)],𝑝𝑝𝑠𝑠⊥~𝑝𝑝𝑠𝑠⊥(𝜉𝜉)𝑒𝑒𝑥𝑥𝑝𝑝[𝑖𝑖𝜔𝜔𝑖𝑖 + 𝑖𝑖𝜃𝜃(𝜉𝜉)] 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖~𝑖𝑖(𝜉𝜉) 

with 𝜉𝜉 = 𝑥𝑥 − 𝐺𝐺𝑡𝑡  and τ = 𝑡𝑡 − 𝑘𝑘𝑥𝑥 𝜔𝜔⁄ , where 𝐺𝐺  is a velocity (for bright solitons it is the group velocity 

however for dark solitons it is not) and 𝑘𝑘,𝜔𝜔 are the soliton wavenumber and frequency and 𝜃𝜃(𝜉𝜉) is the 

phase modulation. Note that this kind of solution requests the solitons to be right hand circularly polarized. 

Eqs. (4.4) and (4.6) give two integrals of motion, 

 ∂
𝜕𝜕𝜉𝜉

[𝑛𝑛𝑠𝑠(−𝐺𝐺 + 𝑣𝑣𝑠𝑠𝑥𝑥)] = 0 (4.8) 

 𝜕𝜕
𝜕𝜕𝜉𝜉

(𝑞𝑞𝑠𝑠𝑖𝑖 + 𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐2 − 𝐺𝐺𝑝𝑝𝑠𝑠𝑥𝑥 + 𝑚𝑚𝑠𝑠𝑣𝑣𝜔𝜔𝑠𝑠2 𝑙𝑙𝑛𝑛𝑛𝑛𝑠𝑠) − �
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠

∂𝑃𝑃𝑠𝑠⊥∗

𝜕𝜕𝜉𝜉 � = 0 (4.9) 

The real and imaginary parts of Eq. (4.7) are, 

 (−𝐺𝐺 + 𝑣𝑣𝑠𝑠𝑥𝑥)
𝜕𝜕
𝜕𝜕𝜉𝜉
�𝑝𝑝𝑠𝑠⊥ +

𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴� = 0; (4.10) 

 (−𝐺𝐺 + 𝑣𝑣𝑠𝑠𝑥𝑥) �𝑝𝑝𝑠𝑠⊥ +
𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴�

𝜕𝜕𝜃𝜃
𝜕𝜕𝜉𝜉

+ 𝜔𝜔 �1 − 𝑣𝑣𝑠𝑠𝑥𝑥
𝑘𝑘
𝜔𝜔
� �𝑝𝑝𝑠𝑠⊥ +

𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴� = −𝐵𝐵0

𝑞𝑞𝑠𝑠
𝑐𝑐
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠

 (4.11) 

For unmagnetized plasma, the canonical momentum in transverse direction is conserved, e.g. 𝑝𝑝𝑠𝑠⊥ +

𝑞𝑞𝑠𝑠𝐴𝐴/𝑐𝑐 ≡ 0 and the soliton can have different propagating velocities. However, for magnetized plasma, we 

choose 𝐺𝐺 = 𝑣𝑣𝑠𝑠𝑥𝑥 from Eqs. (4.10) and (4.11), which means the particles are traveling with the solitons in the 
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propagation direction. This condition implies the solitons are of the standing type in the reference frame 

moving with the plasmas. For static plasmas, 𝐺𝐺 = 0. Eqs. (4.9) and (4.11) can be written as, 

 𝑞𝑞𝑠𝑠𝑖𝑖
𝑚𝑚𝑠𝑠𝑐𝑐2

+ 𝛾𝛾𝑠𝑠 �1 −
𝐺𝐺2

𝑐𝑐2�
+
𝑣𝑣𝜔𝜔𝑠𝑠2

𝑐𝑐2
𝑙𝑙𝑛𝑛
𝑛𝑛𝑠𝑠
𝑛𝑛0

+
1
2
�
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐

�
2 𝑞𝑞𝑠𝑠𝐵𝐵0 𝑚𝑚𝑠𝑠𝑐𝑐⁄
𝜔𝜔 − 𝑘𝑘𝐺𝐺

= 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡; (4.12) 

 
𝜔𝜔 �1 − 𝐺𝐺

𝑘𝑘
𝜔𝜔
��𝑝𝑝𝑠𝑠⊥ +

𝑞𝑞𝑠𝑠
𝑐𝑐
𝐴𝐴� = −

𝑞𝑞𝑠𝑠𝐵𝐵0
𝑚𝑚𝑠𝑠𝑐𝑐

𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠

. (4.13) 

Here 𝑛𝑛0 is the unpertubed plasmas density. Eq. (4.12) describes the force balance among the ponderomotive 

force, the thermal pressure and the electrostatic field in the longitudinal direction. If 𝐺𝐺 = 0, it is reduced to 

Rao’s result.[77] Note that the ponderomotive force density in magnetized plasmas is, 

 
𝐹𝐹 = −𝑚𝑚𝑠𝑠𝑐𝑐2∇ �𝛾𝛾𝑠𝑠(1 − 𝑣𝑣𝑠𝑠𝑥𝑥2 𝑐𝑐2⁄ ) +

1
2
𝑞𝑞𝑠𝑠𝐵𝐵0 𝑚𝑚𝑠𝑠𝑐𝑐⁄
𝜔𝜔 − 𝑘𝑘𝑣𝑣𝑠𝑠𝑥𝑥

�
𝑝𝑝𝑠𝑠⊥
𝛾𝛾𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐

�
2
�. (4.14) 

For 𝑣𝑣𝑠𝑠𝑥𝑥 = 0 and unmagnetized plasmas, it gives the well-known result 𝐹𝐹 = −𝑚𝑚𝑠𝑠𝑐𝑐2∇𝛾𝛾𝑠𝑠 as shown in Eq. 

(1.6). The wave propagation Eq. (4.5) is also separated into the real and imaginary parts, 

�1 −
𝐺𝐺2

𝑐𝑐2�
(2𝐴𝐴′𝜃𝜃′+ 𝜃𝜃′′𝐴𝐴) − 2𝜔𝜔 �

𝑘𝑘
𝜔𝜔
−
𝐺𝐺
𝑐𝑐2
�𝐴𝐴′ = 0; (4.15) 

�1 −
𝐺𝐺2

𝑐𝑐2�
(𝐴𝐴′′ − 𝐴𝐴𝜃𝜃′2) + 2𝜔𝜔�

𝑘𝑘
𝜔𝜔
−
𝐺𝐺
𝑐𝑐2
�𝜃𝜃′𝐴𝐴 − �

𝑘𝑘2

𝜔𝜔2 −
1
𝑐𝑐2�

𝜔𝜔2𝐴𝐴 =
4𝜋𝜋𝑒𝑒
𝑐𝑐
�𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒

− 𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖

�. (4.16) 

Here the superscript " ′ " denotes the derivation with respect to 𝜉𝜉. Integrating Eqs. (4.15) once, we obtain, 

 
𝜃𝜃′ = 𝑘𝑘� �1 −

𝐴𝐴02

𝐴𝐴2�
; (4.17) 

 
�1 −

𝐺𝐺2

𝑐𝑐2� �
𝐴𝐴′′ + �

𝜔𝜔�2

𝑐𝑐2
− 𝑘𝑘�2 �

𝐴𝐴02

𝐴𝐴2�
2

�𝐴𝐴� =
4𝜋𝜋𝑒𝑒
𝑐𝑐
�𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒

− 𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖

�. (4.18) 

with 𝑘𝑘� = 𝛾𝛾02(𝑘𝑘 − 𝐺𝐺𝜔𝜔/𝑐𝑐2), 𝜔𝜔� = 𝛾𝛾02(𝜔𝜔 − 𝑘𝑘𝐺𝐺) and 𝛾𝛾0 = (1 − 𝐺𝐺2/𝑐𝑐2)−1/2 . Here the boundary conditions 

𝑄𝑄0
±(𝐴𝐴,𝐴𝐴′,𝑖𝑖,𝑖𝑖′) = (±𝐴𝐴0, 0,0,0) at 𝜉𝜉 → −∞ are adopted. For simplicity, in the following we use the symbol 

𝑄𝑄0
± to represent the boundary conditions. Note that Eq. (4.17) is decoupled from Eq. (4.18) and the phase 

modulation becomes constant at 𝜉𝜉 → −∞. Using 𝜔𝜔𝑝𝑝𝑒𝑒−1, 𝜔𝜔𝑝𝑝𝑒𝑒−1, 𝑛𝑛0, 𝑐𝑐, 𝑚𝑚𝑠𝑠𝑐𝑐, 𝑚𝑚𝑒𝑒𝑐𝑐2 𝑒𝑒⁄  to normalize the time, 

space, density, velocity, momentum and potential, where 𝜔𝜔𝑝𝑝𝑒𝑒2 = 4𝜋𝜋𝑛𝑛0𝑒𝑒2 𝑚𝑚𝑒𝑒⁄  is the unperturbed plasma 

frequency, we rewrite Eqs. (4.1), (4.12), (4.13), (4.17) and (4.18) as,  
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𝜃𝜃′ = 𝑘𝑘� �1 −

𝑎𝑎02

𝑎𝑎2�
; (4.19) 

 𝑖𝑖′′ = 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖; (4.20) 

 
𝑎𝑎′′ + �𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 = 𝛾𝛾02 �𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒
− 𝑛𝑛𝑖𝑖

𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖
� ; (4.21) 

 𝑝𝑝𝑒𝑒⊥ − 𝑎𝑎 = 𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

; 𝑝𝑝𝑖𝑖⊥ + 𝜌𝜌𝑎𝑎 = −𝜌𝜌𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

 (4.22) 

 
𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 = 𝑖𝑖 +

1
2
𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0;  𝑣𝑣𝜔𝜔𝑖𝑖2 ln𝑛𝑛𝑖𝑖 = −𝜌𝜌𝑖𝑖 −
1
2
𝜌𝜌𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0. (4.23) 

Here 𝑎𝑎 = 𝑒𝑒𝐴𝐴 (𝑚𝑚𝑒𝑒𝑐𝑐2)⁄ , 𝑎𝑎0 = 𝑒𝑒𝐴𝐴0 (𝑚𝑚𝑒𝑒𝑐𝑐2)⁄ , 𝛾𝛾𝑠𝑠 = 𝛾𝛾0(1 + 𝑝𝑝𝑠𝑠⊥2 )−1/2 , 𝛼𝛼� = ω𝑐𝑐𝑒𝑒/𝜔𝜔� , ω𝑐𝑐𝑒𝑒 = 𝑒𝑒𝐵𝐵0 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄ , 𝜌𝜌 =

𝑚𝑚𝑒𝑒 𝑚𝑚𝑖𝑖⁄ , 𝑐𝑐𝑒𝑒0 = 𝛼𝛼�𝛾𝛾02𝑝𝑝𝑒𝑒0⊥2 /(2𝛾𝛾𝑒𝑒02 ) − 𝛾𝛾𝑒𝑒0/𝛾𝛾02  and 𝑐𝑐𝑖𝑖0 = −𝜌𝜌𝛼𝛼�𝛾𝛾02𝑝𝑝𝑖𝑖0⊥2 /�2𝛾𝛾𝑖𝑖02 � − 𝛾𝛾𝑖𝑖0/𝛾𝛾02 . 𝛾𝛾𝑠𝑠0  and 𝑝𝑝𝑠𝑠0⊥are the 

relativistic factor and transverse momentum for the electron and ion at the left boundary 𝜉𝜉 → −∞. Notice 

that 𝛼𝛼� can be negative, which means the magnetic field is opposite to the laser propagation direction. The 

above equations together with the boundary conditions 𝑄𝑄0
± give the whole description of soliton formation 

in magnetized plasmas.  

4.2 Dispersion relation for bright and dark soliton 

The dispersion relation of the bright and dark soliton is different due to the boundary conditions. For bight 

solitons  𝑎𝑎0 = 0 , 𝜃𝜃 = 𝑘𝑘�𝜉𝜉 + 𝜃𝜃0 . The total wave phase has the simple form  exp[𝑖𝑖𝜔𝜔�(𝑡𝑡 − 𝑥𝑥𝐺𝐺 𝑐𝑐2⁄ ) + 𝑖𝑖𝜃𝜃0]. 

Hence, the actual wavenumber of the soliton is 𝑘𝑘 = 𝜔𝜔�𝐺𝐺/𝑐𝑐2. Using 𝜔𝜔� = 𝛾𝛾02(𝜔𝜔 − 𝑘𝑘𝐺𝐺), we find 𝜔𝜔� = 𝜔𝜔, 𝑘𝑘� =

0 and 𝛼𝛼� = ω𝑐𝑐𝑒𝑒 𝜔𝜔⁄ ≡ 𝛼𝛼. To distinguish the bright and dark solitons, from now on we use the symbols 

without “−” for bright solitons and symbols with “−” for dark solitons. Similarly, the boundary condition 

𝑄𝑄0 is for bright solitons and 𝑄𝑄0
± are for dark solitons. The Maxwell-fluid model only admits bright solitons 

with normalized dispersion relation, 

 𝐺𝐺𝜔𝜔 = 𝑘𝑘. (4.24) 

Note that the boundary condition 𝑄𝑄0(𝑎𝑎, 𝑎𝑎′,𝑖𝑖,𝑖𝑖′) = (0,0,0,0) is also a trivial solution to the system. Hence 

𝑄𝑄0 is the equilibrium or fixed point (determined by 𝑎𝑎′ = 𝑎𝑎′′ = 𝑖𝑖 = 𝑖𝑖′′ = 0). In the real space, the soliton 

envelop goes from zero (left boundary) to a maximum and return to zero (right boundary); correspondingly 

in the phase space the solution starts from the fixed point 𝑄𝑄0 and returns to 𝑄𝑄0. Mathematically, the bright 

soliton solution represents a homoclinic orbit which connects the fixed point to itself. 
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For dark solitons, 𝑎𝑎0 ≠  0, the soliton can have nonlinear phase modulation given by Eq. (4.19). If we 

assume the boundary 𝑄𝑄0
± = (±𝑎𝑎0, 0,0,0) is also the fixed point of the system, we have, 

 
𝜔𝜔�2 = 𝑘𝑘�2 +

𝛾𝛾02

𝛾𝛾𝑒𝑒0 − 𝛼𝛼�𝛾𝛾02
+

𝜌𝜌𝛾𝛾02

𝛾𝛾𝑖𝑖0 + 𝜌𝜌𝛼𝛼�𝛾𝛾02
 (4.25) 

The physical meaning of Eq. (4.25) is clear if we write the dispersion relation in the laboratory frame, 

 𝜔𝜔2 = 𝑘𝑘2 +
1

𝛾𝛾𝑒𝑒0 − 𝜔𝜔𝑐𝑐𝑒𝑒/(𝜔𝜔 − 𝑘𝑘𝐺𝐺)
+

𝜌𝜌
𝛾𝛾𝑖𝑖0 + 𝜔𝜔𝑐𝑐𝑖𝑖/(𝜔𝜔 − 𝑘𝑘𝐺𝐺)

. (4.26) 

Here 𝜔𝜔𝑐𝑐𝑖𝑖 = 𝜌𝜌𝜔𝜔𝑐𝑐𝑒𝑒  is the ion cyclotron frequency. Hence, Eq. (4.25) describes a right hand circularly 

polarized wave in magnetized plasmas with relativistic electron and ion effects. Since 𝛾𝛾𝑒𝑒0 > 𝛾𝛾0 , if we 

neglect the ion’s effects, Eq. (4.25) implies, 

 𝛾𝛾0 �𝛼𝛼� +
1

𝜔𝜔�2 − 𝑘𝑘�2
� > 1. (4.27) 

Only solitons with 𝜔𝜔� and 𝑘𝑘� satisfying inequality (4.27) are physically meaningful. For the dark soliton, the 

solution starts from 𝑄𝑄0
± (left boundary) and ends at 𝑄𝑄0

±,𝑄𝑄0∓ or other fixed point (right boundary) which 

depends on whether the solution is symmetric, antisymmetric or asymmetric. Hence, dark soliton solution 

represents a homoclinic (or heteroclinic) orbit which connects the same (or different) fixed point(s). 

Furthermore, it is easy to prove that for each 𝑄𝑄0+ − 𝑄𝑄0− connection, there exists a counterpart 𝑄𝑄0− − 𝑄𝑄0+ one. 

4.3 Hamiltonian and dynamical systems theory 

To have an overview of the solutions in phase space, it is better to use the Hamiltonian of the system. The 

Hamiltonian 𝑑𝑑 can be derived by integrating Eqs. (4.20), (4.21) once. 

4.3.1 Hamiltonian and symmetry 

Integrating Eqs. (4.20) and (4.21), we find the Hamiltonian, (see Appendix A) 

𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) =
1
2�

𝑎𝑎′2 + 𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎2
− 𝛾𝛾02𝑖𝑖′2�+ 𝛾𝛾02 �𝑣𝑣𝜔𝜔𝑒𝑒2 (𝑛𝑛𝑒𝑒 − 1) + 𝑣𝑣𝑡𝑡𝑖𝑖

2

𝜌𝜌
(𝑛𝑛𝑖𝑖 − 1)�. (4.28) 

Here 𝑄𝑄𝑎𝑎,𝜑𝜑 = 𝑎𝑎,𝑖𝑖 are the generalized coordinates and 𝑃𝑃𝑎𝑎,𝜑𝜑 = 𝑎𝑎′,−𝛾𝛾02𝑖𝑖′ are the corresponding generalized 

momenta. They satisfy the Hamilton’s equations 𝑑𝑑𝑄𝑄 𝑑𝑑𝜉𝜉⁄ = 𝜕𝜕𝑑𝑑 𝜕𝜕𝑃𝑃⁄  and 𝑑𝑑𝑃𝑃 𝑑𝑑𝜉𝜉⁄ = −𝜕𝜕𝑑𝑑 𝜕𝜕𝑄𝑄⁄ . Since 𝑑𝑑 does 

not depend on 𝜉𝜉 explicitly, the system is autonomous or 𝑑𝑑 ≡ 𝑑𝑑0.  
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The symmetry of the system can help us to get some information about the soliton solutions. First, 𝑑𝑑 

is invariant under the reflection symmetry, 𝑎𝑎 → −𝑎𝑎, 𝑎𝑎′ → −𝑎𝑎′, 𝑖𝑖 → 𝑖𝑖 and 𝑖𝑖′ → 𝑖𝑖′. Hence, if (𝑎𝑎(𝜉𝜉),𝑖𝑖(𝜉𝜉)) 

is a solution, (−𝑎𝑎(𝜉𝜉),𝑖𝑖(𝜉𝜉)) is also a solution. In other words, for any homoclinic orbit 𝑄𝑄0+ − 𝑄𝑄0+ there exists 

an identically shaped 𝑄𝑄0− − 𝑄𝑄0− one. Second, note that 𝑑𝑑 is 𝜉𝜉-reversible, e.g. invariant under simultaneously 

changing the sign of 𝜉𝜉 and the generalized momenta 𝑎𝑎′, −𝛾𝛾02𝑖𝑖′. As a result, (𝑎𝑎(−𝜉𝜉),𝑖𝑖(−𝜉𝜉)) is a solution 

too. Thus, homoclinic orbit 𝑄𝑄0
± − 𝑄𝑄0

± can either be symmetric (𝑎𝑎(𝜉𝜉) = 𝑎𝑎(−𝜉𝜉),𝑖𝑖(𝜉𝜉) = 𝑖𝑖(−𝜉𝜉)) or come in 

asymmetric pairs with 𝜉𝜉 -reversal; heteroclinic orbit 𝑄𝑄0
± −𝑄𝑄0∓  can either be antisymmetric (−𝑎𝑎(𝜉𝜉) =

𝑎𝑎(−𝜉𝜉),𝑖𝑖(𝜉𝜉) = 𝑖𝑖(−𝜉𝜉)) or come in asymmetric pairs with 𝜉𝜉-reversal. 

For autonomous Hamiltonian systems, it is well known that the trajectories in phase space of the same 

Hamilton value don’t intersect expect at the fixed points. Hence, it is important to figure out the existence 

and properties of the fixed points. 

