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Abstract

Natural Language Processing (NLP) is the field of Artificial Intelligence research

that aims to teach computers to produce and understand human text and speech.

Major applications include information retrieval, human-computer dialogue sys-

tems and natural language generation. Machine Translation (MT) is the applica-

tion of NLP that focuses on the automatic translation between languages.

Machine translation is a valuable tool for both personal and business applica-

tions. With the incredible diversity of languages accessible on the internet, auto-

matic translation has become a necessity in this era of information. For example,

the popular engine Google Translate is used to translate over 100 billion words1

per day (as of 2016). While other areas of NLP, for example speech recognition,

have already reached a level enabling practical application, there remain many ob-

stacles to producing high-quality automatic translation. In particular, translation

is difficult for linguistically distant language pairs such as English–Japanese and

for resource-poor languages such as Māori, Welsh and Zulu. In this thesis we focus

on the challenges of translating between linguistically distant language pairs and

a potential solution known as ‘syntax-based MT’.

Syntax-based MT is an MT paradigm based on the principle of generalizing

language with grammar. This additional layer of abstraction enables the design

of more flexible translation rules. Source language input is first analyzed syn-

tactically, for example in the form of dependency parses, and this grammatical

skeleton is transformed to the target language using prelearned syntactic trans-

fer rules. The syntactic frame is fleshed out by combining translated words and

phrases to form a complete translation.
1https://googleblog.blogspot.jp/2016/04/ten-years-of-google-translate.html

i



ii

The majority of previous approaches to syntax-based MT have employed only

source-side grammar (known as ‘tree-to-string MT’). This is mainly because syn-

tactic analysis is difficult, prone to error and resulting systems can become overly

complicated. While there have been previous studies on exploiting target-side syn-

tax (‘tree-to-tree MT’), results have not been promising. Our aim is to analyze

the effectiveness of target-side syntax in the modern world of machine translation.

We ask the question of whether the potential improvement in translation qual-

ity is able to outweigh the increased complexity of using a structured target-side

representation (in particular, dependency parses).

In Chapter 1, we give an overview of machine translation, outlining the major

paradigms and methods of evaluation.

Chapter 2 outlines the case study of a state-of-the-art dependency tree-to-tree

system, KyotoEBMT, which we have been developing as a core component of our

research on syntax-based MT. In this chapter we discuss the design and extraction

of dependency tree-to-tree translation rules. Analysis of the system gives empirical

evidence of the advantages and disadvantages of syntax-based approaches and

provides a starting point for our investigation.

We proceed to analyze two major aspects of translation where target-side syn-

tax can be effective: word order and translation fluency. We discuss our approaches

to each of these areas in Chapters 3, 4 and 5 (fluency), and Chapter 6 (word or-

der). In each chapter we describe experiments assessing the effectiveness of our

proposed approaches and discuss the potential impact of each method.

While this thesis concentrates on statistical syntax-based approaches, the field

has recently seen a surge in interest in translation methods based on neural net-

works. Chapter 7 presents an overview of future work that could incorporate ideas

from this paradigm. We conclude in Chapter 8 by discussing the potential impact

and future directions of our work.
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Chapter 1

Introduction

1.1 History of Machine Translation

Translation remains a difficult and time-consuming task. Despite modern advances

in AI, we still require skilled humans to produce high quality translations. While in

the past translation was restricted to low volumes and limited domains, especially

in commercial, military and scientific applications, the modern information era

has seen a huge increase in demand for translation. The world-wide web has

enabled unprecedented volumes of data to be exchanged on a global scale, and it

has become vital to be able to unlock this wealth of multilingual information.

Machine Translation (MT) is the area of Natural Language Processing (NLP)

research that aims to translate text and speech automatically from one language

to another. A smorgasbord of approaches have been essayed over the years (with

varying success), with applications ranging from Cold War military intelligence to

social media.

The first well-documented attempt at automatic translation was the 1954

Georgetown-IBM experiment [55], which aimed to translate Russian sentences

automatically into English. Despite using a very basic rule-based approach, re-

searches believed that the problem of translation would be solved within a few

years. This was shown not to be the case, however, when 12 years later the AL-

PAC report [76] recounted the lack of any major progress in the field. This led

to a decrease in funding and activity in automatic translation for the next two

1
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decades.