4.3.2 Fixed points and bifurcations 

The soliton equations (4.19) ~ (4.23) can be written in the form of a system of ordinary differential equations, 

 𝑑𝑑𝒙𝒙
𝑑𝑑𝜉𝜉

= 𝑓𝑓(𝒙𝒙). (4.29) 

Here 𝒙𝒙 = (𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′). Then the fixed points are determined by 𝑓𝑓(𝒙𝒙) = 0, which yields 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑖𝑖 = 𝑛𝑛 with 

𝑎𝑎,𝑖𝑖, 𝑛𝑛 satisfying, 

 
�𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 = 𝑛𝑛 �

𝛾𝛾02

𝛾𝛾𝑒𝑒 − 𝛼𝛼�𝛾𝛾02
+

𝜌𝜌𝛾𝛾02

𝛾𝛾𝑖𝑖 + 𝜌𝜌𝛼𝛼�𝛾𝛾02
�𝑎𝑎 (4.30) 

 𝑐𝑐𝑠𝑠2

𝑣𝑣𝜔𝜔𝑖𝑖2 𝑣𝑣𝜔𝜔𝑒𝑒2
𝑖𝑖 = −

1
𝑣𝑣𝜔𝜔𝑒𝑒2

�
1
2
𝛼𝛼𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0� +
1
𝑣𝑣𝜔𝜔𝑖𝑖2

�−
1
2
𝜌𝜌𝛼𝛼𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0� (4.31) 

 
𝑐𝑐𝑠𝑠2 ln𝑛𝑛 = 𝜌𝜌 �

1
2
𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0�+ �−
1
2
𝜌𝜌𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0� (4.32) 

Here 𝑐𝑐𝑠𝑠 is the ion acoustic velocity with 𝑐𝑐𝑠𝑠2 = 𝜌𝜌𝑣𝑣𝜔𝜔𝑒𝑒2 + 𝑣𝑣𝜔𝜔𝑖𝑖2 . Obviously 𝑄𝑄0 (𝑄𝑄0
±) is the fixed point. Since Eqs. 

(4.30) - (4.32) are symmetric for 𝑎𝑎, there may exist other even number solutions and we regard them 

as 𝑄𝑄∗±(±𝑎𝑎∗, 0,𝑖𝑖∗, 0). Note that at the fixed points 𝑄𝑄0 or 𝑄𝑄∗±, the plasma is neutral. Taking the derivative of 

Eq. (4.32) with respect of 𝑎𝑎, we find, 

𝛾𝛾02𝑐𝑐𝑠𝑠2
𝜕𝜕𝑛𝑛
𝜕𝜕𝑎𝑎

= −𝜌𝜌𝑛𝑛𝛾𝛾02 �
𝑝𝑝𝑒𝑒
𝛾𝛾𝑒𝑒
−
𝑝𝑝𝑖𝑖
𝛾𝛾𝑖𝑖
� = −𝜌𝜌�𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4�
𝑎𝑎. 
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Hence at the fixed points the density is, 

 
𝑛𝑛 = 1 −

 𝜌𝜌
2𝛾𝛾02𝑐𝑐𝑠𝑠2

�𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎2�
 (4.33) 

Now let’s discuss the existence condition for 𝑄𝑄∗±. Assuming ion is nonrelativistic, for the bright soliton 

we find 𝑄𝑄∗± exists if 𝛾𝛾0α is in the following interval (see Appendix B.1), 

 

⎩
⎨

⎧ −1 𝜌𝜌⁄ < 𝛼𝛼𝛾𝛾0 < ∞ when 𝜔𝜔2 ≤
4𝛾𝛾0𝜌𝜌
1 + 𝜌𝜌

;

−1 𝜌𝜌⁄ < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽−, 𝛽𝛽+ < 𝛼𝛼𝛾𝛾0 < ∞ when  𝜔𝜔2 >
4𝛾𝛾0𝜌𝜌
1 + 𝜌𝜌

.
 (4.34) 

Here 𝛽𝛽± = �𝜌𝜌 − 1 ± �(𝜌𝜌 + 1)2 − 4𝜌𝜌(𝜌𝜌 + 1)𝛾𝛾0/𝜔𝜔2� (2𝜌𝜌)� . In the limit of immobile ions (𝜌𝜌 → 0), 𝛽𝛽+ =

1 − 𝛾𝛾0/𝜔𝜔2 and condition (4.34) is reduced to 1 − 𝛾𝛾0/𝜔𝜔2 < 𝛼𝛼𝛾𝛾0 < ∞. Eq. (4.30) has the exact solution for 

bright solitons, 

 

⎩
⎪
⎨

⎪
⎧𝑎𝑎∗ = ± �

𝛾𝛾02

𝜔𝜔4 −
1

(1 + 𝛼𝛼𝜔𝜔2)2�
−1/2

𝑖𝑖∗ =
𝛼𝛼
2

+
1
𝜔𝜔2 −

1
𝛾𝛾0

+
𝛼𝛼𝜔𝜔4

2𝛾𝛾02(1 + 𝛼𝛼𝜔𝜔2)2

 (4.35) 

For dark solitons 𝑎𝑎∗ satisfies, 

 
𝑎𝑎∗2 =

𝛾𝛾02

�𝜔𝜔�2 − 𝑘𝑘�2 𝑎𝑎04 𝑎𝑎∗4⁄ �2
−

1

�𝛼𝛼��𝜔𝜔�2 − 𝑘𝑘�2 𝑎𝑎04 𝑎𝑎∗4⁄ � + 1�2
 (4.36) 

Here𝑎𝑎02 = (𝛾𝛾𝑒𝑒02 𝛾𝛾02⁄ − 1)(1 − 𝛼𝛼�𝛾𝛾02 𝛾𝛾𝑒𝑒0⁄ ) , 𝛾𝛾𝑒𝑒0 = 𝛾𝛾02�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ �  and 𝜔𝜔�, 𝑘𝑘� , 𝛼𝛼�  should satisfy 

inequality (4.27). Notice that the dark soliton amplitude at the infinity is totally determined once the 

magnetic field, soliton frequency and wavenumber are fixed. In Fig. 4.1 we show the fixed points solutions 

for bright and dark solitons with respect of 𝛼𝛼(𝛼𝛼�), where 𝑄𝑄0  is the blue line and  𝑄𝑄∗± are the red lines. 

Mathematically, Fig. 4.1 represents the bifurcation diagram of the system with 𝛼𝛼 (𝛼𝛼� ) the bifurcation 

parameter. The bifurcation happens at the point where the number or stability properties of the equilibria 

change as the system parameters vary [85]. The topology of the phase space is usually different before and 

after the bifurcation, which will result in dramatic change of the solution structure and properties around 

the bifurcation. Thus the stability properties or types of the fixed points play an important role in 

determining the existence of solitons. The fixed point types are determined by the eigenvalues of the 

Jacobian matrix 𝐽𝐽 at 𝑄𝑄0,𝑄𝑄∗±, 
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𝐽𝐽 =
𝜕𝜕(𝑎𝑎′,𝑎𝑎′′,𝑖𝑖′,𝑖𝑖′′)
𝜕𝜕(𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′) 𝑄𝑄0,𝑄𝑄∗

±
= �

0 1
𝐽𝐽21 0

0 0
𝐽𝐽23 0

0 0
𝐽𝐽41 0

0 1
𝐽𝐽43 0

� (4.37) 

Here the nonzero Jacobian matrix components are expressed as, 

𝐽𝐽21 = −��𝜔𝜔�2 + 3𝑘𝑘�2
𝑎𝑎04

𝑎𝑎4�
−
𝑛𝑛
𝛼𝛼� �

𝛾𝛾𝑒𝑒3

𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04
−

𝛾𝛾𝑖𝑖3

𝛾𝛾𝑖𝑖3 + 𝜌𝜌𝛼𝛼�𝛾𝛾04
�� − 𝑛𝑛𝛾𝛾02 �

1
𝑣𝑣𝜔𝜔𝑒𝑒2

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
+

𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
� ; (4.38) 

 
𝐽𝐽41 = −𝑛𝑛�

1
𝑣𝑣𝜔𝜔𝑒𝑒2

𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
� ; (4.39) 

 
𝐽𝐽23 = 𝑛𝑛𝛾𝛾02 �

1
𝑣𝑣𝜔𝜔𝑒𝑒2

𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
� ; (4.40) 

 
𝐽𝐽43 = 𝑛𝑛 �

1
𝑣𝑣𝜔𝜔𝑒𝑒2

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2
�. (4.41) 

Note that we have used the condition 𝑎𝑎′ = 0 at the fixed points and the relations, 

 
Fig. 4.1. The bifurcation diagram for bright (a) and dark (b) solitons with respect of 𝛼𝛼(𝛼𝛼�) in the immobile 

ions limit. The parameters are (a) 𝜔𝜔 = 0.8; (b) 𝜔𝜔� = 0.1, 𝑘𝑘� = 0.75 and  𝛾𝛾0 = 1 for all plots.  
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𝑝𝑝𝑒𝑒⊥′ =

𝛾𝛾𝑒𝑒3

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
𝑎𝑎′; 𝛾𝛾𝑒𝑒′ =

𝛾𝛾02𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

𝑝𝑝𝑒𝑒⊥′ ; �
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒
�
′

=
𝛾𝛾02

𝛾𝛾𝑒𝑒3
𝑝𝑝𝑒𝑒⊥ 
′ ;

𝑝𝑝𝑖𝑖⊥′ = −
𝜌𝜌𝛾𝛾𝑖𝑖3

𝛾𝛾𝑖𝑖3 + 𝜌𝜌𝛼𝛼𝛾𝛾04
𝑎𝑎′; 𝛾𝛾𝑖𝑖′ =

𝛾𝛾02𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑒𝑒

𝑝𝑝𝑖𝑖⊥′ ; �
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
�
′

=
𝛾𝛾02

𝛾𝛾𝑖𝑖3
𝑝𝑝𝑖𝑖⊥ 
′ .

 (4.42) 

The eigenvalues of 𝐽𝐽 are, 

 
𝜆𝜆1−42 = ±�

1
2 �
𝛿𝛿 ± √∆�. (4.43) 

with 𝛿𝛿 = 𝐽𝐽21 +  𝐽𝐽43, ∆= (𝐽𝐽21 −  𝐽𝐽43)2 + 4𝐽𝐽23𝐽𝐽41. For the convenience of future discussion, we regard 𝜆𝜆1,3 

as the eigenvalues with positive real part and 𝜆𝜆2,4 as the eigenvalues with negative real part and 𝜆𝜆12 = 𝜆𝜆22,

𝜆𝜆32 = 𝜆𝜆42. The dynamical systems theory [86] states that, 1) when ∆> 0, the fixed point is a focus in the 

region 𝛿𝛿 < −√∆< 0; a saddle in the region 𝛿𝛿 > √∆> 0; and a saddle-center in the region |𝛿𝛿| < √∆; 2) 

when ∆< 0, the fixed point is a saddle-focus.  

4.3.3 Stable and unstable manifolds 

In the next, we introduce an important terminology from the theory of dynamical systems: the stable and 

unstable manifolds. The stable manifold 𝑊𝑊𝑠𝑠(𝑄𝑄) and unstable manifold 𝑊𝑊𝑢𝑢(𝑄𝑄) of a fixed point 𝑄𝑄 is a set 

of trajectories in phase space which satisfies the following condition, 

 𝑊𝑊𝑠𝑠(𝑄𝑄) ≔ �𝒙𝒙 ∈ 𝑅𝑅4| lim
𝜉𝜉→∞

𝜙𝜙𝜉𝜉(𝒙𝒙) = 𝑄𝑄�

𝑊𝑊𝑢𝑢(𝑄𝑄) ≔ �𝒙𝒙 ∈ 𝑅𝑅4| lim
𝜉𝜉→−∞

𝜙𝜙𝜉𝜉(𝒙𝒙) = 𝑄𝑄�
 (4.44) 

Here 𝜙𝜙𝜉𝜉(𝒙𝒙) is the flow of Eq. (4.29) and 𝒙𝒙 = (𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′). Hence, trajectories on the stable or unstable 

manifold converge to 𝑄𝑄 at the positive or negative infinity. In our case, the fixed point 𝑄𝑄0 represents the 

boundary conditions, thus it is obvious that the soliton solutions should on both stable and unstable 

manifolds. Mathematically, the homoclinic or heteroclinic orbit lies in the intersection of the stable 

manifold 𝑊𝑊𝑠𝑠  and unstable manifold 𝑊𝑊𝑢𝑢  of the same or different fixed point(s). As a result, from 

mathematic point of view, solving this set of coupled soliton equation system with boundary conditions 

𝑄𝑄0�𝑄𝑄0
±� is equal to find the homoclinic or heteroclinic orbits of a four-dimensional (𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′) reversible 

autonomous Hamiltonian system. 

Knowing the manifolds is crucial for understanding the overall dynamics of Eq. (4.29). For example, 

if the fixed points of are of the saddle type then they come with global stable and unstable manifolds. The 
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stable manifold may form boundaries of basins of attraction and the intersection of stable and unstable 

manifold lead to complicated dynamics and chaos. 

The stable and unstable manifolds are closely related to the fixed point types. For 4D Hamiltonian 

system, the stable, unstable and center manifold theorem [85] states that when the fixed point 𝑄𝑄 is of the 

saddle or saddle focus types, there is a 2D stable manifold and a 2D unstable manifold in the neighborhood 

of 𝑄𝑄; when 𝑄𝑄 is of the saddle center type, there is a 1D stable manifold and a 1D unstable manifold; when 

𝑄𝑄 is of the focus type, there is no stable or unstable manifold. Obviously, the existence and dimension of 

the manifold determine the possibility of the intersection of the stable and unstable manifolds and then the 

existence of soliton solutions. Since the Hamiltonian is fixed 𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′) = 𝑑𝑑0, the system is actually 

3D, e.g. constraint to a 3D energy manifold. Hence, simply counting the dimensions, one find for 2D stable 

and unstable manifold they are generally expected to intersect in the 3D phase space. Thus soliton solutions 

are general in the saddle or saddle-focus domain. For 1D stable and unstable manifold, the intersection is 

rare, e.g. only happens at particular system parameters �𝛼𝛼�,𝜔𝜔�,𝑘𝑘��. As a result in the saddle-center domain, 

the solitons will have discrete spectrum  �𝜔𝜔�,𝑘𝑘�� or they do not exist. For the focus domain, it is obvious that 

there is no soliton solution at all. 

For certain conditions as will discussed in the next chapter, the 4D Hamiltonian system can be reduced 

to 2D. In this case, the fixed point can only be the saddle or center type. There is a 1D stable and unstable 

manifold in the former case and no stable or unstable manifolds in the latter case. In the saddle regime, the 

stable and unstable manifolds always intersect in the 2D phase space since they are the same orbit. Hence, 

for simplified 2D systems, soliton solutions only exist in the saddle regime. 

4.4 Summary 

In this chapter, the coupled soliton equations (4.19) – (4.23) in magnetized plasmas are derived. The soliton 

is treated in the framework of relativistic fluid model, where the scalar potential 𝑖𝑖, the vector potential 𝑨𝑨 

and the phase modulation 𝜃𝜃 are used to describe the longitudinal and transverse waves with appropriate 

boundary conditions. In 1D geometry, this model assumes the soliton to be circularly polarized and the 

amplitude of the potentials 𝑖𝑖,𝑨𝑨  and the phase 𝜃𝜃  only depend on the combination of  𝜉𝜉 = 𝑥𝑥 − 𝐺𝐺𝑡𝑡 . 

Substituting this kind of solution into the Maxwell-fluid equations, one can obtain three nonlinear ordinary 

differential equations for 𝑖𝑖,𝑨𝑨 and 𝜃𝜃 respectively. The equation for 𝜃𝜃 is decoupled and can be solved once 

𝑖𝑖 and  𝑨𝑨 are known. The potentials 𝑖𝑖,𝑨𝑨 are governed by two second order nonlinear differential equations 

which describe the nonlinear coupling between the longitudinal electrostatic wave and transverse 
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electromagnetic wave due to the density perturbation and the relativistic effects. This set of equations is 

solved with zero or non-zero boundary conditions, which correspond to bright or dark solitons, respectively. 

By assuming appropriate dispersion relations from the boundary conditions, these soliton solutions become 

the connections between the same or different fixed point(s) of the equation system in the phase space. 

Using the dynamical systems theory, the existence of soliton solutions to the equations turns out be 

searching for the homoclinic or heteroclinic orbits of the system. Since these orbits lie in the intersection 

of the stable and unstable manifolds, the types of the fixed points and associated manifolds play an 

important role in determining the existence and properties of the solitons. Based on the soliton equations, 

the general criterion for the existence of solitons is obtained. 
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5. Bright solitons in magnetized plasmas 

From this chapter on, we will systematically analysis the bright and dark soliton formations in cold and 

warm plasmas, respectively. In this chapter, the bright soliton is studied. The ions are first assumed to be at 

rest. Based on the discussion in chapter 4, the existence conditions and properties of the bright solitons are 

investigated. In cold plasmas where the system is reduced to 2-dimensional (2D), an additional restriction 

on the soliton frequency is obtained from the non-negative condition of the electron density as discussed 

by Farina et al [78]. However, this restriction disappears in warm plasmas. Then the ion’s effects on the 

soliton properties are investigated through the quasi-neutral approximation. The coupled soliton equations 

are solved numerically by either the shooting method or the rational spectral algorithm [63, 87]. By the end 

of the chapter, we describe in detail about the two numerical methods we have employed. For the sake of 

convenience, we rewrite the bright soliton equations, 

 𝑖𝑖′′ = 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖; (5.1) 

 𝑎𝑎′′ + 𝜔𝜔2𝑎𝑎 = 𝛾𝛾02 �𝑛𝑛𝑒𝑒
𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒

− 𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖
� (5.2) 

 𝑝𝑝𝑒𝑒⊥ − 𝑎𝑎 = 𝛼𝛼𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

; 𝑝𝑝𝑖𝑖⊥ + 𝜌𝜌𝑎𝑎 = −𝜌𝜌𝛼𝛼𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

 (5.3) 

 
𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 = 𝑖𝑖 +

1
2
𝛼𝛼𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0;  𝑣𝑣𝜔𝜔𝑖𝑖2 ln𝑛𝑛𝑖𝑖 = −𝜌𝜌𝑖𝑖 −
1
2
𝜌𝜌𝛼𝛼𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0. (5.4) 

Here 𝛼𝛼 ≡ 𝜔𝜔𝑐𝑐𝑒𝑒 𝜔𝜔⁄  with 𝜔𝜔𝑐𝑐𝑒𝑒 = 𝑒𝑒𝐵𝐵0 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄  the electron cyclotron frequency and 𝜌𝜌 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑖𝑖⁄  the electron-

ion mass ratio. 𝛾𝛾02 = 1 (1 − 𝐺𝐺2/𝑐𝑐2)⁄ . We mention again that 𝜔𝜔𝑐𝑐𝑒𝑒  can be negative which means the 

magnetic field is opposite to the laser propagation direction. 

5.1 Bright solitons in cold plasmas 

We first discuss the cold plasma case where 𝑣𝑣𝜔𝜔𝑒𝑒 = 0. Assuming ion is at rest, then the scalar potential 𝑖𝑖 

and electron density 𝑛𝑛𝑒𝑒 can be eliminated by Eqs. (5.1) and (5.4). The soliton equation and the Hamiltonian 

𝑑𝑑(𝑎𝑎, 𝛾𝛾02 𝛾𝛾𝑒𝑒2⁄ 𝑎𝑎′) become, 
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 𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′′ + 𝜔𝜔2𝑎𝑎 =

𝛾𝛾02

𝑟𝑟𝑒𝑒 − 𝛼𝛼𝛾𝛾02
�1 +

𝛾𝛾02

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
𝑎𝑎′2�𝑎𝑎; (5.5) 

 
𝑑𝑑 �𝑎𝑎,

𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′� =

1
2�

𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′2 + 𝜔𝜔2𝑎𝑎2� − �

1
2
𝛼𝛼𝛾𝛾02

𝛾𝛾02

𝛾𝛾𝑒𝑒2
+ 𝛾𝛾𝑒𝑒�. (5.6) 

Here 𝛾𝛾𝑒𝑒 and 𝑎𝑎 satisfy 

 
𝛾𝛾𝑒𝑒2 = 𝛾𝛾02 �1 +

𝛾𝛾𝑒𝑒2𝑎𝑎2

(𝛾𝛾𝑒𝑒 − 𝛼𝛼𝛾𝛾02)2
�. (5.7) 

Now the system is reduced to 2D and the fixed point of the system is either a saddle or a center (see Fig. 