The 1980s and 1990s witnessed a surge in computational power, which allowed

for more sophisticated approaches than the early rule-based systems. Two of the

most influential attempts were by IBM with their early word-based statistical

approach [8] and Makoto Nagao with example-based translation [64].

MT research in the 21st Century has been dominated by phrase-based statis-

tical MT (PBSMT) [50], a development of the word-based IBM approach, syntax-

based approaches such as Hiero [17] and most recently sequence-to-sequence trans-

lation with neural-networks [97, 3].

1.2 Major MT Paradigms

In this section we give a more detailed summary of the major MT paradigms and

how our research fits into the body of previous work.

1.2.1 Rule-Based MT

The first, and arguably simplest, translation paradigm is that of Rule-Based MT

(RBMT). A collection of translation rules (usually hand-written) are applied de-

terministically to an input sentence to transform the source language structure into

the target language. These rules can contain placeholders (or ‘non-terminals’) that

are later filled with a combination of other rules and word/phrase translations (or

‘terminals’) taken from a dictionary or lexical database.

The major advantage of this approach is its simplicity and flexibility. Almost

any rules can be constructed, however it can be unclear how to design such rules

most effectively. In particular, hand-written rules are often unable to deal with

the many linguistic exceptions apparent in natural languages, and additional rules

must be written for all special cases. This makes RBMT extremely challenging to

develop and maintain, particularly if multiple language pairs are to be supported.

While RBMT was by far the most popular approach in the early decades of MT,

it is now impractical to maintain for web-scale data.
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Figure 1.1: EBMT: Comparing examples to infer translation rules. For similar

translations ‘abc → a′b′c′’ and ‘adc → a′d′c′’ we can infer the rules ‘a[X]c →
a′[X]c′’, ‘b→ b′ and ‘d→ d′’, where [X] denotes a placeholder non-terminal. This

figure is based on Figure 1 from the original paper [64].

1.2.2 Example-Based Machine Translation

Example-Based Machine Translation (EBMT) [64] was designed in an attempt to

teach computers to mimic the way humans translate. Nagao observed that hu-

mans learn foreign languages by inferring grammar and vocabulary from example

sentences, and are able to use semantic understanding to cluster similar words and

phrases. EBMT relies on this ‘analogy principle’.

In the original paper, translation rules are extracted from example sentences

automatically as shown in Figure 1.1. Substitution rules can be extracted by

comparing the source and target sides of two similar translations, and phrase

translations can be taken from the differing fragments. These rules can be extended

with translations from a dictionary and similar words replaced using a thesaurus.

EBMT received some attention towards the end of the 20th Century, however

it was surpassed by statistical approaches, primarily due to its rule-based nature.

One of the assumptions was that “language data and its usage do not change for

a long time” [64], a premise that no longer applies to the rapidly changing digital

world. Owing to its analogical foundations, EBMT is effective for translating sen-

tences very similar to training examples, however can is considerably less effective
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for out-of-domain translations.

1.2.3 Statistical Machine Translation

This thesis concentrates primarily on Statistical Machine Translation (SMT). The

core concept of SMT is the noisy-channel model [87], which considers translation

as the process of reversing the ‘encoding’ of a sentence into another language.

This encoding can be seen as the application of random noise sampled from some

probability distribution.

In the classical formulation, we write the probability of obtaining a target

language translation e from a source language input f as P (e | f), then apply

Bayes’ rule to reformulate in terms of reversing the noisy encoding, expressing the

probability in terms of P (f | e). We can recover the best translation e∗ as follows:

e∗ = argmax
e

P (e | f)

= argmax
e

P (f | e)P (e)

P (f)

= argmax
e

P (f | e)P (e)

(1.1)

The formula for e∗ contains two parts: P (f | e) and P (e). The former is

known as the ‘translation model’ and represents the faithfulness, or ‘adequacy’ of

a translation. The latter is known as the ‘language model’ and models the fluency

of a translation in the target language.

Translation Model

In SMT, the translation model is usually trained on a set of bilingual sentence

pairs, known as a parallel corpus, using unsupervised learning. Such corpora

are often obtained from multilingual proceedings of parliamentary meetings, for

example Europarl [48], as well as from scientific and commercial sources. To

improve translation quality and domain coverage it is important to maximize the

volume of parallel data available, and this fact has led to the development of

automatic parallel corpora mining from the web [101].
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The translation model describes the probability of translating between source-

target phrase pairs. The probability distribution is most commonly learned in

an unsupervised fashion, specifically with the Expectation-Maximization (EM)

algorithm [26]. Sentence pairs are aligned on a word level between source and

target languages using algorithms such as the IBM models [9], which are based

on the EM algorithm, and these alignments can then be used to extract a word-

based translation model, which can be expanded to phrase level by the technique

of phrase extraction [50].

Reordering

It is usual for translation models to consider only the translations of individual

phrases and to join these together during decoding. This is because it is not

practical to learn generic translation models for entire sentences owing to data

sparsity. It is therefore necessary to decide how to order these phrases once they

have been translated.

For language pairs such as English–French, where the word orders are fairly

similar between source and target languages, it can be enough to translate phrases

in the same order as the input sentence then to make minor adjustments, such as

swapping adjective and noun pairs. This is the basis of the simplest well-known

reordering model, linear distortion [50].

Linear distortion models the probability that a pair of phrases a given distance

from each other should be swapped. The linear distance is the only parameter and

contextual information is ignored, however this simple approach can be effective

for similar language pairs. Instead of considering only swapping, reordering (or

‘distortion’) can be split into three types (monotone, swap, discontinuous) for each

phrase pair to form a more sophisticated model known as lexical distortion [99].

This approach however is prone to sparsity problems, in particular for distant

language pairs.

For more syntactically distant language pairs, we must learn to make linguistic

generalizations, such as switching SVO and SOV clause structure and converting

post-modifying prepositional and pre-modifying postpositional phrases. Such gen-

eralizations often require syntactically motivated long-distance reordering, and a
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number of approaches use source-side syntax to pre-order phrases [105, 54, 68].

Language Models

Language models (LMs) are the second major component of SMT systems. They

model the fluency of a translation, estimating whether system output ‘sounds nat-

ural’ in the target language. Language models are also a fundamental component

of many other NLP systems, such as speech recognition and natural language gen-

eration frameworks, which also require accurate measurement of natural language

fluency.

Since the early days of NLP, the most popular language models have been

designed around the concept of n-gram history. The core concept is that the next

word in a fluent sentence should be dependent on its preceding words, i.e. context.

While ideally all available context of a word would be considered, in practice this

can be intractable because of training data sparsity, and extensive context is often

unnecessary. It is therefore common to model the next word in a sentence based on

the previous n− 1 words (for some n), which is known as an n-gram, or sequence

of n words.

Based on this intuition, language models have been modeled classically as

(n− 1)th order Markov processes, stochastic sequences whose next value depends

on the previous n − 1 values. The probability of a sentence (sequence of words)

w1, ..., wm is often written as:

P (w1, ..., wm) =

m∏
i

P (wi | w1, ..., wi−1)

≈
m∏
i

P (wi | wi−n+1, ..., wi−1).

This linear n-gram context can used successfully to model sentence fluency for

simple sentences, however n-gram sparsity can remain an issue. For this reason,

smoothing techniques such as modified Kneser-Ney [15] and Stupid Backoff [7] are

often applied.

Standard LMs can fall short when dealing with long-ranged phenomena such

as word agreement that require consideration of non-local context. Syntax-based
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LMs [14, 63] and neural network LMs [62, 96] have been proposed to consider a

more generalized context and are often combined with traditional SMT systems.

Decoding

Once translation and language models have been trained on parallel data, trans-

lation of unseen sentences can be attempted. In order to achieve high translation

quality, the entire space of translations must be searched to find the translation

e∗ with the highest probability. This process is known as ‘decoding’.