5.1). As discussed before, there is a 1D stable and unstable manifold in the former case and a 2D center 

manifold in the latter case and the solitons only exist in the saddle region. 

For unmagnetized plasmas 𝛼𝛼 = 0 and 𝛾𝛾𝑒𝑒 = 𝛾𝛾0√1 + 𝑎𝑎2, Eq. (5.5) has an exact standing solution given 

by [62], 

 
Fig. 5.1: The phase portraits of the system for 𝛼𝛼 = 1.2 (a), 𝛼𝛼 = 0.1 (b) and 𝛼𝛼 = −0.5 (c) with 𝜔𝜔 = 0.9 

and 𝛾𝛾0 = 1. The enlargement of (a) around 𝑄𝑄0 is shown in (d). The fixed points 𝑄𝑄0 and 𝑄𝑄∗± are marked 

by round dot and asterisks, respectively. 
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𝑎𝑎 = 2�1 −𝜔𝜔2 cosh(√1 −𝜔𝜔2𝜉𝜉)

cosh2�√1 −𝜔𝜔2𝜉𝜉� +𝜔𝜔2 − 1
. (5.8) 

For magnetized plasmas, generally it is difficult to solve Eq. (5.5). However, in the ultra-relativistic limit, 

𝛾𝛾𝑒𝑒 ≈ 𝛼𝛼𝛾𝛾02 + 𝑎𝑎𝛾𝛾0 and in the weakly relativistic limit 𝛾𝛾𝑒𝑒2 ≈ 𝛾𝛾02[1 + 𝑎𝑎2 (1− 𝛼𝛼𝛾𝛾0)2⁄ ]. Hence, Eq. (5.6) can be 

integrated in terms of the elliptic integrals to obtain an implicit function 𝜉𝜉 = 𝜉𝜉(𝑎𝑎). 

5.1.1 Phase portrait 

At the fixed point 𝑄𝑄0 the Jacobian matrix 𝐽𝐽 of the system is, 

 
𝐽𝐽 = � 0 1

(𝛾𝛾𝑒𝑒2 𝛾𝛾02⁄ )𝜆𝜆2 0�  with 𝜆𝜆2 = −𝜔𝜔2 +
𝛾𝛾04

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
 (5.9) 

Here 𝛾𝛾𝑒𝑒 = 𝛾𝛾0 at 𝑄𝑄0(0,0) and 𝛾𝛾𝑒𝑒 = 𝛾𝛾02(𝛼𝛼 + 1/𝜔𝜔2) > 𝛾𝛾0 at 𝑄𝑄∗±(±𝑎𝑎∗, 0) with 𝑎𝑎∗ given by Eq. (4.35). 

Notice that 𝑄𝑄∗± exist only when 𝛼𝛼𝛾𝛾0 > 1 − 𝛾𝛾0/𝜔𝜔2. In this region, 𝑄𝑄∗± are always centers since we 

have 𝛾𝛾𝑒𝑒3 > 𝛾𝛾𝑒𝑒𝛾𝛾02 = 𝛼𝛼𝛾𝛾04 + 𝛾𝛾04 𝜔𝜔2⁄ , thus 𝜆𝜆2 < 0. On the other hand, for fixed point 𝑄𝑄0 it is either a saddle 

type (𝜆𝜆2 > 0) or a center (𝜆𝜆2 < 0) type. Hence, the existence condition for bright soliton is, 

 1 −
𝛾𝛾0
𝜔𝜔2 < 𝛼𝛼𝛾𝛾0 < 1 (5.10) 

In Fig. 5.1, we plot the phase portraits of Eq. (5.6) for various magnetic fields, where 𝑄𝑄0 and 𝑄𝑄∗± are marked 

by round dot and asterisks, respectively. The structure around the origin in Fig. 5.1(a) is enlarged and 

displayed in Fig. 5.1(d). Notice that there is a singularity at 𝛾𝛾𝑒𝑒 = 𝛼𝛼𝛾𝛾02 in Eq. (5.5) when 𝛼𝛼𝛾𝛾0 > 1, which 

corresponds to the 𝑎𝑎 = 0 axis in Fig. 5.1(a). Table 5.1 summarizes the fixed point types for different 

magnetic fields. 

Table. 5.1. The fixed point types for different magnetic fields. 

 𝑄𝑄0 𝑄𝑄∗± 

𝛼𝛼𝛾𝛾0 > 1 center center 

1 − 𝛾𝛾0/𝜔𝜔2 < 𝛼𝛼𝛾𝛾0 < 1 saddle center 

𝛼𝛼𝛾𝛾0 < 1 − 𝛾𝛾0/𝜔𝜔2 center Do not exist 
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5.1.2 Density constraint 

Though expression (5.10) gives the condition for the soliton solution to Eq. (5.5) mathematically, a physical 

restriction on the magnetic field and soliton frequency can be found from the non-negative condition of the 

electron density. Using Eqs. (5.1) and (5.4), one finds, 

 
𝑛𝑛𝑒𝑒 = 1 + 𝑖𝑖′′ = 1 + �

𝑝𝑝𝑒𝑒
𝛾𝛾𝑒𝑒
𝑎𝑎′�

′
= 1 +

𝛾𝛾02𝑎𝑎′2

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
+

𝑎𝑎
𝛾𝛾𝑒𝑒 − 𝛼𝛼𝛾𝛾02

𝑎𝑎′′. (5.11) 

The minimum density of the bright soliton happens at the center where 𝑎𝑎′ = 0. Using Eq. (5.5), when the 

density drops to zero we have, 

 𝛾𝛾𝑒𝑒 = 𝛼𝛼𝛾𝛾02 + 𝜔𝜔2𝑎𝑎2. (5.12) 

Substituting Eq. (5.12) into Eq. (5.3), we can eliminate 𝑎𝑎 to get the critical 𝛾𝛾𝑒𝑒, 

 𝛾𝛾02 = 𝜔𝜔2(𝛾𝛾𝑒𝑒 − 𝛼𝛼𝛾𝛾02)(1 − 𝛾𝛾02 𝛾𝛾𝑒𝑒2⁄ ). (5.13) 

Meanwhile, the invariance of 𝑑𝑑 gives,  

 1
2

(𝛾𝛾𝑒𝑒 − 𝛼𝛼𝛾𝛾02) − �
1
2
𝛼𝛼𝛾𝛾02

𝛾𝛾02

𝛾𝛾𝑒𝑒2
+ 𝛾𝛾𝑒𝑒� = −�

1
2
𝛼𝛼𝛾𝛾02 + 𝛾𝛾0�. (5.14) 

 

Fig. 5.2: The parametric domain of 

(𝛼𝛼,𝜔𝜔) for the existence of bright solitons 

for 𝛾𝛾0 = 1 .The solid and dotted lines 

come from the saddle condition for the 

fixed point and the dashed line comes 

from the non-negative condition for the 

electron density. Here the negative 𝛼𝛼 

means the magnetic field is in the 

opposite direction of the laser field. 
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Combine Eqs. (5.13) and (5.14), we find 𝛾𝛾𝑒𝑒 and the critical frequency 𝜔𝜔𝑐𝑐𝑟𝑟 when the density at the soliton 

center becomes zero satisfying [78], 

 𝛾𝛾𝑒𝑒 =
𝛾𝛾0

2 − (𝛼𝛼𝛾𝛾0 + 𝛾𝛾0 𝜔𝜔𝑐𝑐𝑟𝑟2⁄ )
≥ 𝛾𝛾0; (5.15) 

 
𝛼𝛼𝛾𝛾0 �𝛼𝛼𝛾𝛾0 +

𝛾𝛾0
𝜔𝜔𝑐𝑐𝑟𝑟2

− 2�
3

= 2�𝛼𝛼𝛾𝛾0 +
𝛾𝛾0
𝜔𝜔𝑐𝑐𝑟𝑟2

� − 3. (5.16) 

Notice that 𝛼𝛼𝛾𝛾0 < 1, hence 𝛼𝛼𝛾𝛾0 + 𝛾𝛾0/𝜔𝜔𝑐𝑐𝑟𝑟2  are in the range, 

 5 − √5
2

< 𝛼𝛼𝛾𝛾0 +
𝛾𝛾0
𝜔𝜔𝑐𝑐𝑟𝑟2

< 2. (5.17) 

Eq. (5.16) is a cubic equation for 𝛾𝛾0/𝜔𝜔𝑐𝑐𝑟𝑟2  and the discriminant is 𝛼𝛼3𝛾𝛾03(27𝛼𝛼𝛾𝛾0 − 32). When 𝛼𝛼𝛾𝛾0 < 0, 

it has one real root and two complex conjugate roots; when 0 < 𝛼𝛼𝛾𝛾0 < 1, it has three distinct real roots. 

Writing explicitly, they are, 

𝛾𝛾0
𝜔𝜔𝑐𝑐𝑟𝑟2

=

⎩
⎪⎪
⎨

⎪⎪
⎧

2 − 𝛼𝛼𝛾𝛾0 + 2�
2

3𝛼𝛼𝛾𝛾0
cos �

1
3

arccos�
3
4
�3𝛼𝛼𝛾𝛾0

2
� −

2𝜋𝜋
3 �  0 < 𝛼𝛼𝛾𝛾0 < 1

2 − 𝛼𝛼𝛾𝛾0 + ��
1

4𝛼𝛼2𝛾𝛾02
−

8
27𝛼𝛼3𝛾𝛾03

+
1

2𝛼𝛼𝛾𝛾0
�

1
3

− ��
1

4𝛼𝛼2𝛾𝛾02
−

8
27𝛼𝛼3𝛾𝛾03

−
1

2𝛼𝛼𝛾𝛾0
�

1
3

 𝛼𝛼𝛾𝛾0 < 0

 

(5.18) 

In Fig. 5.2, we plot the parametric domain of (𝛼𝛼,𝜔𝜔) for the existence of bright solitons. The solitons 

with physical significance can only exist in the shaded area. The solid and dotted lines come from the saddle 

condition for the fixed point and the dashed line comes from the non-negative condition for the electron 

density. Here the negative 𝛼𝛼 means the magnetic field is in the opposite direction of the laser field. It can 

be see that for each magnetic field 𝛼𝛼, there is a lower limit of the soliton frequency 𝜔𝜔𝑐𝑐𝑟𝑟, beyond which the 

density at the soliton center is negative. In other words, there exists a maximum of the soliton amplitude. 

The maximum of the soliton amplitude and other physical quantities can be calculated by Eq. (5.15), 

 
𝑝𝑝𝑒𝑒 = ±�

𝛾𝛾𝑒𝑒2

𝛾𝛾02
− 1 = ±

��𝛼𝛼𝛾𝛾0+𝛾𝛾0 𝜔𝜔𝑐𝑐𝑐𝑐
2⁄ −1��3−𝛼𝛼𝛾𝛾0−𝛾𝛾0 𝜔𝜔𝑐𝑐𝑐𝑐

2⁄ �

2 − (𝛼𝛼𝛾𝛾0 + 𝛾𝛾0 𝜔𝜔𝑐𝑐𝑟𝑟2⁄ )
; 𝑎𝑎 = 𝑝𝑝𝑒𝑒 �1 −

𝛼𝛼𝛾𝛾02

𝛾𝛾𝑒𝑒
� . (5.19) 

Let 𝑆𝑆 = 𝛼𝛼𝛾𝛾0 + 𝛾𝛾0/𝜔𝜔𝑐𝑐𝑟𝑟2  and take the derivative of Eq. (5.16) with respect of 𝛼𝛼𝛾𝛾0,  one finds  𝜕𝜕𝑆𝑆/

𝜕𝜕(𝛼𝛼𝛾𝛾0) = (𝑆𝑆 − 2)4/(5− 4𝑆𝑆). It is always smaller than zero in the range of condition (5.17). Hence, 𝑆𝑆 is a 
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decreasing function of 𝛼𝛼𝛾𝛾0  and thus 𝜔𝜔𝑐𝑐𝑟𝑟  is an increasing function of  𝛼𝛼𝛾𝛾0 . Meanwhile, 𝛾𝛾𝑒𝑒 ,𝑎𝑎  are both 

decreasing functions of 𝛼𝛼𝛾𝛾0 and the minimums of them are reached at 𝛼𝛼𝛾𝛾0 = 1. Assuming 𝛾𝛾0 = 1, we find 

the minimums of the quantities are 𝛾𝛾𝑒𝑒 = �√5 + 1� 2⁄ , 𝑝𝑝𝑒𝑒 = ±��√5+1� 2⁄  and 𝑎𝑎 = �√5 − 2. 

We have numerically solved the soliton Eqs. (5.3) and (5.5) by the shooting method. The procedure is 

as follows: for fixed 𝛼𝛼  and  𝜔𝜔 , we integrate Eq. (5.5) in the direction of increasing 𝜉𝜉  with boundary 

condition 𝑎𝑎′(−𝜉𝜉0) = 𝜖𝜖, where 𝜖𝜖 is sufficiently small and 𝜉𝜉0 is far away from the soliton center. We vary 𝜖𝜖 

until at 𝜉𝜉 = 𝜉𝜉0 both 𝑎𝑎 and 𝑖𝑖 vanish simultaneously. In Fig. 5.3, the soliton amplitude, scalar potential and 

density at the critical soliton frequencies are shown for different magnetic fields. It can be seen that the 

maximum soliton amplitude decreases with increasing magnetic field, which is consistent with the analysis. 

5.1.3 Soliton envelops 

An analytical expression of the soliton solution can be found in the limit of small amplitude. Using the 

variable transformation 𝑝𝑝𝑒𝑒⊥ = sinh𝑢𝑢  with sinh𝑢𝑢  the hyperbolic sine function and expanding all the 

physical quantities to the third order of 𝑢𝑢 in the limit of 𝑢𝑢 ≪ 1, we have, 

  

 

Fig. 5.3. The bright soliton a) envelope, b) scalar 

potential and c) electron density at the critical 

frequencies for different magnetic fields. The 

parameters are 𝛾𝛾0 = 1 and, C1: 𝛼𝛼 = −0.2, 𝜔𝜔𝑐𝑐𝑟𝑟 =

0.764, 𝜔𝜔𝑐𝑐𝑒𝑒 = −0.153; C2: 𝛼𝛼 = 0 , 𝜔𝜔𝑐𝑐𝑟𝑟 = 0.817, 

𝜔𝜔𝑐𝑐𝑒𝑒 = 0 ; C3: 𝛼𝛼 = 0.2 , 𝜔𝜔𝑐𝑐𝑟𝑟 = 0.882 , 𝜔𝜔𝑐𝑐𝑒𝑒 =

0.176. 
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𝑝𝑝𝑒𝑒~𝑢𝑢 +

𝑢𝑢3

6
; 𝛾𝛾𝑒𝑒~𝛾𝛾0 �1 +

𝑢𝑢2

2 �
; 𝑎𝑎~(1 − 𝛼𝛼𝛾𝛾0)𝑢𝑢 +

𝑢𝑢3

6
(1 + 2𝛼𝛼𝛾𝛾0);

𝑎𝑎′~ �(1 − 𝛼𝛼𝛾𝛾0) +
𝑢𝑢2

2
(1 + 2𝛼𝛼𝛾𝛾0)� 𝑢𝑢′; 𝑎𝑎′′~(1− 𝛼𝛼𝛾𝛾0)𝑢𝑢′′ + (1 + 2𝛼𝛼𝛾𝛾0)𝑢𝑢𝑢𝑢′2.

 (5.20) 

The soliton equation (5.5) becomes, 

 𝑢𝑢′′ +
3𝛼𝛼𝛾𝛾0

1 − 𝛼𝛼𝛾𝛾0
𝑢𝑢𝑢𝑢′2 = 𝜆𝜆2𝑢𝑢 − 𝛽𝛽𝑢𝑢3. (5.21) 

Here  𝜆𝜆2 = −𝜔𝜔2 + 𝛾𝛾0 (1 − 𝛼𝛼𝛾𝛾0)⁄  and  𝛽𝛽 = [−4𝛾𝛾0 + 𝜔𝜔2(7 − 4𝛼𝛼𝛾𝛾0)] [6(1− 𝛼𝛼𝛾𝛾0)]⁄ . Notice that 𝜆𝜆  is 

exactly the eigenvalue at 𝑄𝑄0. Neglecting the nonlinear term of 𝑢𝑢′2, Eq. (5.21) has the solution, 

 𝑢𝑢 = 𝜆𝜆�2 𝛽𝛽⁄ sech(𝜆𝜆𝜉𝜉). (5.22) 

The peak amplitude of the soliton is 𝜆𝜆�2 𝛽𝛽⁄  and the soliton width is approximately inversely 

proportional to 𝜆𝜆. Since both 𝜆𝜆 and 𝜆𝜆�2 𝛽𝛽⁄  are increasing functions of 𝛼𝛼𝛾𝛾0, thus the soliton tends to be 

peaked as the magnetic field increases. Fig. 5.4 and Fig. 5.5 show the numerical calculations of the soliton 

amplitude, scalar potential and density profile as a function of space under different magnetic fields and 

  

 

Fig. 5.4. The bright soliton a) envelope, b) scalar 

potential and c) electron density for different 

magnetic fields in the cold plasmas. The 

parameters are 𝜔𝜔 = 0.9 and 𝛾𝛾0 = 1. 
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soliton frequencies. It is observed that the soliton amplitude increases with magnetic field and the soliton 

width becomes narrower. For fixed magnetic field, the soliton amplitude decreases with increasing soliton 

frequency. These tendencies are consistent with the analytical predictions. Note that on the soliton wings, 

density hump appears due to the attraction of fixed background ions. 

5.2 Bright solitons in warm plasmas 

In warm plasmas, the scalar potential 𝑖𝑖 cannot be eliminated and the system remains 4D. The Hamiltonian 

in this case is, 

 𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) =
1
2 �
𝑎𝑎′2 +𝜔𝜔2𝑎𝑎2 − 𝛾𝛾02𝑖𝑖′2� + 𝛾𝛾02[𝑣𝑣𝜔𝜔𝑒𝑒2 (𝑛𝑛𝑒𝑒 − 1) − 𝑖𝑖]. (5.23) 

Note that 𝑑𝑑 does not depend on 𝜉𝜉 explictly, it is constant along the orbit in phase space. As discussed in 

chapter 4, the dynamics of the system are constrained to the 3D energy surface 𝑑𝑑 ≡ 𝑑𝑑0(𝑄𝑄0) and the solitons 

only exist when the stable and unstable manifolds intersect within this manifold. 