Decoding to optimize only the translation model score is simple as the scores of

individual phrases are independent, however the language model also introduces

dependencies between phrases. A variety of techniques have been employed to

overcome this, for example storing limited language model histories (or states) at

each search node [52, 38].

The number of possible translations grows exponentially with the number of

input sentence words, requiring sophisticated search algorithms to find good trans-

lations within a short time. The simplest decoding algorithm with a practical de-

coding speed is beam search, which restricts the number of translations of phrases

of each length to a size k, requiring k2 translations for each combination of two

phrases. This can be further reduced using the cube pruning technique [18], which

selects only the most likely of the k2 combinations considered in beam search.

There are a variety of more sophisticated algorithms in use, such as lattice-

based search [25]. Other techniques involve limiting the length of phrases and

pruning similar translation fragments.

Post-Editing

While decoding is the final necessary step of translation, it is often not sufficient.

The translations generated by most automatic systems often contain errors that

are able to be corrected relatively easily after translation in a process known as

post-editing.

Post-editing in its simplest form corrects the single best translation generated

by the decoder, for example regularizing capitalization and punctuation. It is

also possible to generate a k-best list of translations and to rerank these using a
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post-editing reranker. A common example is to use a powerful language model to

rerank k-best translations. The two approaches can also be combined.

The primary advantages of post-editing are its simplicity and speed. It can

be computationally expensive and algorithmically complicated to use complex fea-

tures during decoding, and it is much faster to calculate such features only k times

for reranking. It is also often the case that a good translation is not found by the

decoder (search error) even though the translation and language models are able

to detect better translations.

The benefits of post-editing are particularly clear in complicated systems. In

this thesis we make extensive use of post-editing to overcome the computational

difficulties of using complex target-side syntax features during decoding. In some

cases post-editing also allows our models to be used even with string-based de-

coders.

1.2.4 Neural Machine Translation

The most recent approach to translation has been Neural MT (NMT), which is

based on artificial neural networks (NNs). Neural networks have existed since the

early 50s as an attempt to model biological brains.

The basic unit of a neural network is the artificial neuron. An example of

such an artificial neuron is shown in Figure 1.2. Single artificial neurons combine

multiple weighted inputs to produce a single output, and these neurons can be

joined together into a network structure and often grouped into layers. For n

inputs xi with weights wi and an activation function f , the output y of an artificial

neuron is given by:

y = f(

n∑
i=1

wixi) (1.2)

The perceptron [83], a learning algorithm for binary classification using ar-

tificial neurons, was used historically for a multitude of machine learning tasks.

However, the perceptron was found to be less viable for large-scale learning than

other other more popular classifiers such as Support Vector Machines (SVMs)

[102].
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Figure 1.2: Artificial neuron used in neural networks. The neuron calculates a

linear combination of inputs x with weights w and filters the output using an

activation function f .

Recently the tremendous increase in data and computational resources, com-

bined with parallelized linear algebra computations exploiting Graphics Processing

Units (GPUs), has opened the doors to large-scale deep learning. Deep learning

is the large-scale combination of neurons into a multilayered (or ‘deep’) network.

Now that the training of such large networks has become computationally viable,

approaches based on deep learning have produced state-of-the-art results for many

AI tasks, from automatic translation [97, 3] to playing the game of Go [92].

Neural networks can be considered similar to a black box that learns to produce

some specific output given a set of inputs. The simplest neural translation systems

take an input sequence of source sentence tokens and directly output a sequence

of translated tokens. These are known as sequence-to-sequence models [97]. The

simple sequence-to-sequence model can be improved further by expanding the

network to model word alignments and reordering with an ‘attention’ mechanism

[3].

A major advantage of NMT is that the long pipeline of independent processes

in SMT (alignment, phrase extraction, decoding) can be replaced with a simple



10 CHAPTER 1. INTRODUCTION

and more elegant model that directly translates input sentences, learning a joint

translation and language model. NMT systems have begun to give state-of-the-

art results for close language pairs, however at the time of writing are not able to

outperform syntax-based approaches for distant language pairs.

1.3 Overview of Syntax-Based MT

This thesis focuses primarily on syntax-based MT, the most linguistically mo-

tivated subfield of SMT. In contrast to standard SMT, which takes raw word

sequences as input and output, the core concept of syntax-based SMT is to re-

place raw words with rich tree structures that express the relationships between

words. These sentence-level grammatical structures can be used to model more

generic rules than standard SMT, for example the difference between SOV and

SVO word orders. This makes syntax-based approaches effective at dealing with

syntactically distant language pairs.

1.3.1 Constituency and Dependency Grammars

Sentence structure, or syntax, is usually expressed in terms of constituency gram-

mar (also known as ‘phrase structure grammar’) [21] or dependency grammar [98].

Constituency grammar builds sentences from a set of phrase structure rules,

combining sentence fragments in a bottom-up fashion using non-terminal sym-

bols that represent phrasal nodes. Dependency grammar instead considers the

relationship between words directly by building a graph of labeled directed edges

representing word dependencies. Figure 1.3 and Figure 1.4 show an example of a

constituency and dependency parse for the same sentence.

There are a number of major differences between these two forms of syntax.

Perhaps the most significant difference is that dependency parses do not indicate

word order, allowing for more flexibility to express word relations that are position

independent. Furthermore, words can have multiple dependents in a dependency

parse, however constituency parses are usually binarized, i.e. there are exactly two

children for each non-terminal node. This adds flexibility but also complications

to dependency syntax.
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Figure 1.3: Example of a constituency parse, or phrase structure grammar de-

rivation. The first row shows words (terminals) with their parts-of-speech. The

parts-of-speech form the first layer of non-terminals and are combined in a bottom-

up fashion to progressively longer phrase units. The final row ‘S’ is the completed

sentence.

Figure 1.4: Example of a dependency parse. Edges point from words to their

heads and are labeled with dependency relation types.
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In this thesis we concentrate primarily on dependency parses as we believe

they are more expressive and more appropriate for languages such as Japanese

and Russian with less rigid word order. We make use of the fact that the rela-

tionship between words is clearer than in phrase structure grammar in our work

on morphological agreement.

1.3.2 Classification of Syntax-Based Models

Syntax-based MT replaces strings with trees. This can be done for both the

source and target sides of a translation. There are therefore four major types of

syntax-based models: string-to-string [50, 17], string-to-tree [31, 88], tree-to-string

[78, 42, 54] and tree-to-tree [108, 79].

An extension of tree-based systems are forest-based systems [60]. The most

serious problems with tree-based approaches are caused by poor parsing quality,

which is dependent on a number of factors such as the availability of treebank

data and the inherent parsing difficulty of a given language. To help mitigate

issues caused by parse errors, multiple parses can be employed. Parse trees, each

weighted with their parse score, can be compacted efficiently into a representation

known as a ‘forest’. Forests are often used in the source side of translation systems

[68, 79].

The choice between using strings or trees is ultimately a trade-off between

simplicity and flexibility. String-based approaches are fast and robust, however

can only model localized structure. Tree-based approaches are more powerful

when high quality parsing is available, but perform more slowly than string-based

approaches and are very fragile to parsing errors.

1.4 Machine Translation Evaluation

One of the most important and most difficult challenges in machine translation

research is the definition of an effective measure of translation quality. It is difficult

to conduct meaningful research when it is not possible to evaluate accurately the

quality of translations or two compare two given systems.

Ideally all translations would be evaluated by human professionals who are flu-
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ent in both source and target language, however this is not economically feasible.

High quality translation evaluation performed by skilled humans requires consid-

erable time and budget. Furthermore, it is often desirable to be able to obtain a

rough estimate of quality in a very short time (on the level of microseconds) when

tuning systems automatically. It is for these reasons that automatic measures,

such as BLEU [74] and RIBES [44] have been developed.

1.4.1 Automatic Metrics: BLEU and RIBES

By far the most popular automatic translation quality metric is BLEU [74]. It has

remained in widespread use for its simplicity and relatively good correlation with

human judgment.

BLEU is designed to compare n-grams in a reference translation (gold standard

translation produced by a human expert) with the system output to be evaluated.