  

 

Fig. 5.5. The bright soliton a) envelope, b) scalar 

potential and c) electron density for different 

soliton frequencies in the cold plasmas. The 

parameters are 𝜔𝜔𝑐𝑐𝑒𝑒 = 0.7 and 𝛾𝛾0 = 1. 
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5.2.1 Bright solitons with continuous spectra 

We first discuss the fixed point 𝑄𝑄0. The eigenvalues are determined by Eq. (4.43), which is 

 
𝜆𝜆1−42 = ±�

1
2 �
𝛿𝛿 ± √∆�. (4.43) 

with 𝛿𝛿 = 𝐽𝐽21 +  𝐽𝐽43, ∆= (𝐽𝐽21 −  𝐽𝐽43)2 + 4𝐽𝐽23𝐽𝐽41. 𝐽𝐽𝑖𝑖,𝑗𝑗 (𝑖𝑖 = 2,4; 𝑗𝑗 = 1,3) are expressed as, 

 
𝐽𝐽21 = −�𝜔𝜔2 −

𝑛𝑛𝛾𝛾04

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
� −

𝑛𝑛
𝑣𝑣𝜔𝜔𝑒𝑒2

𝛾𝛾02𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
; 𝐽𝐽23 = 𝛾𝛾02

𝑛𝑛
𝑣𝑣𝜔𝜔𝑒𝑒2

𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

;

𝐽𝐽41 = −
𝑛𝑛
𝑣𝑣𝜔𝜔𝑒𝑒2

𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

; 𝐽𝐽43 =
𝑛𝑛
𝑣𝑣𝜔𝜔𝑒𝑒2

.
 (5.24) 

At   𝑄𝑄0, 𝑝𝑝𝑒𝑒⊥ = 0, 𝑛𝑛𝑒𝑒 = 𝑛𝑛 = 1. Hence 𝐽𝐽41 = 𝐽𝐽23 = 0, 𝐽𝐽21 = −𝜔𝜔2 + 𝛾𝛾0 (1 − 𝛼𝛼𝛾𝛾0)⁄ , 𝐽𝐽43 = 1/𝑣𝑣𝜔𝜔𝑒𝑒2  and the 

eigenvalues at  𝑄𝑄0 are, 

 𝜆𝜆1,2
2 = −𝜔𝜔2 +

𝛾𝛾0
1 − 𝛼𝛼𝛾𝛾0

; 𝜆𝜆3,4
2 =

1
𝑣𝑣𝜔𝜔𝑒𝑒2

> 0. (5.25) 

𝑄𝑄0 is either a saddle-center (𝜆𝜆1,2
2 < 0) or a saddle point (𝜆𝜆1,2

2 > 0). If 𝜆𝜆1,2
2 > 0, both the stable manifold 

𝑊𝑊𝑄𝑄0
𝑠𝑠  and unstable manifold 𝑊𝑊𝑄𝑄0

𝑢𝑢  are 2D and they are tangent to the linear subspaces spanned by 𝑋𝑋1,2 

and 𝑋𝑋3,4. Here 𝑋𝑋1−4 are the eigenvectors corresponding to 𝜆𝜆1−4 with expressions given by, 

 
�
𝑋𝑋1,2 = �1 �1 + 𝜆𝜆1,2

2 �1 2⁄⁄ , 𝜆𝜆1,2 �1 + 𝜆𝜆1,2
2 �1 2⁄⁄ , 0, 0�

𝑋𝑋3,4 = �0, 0, 1 �1 + 𝜆𝜆3,4
2 �1 2⁄ ,⁄ 𝜆𝜆3,4 �1 + 𝜆𝜆3,4

2 �1 2⁄⁄ �
 (5.26) 

Notice that 𝜆𝜆1 = −𝜆𝜆2, 𝜆𝜆3 = −𝜆𝜆4. In the saddle domain, the soliton solutions are general or they have a 

continuous 𝜔𝜔 spectrum since the two manifold generally intersect. In Fig. 5.6, we show a typical plot of the 

2D stable and unstable manifolds in the saddle domain for 𝜔𝜔 = 0.9, 𝛼𝛼 = 0.1 and 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.8. The manifolds 

are projected in the (𝑎𝑎,𝑎𝑎′,𝑖𝑖) subspace. The visualization of the stable and unstable manifolds is a challenge 

and interesting technical task and one can read Ref 88  for a survey of the numerical methods. Here the 

continuation package AUTO [89,90] is used for the calculation of the manifolds. The method implemented 

in AUTO is the boundary value problem (BVP) continuation of trajectories, which will be discussed in 

section 5.4. In the (𝑎𝑎,𝑎𝑎′,𝑖𝑖 ) subspace, both the stable and unstable manifolds look like the twisted trousers 

legs with different directions and they intersect at the waist of the trousers to form a closed orbit — the 

homoclinic orbit. It should be mentioned that these “legs” extend above the waist and in Fig. 5.6 (a) and (b) 

we only plot the lower halves for clarity. The intersection of the stable and unstable manifolds is further 
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projected in the (𝑎𝑎,𝑎𝑎′) subspace in Fig. 5.6(c). In this subspace, the phase portrait resembles the 2D 

Hamiltonian with a saddle at the origin, e.g. Fig. 5.1(c). Therefore, the soliton has a continuous spectrum if 

𝛼𝛼𝛾𝛾0 and 𝜔𝜔 satisfy, 

 1 − 𝛾𝛾0 𝜔𝜔2⁄ < 𝛼𝛼𝛾𝛾0 < 1 (5.27) 

It is the same as Eq. (5.10), however due to the finite temperature effects in Eq. (5.4), the restriction Eq. 

(5.16) on the magnetic field and soliton frequency disappears. If the magnetic field is fixed, then the soliton 

frequency should satisfy, 

 
�
𝛾𝛾0ω𝑐𝑐𝑒𝑒 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔_𝑒𝑒

𝑟𝑟 when 𝜔𝜔𝑐𝑐𝑒𝑒 > 0

0 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔_𝑒𝑒
𝑟𝑟  when 𝜔𝜔𝑐𝑐𝑒𝑒 < 0

 (5.28) 

  

 

Fig. 5.6. The 2D (a) stable and (b) unstable 

manifolds projected in the (𝑎𝑎, 𝑎𝑎′,𝑖𝑖) subspace; (c) 

the intersection of the stable and unstable 

manifolds projected in the (𝑎𝑎, 𝑎𝑎′) subspace. Both 

the stable and unstable manifolds look like the 

twisted trousers legs with different directions and 

they intersect at the waist of the trousers to form a 

closed orbit. The parameters are 𝜔𝜔 = 0.9, 𝛼𝛼 = 0.1 

and 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.8. 
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Here 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔_𝑒𝑒
𝑟𝑟 = �𝛾𝛾0ω𝑐𝑐𝑒𝑒 + �𝛾𝛾02𝜔𝜔𝑐𝑐𝑒𝑒2 + 4𝛾𝛾0� /2  is the cutoff frequency for the RCP wave in magnetized 

plasmas with only electron’s effects. 

In Fig. 5.7 and Fig. 5.8, we show the bright solitons with different electron temperatures and magnetic 

fields in the saddle domain. It can be seen that while the soliton amplitude and width vary slightly with 

temperature, the scalar potential and electron density are much more sensitive to the temperature. As the 

temperature decreases, the density cavity becomes narrower and deeper. However, it can never become 

negative due to the thermal pressure term. As the magnetic field increases, the soliton envelop tends to be 

peaked and stronger, which is the same as the cold plasma case. 

5.2.2 Bright solitons with discrete spectra 

When 𝜆𝜆1,2
2 < 0, the fixed point  𝑄𝑄0 is a saddle-center. In this case, the stable and unstable manifolds are 1D. 

They are not generally expected to intersect in the 3D energy manifold. If they interest, one would 

expect 𝑊𝑊𝑄𝑄0
𝑠𝑠 = 𝑊𝑊𝑄𝑄0

u , which could only be satisfied by specific (𝛾𝛾0,𝛼𝛼,𝜔𝜔). In other words, the soliton will 

have discrete spectrum. 

  

 

Fig. 5.7. The bright soliton a) envelope, b) scalar 

potential and c) electron density for different 

electron temperatures in the warm plasmas. The 

parameters are 𝛼𝛼 = 0.1,  𝜔𝜔 = 0.9 and 𝛾𝛾0 = 1. 
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We have also used the shooting method to search for the bright solitons in the saddle-focus domain. 

However, in our detection of parameter regions, the soliton solutions do not exist. Further investigations 

are needed. 

5.2.3 Connection orbit with Q± 
*  

The additional fixed points 𝑄𝑄∗±(±𝑎𝑎∗, 0,𝑖𝑖∗, 0) exist when 𝛼𝛼𝛾𝛾0 > 1 − 𝛾𝛾0/𝜔𝜔2 with 𝑎𝑎∗ and 𝑖𝑖∗ given by Eq. 

(4.35). Thus there is a possibility of a heteroclinic connection between 𝑄𝑄0 and 𝑄𝑄±
∗ . Since the right boundary 

(𝜉𝜉 → ∞ )  𝑄𝑄±
∗  is different from  𝑄𝑄0 , the soliton solution is asymmetric. The eigenvalues at  𝑄𝑄±

∗  can be 

calculated by Eqs. (4.43) and (5.24). Note that 𝛾𝛾𝑒𝑒 = 𝛾𝛾02(𝛼𝛼 + 1/𝜔𝜔2)  at  𝑄𝑄∗± . Then  𝛾𝛾𝑒𝑒3 > 𝛾𝛾𝑒𝑒𝛾𝛾02 = 𝛼𝛼𝛾𝛾04 +

𝛾𝛾04 𝜔𝜔2⁄ , or, 

 
𝜆𝜆2 = −𝜔𝜔2 +

𝛾𝛾04

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
< 0. (5.29) 

Meanwhile one has, 

  

 

Fig. 5.8. The bright soliton a) envelope, b) scalar 

potential and c) electron density for different 

magnetic fields in the warm plasmas. The 

parameters are 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.8,  𝜔𝜔 = 0.9 and 𝛾𝛾0 = 1. 
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𝛿𝛿 = 𝜆𝜆2 +

1 − 𝛾𝛾02𝑝𝑝𝑒𝑒⊥2 𝛾𝛾𝑒𝑒2⁄
𝑣𝑣𝜔𝜔𝑒𝑒2

 (5.30) 

 
∆= �𝜆𝜆2 −

(1 + 𝛾𝛾0𝑝𝑝𝑒𝑒⊥ 𝛾𝛾𝑒𝑒⁄ )2

𝑣𝑣𝜔𝜔𝑒𝑒2
 � �𝜆𝜆2 −

(1 − 𝛾𝛾0𝑝𝑝𝑒𝑒⊥ 𝛾𝛾𝑒𝑒⁄ )2

𝑣𝑣𝜔𝜔𝑒𝑒2
 � > 0 (5.31) 

Hence  𝛿𝛿2 − ∆= 4𝜆𝜆2 𝑣𝑣𝜔𝜔𝑒𝑒2⁄ < 0 . The fixed points 𝑄𝑄∗±  are always saddle-centers. The heteroclinic orbits 

involving 𝑄𝑄0 and 𝑄𝑄±
∗  do not generally exist. 

5.3 Bright solitons with ion’s motion 

Now let’s discuss the bright solitons with ion’s motion. Due to the huge mass difference between ions and 

electrons, the ions are assumed to be non-relativistic. This approximation is generally applicable for current 

laser systems. 

5.3.1 Ion’s effects 

At the fixed point 𝑄𝑄0, 𝑝𝑝𝑒𝑒⊥ = 𝑝𝑝𝑖𝑖⊥ = 0, 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑖𝑖 = 𝑛𝑛 = 1, the eigenvalues are, 

 
𝜆𝜆1,2
2 = −𝜔𝜔2 +

𝛾𝛾0(𝜌𝜌 + 1)
(1 − 𝛼𝛼𝛾𝛾0)(1 + 𝜌𝜌𝛼𝛼𝛾𝛾0) ; 𝜆𝜆3,4

2 =
1
𝑣𝑣𝜔𝜔𝑒𝑒2

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

> 0. (5.32) 

Hence 𝑄𝑄0 can be either a saddle or a saddle-center. The existence of continuous bright solitons requests, 

 
�

−1/𝜌𝜌 < 𝛼𝛼𝛾𝛾0 < 1 when 𝜔𝜔2 ≤ 4𝛾𝛾0𝜌𝜌 (1 + 𝜌𝜌)⁄

−1 𝜌𝜌⁄ < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽−, 𝛽𝛽+ < 𝛼𝛼𝛾𝛾0 < 1 when  𝜔𝜔2 > 4𝛾𝛾0𝜌𝜌 (1 + 𝜌𝜌)⁄
 (5.33) 

Here 𝛽𝛽± = �𝜌𝜌 − 1 ± �(𝜌𝜌 + 1)2 − 4𝜌𝜌(𝜌𝜌 + 1)𝛾𝛾0/𝜔𝜔2� (2𝜌𝜌)� . Comparing Eq. (5.27) with Eq. (5.33), it is 

found that, when ion’s motion is taken into consideration, the requirement for magnetic field turns out to 

be different with soliton frequencies. When soliton has a lower frequency, the range is one whole interval, 

otherwise it breaks into two small intervals. If 𝜌𝜌 → 0, condition (5.33) returns to condition (5.27). On the 

other hand, if the external magnetic field is given, the soliton frequency can be deduced as, 

 
�
𝛾𝛾0𝜔𝜔𝑐𝑐𝑒𝑒 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔

𝑟𝑟 when 𝜔𝜔𝑐𝑐𝑒𝑒 > 0

𝛾𝛾0𝜔𝜔𝑐𝑐𝑖𝑖 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔
𝑟𝑟  when 𝜔𝜔𝑐𝑐𝑒𝑒 < 0

 (5.34) 

Here 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔
𝑟𝑟 = �(1 − 𝜌𝜌)𝛾𝛾0ω𝑐𝑐𝑒𝑒 + �(𝜌𝜌 + 1)2𝛾𝛾02𝜔𝜔𝑐𝑐𝑒𝑒2 + 4𝛾𝛾0(𝜌𝜌 + 1)� /2 is the cut off frequency for RCP wave 

with ion’s motion and 𝜔𝜔𝑐𝑐𝑖𝑖 is the ion cyclotron frequency. It returns to condition ((5.28) when 𝜌𝜌 → 0. The 
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physical meaning of inequality (5.34) is clear: when the magnetic field is along the propagation direction 

the electron’s motion plays a role, otherwise ion’s contribution is dominant. Once the soliton frequency 

exceeds 𝜔𝜔𝑐𝑐𝑢𝑢𝜔𝜔
𝑟𝑟 , the solitary wave can propagate as the usual Whistler mode. Since 𝜌𝜌 is much smaller than 

unity, the soliton can reach rather low frequency when the magnetic field is opposite to the propagation 

direction. 

The additional fixed points 𝑄𝑄∗± exist when condition (4.34) is satisfied and the stabilities can also be 

calculated by Eq. (4.43). It can be proved that 𝑄𝑄∗± are always saddle-centers. Actually let, 

 
𝑡𝑡 ≡ −𝜔𝜔2 +

𝑛𝑛
𝛼𝛼 �

𝛾𝛾𝑒𝑒3

𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04
−

𝛾𝛾𝑖𝑖3

𝛾𝛾𝑖𝑖3 + 𝜌𝜌𝛼𝛼𝛾𝛾04
� = 𝜔𝜔2 𝛾𝛾0𝛾𝛾𝑒𝑒(1 + 𝜌𝜌𝛼𝛼𝛾𝛾0)(𝛾𝛾02 − 𝛾𝛾𝑒𝑒2)

(𝛾𝛾0 + 𝜌𝜌𝛾𝛾𝑒𝑒)(𝛾𝛾𝑒𝑒3 − 𝛼𝛼𝛾𝛾04)
 (5.35) 

Here 𝛾𝛾𝑖𝑖 = 𝛾𝛾0 and Eq. (4.30) have been used. Then 𝑡𝑡 < 0 and the following two inequalities hold, 

|𝐽𝐽21∗ −  𝐽𝐽43∗ | = −𝑡𝑡 + 𝑛𝑛 �
1
𝑣𝑣𝜔𝜔𝑒𝑒2

�
𝛾𝛾02𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
+ 1� +

𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

�
𝛾𝛾02𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
+ 1��

> 2𝑛𝑛 �
1
𝑣𝑣𝜔𝜔𝑒𝑒2

𝛾𝛾0𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

𝛾𝛾0𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

� = 2|𝐽𝐽23∗ 𝐽𝐽41∗ |;
 (5.36) 

𝛿𝛿2 − ∆ = 4(𝐽𝐽21∗ 𝐽𝐽43∗ − 𝐽𝐽23∗ 𝐽𝐽41∗ )

= 4 �𝑡𝑡𝑛𝑛 �
1
𝑣𝑣𝜔𝜔𝑒𝑒2

+
𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2
� − 𝑛𝑛2𝛾𝛾02

1
𝑣𝑣𝜔𝜔𝑒𝑒2

𝜌𝜌
𝑣𝑣𝜔𝜔𝑖𝑖2

�
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

−
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
�
2
� < 0

 (5.37) 

Here the superscript “*” represents the value taken at 𝑄𝑄∗±. So ∆= (𝐽𝐽21∗ −  𝐽𝐽43∗ )2 + 4𝐽𝐽23∗ 𝐽𝐽41∗ > 0 and |𝛿𝛿| < √Δ. 

The fixed points 𝑄𝑄∗± are always saddle-centers. Hence, heteroclinic connections with 𝑄𝑄∗± are not general. 

5.3.2 Quasi-neutral approximation 

If we assume in the neighborhood of the fixed points the quasi-neutral approximation holds. Then the 4D 

Hamiltonian is reduced to 2D. Using the transformation  𝑝𝑝𝑒𝑒⊥ = sinh𝑢𝑢 , then 𝑎𝑎 = sinh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢 

and 𝑝𝑝𝑖𝑖⊥ = −𝜌𝜌𝑎𝑎 (1 + 𝜌𝜌α𝛾𝛾0)⁄ . The Hamiltonian becomes, 

𝑑𝑑(𝑢𝑢,𝑢𝑢′) =
1
2

[(cosh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 sech2 𝑢𝑢)2𝑢𝑢′2 + 𝜔𝜔2(sinh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢)2] +
𝑐𝑐𝑠𝑠2𝛾𝛾02

𝜌𝜌
(𝑛𝑛 − 1) (5.38) 

Here 𝑛𝑛 is given by, 

𝛾𝛾0𝑐𝑐𝑠𝑠2 ln𝑛𝑛 ≈ 𝜌𝜌(1 − cosh𝑢𝑢) +
1
2
𝜌𝜌𝛼𝛼𝛾𝛾0 tanh2 𝑢𝑢 −

1 + 𝜌𝜌𝛼𝛼𝛾𝛾0
2

𝑝𝑝𝑖𝑖⊥2  (5.39) 

We mention that (𝑢𝑢,𝑢𝑢′) are not the canonical variables. The soliton equation is, 
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(sinh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢)′′ + 𝜔𝜔2(sinh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢) =
𝑛𝑛𝛾𝛾0

1 + 𝜌𝜌𝛼𝛼𝛾𝛾0
(tanh𝑢𝑢 + 𝜌𝜌 sinh𝑢𝑢) (5.40) 

The fixed points 𝑄𝑄0 and 𝑄𝑄∗± are the same as before. Furthermore, the existence condition for bright solitons 

remains the same as inequality (5.33). However, 𝑄𝑄±
∗  change to centers. 

In Fig. 5.9 and Fig. 5.10, we give the phase portraits of Eq. (5.38) in the (𝑢𝑢, 𝑢𝑢′) plane for different 

magnetic fields and soliton frequencies. The fixed points 𝑄𝑄0 and 𝑄𝑄∗± are marked by round dot and asterisks, 

respectively. Note that in Fig. 5.9 𝜔𝜔 < [4𝜌𝜌𝛾𝛾0 (𝜌𝜌 + 1)⁄ ]1/2 = 0.047  and in Fig. 5.10 𝜔𝜔 > 0.047 , which 

corresponds to different conditions in (5.33). In Fig. 5.9, there are always 3 fixed points since 𝛼𝛼𝛾𝛾0 > −1 𝜌𝜌⁄ ; 

in Fig. 5.9(a), 𝑄𝑄0 is a saddle point since α𝛾𝛾0 < 1 and in Fig. 5.9(b) 𝑄𝑄0 is a center. In Fig. 5.10(a), −1 𝜌𝜌⁄ <

𝛼𝛼𝛾𝛾0 < 𝛽𝛽− = −1834.4, there are 3 fixed points and 𝑄𝑄0 is the saddle; in Fig. 5.10(b), 𝛽𝛽− < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽+ =

−0.563, there is only one fixed point 𝑄𝑄0 and it is a center; in Fig. 5.10(c), 𝛽𝛽+ < 𝛼𝛼𝛾𝛾0 < 1, there are 3 fixed 

points and 𝑄𝑄0 changes to a saddle point; in Fig. 5.9(d), 𝛼𝛼𝛾𝛾0 > 1 > 𝛽𝛽+, there are 3 fixed points and 𝑄𝑄0 is a 

center. In all the plots 𝑄𝑄∗± are always centers. Soliton solutions can be found in Fig. 5.9(a), Fig. 5.10(a) and 

(c). 

 
Fig. 5.9 Phase portraits of Eq. (5.38) in the (𝑢𝑢,𝑢𝑢′) plane when 𝜔𝜔2 < 4𝜌𝜌𝛾𝛾0 (𝜌𝜌 + 1)⁄  with a) 𝛼𝛼 = 0.5 and 

b) 𝛼𝛼 = 2. The parameters are 𝜔𝜔 = 0.04,𝜌𝜌 = 1 1836⁄ , 𝑐𝑐𝑠𝑠 = 0.05 and 𝛾𝛾0 = 1. The fixed points 𝑄𝑄0 and 

𝑄𝑄∗± are marked by round dot and asterisks, respectively. In (a) and (b), 𝑄𝑄∗± always exist since  𝛼𝛼𝛾𝛾0 >

−1 𝜌𝜌⁄ . 
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5.3.3 Soliton envelops under quasi-neutral approximation 

The small amplitude soliton solutions under quasi-neutral approximation can be derived following steps in 

section 5.1.3, 

 
Fig. 5.10. Phase portraits of Eq. (5.38) in the (𝑢𝑢,𝑢𝑢′) plane when 𝜔𝜔2 > 4𝜌𝜌𝛾𝛾0 (𝜌𝜌 + 1)⁄  with a) 𝛼𝛼 = −1835; 

b) 𝛼𝛼 = −0.8; c) 𝛼𝛼 = 0.5 and d) 𝛼𝛼 = 2. The parameters are 𝜔𝜔 = 0.8,𝜌𝜌 = 1 1836⁄ , 𝑐𝑐𝑠𝑠 = 0.05 and 𝛾𝛾0 = 1. 

The fixed points 𝑄𝑄0 and 𝑄𝑄∗± are marked by round dot and asterisks, respectively. In (a) −1 𝜌𝜌⁄ < 𝛼𝛼𝛾𝛾0 <

𝛽𝛽−, 𝑄𝑄∗± exist; in (b) 𝛽𝛽− < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽+, 𝑄𝑄∗± do not exist; in (c) and (d)  𝛼𝛼𝛾𝛾0 > 𝛽𝛽+, 𝑄𝑄∗± exist. 
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𝑝𝑝𝑖𝑖~ − �

𝜌𝜌 − 𝜌𝜌𝛼𝛼𝛾𝛾0
1 + 𝜌𝜌𝛼𝛼𝛾𝛾0

𝑢𝑢 +
𝜌𝜌𝑢𝑢3

6
1 + 2𝛼𝛼𝛾𝛾0
1 + 𝜌𝜌𝛼𝛼𝛾𝛾0

� ; 𝛾𝛾𝑖𝑖~𝛾𝛾0 �1 +
1
2
�
𝜌𝜌 − 𝜌𝜌𝛼𝛼𝛾𝛾0
1 + 𝜌𝜌𝛼𝛼𝛾𝛾0

�
2
𝑢𝑢2� . (5.41) 

Then the density can be calculated from Eq. (5.39), 

 𝑛𝑛 ≈ 1 −
1 + 𝜌𝜌
2𝛾𝛾0𝑐𝑐𝑠𝑠2

𝜌𝜌 − 𝜌𝜌𝛼𝛼𝛾𝛾0
1 + 𝜌𝜌𝛼𝛼𝛾𝛾0

𝑢𝑢2. (5.42) 

Substitute 𝑛𝑛 into Eq. (5.40), we obtain, 

 𝑢𝑢′′ + 𝑢𝑢
1 + 2𝛼𝛼𝛾𝛾0
1 − 𝛼𝛼𝛾𝛾0

𝑢𝑢′2 = 𝜆𝜆2𝑢𝑢 − 𝛽𝛽𝑢𝑢3. (5.43) 

Here  𝜆𝜆2 = 𝛾𝛾0+𝜌𝜌𝛾𝛾0
(1+𝜌𝜌𝛼𝛼𝛾𝛾0)(1−𝛼𝛼𝛾𝛾0) −𝜔𝜔2  and  𝛽𝛽 = 𝛾𝛾0(2−𝜌𝜌)

6(1+𝜌𝜌𝛼𝛼𝛾𝛾0)(1−𝛼𝛼𝛾𝛾0) + 𝛾𝛾0𝜌𝜌
2𝛾𝛾0𝑐𝑐𝑠𝑠2

(1+𝜌𝜌)2

(1+𝜌𝜌𝛼𝛼𝛾𝛾0)2 + 𝜔𝜔2(1+2𝛼𝛼𝛾𝛾0)
6(1−𝛼𝛼𝛾𝛾0) . Note that 

the existence condition for localized soliton solution requires 𝜆𝜆2 > 0, which returns to condition (5.33). If 

we neglect the nonlinear term of the first derivative of 𝑢𝑢, Eq. (5.43) can be integrated to get, 

 𝑢𝑢(𝜉𝜉) = 𝜆𝜆�2 𝛽𝛽⁄ sech(𝜆𝜆𝜉𝜉) (5.44) 

  

 

Fig. 5.11. The a) soliton envelope, b) scalar 

potential and c) density for different electron 

temperatures in quasi-neutral approximation. The 

parameters are 𝜔𝜔 = 0.8 , 𝜌𝜌 = 1/1836 , 𝛼𝛼 = 0.2 , 

𝑣𝑣𝜔𝜔𝑖𝑖 = 0.001 and 𝛾𝛾0 = 1. 
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The soliton width is approximately inversely proportional to 𝜆𝜆 which is an increasing function of 𝛼𝛼𝛾𝛾0 

in the region [−1 𝜌𝜌⁄ , (2𝜌𝜌 − 1)/2𝜌𝜌] and a decreasing function of 𝛼𝛼𝛾𝛾0 in the region [(2𝜌𝜌 − 1) 2𝜌𝜌⁄ , 1]. The 

peak of soliton amplitude is 𝜆𝜆�2 𝛽𝛽⁄ . Notice that it increases with increasing temperature, which is different 

from the ion fixed case, where the temperature effects suppress the soliton amplitude. In Fig. 5.11 and Fig. 

5.12, we show the effects of electron and ion temperature on the solitons properties. It is found that 

compared with the soliton amplitude, the density and scalar potential profiles are more closely related to 

ion’s temperature than electron’s temperature. This is due to the quasi-neutral approximation, where 

electron’s motion follows with ion’s motion. Moreover, the density hump on the soliton wings disappears 

compared to the ion fixed case. It is interesting to notice that the scalar potential increases with temperature, 

however the density cavity becomes slightly smaller. This can be verified by Eq. (5.42), where the density 

perturbation is about 𝛿𝛿𝑛𝑛~𝑢𝑢2(1 + 𝜌𝜌)(𝜌𝜌 − 𝜌𝜌𝛼𝛼𝛾𝛾0)/[(2𝛾𝛾0 𝑐𝑐𝑠𝑠2 )(1 + 𝜌𝜌𝛼𝛼𝛾𝛾0 )]. It is a decreasing function of 

temperature. Fig. 5.13 and Fig. 5.14 show the soliton profiles under different magnetic fields and soliton 

frequencies. Similar to the ion fixed case, under our numerical parameter (𝜌𝜌 = 1 1836⁄ → 0) the soliton 

becomes more peaked and stronger as the magnetic field increases and it decreases with increasing soliton 

frequency. 

  

 

Fig. 5.12. The a) soliton envelope, b) scalar 

potential and c) density for different ion 

temperatures in quasi-neutral approximation. The 

parameters are 𝜔𝜔 = 0.8 , 𝜌𝜌 = 1/1836 , 𝛼𝛼 = 0.2 , 

𝑣𝑣𝜔𝜔𝑒𝑒 = 0.001 and 𝛾𝛾0 = 1. 
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Fig. 5.13. The a) soliton envelope, b) scalar 

potential and c) density for different magnetic 

fields in quasi-neutral approximation. The 

parameters are 𝜔𝜔 = 0.8, 𝜌𝜌 = 1/1836, 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.05, 

𝑣𝑣𝜔𝜔𝑖𝑖 = 0.001 and 𝛾𝛾0 = 1; 

  

 

Fig. 5.14. The a) soliton envelope, b) scalar 

potential and c) density for different soliton 

frequencies in quasi-neutral approximation. The 

parameters are 𝜔𝜔𝑐𝑐𝑒𝑒 = 0.15 , 𝜌𝜌 = 1/1836 , 𝑣𝑣𝜔𝜔𝑒𝑒 =

0.05, 𝑣𝑣𝜔𝜔𝑖𝑖 = 0.001 and 𝛾𝛾0 = 1. 
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5.4 Numerical methods 

In this section, we introduce the numerical methods we have used in solving the soliton equations and 

computing the manifolds: shooting and rational spectral methods Basically, for simplified 2D Hamiltonian 

system, the shooting method can give a sufficiently accurate result; however for 4D systems the accuracy 

decreases due to the temperature effects. As a result, the electron density is usually difficult to calculate 

correctly. Hence, in 4D systems, we adopt the combination of shooting and rational spectral methods to get 

a high accuracy. In addition, when the temperature is low, the initial guesses for the shooting method should 

be close enough to the real values to ensure convergence, which is generally too difficult to get. In this case, 

we use the numerical continuation of temperature based on the implicit function theorem. 

5.4.1 Numerical continuation of temperature for shooting method 

Mathematically, computing the homoclinic or heteroclinic orbits involves solving the nonlinear differential 

equations (4.19) – (4.23) with boundary conditions at the infinity space. It is frequently replaced by one on 

a finite domain and then the system is solved by the standard method such as multiple shooting methods or 

the spline collocation methods. In this work, we reduce the system to the solution of an initial value problem 

by the shooting method. Let 𝒀𝒀 = (𝑖𝑖,𝑎𝑎) then 𝒀𝒀 satisfies, 

 
𝒀𝒀′′(𝜉𝜉) = �

𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖

−�𝜔𝜔�2 − 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 + 𝛾𝛾02 �𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒
− 𝑛𝑛𝑖𝑖

𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖
�� (5.45) 

with boundary conditions, 

 𝒀𝒀(𝜉𝜉1) = 𝑨𝑨; 𝒀𝒀(𝜉𝜉2) = 𝑩𝑩. (5.46) 

If the solution is symmetric, 𝜉𝜉1,2 → ±∞, 𝑨𝑨,𝑩𝑩 → (0,𝑎𝑎0); If the solution is antisymmetric, 𝜉𝜉1 → −∞, 𝑨𝑨 →

(0,−𝑎𝑎0) and 𝜉𝜉2 → +∞, 𝑩𝑩 → (0,𝑎𝑎0). Now we assume 𝒀𝒀� is the solution of Eq. (5.45) with initial conditions, 

 𝒀𝒀�(𝜉𝜉1) = 𝑨𝑨; 𝒀𝒀�′(𝜉𝜉1) = 𝑪𝑪. (5.47) 

Let 𝑭𝑭(𝑪𝑪) = 𝒀𝒀�(𝜉𝜉2;𝑪𝑪) −𝑩𝑩. Then if 𝑭𝑭(𝑪𝑪∗) = 0, 𝑌𝑌�  is the also solution of Eq. (5.45) with boundary condition 

(5.46). The 𝑪𝑪∗ can be found through the Newton’s method, 

 𝑪𝑪𝑛𝑛+1 = 𝑪𝑪𝑛𝑛 − [𝑭𝑭′(𝑪𝑪𝑛𝑛)]−1𝑭𝑭(𝑪𝑪𝑛𝑛) (5.48) 

This is the general idea for shooting method. For 2D Hamiltonian systems, e.g. Eq. (5.5) or Eq. (5.40), 

this scheme works well since the requirement for the initial guess 𝑪𝑪0 is undemanding. However, for 4D 

systems, the guess 𝑪𝑪0 becomes rigorous due to the presence of temperature term, e.g. 𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 in Eq. (4.23). 
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Any numerical error induced on the right hand side of Eq. (4.23) will be amplified by 𝑣𝑣𝜔𝜔𝑒𝑒2  and the 

exponential function. Hence, 𝑪𝑪0 should be close enough to the real values to ensure convergence. To find 

a good guess of 𝑪𝑪0, we use the method of numerical continuation of temperature [91]. The basic idea is 

simple: we first use a large enough temperature 𝑘𝑘1 to get the 𝑪𝑪1𝑛𝑛; then the temperature is decreased step by 

step to the desired value 𝑘𝑘2; we search 𝑪𝑪𝑘𝑘+10  in the neighbor of  𝑪𝑪𝑘𝑘𝑛𝑛 accordingly. Mathematically, we can 

choose the global homotopy, 

 𝑲𝑲(𝑪𝑪,𝑘𝑘) = 𝑭𝑭(𝑪𝑪) −
𝑘𝑘 − 𝑘𝑘𝑚𝑚
𝑘𝑘1 − 𝑘𝑘𝑚𝑚

𝑭𝑭(𝑪𝑪𝟏𝟏) (5.49) 

Here 𝑪𝑪𝟏𝟏  is the initial conditions for temperature 𝑘𝑘1  and the desired temperature is  𝑘𝑘𝑚𝑚 . Notice that 

𝑲𝑲(𝑪𝑪𝟏𝟏,𝑘𝑘1) = 0 and 𝑲𝑲(𝑪𝑪,𝑘𝑘𝑚𝑚) = 𝑭𝑭(𝑪𝑪). Hence we can trace the implicitly defined curve 𝑐𝑐(𝑠𝑠) by 𝑲𝑲(𝑪𝑪,𝑘𝑘) =

0 from (𝑪𝑪𝟏𝟏,𝑘𝑘1) to (𝑪𝑪,𝑘𝑘𝒎𝒎). The existence of 𝑐𝑐(𝑠𝑠) is ensured by the Implicit Function Theorem, namely if 

(𝑪𝑪𝟏𝟏,𝑘𝑘1) is a regular zero point of 𝑲𝑲, then a curve 𝑐𝑐(𝑠𝑠) with initial value 𝑐𝑐(0) = (𝑪𝑪𝟏𝟏,𝑘𝑘1) and tangent 

�̇�𝑐(0) ≠ 0 will exist at least locally on some open interval around zero. Here the curve 𝑐𝑐(𝑠𝑠) is parametrized 

with respect to the parameter 𝑠𝑠, e.g. the temperature T. At each temperature step 𝑘𝑘𝑘𝑘+1, the value of 𝑪𝑪𝑘𝑘+1 

can be calculated by the Newton’s method using 𝑪𝑪𝑘𝑘 as starting values, 

 𝑪𝑪𝑘𝑘+1 = 𝑪𝑪𝑘𝑘 − [𝑲𝑲′(𝑪𝑪𝑘𝑘,𝑘𝑘𝑘𝑘+1)]−1𝑲𝑲(𝑪𝑪𝑘𝑘) (5.50) 

Some sketches of the curve 𝑐𝑐(𝑠𝑠) are shown in Fig. 5.15. Along the curve 𝑲𝑲(𝑪𝑪,𝑘𝑘) ≡ 0. Generally, there 

should be some boundary conditions which prevent the curve from running to infinity before intersecting 

the homotopy level 𝑘𝑘 = 𝑘𝑘𝑚𝑚, or returning back to level 𝑘𝑘 = 𝑘𝑘1. Furthermore, this scheme will fail when the 

turning points of the curve with respect to the parameter 𝑘𝑘 are encountered. This is attributed to the fact 

that the parameterizable with respect to 𝑘𝑘 is not good enough. In this case, other suitable parameters e.g. 

the arclength of the curve 𝑠𝑠, may be chosen. However, in this work, we find the parameterizable with respect 

to 𝑘𝑘 works well even without any boundary conditions. 

 

Fig. 5.15. Sketches for different possibilities for the 

curve 𝑐𝑐(𝑠𝑠). Along the curve 𝑲𝑲(𝑪𝑪,𝑘𝑘) ≡ 0. 
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5.4.2 Rational spectral method 

Though we have used the continuation of temperature to find the good guess of 𝑪𝑪0, sometimes the density 

is still difficult to calculate accurately, specifically at the shooting boundary where the scalar potential is 

usually small. (E.g. see Fig. C. 1 in Appendix C) In this case, the rational spectral methods are used and the 

shooting result is used to build up an initial input for the rational spectral scheme. The rational spectral 

scheme can transfer the two coupled second order nonlinear differential equations into nonlinear algebraic 

equations. The nonlinear algebraic equations are then solved by the Newton’s method. The principles of 

the rational spectral method are as follows: assuming at certain collocation points 𝜉𝜉𝑗𝑗  (0 ≤ 𝑗𝑗 ≤ 𝑀𝑀 + 1, 

where 𝑀𝑀 is an integer), the solutions can be expressed as, (we have neglected the ion’s motion) 

 
𝑖𝑖(𝜉𝜉) = � 𝑐𝑐𝑘𝑘𝑅𝑅𝑘𝑘(𝜉𝜉)

𝑀𝑀+1

𝑘𝑘=0

; 𝑎𝑎(𝜉𝜉) = � 𝑑𝑑𝑘𝑘𝑅𝑅𝑘𝑘(𝜉𝜉)
𝑀𝑀+1

𝑘𝑘=0

. (5.51a) 

 
𝑝𝑝𝑒𝑒⊥(𝜉𝜉) = � 𝑒𝑒𝑘𝑘𝑅𝑅𝑘𝑘(𝜉𝜉)

𝑀𝑀+1

𝑘𝑘=0

; 𝛾𝛾𝑒𝑒(𝜉𝜉) = � 𝑓𝑓𝑘𝑘𝑅𝑅𝑘𝑘(𝜉𝜉)
𝑀𝑀+1

𝑘𝑘=0

. (5.51b) 

 
Fig. 5.16. The first nine plots of 𝑅𝑅𝑘𝑘(𝜉𝜉). 𝑘𝑘 = 0,1,⋯8. 
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Here 𝑅𝑅𝑘𝑘(𝜉𝜉) is basis, e.g. the mapped Chebyshev polynomials, 

 𝑅𝑅𝑘𝑘(𝜉𝜉) = cos(𝑘𝑘 cot−1 𝜉𝜉) ; 𝑘𝑘 = 0,1,2, …𝑀𝑀 + 1 (5.52) 

It can return to the usual Chebyshev polynomials 𝑘𝑘𝑘𝑘(𝑡𝑡) through the transformation 𝑡𝑡 = 𝜉𝜉 �1 + 𝜉𝜉2⁄ . 𝑅𝑅𝑘𝑘(𝜉𝜉) 

is orthogonal since, 

 
�

1
1 + 𝜉𝜉2

𝑅𝑅𝑚𝑚(𝜉𝜉)𝑅𝑅𝑛𝑛(𝜉𝜉)𝑑𝑑𝜉𝜉 =
𝜋𝜋
2
𝑑𝑑𝑛𝑛𝛿𝛿𝑚𝑚,𝑛𝑛

+∞

−∞
; with 𝑑𝑑𝑛𝑛 = �2 𝑛𝑛 = 0

1 𝑛𝑛 ≥ 1 (5.53) 

Here 𝛿𝛿𝑚𝑚,𝑛𝑛 is the Kronecker delta. The first nine plots of 𝑅𝑅𝑘𝑘(𝜉𝜉) are shown in Fig. 5.16. It can be seen that 

𝑅𝑅𝑘𝑘(𝜉𝜉) well reproduce the soliton structures and that is the reason why we use them as the bases. The 

collocation points are chosen as, 

 𝜉𝜉𝑗𝑗 = cot �
𝑗𝑗𝜋𝜋

𝑀𝑀 + 1
� ; 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀 (5.54) 

Note that 𝜉𝜉0 = +∞ and 𝜉𝜉𝑀𝑀+1 = −∞; 𝑅𝑅𝑘𝑘(𝜉𝜉0) = 1 and 𝑅𝑅𝑘𝑘(𝜉𝜉𝑀𝑀+1) = (−1)𝑘𝑘. Hence, by choosing this kind 

of collocation points, we do not need to truncate the differential equations into finite intervals. Using Eqs. 

(5.51) and (5.54), we find, 

 
𝑖𝑖�𝜉𝜉𝑗𝑗� = � 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝑚𝑚𝑗𝑗𝑘𝑘; 𝑎𝑎�𝜉𝜉𝑗𝑗� = � 𝑑𝑑𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝑚𝑚𝑗𝑗𝑘𝑘; 𝑝𝑝𝑒𝑒⊥�𝜉𝜉𝑗𝑗� = � 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

;

𝛾𝛾𝑒𝑒�𝜉𝜉𝑗𝑗� = � 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

; 𝑖𝑖′′�𝜉𝜉𝑗𝑗� = −� 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝐷𝐷𝑗𝑗𝑘𝑘; 𝑎𝑎′′�𝜉𝜉𝑗𝑗� = −� 𝑑𝑑𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝐷𝐷𝑗𝑗𝑘𝑘 .