It is based on n-gram precisions, i.e. the proportion of n-grams in the system

output that appear in the reference translation. The matches are clipped to the

number of occurrences of the n-gram in the reference to avoid overcounting.

In addition, a brevity penalty is calculated to penalize short translations. Such

a factor is necessary as the n-gram matching considers only precision and not recall.

The brevity penalty BP is defined as follows, where r is the length (number of

words) of the reference and c is the length of the system output.

BP =

1, if c > r

e1−
r
c , if c ≤ r.

(1.3)

Finally, BLEU is defined as the geometric mean of n-gram precisions pn multi-

plied by the brevity penalty. Logarithms are used to optimize and reduce floating

point errors caused by multiplication.

BLEU = BP · exp
n∑

i=1

wi log pi. (1.4)

One of the major weaknesses of BLEU is its ability to evaluate word order

effectively, although it does implicitly consider localized word order when matching

n-grams. The alternative metric RIBES [44] was designed to evaluate word order
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explicitly, however it has not seen much global popularity. RIBES calculates the

rank correlation of word positions in the system output and reference. It has been

shown to have comparable correlation to human judgment as BLEU for similar

languages, and is slightly better for distant language pairs.

While both BLEU and RIBES often display weak positive correlation with

human judgments, neither can be considered accurate indicators of translation

quality. In particular, automatic metrics have been shown to be ineffective in

evaluating syntax-based approaches, especially when evaluating improvements af-

fecting long-range agreements [86, 80].

Another major disadvantage of automatic metrics is the requirement for a

reference translation. This is often not available. While BLEU was originally

designed to be used with multiple references (and performs better with more), it

is very rare that more than one reference is available.

Furthermore, automatic metrics usually require translations and references to

be segmented into tokens. It is often unclear how best to do this, especially for

languages without whitespace such as Chinese and Thai.

1.4.2 A Human Metric: Crowd-Sourcing

Human evaluation of translation quality is often desirable, however professional

translators are expensive. This has led to the increase in popularity of trans-

lation evaluation with crowd-sourcing [10]. Crowd-sourcing frameworks connect

large networks of part-time human workers, and allow for fast and cheap transla-

tion evaluation. Workers are paid considerably less than professional translators,

however they often lack any specialized skills and can report unreliable ratings.

In our research we employed human evaluation for our language model exper-

iments, as in our opinion it is particularly important to use native speakers to

judge translation fluency. We made a compromise between crowd-sourcing and

professional evaluation by using semi-skilled raters, who were bilingual speakers

of the language pair they evaluated. There were on average around 20 raters per

language, split across the test sentences.

Raters were instructed to give a score on a 7-point scale (between 0 and 6

inclusive) for each sentence, given the translation and original source language
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Score Rating guidelines

0 Nearly all the information is lost between the translation and

source. Grammar is irrelevant.

2 The sentence preserves some of the meaning of the source

sentence but misses significant parts. Grammar may be

poor.

4 The sentence retains most of the meaning of the source sen-

tence. It may have some grammar mistakes.

6 The meaning of the translation is completely consistent with

the source, and the grammar is correct.

Table 1.1: Rating guidelines for human evaluation.

sentence. Rating guidelines are shown in Table 1.1.

1.5 Thesis Overview

In this thesis we investigate the effectiveness of target-side dependency syntax in

improving the fluency of automatic translations.

Dependency tree-to-tree systems are few and far between. While tree-to-string

systems have seen much success over the last decade, target-side syntax has seen

little popularity. There are a number of reasons for this, primarily the requirement

for two parsers (source and target languages) and the multitude of additional

complications involved in building T2T systems. These include tree-to-tree rule

extraction, reordering and decoding, especially the integration of syntax-based

language models.