 (5.55) 

Here 𝑚𝑚𝑗𝑗𝑘𝑘 and 𝐷𝐷𝑗𝑗𝑘𝑘 are expressed as, 

 

�
𝑚𝑚𝑗𝑗𝑘𝑘 = cos �

𝑘𝑘𝑗𝑗𝜋𝜋
𝑀𝑀 + 1

�

𝐷𝐷𝑗𝑗𝑘𝑘 = 𝑘𝑘 �𝑘𝑘 cos �
𝑘𝑘𝑗𝑗𝜋𝜋
𝑀𝑀 + 1

� + 2 cot �
𝑗𝑗𝜋𝜋

𝑀𝑀 + 1
� sin �

𝑘𝑘𝑗𝑗𝜋𝜋
𝑀𝑀 + 1

�� sin4 �
𝑗𝑗𝜋𝜋

𝑀𝑀 + 1
�
 (5.56) 

Substituting the above equations into Eqs. (4.20) - (4.23) and use the boundary conditions, we can change 

the second order nonlinear differential equations into 4(𝑀𝑀 + 2) nonlinear algebraic equations, 
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𝟎𝟎 = 𝑮𝑮 ≡

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑖𝑖(+∞) = � 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

� 𝑑𝑑𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝐷𝐷𝑗𝑗𝑘𝑘 − �𝜔𝜔�2 �� 𝑑𝑑𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝑚𝑚𝑗𝑗𝑘𝑘� −
𝑘𝑘�2𝑎𝑎04

�∑ 𝑑𝑑𝑘𝑘𝑀𝑀+1
𝑘𝑘=0 𝑚𝑚𝑗𝑗𝑘𝑘�

3�+ 𝛾𝛾02 �1 − � 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝐷𝐷𝑗𝑗𝑘𝑘�
∑ 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

∑ 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

𝑖𝑖(−∞) = � (−1)𝑘𝑘𝑐𝑐𝑘𝑘
𝑀𝑀+1

𝑘𝑘=0

𝑎𝑎(+∞) − 𝑎𝑎0 = � 𝑑𝑑𝑖𝑖𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

− 𝑎𝑎0

� 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

− � 𝑑𝑑𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝑚𝑚𝑗𝑗𝑘𝑘 − 𝛼𝛼�𝛾𝛾02
∑ 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

∑ 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

𝑎𝑎(−∞) − 𝑎𝑎0 = � (−1)𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

− 𝑎𝑎0

𝑝𝑝𝑒𝑒⊥(+∞)− 𝑝𝑝𝑒𝑒0 = � 𝑒𝑒𝑘𝑘
𝑀𝑀+1

𝑘𝑘=0
− 𝑝𝑝𝑒𝑒0

𝑣𝑣𝜔𝜔𝑒𝑒2 ln�1 − � 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝐷𝐷𝑗𝑗𝑘𝑘� − � 𝑐𝑐𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

𝑚𝑚𝑗𝑗𝑘𝑘 −
1
2
𝛼𝛼�𝛾𝛾02 �

∑ 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

∑ 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

�
2

+
∑ 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘
𝑀𝑀+1
𝑘𝑘=0

𝛾𝛾02
+ 𝑐𝑐𝑒𝑒0

𝑝𝑝𝑒𝑒⊥(−∞)− 𝑝𝑝𝑒𝑒0 = � (−1)𝑘𝑘𝑒𝑒𝑘𝑘
𝑀𝑀+1

𝑘𝑘=0
− 𝑝𝑝𝑒𝑒0

𝛾𝛾𝑒𝑒(+∞) − 𝛾𝛾𝑒𝑒0 = � 𝑓𝑓𝑖𝑖𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

− 𝛾𝛾𝑒𝑒0

𝛾𝛾02 �1 + �� 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

�

2

� − �� 𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

�

2

𝛾𝛾𝑒𝑒(−∞) − 𝛾𝛾𝑒𝑒0 = � (−1)𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘

𝑀𝑀+1

𝑘𝑘=0

− 𝛾𝛾𝑒𝑒0

 

(5.57) 

Here 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀 and 𝑎𝑎0,𝑝𝑝𝑒𝑒0, 𝛾𝛾𝑒𝑒0 are the boundary values. The last but one equation in Eq. (5.57) comes 

from the identity 𝛾𝛾02(1 + 𝑝𝑝𝑒𝑒⊥2 ) ≡ 𝛾𝛾𝑒𝑒2. Eq. (5.57) consists of 4(𝑀𝑀 + 2) nonlinear algebraic equations with 

4(𝑀𝑀 + 2) unknowns 𝒙𝒙𝒌𝒌 = (𝑐𝑐𝑘𝑘 ,𝑑𝑑𝑘𝑘 , 𝑒𝑒𝑘𝑘 ,𝑓𝑓𝑘𝑘) (0 ≤ 𝑘𝑘 ≤ 𝑀𝑀 + 1). It can be solved by the Newton’s iteration, 

 𝒙𝒙𝒌𝒌
(𝒏𝒏+𝟏𝟏) = 𝒙𝒙𝒌𝒌

(𝒏𝒏) − �𝑮𝑮′ �𝒙𝒙𝒌𝒌
(𝒏𝒏)��

−1
𝑮𝑮 �𝒙𝒙𝒌𝒌

(𝒏𝒏)� (5.58) 

Notice that we have imposed the symmetric boundary conditions 𝑖𝑖(±∞) = 0,𝑎𝑎(±∞) = 𝑎𝑎0  and the 

symmetry of the solutions can help us to reduce the coefficients by a factor of two. For example, for 

symmetric solutions, the coefficients with odd indexes are zero; for asymmetric solutions all the coefficients 

should be calculated. The Jacobi matrix is, 
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𝐺𝐺′(𝒙𝒙𝒌𝒌) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0

− �∑(𝑒𝑒𝑘𝑘−𝑠𝑠𝑘𝑘)𝑚𝑚𝑗𝑗𝑘𝑘�
𝛼𝛼�

𝐷𝐷𝑗𝑗𝑖𝑖 𝐷𝐷𝑗𝑗𝑖𝑖 − �𝜔𝜔�2 + 3𝑘𝑘� 2𝑎𝑎04

�∑𝑠𝑠𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘�
4 + 1−∑𝑐𝑐𝑘𝑘𝐷𝐷𝑗𝑗𝑘𝑘

𝛼𝛼�
�𝑚𝑚𝑗𝑗𝑖𝑖

1−∑𝑐𝑐𝑘𝑘𝐷𝐷𝑗𝑗𝑘𝑘
𝛼𝛼�

𝑚𝑚𝑗𝑗𝑖𝑖 0

(−1)𝑖𝑖 0 0 0

0 1 0 0

0 −𝑚𝑚𝑗𝑗𝑖𝑖 �1 − 𝛼𝛼�𝛾𝛾0
∑𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

�𝑚𝑚𝑗𝑗𝑖𝑖
𝛼𝛼�𝛾𝛾0 ∑𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘

�∑𝑓𝑓𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘�
2 𝑚𝑚𝑗𝑗𝑖𝑖

0 (−1)𝑖𝑖 0 0

0 0 1 0
−𝑣𝑣𝑡𝑡𝑒𝑒2 𝐷𝐷𝑗𝑗𝑖𝑖

1−∑𝑐𝑐𝑘𝑘𝐷𝐷𝑗𝑗𝑘𝑘
− 𝑚𝑚𝑗𝑗𝑖𝑖

∑(𝑒𝑒𝑘𝑘−𝑠𝑠𝑘𝑘)𝑚𝑚𝑗𝑗𝑘𝑘

𝛼𝛼�𝛾𝛾02
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0 0 2�∑ 𝑒𝑒𝑘𝑘𝑚𝑚𝑗𝑗𝑘𝑘�𝑚𝑚𝑗𝑗𝑖𝑖 −2�∑𝑓𝑓𝑘𝑘 𝑚𝑚𝑗𝑗𝑘𝑘�𝑚𝑚𝑗𝑗𝑖𝑖
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
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(5.59) 

Here the summation is on 𝑘𝑘 (0 ≤ 𝑘𝑘 ≤ 𝑀𝑀 + 1) and 0 ≤ 𝑖𝑖 ≤ 𝑀𝑀 + 1, 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀. In our calculations, we 

found 𝑀𝑀 around 200~250 can give a good result. 

As discussed before, using the Newton’s method needs a good initial guess of the solution to ensure 

convergence. In this scheme, the initial guess for single hump solitons is built up by the shooting results 

and throwing away high order coefficients; for multi-hump solitons (which will be discussed in chapter 6), 

the initial guess is built up by single hump soliton results. Once we have a good initial guess, this scheme 

gives an accurate solution that can be used to build up guesses for other parameters. (See Appendix C) 

5.4.3 Computing the manifolds 

In section 4.3.3 and Fig. (Fig. 5.6), we have shown the definition and examples of the stable and unstable 

manifolds. In this section, we introduce the general method for the numerical calculation of these manifolds. 

For illustrative purpose, we consider the case of the manifolds of a saddle point. Furthermore, we only 

present the calculation of the unstable manifold. The stable manifold can be computed as an unstable 

manifold when 𝜉𝜉 is reversed. The definition of unstable manifolds Eq. (4.44) suggests a direct method for 

computing 𝑊𝑊𝑢𝑢(𝑄𝑄0). That is integrating Eq. (4.29) by the initial conditions, 

 (𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′) = 𝑄𝑄0 + 𝜀𝜀1𝑋𝑋1 + 𝜀𝜀2𝑋𝑋3 (5.60) 
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Here 𝑋𝑋1,3 are the unstable eigenvectors of 𝑄𝑄0 corresponding to the positive eigenvalues 𝜆𝜆1,3 given by Eq. 

(5.26). 𝜀𝜀1, 𝜀𝜀2 are small parameters controlling the distance of the initial position to the fixed point in the 

linear subspace spanned by 𝑋𝑋1,3. 𝜀𝜀1, 𝜀𝜀2 are usually taken as 𝜀𝜀1 = 𝜀𝜀 sin𝜃𝜃 and 𝜀𝜀2 = 𝜀𝜀 cos𝜃𝜃 with 𝜀𝜀 a small 

parameter. Then the initial points form a circle around 𝑄𝑄0. In principle, computing solutions for a sufficient 

number of 𝜃𝜃 will result in an approximation of the unstable manifolds. For 1D manifold, e.g. 𝑋𝑋3 ≡ 0, this 

method works well since it boils down to evolving two points at distance 𝜀𝜀 from 𝑄𝑄0 under the flow 𝜙𝜙𝜉𝜉(𝒙𝒙). 

However, for 2D or higher dimensional manifold, the above method usually gives very poor results. This 

is because the initial points will typically deform dramatically under  𝜙𝜙𝜉𝜉(𝒙𝒙), specifically they will stretch 

out along the strong unstable directions. Hence, spacing the initial points around the circle is important. In 

this case the pseudo arclength continuation is adopted and one can read Ref88 for the details. 

5.5 Summary 

In this chapter, we have systematically studied the bright soliton formation in strongly magnetized plasmas. 

Based on the dynamical systems theory, the parametric regions of magnetic field and soliton frequency for 

the existence of solitons in both cold and warm plasmas are identified. In cold plasmas, where the system 

is reduced to 2D, an additional restriction on the magnetic field and soliton frequency arises from the non-

negative condition of the density. This condition disappears in warm plasmas. The ion’s effects on the 

soliton formation are also investigated. It is found that for the RCP soliton, the ion’s motion plays an 

important role in determining the lower limit of the soliton frequency, especially when the magnetic field 

is opposite to the laser propagation direction. 

The coupled soliton equations are then solved numerically by the shooting method in the cold plasmas 

and the combination of shooting and rational spectral algorithm in the warm plasmas. The numerical 

calculations show that in the limit of immobile ions, the soliton tends to be peaked and stronger as the 

magnetic field increases and it becomes broader and smaller as the temperature increases. However, under 

the quasi-neutral approximation, it is found that the soliton increases with increasing temperature. Moreover, 

the quasi-neutral approximation removes the density humps on the soliton wings appeared in the ion fixed 

case.  
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6. Dark solitons in magnetized plasmas 

Unlike the bright solitons which are spontaneously excited during the laser plasmas interactions, the 

generation of dark solitons remains an open problem. However, the Maxwell-fluid model presented in 

chapter 4 also supports the dark soliton solutions, which could give us some clues for the excitation of dark 

solitons in experiments. Sanchez et al [64] suggested that dark solitons could be generated by the 

interactions between a long pulse laser and a bright soliton excited by a short pulse laser. In theory, the dark 

solitons have been studied by several authors in unmagnetized plasmas, where the small amplitude dark 

soliton solutions [57] are obtained and solitons with one hump in the scalar potential profile and multi 

humps in the vector potential profile are observed [64]. However, to the author’s best knowledge, the dark 

solitons in magnetized plasmas appear here for the first time. In this chapter, the dark solitons without ion’s 

motion in cold plasmas are first discussed. In this case the system is simplified to 2D. The parametric region 

of magnetic field and soliton frequency and wavenumber for the existence of dark solitons is identified. 

The discussion is then extended to the warm plasmas case, where dark solitons with multiple humps in both 

the scalar and vector potential profiles are observed. We rewrite the dark soliton equations, 

 
𝜃𝜃′ = 𝑘𝑘� �1 −

𝑎𝑎02

𝑎𝑎2�
; (6.1) 

 𝑖𝑖′′ = 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖; (6.2) 

 
𝑎𝑎′′ + �𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 = 𝛾𝛾02 �𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝑟𝑟𝑒𝑒
− 𝑛𝑛𝑖𝑖

𝑝𝑝𝑖𝑖⊥
𝑟𝑟𝑖𝑖
� ; (6.3) 

 𝑝𝑝𝑒𝑒⊥ − 𝑎𝑎 = 𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

; 𝑝𝑝𝑖𝑖⊥ + 𝜌𝜌𝑎𝑎 = −𝜌𝜌𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

 (6.4) 

 
𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 = 𝑖𝑖 +

1
2
𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0;  𝑣𝑣𝜔𝜔𝑖𝑖2 ln𝑛𝑛𝑖𝑖 = −𝜌𝜌𝑖𝑖 −
1
2
𝜌𝜌𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0. (6.5) 

Here 𝛼𝛼� = ω𝑐𝑐𝑒𝑒/𝜔𝜔�  with ω𝑐𝑐𝑒𝑒 = 𝑒𝑒𝐵𝐵0 (𝑚𝑚𝑒𝑒𝑐𝑐)⁄  the electron cyclotron frequency; 𝜔𝜔� = 𝛾𝛾02(𝜔𝜔 − 𝑘𝑘𝐺𝐺) , 𝑘𝑘� =

𝛾𝛾02(𝑘𝑘 − 𝐺𝐺𝜔𝜔 𝑐𝑐2⁄ ) are the modified soliton frequency and wavenumber; 𝜌𝜌 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑖𝑖⁄  is the electron-ion mass 

ratio; 𝑎𝑎0, 𝛾𝛾𝑠𝑠0 and 𝑝𝑝𝑠𝑠0⊥are the soliton amplitude, relativistic factor and transverse momentum for sth particle 

(𝑠𝑠 = 𝑒𝑒, 𝑖𝑖 ) at the left boundary 𝜉𝜉 → −∞. 𝑐𝑐𝑒𝑒0 = 𝛼𝛼�𝛾𝛾02𝑝𝑝𝑒𝑒0⊥2 /(2𝛾𝛾𝑒𝑒02 )− 𝛾𝛾𝑒𝑒0/𝛾𝛾02 , 𝑐𝑐𝑖𝑖0 = −𝜌𝜌𝛼𝛼�𝛾𝛾02𝑝𝑝𝑖𝑖0⊥2 /�2𝛾𝛾𝑖𝑖02 � −
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𝛾𝛾𝑖𝑖0/𝛾𝛾02 and 𝛾𝛾02 = 1 (1 − 𝐺𝐺2/𝑐𝑐2)⁄ . Notice that for dark solitons 𝐺𝐺 is not the group velocity since the phase 

modulation 𝜃𝜃 is non-trivial. 

6.1 Dark solitons in cold plasmas 

In cold plasmas, neglecting the ions the scalar potential 𝑖𝑖 and electron density 𝑛𝑛𝑒𝑒 can be eliminated and 

the dark soliton equations are simplified to, 

 𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′′ + �𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 =

𝛾𝛾02

𝑟𝑟𝑒𝑒 − 𝛼𝛼�𝛾𝛾02
�1 +

𝛾𝛾02

𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04
𝑎𝑎′2�𝑎𝑎. (6.6) 

The Hamiltonian 𝑑𝑑(𝑎𝑎,𝑎𝑎′𝛾𝛾02 𝛾𝛾𝑒𝑒2⁄ ) is, 

 
𝑑𝑑�𝑎𝑎,

𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′� =

1
2�

𝛾𝛾02

𝛾𝛾𝑒𝑒2
𝑎𝑎′2 +𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎2�
− �

1
2
𝛼𝛼�𝛾𝛾02

𝛾𝛾02

𝛾𝛾𝑒𝑒2
+ 𝛾𝛾𝑒𝑒�. (6.7) 

6.1.1 Parametric domain for the existence of dark solitons 

Since the system is 2D, the existence of dark solitons requests the fixed points 𝑄𝑄0
±,𝑄𝑄∗± to be saddles. The 

corresponding eigenvalues are, 

 
𝜆𝜆2 =

𝛾𝛾𝑒𝑒2

𝛾𝛾02
�

𝛾𝛾04

𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04
− �𝜔𝜔�2 + 3𝑘𝑘�2���

𝑄𝑄0
±,𝑄𝑄∗

±
 (6.8) 

At 𝑄𝑄0
±, 𝛾𝛾𝑒𝑒 = 𝛾𝛾𝑒𝑒0 = 𝛾𝛾02�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ �; at 𝑄𝑄∗±, 𝛾𝛾𝑒𝑒2 = 𝛾𝛾02[1 + 𝑎𝑎∗2𝛾𝛾𝑒𝑒2 (𝛾𝛾𝑒𝑒 − 𝛼𝛼�𝛾𝛾02)⁄ ] with 𝑎𝑎∗ satisfies Eq. 

(4.36). 

First let’s discuss the fixed point 𝑄𝑄0
±. The saddle condition requests, 

 1

𝛾𝛾02�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ �3 − 𝛼𝛼�
> �𝜔𝜔�2 + 3𝑘𝑘�2� > 0. (6.9) 

Notice that for unmagnetized plasmas, condition (6.9) is never satisfied. This can be verified by setting 𝛼𝛼� =

0 in Eq. (6.8). Since 𝜔𝜔�2 = 𝑘𝑘�2 + 𝛾𝛾02 𝛾𝛾𝑒𝑒0⁄  in this case, we find at 𝑄𝑄0
±, 

 
𝜆𝜆2 =

𝛾𝛾𝑒𝑒02

𝛾𝛾02
�
𝛾𝛾02

𝛾𝛾𝑒𝑒0
�
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𝛾𝛾𝑒𝑒02
− 1� − 4𝑘𝑘�2� < 0 (6.10) 
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Hence dark solitons in unmagnetized cold plasmas do not exist. For magnetized plasmas, it can be proved 

that if 𝑘𝑘� = 0 the dark soliton solution also does not exist. In this case 𝛾𝛾𝑒𝑒3 > 𝛾𝛾𝑒𝑒𝛾𝛾02 = 𝛼𝛼�𝛾𝛾04 + 𝛾𝛾04 𝜔𝜔�2⁄ , thus, 

 
𝜆𝜆2 =

𝛾𝛾𝑒𝑒2

𝛾𝛾02
�

𝛾𝛾04

𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾02
− 𝜔𝜔�2� < 0. (6.11) 

Therefore, in cold plasmas with immobile ions dark solitons only happen with 𝑘𝑘� ≠ 0 and 𝛼𝛼� ≠ 0. 

For the fixed points 𝑄𝑄∗±, it is difficult to determine their types directly from Eqs. (4.36) and (6.8), 

however we judge their types from the phase portraits (see Fig. 6.1). In Fig. 6.1, we show the phase portraits 

around 𝑄𝑄0
± when 𝑄𝑄0

± are centers (Fig. 6.1(a), (c)) and saddles (Fig. 6.1(b)). Here the transformation 𝑎𝑎 =

sinh𝑢𝑢 − 𝛼𝛼�𝛾𝛾0 tanh𝑢𝑢 has been used and 𝑄𝑄0
± are marked by round dots. Notice that only half of the phase 

portrait (𝑢𝑢 > 0) is plotted and the other half (𝑢𝑢 < 0) is symmetric to 𝑢𝑢 = 0  axis. Also it should be 

  

 

Fig. 6.1. The phase portraits of Eq. (6.7) for (a) 𝛼𝛼� =

3.25 , (b) 𝛼𝛼� = 3.35  and (c) 𝛼𝛼� = 3.45 . The other 

parameters are 𝜔𝜔� = 0.1 , 𝑘𝑘� = 0.75  and 𝛾𝛾0 = 1 . 

The fixed points 𝑄𝑄0
±  are marked by round dots.  