We analyze each of these aspects in detail. In Chapter 2, we introduce Ky-

otoEBMT, a state-of-the-art dependency forest-to-tree translation system that we

have been developing as a core part of our research. We present an overview of

how rule extraction and decoding can be performed effectively in a dependency

tree-to-tree setting and conduct error analysis of the proposed system. In Chap-

ter 3, we begin our exploration of target-side syntax with the simplest application:
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syntax-based post-editing. We expand this work to consider much more general-

ized post-editing and language modeling in Chapter 4 and Chapter 5, exploring

how language models can be improved with dependency information. In Chap-

ter 6, we discuss approaches for reordering exploiting target-side syntax. These

methods allow for full decoder integration and show considerable improvement in

word ordering for distant language pairs.

Finally, in Chapter 7 we analyze the place of our research in the rapidly evolving

world of deep learning. We ask whether target-side syntax can be useful in hybrid

and purely neural translation systems. Chapter 8 summarizes our findings and

outlines possible directions for future work.

In summary, the goal of this thesis is to answer the simple question: is target-

side syntax worth it? There are many arguments why T2T systems could prove

more effective than string-based approaches, however this is yet to be explored

thoroughly. Can the rich information provided by target-side dependency syn-

tax improve model expressiveness enough to offset the fragility caused by adding

another layer of complexity?



Chapter 2

KyotoEBMT: A Dependency

Tree SMT System

We begin our exploration of syntax-based machine translation by presenting the

KyotoEBMT framework. This chapter outlines the major advantages and disad-

vantages of dependency tree-to-tree MT and gives experimental evidence of the

value of dependency syntax in improving translation quality. We focus on the

most fundamental components of SMT systems: alignment, rule extraction and

decoding.

2.1 Introduction

String-to-string translation models have been studied extensively and form the

basis of traditional SMT systems. However, dependency syntax can provide an

additional layer of abstraction, allowing us to consider more generalized translation

rules. Such rules can enable translation systems to generate fluent and accurate

translations of complex sentences across distant language pairs.

The KyotoEBMT system makes use of both source and target-side dependency

syntax. The dependency tree-to-tree translation paradigm has been relatively un-

explored as studies on syntax-based MT have tended to focus on constituency

trees rather than dependency trees, and on tree-to-string rather than tree-to-tree

approaches. Furthermore, we employ separate dependency parsers for each lan-

17
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guage rather than projecting the dependencies from one language to another as in

previous work [78]. The dependency structure information is used end-to-end: for

improving alignment quality, constraining translation rule extraction and guiding

the decoding.

A further unique characteristic of our system is that it does not rely on pre-

computation of translation rules, instead extracting translation rules online. This

has the merit of enabling the extraction of arbitrarily large rules, allowing for

excellent translations of input sentences similar to those in the training data.

We begin by presenting the historical background of ‘KyotoEBMT’, then pro-

ceed to describe the system design and our detailed empirical evaluation.

2.2 Historical Background

The translation system at Kyoto University has been in development for over 10

years. Originally the system was inspired by concepts from the EBMT paradigm,

however it has now evolved into a fully statistical syntax-based system. Dictionary-

based word translations have been replaced by terms extracted automatically from

parallel corpora and POS tags and dependency labels are used in place of a the-

saurus.

Early versions were slow and unable to translate long sentences, prompting

the establishment of a project to build a redesigned and optimized version in early

2013. This chapter describes our work on this new system over the last three years.

While the name ‘KyotoEBMT’ is mainly historical, we maintain a number

of ideas that are true to the EBMT paradigm. The most important of these is

the use of dependency structure. In his original description of EBMT, Nagao

claimed phrase structure grammar to be “not suitable for the analysis of Japanese,

because the word order in Japanese is almost free” [64]. Our motivation for using

dependency trees is based on this idea.

Another concept we take from EBMT is the use of flexible translation rules,

or ‘examples’. These can be of arbitrary size, however we require strict matching

of source and target syntax. We therefore use online example retrieval as opposed

to a phrase table, which allows for arbitrary example lookup. This is perhaps the
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most significant difference between our framework and standard SMT systems.

Overall, the core algorithms of KyotoEBMT can be considered as fundamen-

tally equivalent to those of a regular syntax-based SMT system. For the sake of

clarity, in this thesis we consider it as a standard SMT system and use associated

terminology.