Only half of the phase portrait (𝑢𝑢 > 0) is plotted 

and the other half (𝑢𝑢 < 0) is symmetric to 𝑢𝑢 = 0 

axis. In (a), (c) 𝑄𝑄0
± are centers and in (b) 𝑄𝑄0

± are 

saddles. Hence solitons exist in (b). Though  𝑄𝑄∗± 

can be saddles sometimes, the heteroclinic 

connection 𝑄𝑄0
± − 𝑄𝑄∗± does not exist. 
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mentioned that there are more than two additional fixed points 𝑄𝑄∗± (see Fig. 4.1) and we only plot the phase 

structures near 𝑄𝑄0
±. This is fine since we are expecting to find the heteroclinic connections 𝑄𝑄0

± − 𝑄𝑄∗± which 

request both 𝑄𝑄0
± and 𝑄𝑄∗± to be saddles at the same time. It can be seen that though 𝑄𝑄∗± can be saddles 

sometimes (Fig. 6.1(c)), the heteroclinic connection 𝑄𝑄0
± −𝑄𝑄∗± does not exist. The soliton can only exist in 

Fig. 6.1(b). 

In Fig. 6.2, we plot the parametric domain of (𝛼𝛼�,𝜔𝜔�) for the existence of dark solitons in cold plasmas 

with different wavenumbers 𝑘𝑘�. The dark solitons can only exist in the shaded areas. Compared with Fig. 

5.2 where the bright solitons have large volume in the parametric domain, the parametric volume for dark 

solitons is relatively small. For fixed soliton frequency 𝜔𝜔�, the magnetic field required for dark solitons 

increases as 𝑘𝑘� decreases. If 𝑘𝑘� → 0, the dark soliton does not exist which is consistent with Eq. (6.11). 

6.1.2 Soliton envelops 

In Fig. 6.3 and Fig. 6.4, we show the dark soliton envelop, scalar potential, density profile and the phase 

under different magnetic fields and soliton frequencies. The dark soliton amplitude at the infinity 

(background amplitude 𝑎𝑎0) is totally determined by the magnetic field, soliton frequency and wavenumber 

through the relations 𝑎𝑎02 = (𝛾𝛾𝑒𝑒02 𝛾𝛾02⁄ − 1)(1 − 𝛼𝛼�𝛾𝛾02 𝛾𝛾𝑒𝑒0⁄ ) with 𝛾𝛾𝑒𝑒0 = 𝛾𝛾02�1 + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ �. It can be seen 

that the dark soliton “amplitude” decreases with increasing magnetic field and decreasing soliton frequency. 

These tendencies are the opposite to the bright soliton case. Here the soliton “amplitude” is referred as the 

 

Fig. 6.2. The parametric domain of (𝛼𝛼�,𝜔𝜔�) 

for the existence of dark solitons in cold 

plasmas with different wavenumbers. 𝛾𝛾0 =

1. As  𝑘𝑘�  decreases, the shaded area moves 

towards the right. When𝑘𝑘� → 0 , the dark 

soliton does not exist. 
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difference between the background amplitude at the infinity and the minimum amplitude at the center. The 

dependences of the soliton “amplitude” and background amplitude on the magnetic field are different, .e.g. 

though solitons with larger magnetic fields have smaller soliton “amplitudes”, they possess higher 

background amplitudes. 

In the presence of magnetic field, the ponderomotive force is 𝐹𝐹 ≈ −[(𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04) (𝛾𝛾02𝛾𝛾𝑒𝑒3)⁄ ]∇𝛾𝛾𝑒𝑒 (see Eq. 

(4.14)). In the weakly relativistic approximation 𝛾𝛾𝑒𝑒2~𝛾𝛾02 �1 + 𝑎𝑎2 (1 − 𝛼𝛼�𝛾𝛾0)⁄ 2�. Hence, 

𝐹𝐹 ≈ −
𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04

2𝛾𝛾𝑒𝑒4(1 − 𝛼𝛼�𝛾𝛾0)2
∇𝑎𝑎2 

  

  
Fig. 6.3. The dark soliton a) envelope, b) scalar potential, c) electron density and d) phase for different 

magnetic fields in the cold plasmas. The parameters are 𝜔𝜔� = 0.1, 𝑘𝑘� = 0.75 and 𝛾𝛾0 = 1. Notice that 

though dark soliton with larger magnetic field has a smaller soliton amplitude, it has a higher background 

amplitude. Here the soliton amplitude is referred as the difference between the background amplitude at 

the infinity and the minimum at the center. 
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For bright solitons 𝛼𝛼�𝛾𝛾0 < 1, the ponderomotive force is always along the lower intensity direction; however 

for dark solitons, 𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04 can be negative, leading to an accumulation of the electron density at the larger 

laser intensity areas. 

6.2 Dark solitons in warm plasmas 

For warm plasmas, the Hamiltonian 𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) is, 

 
𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) =

1
2�

𝑎𝑎′2 + 𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎2
− 𝛾𝛾02𝑖𝑖′2�+ 𝛾𝛾02�𝑣𝑣𝜔𝜔ℎ𝑒𝑒2 (𝑛𝑛𝑒𝑒 − 1) −𝑖𝑖� (6.12) 

6.2.1 Temperature effects  

The eigenvalues can be calculated from Eqs. (4.38) – (4.41), 

  

  
Fig. 6.4. The dark soliton a) envelope, b) scalar potential, c) electron density and d) phase for different 

soliton frequencies in the cold plasmas. The parameters are 𝛼𝛼� = 3.30, 𝑘𝑘� = 0.75 and 𝛾𝛾0 = 1 
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𝜆𝜆1−42 = ±�

1
2 �
𝛿𝛿 ± √∆� (4.43) 

with 𝛿𝛿 and ∆ expressed as,  

 

⎩
⎪
⎨

⎪
⎧𝛿𝛿 = 𝐽𝐽21 + 𝐽𝐽43 = 𝜂𝜂 + 𝛾𝛾02 (𝑣𝑣𝜔𝜔𝑒𝑒2 𝛾𝛾𝑒𝑒2)⁄

Δ = (𝜂𝜂 − 𝜇𝜇−2 )(𝜂𝜂 − 𝜇𝜇+2 )

𝛿𝛿2 − Δ = 4𝜂𝜂 𝑣𝑣𝜔𝜔𝑒𝑒2⁄

 (6.13) 

Here 𝜂𝜂 = 𝛾𝛾04 (𝛾𝛾𝑒𝑒3 − 𝛼𝛼�𝛾𝛾04)⁄ − �𝜔𝜔�2 + 3𝑘𝑘�2𝑎𝑎04/𝑎𝑎4�  and  𝜇𝜇±
2 = (𝛾𝛾0𝑝𝑝𝑒𝑒⊥ 𝛾𝛾𝑒𝑒⁄ ± 1)2 𝑣𝑣𝜔𝜔𝑒𝑒2⁄ . A simple calculation 

shows that, the fixed points can be saddles, saddle-centers and saddle-foci but the focus type is impossible. 

This is because, the focus type needs δ < −√Δ < 0, which cannot be satisfied simultaneously. In the case 

of saddle and saddle-focus, both the stable and unstable manifolds are 2D, hence the soliton solutions are 

general. Δ = 0 gives the condition that separates the saddle-focus and saddle domains and 𝛿𝛿2 = Δ gives the 

separation condition between saddles and saddle-centers. At fixed points 𝑄𝑄0
± they are, 

 𝛾𝛾04

𝛾𝛾𝑒𝑒03 − 𝛼𝛼�𝛾𝛾04
− �𝜔𝜔�2 + 3𝑘𝑘�2� =

1
𝑣𝑣𝜔𝜔𝑒𝑒2

��1 − 𝛾𝛾02 𝛾𝛾𝑒𝑒02⁄ ± 1�
2

; (6.14) 

 𝛾𝛾04

𝛾𝛾𝑒𝑒03 − 𝛼𝛼�𝛾𝛾04
− �𝜔𝜔�2 + 3𝑘𝑘�2� = 0. (6.15) 

 

Fig. 6.5. The parametric domain of (𝛼𝛼�,𝜔𝜔�) 

for the existence of dark solitons in warm 

plasmas with  𝑘𝑘� = 0.75 , 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.548  and 

𝛾𝛾0 = 1. 
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In Fig. 6.5 we show the parametric domain of (𝛼𝛼�,𝜔𝜔�) for the existence of dark solitons in warm plasmas 

with 𝑘𝑘� = 0.75, 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.548 and 𝛾𝛾0 = 1. Comparing with Fig. 6.2, it is found that the saddle domain where 

the soliton exist in cold plasmas breaks up into one saddle-focus and two saddle domains. As the 

temperature increases, the left-upper saddle domain expands while the right-lower saddle domain shrinks. 

As 𝑣𝑣𝜔𝜔𝑒𝑒 → ∞, both the right-lower saddle and saddle-focus domains disappear and the left-upper saddle 

domain occupies the whole original saddle domain. If 𝑣𝑣𝜔𝜔𝑒𝑒 → 0, the left-upper saddle and saddle-focus 

domains vanish and the situation recovers to the cold plasmas case. 

  

  
Fig. 6.6. The single hump dark soliton (a) envelop, (b) scalar potential, (c) density and (d) phase with 

different electron temperatures in warm plasmas for 𝜔𝜔� = 0.1, 𝑘𝑘� = 0.75, 𝛼𝛼� = 3.31 and 𝛾𝛾0 = 1. Notice 

that the background soliton amplitude does not depends on the temperature. The parameter positions in 

(𝛼𝛼�,𝜔𝜔�) space are marked by round dots in Fig. 6.5. 
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6.2.2 Single hump dark solitons 

In Fig. 6.6, Fig. 6.7 and Fig. 6.8 we have shown the numerical calculations of dark soliton envelops with 

different electron temperatures, magnetic fields and soliton frequencies, respectively. It can be seen that the 

temperature effects suppress the soliton amplitude which is the same as the bright soliton case. However, 

the temperature does not affect the background soliton amplitude. Furthermore, as the magnetic field 

decreases or soliton frequency increases, the soliton amplitude increases. This tendency is same as the cold 

dark soliton case and opposite to the bright soliton case. 

  

  
Fig. 6.7. The single hump dark soliton (a) envelop, (b) scalar potential, (c) density and (d) phase with 

different magnetic fields in warm plasmas for 𝜔𝜔� = 0.1 , 𝑘𝑘� = 0.75 , 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.548  and 𝛾𝛾0 = 1 . The 

parameter positions in (𝛼𝛼�,𝜔𝜔�) space are marked by round dots in Fig. 6.5. 
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6.2.3 Multi-hump dark solitons 

It is well-known from the dynamical systems theory that, in the saddle-focus domain, the existence of one 

prime transverse symmetric homoclinic orbits implies the existence of infinitely many others. The extra 

homoclinic solutions look like the multiple copies of the prime one. In this case, it means that if a one-hump 

soliton solution exists, there is a family of multi-hump solitons. In Fig. 6.9, we plot an example of the 

comparison of one-hump, two-hump and three-hump solitons for the same parameters at the saddle-focus 

domain. Note that the multi-hump dark solitons in magnetized plasmas is different from the unmagnetized 

case in that the scalar potential can also have humps and each hump introduces a jump in the phase. In the 

saddle domain, the homoclinic orbit is usually unique, however, there are some mechanism which can make 

the multiplicity of the homoclinic solutions. [92] We mention that multi-hump solitons are also observed 

in the saddle domain. 

  

  
Fig. 6.8. The single hump dark soliton (a) envelop, (b) scalar potential, (c) density and (d) phase with 

different soliton frequencies in warm plasmas for 𝛼𝛼� = 3.35, 𝑘𝑘� = 0.75, 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.548 and 𝛾𝛾0 = 1. The 

parameter positions in (𝛼𝛼�,𝜔𝜔�) space are marked by round dots in Fig. 6.5. 
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6.3 Summary 

In this chapter, we have studied the dark soliton formation in magnetized plasmas. The parametric regions 

for the existence of dark solitons are identified in both cold and warm plasmas. It is found that the 

temperature effects suppress the soliton amplitude which is the same as the bright soliton case. Furthermore, 

the temperature makes it possible for the existence of multi-hump solitons. These solitons have multi humps 

in both the scalar and vector potential profiles, which are different from the solitons in unmagnetized 

plasmas where they only have multi humps in the vector potential profile. The numerical calculation shows 

the dark soliton amplitude increases with decreasing magnetic field and increasing soliton frequency. These 

tendencies are opposite to the bright soliton case. 

  

  
Fig. 6.9. The comparison of single-hump, two-hump and three hump dark soliton (a) envelop, (b) scalar 

potential, (c) density and (d) phase at the saddle-focus domain with the same parameters 𝜔𝜔� = 0.1, 𝑘𝑘� =

0.75, 𝛼𝛼� = 3.35, 𝑣𝑣𝜔𝜔𝑒𝑒 = 0.548 and 𝛾𝛾0 = 1. Each hump introduces a jump in the phase. 
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7. Conclusions and future work 

In the previous six chapters, we have presented the research work on the laser plasma interactions in the 

presence of strong parallel magnetic field, specifically, the various linear and nonlinear propagation modes 

including the LCP, RCP, electron cyclotron mode as well as the bright and dark solitons. In this chapter, 

we point out the meaning of our research and give a conclusion about the results. Further, some of the ideas 

which may be used to extend our research are proposed. 

7.1 Conclusion 

The ultra-intense laser plasma interactions in the presence of strong parallel magnetic field are of great 

importance in many applications. Our research aims at understanding the details of the propagation modes 

and their effects on the laser plasma interactions under different laser intensities, polarizations and magnetic 

fields. Specifically, the generation condition for the bright and dark solitons is one of our main concerns. 

Since a significant fraction of the laser energy is converted into solitons, the understanding of the soliton 

dynamics makes it possible for us to choose the plasma and laser parameters as well as the magnetic field 

to generate solitons in a controllable manner. One of the potential applications of our research is the 

magnetically assisted fast ignition where the laser propagates a long distance in the magnetized plasmas. In 

this case the soliton induced heating may play a role in the energy conversion efficiency. Also there is a 

possibility of the ultra-short electromagnetic pulse generation by the interactions between the solitons and 

plasmas wake waves [393,94]. In this case, the electron density modulations in the wake wave serve as 

parabolic relativistic mirrors and the synchronously oscillating electric and magnetic fields inside the 

solitons can be reflected in the form of highly compressed and focused electromagnetic pulse with an upper-

shifted frequency due to the Doppler effects. 

For the sake of convenience, the main results of this research are summarized as follows: 

 The exact expressions of the particle’s orbit inside the intense linearly and circularly polarized laser 

field in the presence of strong magnetic field are obtained. Both of the two cases have the resonance 
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and non-resonance solutions. In linearly polarized case, this orbit is a combination of “8-figure” motion 

and cyclotron motion. In circularly polarized case, a special situation happens when the cyclotron 

effects are canceled by the rotation effects of the polarization. In this case, the orbit is the same as the 

one in linearly polarized laser field without magnetic field, e.g. the “8-figure” structure.  

 The relativistic effects on the linear dispersion relations are checked by the PIC simulations. [80, 81] 

Both the high frequency RCP and LCP branches go down in the dispersion relation plot. Furthermore, 

in the weakly relativistic regime a new branch appears and the electron cyclotron mode shrinks and 

totally disappears in the ultra-relativistic regime. The simulation qualitatively matches the theoretical 

predictions. 

 The effects of strong magnetic field on the laser propagation modes and heating in plasmas are 

investigated with different laser intensities and polarizations by the PIC simulations. The expressions 

for the linear propagation modes, namely the RCP, LCP and electron cyclotron waves are obtained in 

the non-uniform plasma areas. Due to the inhomogeneity of plasma, the linearly polarized laser can 

convert into different propagation modes under different magnetic fields. In the uniform plasmas, the 

solitary wave together with a density well are observed under certain laser intensity and magnetic field 

regions. This region shifts to the lower intensity direction as the laser intensity or magnetic field 

increases. The generation of solitons can greatly increase the heating efficiency up to 37% in 1D 

simulations, which is comparable to the ECRH heating efficiency. In 2D simulations this enhancement 

decreases due to the breakup of solitons. The soliton has a very short width and a lower frequency 

compared to the incident laser and its position shifts as the magnetic field, laser intensity or pre-plasma 

density profile changes. 

 The coupled soliton equations as well as the Hamiltonian of the system are derived in the framework 

of relativistic, warm fluid model, where the scalar potential 𝑖𝑖, the vector potential 𝑎𝑎 and the phase 

modulation 𝜃𝜃  are used to describe the longitudinal and transverse waves with zero and non-zero 

boundary conditions, which correspond to bright or dark solitons, respectively. Different dispersion 

relations for bright and dark solitons are assumed from the boundary conditions. Using the theory of 

dynamical systems, the soliton solutions in phase space become the homoclinic or heteroclinic orbits 

of the 4D (𝑎𝑎,𝑎𝑎′,𝑖𝑖,𝑖𝑖′) reversible autonomous Hamiltonian system, which lie in the intersection of the 

stable and unstable manifolds. Then the general criterion for the existence of soliton is obtained. 

 The coupled soliton equations in cold and warm plasmas are solved numerically through the shooting 

method and the rational spectral method. 

 The parametric regions of the magnetic field and soliton frequency for the existence of bright solitons 

are obtained in both cold and warm plasmas. In cold plasmas, an additional constraint on the magnetic 

field and soliton frequency arises from the non-negative condition of the electron density and this 



Section 7.2: Extensions of this PhD study 

101 
 

condition disappears in warm plasmas. The numerical calculations show that in the limit of immobile 

ions, the bright soliton tends to be peaked and stronger as the magnetic field increases and it becomes 

broader and smaller as the soliton frequency increases. The temperature effects suppress the soliton 

amplitude. The ion’s effects are found to play an important role in determining the lower limit of the 

soliton frequency, especially when the magnetic field is opposite to the RCP solitary wave propagation 

direction. The analytical expressions for the small amplitude soliton envelops are obtained under the 

ion fixed limit and quasi-neutral limit, respectively. 

 The parametric regions of the magnetic field, soliton frequency and wavenumber for the existence of 

dark solitons are obtained in both cold and warm plasmas. The wavenumber is proved to be of great 

importance in determining the parametric region for dark solitons, e.g. there is no dark solitons when 

𝑘𝑘� = 0. Dark solitons with multiple humps are observed in warm plasmas. These solitons have multiple 

humps in both the scalar and vector potential profiles, which are different from the solitons in 

unmagnetized plasmas where they only have multiple humps in the vector potential profile. The 

numerical calculations of dark solitons without ion’s motion show that the dark soliton amplitude 

decreases with increasing magnetic field and increases with increasing soliton frequency. These 

tendencies are opposite to the bright solitons. For warm plasmas, the dark soliton amplitude decreases 

as the temperature increases, which is the same as bright soliton case. 

7.2 Extensions of this PhD study 

During the PhD, many ideas and results are found but have not been explored further due to the time 

restrictions. In the following, some ideas are summarized which may be used as an extension of the research. 

7.2.1 Chapter 2: The radiation from particle motion and relativistic electron cyclotron 

mode 

 Since the exact expressions for the particle’s orbit in the presence of strong magnetic field are obtained, 

the radiation from this relativistic motion can be calculated. When laser intensity exceeds 1023𝑊𝑊/𝑐𝑐𝑚𝑚2, 

such kind of radiation damping effects become important. [95] In this case, the radiation differs from 

the usual nonlinear Thomson scattering or the cyclotron radiation. It might be a combination of both 

effects. 

 It has been preliminarily verified by the PIC simulations that the electron cyclotron mode shrinks in the 

relativistic regime. The details of this phenomena need to be investigated. 
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7.2.2 Chapter 3: Soliton position dependence and breakup of solitons 

 The soliton position dependence on the plasmas density profile, laser intensity, magnetic field, etc. 

should be further studied.  

 The mechanism about the instabilities which lead to the breakup of solitons in 2D simulations needs to 

be resolved. 

 3D simulations are needed. 

7.2.3 Chapter 4: The moving soliton and stability analysis  

 In homogeneous plasmas, it seems that the Maxwell-fluid model only admits standing solitons or 

moving solitons with group velocity equals to the drifting velocity of the plasma. The more generalized 

case where solitons have arbitrary velocities is needed. Furthermore, the theoretical model in 

inhomogeneous plasmas should also be developed. 

 A theoretical analysis on the soliton stabilities is needed. 

7.2.4 Chapter 5: The existence or nonexistence of discrete spectrum soliton 

 The theoretical model predicts the potential existence of discrete spectrum solitons under certain 

parameters (saddle-center regime). Such kind of soliton has been observed in unmagnetized plasmas 

numerically. [57]. Hence, how to find (or prove the non-existence of) it remains an open problem. This 

may need more sophisticated numerical calculations. 

7.2.5 Chapter 6: The multi-hump dark soliton in the saddle domain 

 Generally, the homoclinic orbit is unique in the saddle domain. However, we do observe the multi-

hump soliton in the saddle domain. The mechanism which make the multiplicity of the homoclinic 

solutions should be investigated. 
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Appendixes 

A. Hamiltonian of the soliton system 

In this appendix, we validate of the obtained Hamiltonian 𝑑𝑑. Instead of showing the tedious derivation 

processes of 𝑑𝑑, here we simply check its validity by the Hamilton’s equations. The obtained Hamiltonian 

of the system is, 

𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) =
1
2�

𝑎𝑎′2 + 𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎2
− 𝛾𝛾02𝑖𝑖′2�+ 𝛾𝛾02 �𝑣𝑣𝜔𝜔𝑒𝑒2 (𝑛𝑛𝑒𝑒 − 1) + 𝑣𝑣𝑡𝑡𝑖𝑖

2

𝜌𝜌
(𝑛𝑛𝑖𝑖 − 1)� (A. 1) 

with 𝑛𝑛𝑒𝑒 ,𝑛𝑛𝑖𝑖 and 𝑝𝑝𝑒𝑒⊥,𝑝𝑝𝑖𝑖⊥, 𝛾𝛾𝑒𝑒 , 𝛾𝛾𝑖𝑖 satisfying, 

 
𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 = 𝑖𝑖 +

1
2
𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0;  𝑣𝑣𝜔𝜔𝑖𝑖2 ln𝑛𝑛𝑖𝑖 = −𝜌𝜌𝑖𝑖 −
1
2
𝜌𝜌𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑖𝑖⊥2

𝛾𝛾𝑖𝑖2
−
𝛾𝛾𝑖𝑖
𝛾𝛾02

− 𝑐𝑐𝑖𝑖0. (A. 2) 

 𝑝𝑝𝑒𝑒⊥ − 𝑎𝑎 = 𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

;  𝑝𝑝𝑖𝑖⊥ + 𝜌𝜌𝑎𝑎 = −𝜌𝜌𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

; (A. 3) 

Here 𝑐𝑐𝑒𝑒0  and 𝑐𝑐𝑖𝑖0  are two constants determined by the boundary conditions. The Hamiltonian 

𝑑𝑑(𝑎𝑎,𝑎𝑎′,𝑖𝑖,−𝛾𝛾02𝑖𝑖′) should satisfy the following Hamilton’s equations, 

 
𝑎𝑎′ =

𝜕𝜕𝑑𝑑
𝜕𝜕𝑎𝑎′

;  𝑖𝑖′ =
𝜕𝜕𝑑𝑑

𝜕𝜕(−𝛾𝛾02𝑖𝑖′)
. (A. 4) 

 
𝑎𝑎′′ = −

𝜕𝜕𝑑𝑑
𝜕𝜕𝑎𝑎

; −𝛾𝛾02𝑖𝑖′′ = −
𝜕𝜕𝑑𝑑
𝜕𝜕𝑖𝑖

. (A. 5) 

Note that 𝑛𝑛𝑒𝑒,𝑛𝑛𝑖𝑖 and 𝑝𝑝𝑒𝑒⊥, 𝑝𝑝𝑖𝑖⊥, 𝛾𝛾𝑒𝑒 , 𝛾𝛾𝑖𝑖 are just functions of 𝑎𝑎 and 𝑖𝑖, hence it is easy to verify that Eq. (A. 4) 

is correct. On the other hand, one find, 

 𝜕𝜕𝑑𝑑
𝜕𝜕𝑎𝑎

= �𝜔𝜔�2 − 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 + 𝛾𝛾02 �𝑣𝑣𝜔𝜔𝑒𝑒2

𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑎𝑎

+
𝑣𝑣𝜔𝜔𝑖𝑖2

𝜌𝜌
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑎𝑎 �

; (A. 6) 
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 𝜕𝜕𝑑𝑑
𝜕𝜕𝑖𝑖

= 𝛾𝛾02 �𝑣𝑣𝜔𝜔𝑒𝑒2
𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑖𝑖

+
𝑣𝑣𝜔𝜔𝑖𝑖2

𝜌𝜌
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑖𝑖�

; (A. 7) 

From Eqs. (A. 2) and (A. 3), we have, 

 𝑣𝑣𝜔𝜔𝑒𝑒2

𝑛𝑛𝑒𝑒
𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑖𝑖

= 1;  
𝑣𝑣𝜔𝜔𝑖𝑖2

𝑛𝑛𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑖𝑖

= −𝜌𝜌. (A. 8) 

 𝑣𝑣𝜔𝜔𝑒𝑒2

𝑛𝑛𝑒𝑒
𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑎𝑎

=𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

𝜕𝜕
𝜕𝜕𝑎𝑎

�
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒
� −

1
𝛾𝛾02
𝜕𝜕𝛾𝛾𝑒𝑒
𝜕𝜕𝑎𝑎

=
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

�
𝜕𝜕𝑝𝑝𝑒𝑒
𝜕𝜕𝑎𝑎

− 1� −
1
𝛾𝛾02
𝛾𝛾02𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

𝜕𝜕𝑝𝑝𝑒𝑒
𝜕𝜕𝑎𝑎

= −
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

𝑣𝑣𝜔𝜔𝑖𝑖2

𝑛𝑛𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑎𝑎

=−𝜌𝜌𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

𝜕𝜕
𝜕𝜕𝑎𝑎

�
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
� −

1
𝛾𝛾02
𝜕𝜕𝛾𝛾𝑖𝑖
𝜕𝜕𝑎𝑎

=
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

�
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑎𝑎

+ 𝜌𝜌� −
1
𝛾𝛾02
𝛾𝛾02𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑎𝑎

=
𝜌𝜌𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

 (A. 9) 

Note that we have used the relation 𝜕𝜕𝛾𝛾𝑠𝑠/𝜕𝜕𝑎𝑎 = (𝛾𝛾02𝑝𝑝𝑠𝑠/𝛾𝛾𝑠𝑠)(𝜕𝜕𝑝𝑝𝑠𝑠/𝜕𝜕𝑎𝑎) with 𝑠𝑠 = 𝑒𝑒, 𝑖𝑖. Combining Eqs. (A. 6)-

(A. 9), we find, 

 𝜕𝜕𝑑𝑑
𝜕𝜕𝑎𝑎

= �𝜔𝜔�2 − 𝑘𝑘�2
𝑎𝑎04

𝑎𝑎4�
𝑎𝑎 + 𝛾𝛾02 �−𝑛𝑛𝑒𝑒

𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

+ 𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖
� = −𝑎𝑎′′; (A. 10) 

 𝜕𝜕𝑑𝑑
𝜕𝜕𝑖𝑖

= 𝛾𝛾02(𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖) = −(−𝛾𝛾02𝑖𝑖′′); (A. 11) 

This verifies the validity of the Hamiltonian. 

B. Additional fixed points of the Hamiltonian 

In this appendix, we calculate the additional fixed points 𝑄𝑄∗± of the system besides 𝑄𝑄0(𝑄𝑄0
±). 𝑄𝑄∗± should 

satisfy the following equations, 

 
𝜔𝜔�2 − 𝑘𝑘�2

𝑎𝑎04

𝑎𝑎4
= 𝑛𝑛 �

𝛾𝛾02

𝛾𝛾𝑒𝑒 − 𝛼𝛼�𝛾𝛾02
+

𝜌𝜌𝛾𝛾02

𝛾𝛾𝑖𝑖 + 𝜌𝜌𝛼𝛼�𝛾𝛾02
� ; (B. 1) 

 𝑝𝑝𝑒𝑒⊥ − 𝑎𝑎 = 𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑒𝑒⊥
𝛾𝛾𝑒𝑒

; 𝑝𝑝𝑖𝑖⊥ + 𝜌𝜌𝑎𝑎 = −𝜌𝜌𝛼𝛼�𝛾𝛾02
𝑝𝑝𝑖𝑖⊥
𝛾𝛾𝑖𝑖

 (B. 2) 

with 𝑛𝑛 = 1 − 𝜌𝜌�𝜔𝜔�2𝑎𝑎2 + 𝑘𝑘�2𝑎𝑎04 𝑎𝑎2⁄ � (2𝛾𝛾02𝑐𝑐𝑠𝑠2)⁄ . Here 𝑎𝑎0 is the dark soliton amplitude at the infinity space, 

𝜌𝜌 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑖𝑖⁄  is the electron-ion mass ratio and the ion acoustic velocity 𝑐𝑐𝑠𝑠 is denoted as 𝑐𝑐𝑠𝑠2 = 𝑣𝑣𝜔𝜔𝑒𝑒2 + 𝜌𝜌𝑣𝑣𝜔𝜔𝑖𝑖2 . 

a. Bright solitons 
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For the bright solitons 𝜔𝜔� = 𝜔𝜔, 𝑘𝑘� = 0 and 𝛼𝛼� = 𝛼𝛼. Assuming ions are nonrelativistic and using the 

variable transformation  𝑝𝑝𝑒𝑒⊥ = sinh𝑢𝑢 , where sinh𝑢𝑢 is the hyperbolic sine function, we have 𝑝𝑝𝑖𝑖⊥ ≈

−𝜌𝜌𝑎𝑎 (1 + 𝜌𝜌α𝛾𝛾0)⁄  with 𝑎𝑎 = sinh𝑢𝑢 − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢. Then at  𝑄𝑄∗± Eq. (B. 1) becomes, 

𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)(1 − 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗) = 𝛾𝛾0(𝜌𝜌 + sech𝑢𝑢∗) �1 −
 𝜌𝜌𝜔𝜔2

2𝛾𝛾02𝑐𝑐𝑠𝑠2
(sinh𝑢𝑢∗ − 𝛼𝛼𝛾𝛾0 tanh𝑢𝑢∗)2� (B. 3) 

Notice that the right hand side (RHS) of Eq. (B. 3) is always larger than zero (𝑛𝑛∗ > 0 ), which 

requires −1 𝜌𝜌⁄ ≤ 𝛼𝛼𝛾𝛾0 ≤ cosh𝑢𝑢∗. Furthermore, in this region the derivative of RHS of Eq. (B. 3) is, 

𝐷𝐷𝑅𝑅 = − sinh𝑢𝑢∗ �𝛾𝛾0𝑛𝑛∗ sech2 𝑢𝑢∗ +
 𝜌𝜌𝜔𝜔2

𝛾𝛾0𝑐𝑐𝑠𝑠2
(1 + 𝜌𝜌 cosh𝑢𝑢∗)(1 − 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗)(1 − 𝛼𝛼𝛾𝛾0 sech3 𝑢𝑢∗)� 

It is smaller than zero when 𝑢𝑢∗ > 0 and larger than zero when 𝑢𝑢∗ < 0. Hence the RHS of Eq. (B. 3) has a 

maximum given by, 

�
𝛾𝛾0(𝜌𝜌 + 1) when 𝛼𝛼𝛾𝛾0 < 1

𝛾𝛾0[𝜌𝜌 + 1/(𝛼𝛼𝛾𝛾0)] when 𝛼𝛼𝛾𝛾0 ≥ 1
 

On the other hand, the derivative of LHS of Eq. (B. 3) is, 

𝐷𝐷𝐿𝐿 = 𝛼𝛼𝛾𝛾0𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0) sech𝑢𝑢∗ tanh𝑢𝑢∗ 

If 𝛼𝛼𝛾𝛾0 > 0, the left hand side (LHS) of Eq. (B. 3) is an increasing function of |𝑢𝑢|. It has the following 

minimum, 

�
𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)(1− 𝛼𝛼𝛾𝛾0) when 0 < 𝛼𝛼𝛾𝛾0 < 1

0 when 𝛼𝛼𝛾𝛾0 ≥ 1
 

Thus, Eq. (B. 3) always has two solutions when 

 𝛼𝛼𝛾𝛾0 ≥ 1. (B. 4) 

If 0 < α𝛾𝛾0 < 1, Eq. (B. 3) will have two solutions when 𝛾𝛾0(𝜌𝜌 + 1) > 𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)(1− 𝛼𝛼𝛾𝛾0) is satisfied. 

Then it gives, 

 
�

0 < 𝛼𝛼𝛾𝛾0 < 1 when 𝜔𝜔2 ≤ 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)

𝛽𝛽+ < 𝛼𝛼𝛾𝛾0 < 1 when  𝜔𝜔2 > 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)
 (B. 5) 

Here 𝛽𝛽± = �𝜌𝜌 − 1 ± �(𝜌𝜌 + 1)2 − 4𝜌𝜌(𝜌𝜌 + 1)𝛾𝛾0/𝜔𝜔2� (2𝜌𝜌)� . If −1 𝜌𝜌⁄ < α𝛾𝛾0 < 0, the LHS of Eq. (B. 3) is 

also a decreasing function of |𝑢𝑢| and it has a maximum 𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)(1− 𝛼𝛼𝛾𝛾0). The comparison of the 

decreasing rate between RHS and LHS can be calculated by, 
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|𝐷𝐷𝑅𝑅|− |𝐷𝐷𝐿𝐿|

> |sinh𝑢𝑢∗| �
 𝜌𝜌𝜔𝜔2

𝛾𝛾0𝑐𝑐𝑠𝑠2
(1 + 𝜌𝜌 cosh𝑢𝑢∗)(1 − 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗)(1 − 𝛼𝛼𝛾𝛾0 sech3 𝑢𝑢∗) + 𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)𝛼𝛼𝛾𝛾0 sech2 𝑢𝑢∗�

> |sinh𝑢𝑢∗|{𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)[(1 − 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗)(1 − 𝛼𝛼𝛾𝛾0 sech3 𝑢𝑢∗) + 𝛼𝛼𝛾𝛾0 sech2 𝑢𝑢∗]}

= 𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)|sinh𝑢𝑢∗|{1− 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗ [1 − sech𝑢𝑢∗ + sech2 𝑢𝑢∗ (1 − 𝛼𝛼𝛾𝛾0 sech𝑢𝑢∗)]}

> 0

 

Note that we have used the inequality 𝜌𝜌/(𝛾𝛾0 𝑐𝑐𝑠𝑠2) > 1. This is because 𝛾𝛾0 𝑐𝑐𝑠𝑠2/𝜌𝜌 represents the square of 

electron acoustic velocity and it should be smaller than the speed of light. Hence, the RHS decreases faster 

than the LHS. Then the existence of 𝑄𝑄∗± requests 𝛾𝛾0(𝜌𝜌 + 1) > 𝜔𝜔2(1 + 𝜌𝜌α𝛾𝛾0)(1− 𝛼𝛼𝛾𝛾0), or, 

 
�
−1/𝜌𝜌 < 𝛼𝛼𝛾𝛾0 < 0 when 𝜔𝜔2 ≤ 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)

−1/𝜌𝜌 < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽− when  𝜔𝜔2 > 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)
 (B. 6) 

Combining (B. 4)-(B. 6), we find that for the bright solitons the system has two additional fixed point 𝑄𝑄∗± 

if 𝛼𝛼𝛾𝛾0 is in the following interval, 

 
�

−1/𝜌𝜌 < 𝛼𝛼𝛾𝛾0 < ∞ when 𝜔𝜔2 ≤ 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)

−1 𝜌𝜌⁄ < 𝛼𝛼𝛾𝛾0 < 𝛽𝛽−, 𝛽𝛽+ < 𝛼𝛼𝛾𝛾0 < ∞ when  𝜔𝜔2 > 4𝛾𝛾0𝜌𝜌/(1 + 𝜌𝜌)
 (B. 7) 

For immobile ions (𝜌𝜌 → 0), condition (B. 7) is reduced to 1 − 𝛾𝛾0/𝜔𝜔2 < 𝛼𝛼𝛾𝛾0 < ∞. In this case, 𝑛𝑛∗ ≡ 1 and 

Eq. (B. 1) has the exact solution, 

 

⎩
⎪
⎨

⎪
⎧𝑎𝑎∗ = ± �

𝛾𝛾02

𝜔𝜔4 −
1

(1 + 𝛼𝛼𝜔𝜔2)2�
−1/2

𝑖𝑖∗ =
𝛼𝛼
2

+
1
𝜔𝜔2 −

1
𝛾𝛾0

+
𝛼𝛼𝜔𝜔4

2𝛾𝛾02(1 + 𝛼𝛼𝜔𝜔2)2

 (B. 8) 

b. Dark solitons 

For the dark soliton, it is difficult to get the simple conditions for 𝑄𝑄∗± as shown by (B. 7). For simplicity, 

we only consider the immobile ion case, then 𝛾𝛾𝑒𝑒∗ = 𝛾𝛾02�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2 𝑎𝑎04 𝑎𝑎∗4⁄ �⁄ � and 𝑎𝑎∗ satisfies, 

 
𝑎𝑎∗2 =

𝛾𝛾02

�𝜔𝜔�2 − 𝑘𝑘�2 𝑎𝑎04 𝑎𝑎∗4⁄ �2
−

1

�𝛼𝛼��𝜔𝜔�2 − 𝑘𝑘�2 𝑎𝑎04 𝑎𝑎∗4⁄ � + 1�2
. (B. 9) 

Here 𝑎𝑎02 = (𝛾𝛾𝑒𝑒02 𝛾𝛾02⁄ − 1)(1 − 𝛼𝛼�𝛾𝛾02 𝛾𝛾𝑒𝑒0⁄ ), 𝛾𝛾𝑒𝑒0 = 𝛾𝛾02�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ � and 𝜔𝜔�,𝑘𝑘� ,𝛼𝛼� should satisfy, 
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 𝛾𝛾0�𝛼𝛼� + 1 �𝜔𝜔�2 − 𝑘𝑘�2�⁄ � > 1 (B. 10) 

C. Benchmark for the numerical methods 

The coupled soliton equations are solved by the shooting method and rational spectral method. Since they 

are totally different schemes, they can be used to benchmark each other. In this appendix, we show the 

benchmark for the numerical calculations. 

For simplified 2D Hamiltonian systems, e.g. cold plasmas, both the shooting and rational spectral 

schemes can be applied and they give the same accurate results. When temperature effects are included, the 

accuracy of shooting scheme decreases. This is due to the temperature term 𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 in the longitudinal 

force balance equations, 

 
𝑣𝑣𝜔𝜔𝑒𝑒2 ln𝑛𝑛𝑒𝑒 = 𝑖𝑖 +

1
2
𝛼𝛼�𝛾𝛾02

𝑝𝑝𝑒𝑒⊥2

𝛾𝛾𝑒𝑒2
−
𝛾𝛾𝑒𝑒
𝛾𝛾02

− 𝑐𝑐𝑒𝑒0 (C. 1) 

  

 

Fig. C. 1. The benchmark of shooting and rational 

spectral methods. (a) Soliton envelop, (b) scalar 

potential and (c) density for 𝛼𝛼� = 3.31, 𝜔𝜔� = 0.1, 

𝑘𝑘� = 0.75 and 𝛾𝛾0 = 1. The black solid, red dashed 

and blue dot-dashed lines represent the shooting 

result, the initial input for spectral scheme and final 

result of spectral scheme, respectively. 
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Note that 𝑣𝑣𝜔𝜔𝑒𝑒2 < 1. Any numerical error of density induced by the right hand side of Eq. (C. 1) will be 

increased by the factor 1 𝑣𝑣𝜔𝜔𝑒𝑒2⁄  and further amplified by the exponential function. This error becomes non-

negligible at the boundary where the scalar potential tends to zero (e.g. see the black solid line of the density 

profile in Fig. C. 1(c)). Hence, in 4D Hamiltonian systems, we used the rational spectral method after the 

shooting results. The minimum and maximum of the shooting profiles are used to build up the initial input 

as shown by the red dashed line in Fig. C. 1, where the comparison of shooting and rational spectral results 

are plotted. Here the back solid line represents the shooting result, the red dashed line is the initial input for 

the rational spectral scheme and the blue dot-dashed line is the final result. As we can see, while the soliton 

envelop is calculated correctly by both schemes, there is significant difference in the density and scalar 

potential profiles at the place far from the soliton center. For the rational spectral scheme, the density and 

scalar potential converge to the boundary values correctly. The consistence of the two methods shows the 

validity of the numerical calculations. 
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