2.3 System Overview

2.3.1 Translation Pipeline

The KyotoEBMT framework consists of a number of interlinked components that

constitute an end-to-end translation pipeline. This section describes the overall

architecture of the translation system.

Figure 2.1 shows the basic structure of the KyotoEBMT translation pipeline.

The training process begins with parsing of parallel sentences from the training

corpus. Both source and target sides are processed with word segmentation and

dependency parsing to create a rich structured representation.

The parsed dependency trees are then aligned with the series of steps described

in Section 2.4.1. The alignment stage allows us to extract translation rules based

on aligned bilingual tree fragments. These are used to build a syntactic phrase

database (‘example database’ or ‘translation memory’ in EBMT terminology) con-

taining ‘treelets’ or ‘examples’ that form the initial hypotheses to be combined

during decoding.

Translation is performed by first parsing the input sentence. We found that the

quality of the source-side parsing had a large impact on translation quality, how-

ever parsing errors are unfortunately unavoidable. In our experiments, Chinese

parsing was especially challenging and our Chinese parser still produces a signifi-

cant number of parsing errors. In order to mitigate this problem, we initially tried

using a k-best list of input parses. We found this was somewhat successful but

inefficient, and therefore extended the k-best list representation of multiple parses

to a more compact and efficient forest representation [60]. For the target side we

use a 1-best parse.

The input forest is then matched against the example database, searching
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Figure 2.1: Translation pipeline. An example database (or ‘translation memory’) is

first constructed from a parallel corpus. Translation is performed by the decoder,

which combines initial hypotheses generated by the example retrieval module.

Weights can be improved with batch tuning.
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for matching treelets. This lookup is performed online using an efficient search

algorithm [24]. It is possible to store the retrieved treelets for a given input

sentence (‘initial hypotheses’) to disk for optimization purposes. This greatly

improves the efficiency of tuning (see Section 2.5.3).

The retrieved treelets are combined by a decoder that optimizes a log linear

model score. The decoder uses a lattice structure, integrating partial language

model states and considering ‘optional’ words, which are described in Section 2.5.

The choice of features and the tuning of the log linear model is described in

Section 2.5.3.

2.3.2 Example of the Translation Process

Figure 2.2 shows an example of the translation process. The source sentence

(shown on the left) is first parsed. We use dependency forest input, however

for clarity only the single best parse appears on the diagram. Matching treelet

pairs from the example database are then retrieved. These can be simple word

translations such as ‘彼女 → She’ or contain non-terminals, marked with [Xn].

Finally, the translation hypotheses are combined in decoding. This is also

when choice of non-terminal positions is made. The right-hand part of the figure

shows the derivation of the final translation.

2.3.3 Implementation Details

The system is mostly developed in C++ to optimize translation speed and sup-

ports multithreaded decoding. Experiments are facilitated through an end-to-end

Experiment Management System (EMS), which is responsible for calculating de-

pendencies between the translation steps, including parsing, alignment, example

retrieval, tuning and decoding. Over 90 options for various parameters can be

selected on the command line or with a configuration file.

KyotoEBMT also incorporates a web-based translation interface for ease of

use. This interface (see Figure 2.3) also displays information required for error

analysis such as the input sentence parses and list of translation examples used in

decoding.
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Figure 2.2: An example of the process of translation of the input sentence ‘彼

女は機械翻訳の教科書を読んだ’ into English (‘She read a textbook on machine

translation’). The input and output trees are shown on the left and right sides

respectively with token IDs in square brackets. The central section shows matched

treelets in the example database. Non-matching terminals from the full examples

are crossed out and replaced with non-terminals matching input position n and

marked [Xn]. Optional target-side words marked with an asterisk.
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Figure 2.3: A screenshot of the web interface showing a Japanese-English trans-

lation. The interface displays the input and translation dependency trees, as well

as the list of examples used with their alignments. The web interface facilitates

easy and intuitive error analysis, and can be used as a tool for computer-aided

translation.
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A

photogate

is

used

for

the

photodetector

Figure 2.4: Example of alignment results. Black squares show system output and

the filled areas show gold alignments.

2.4 Translation Rules

2.4.1 Alignment

The first important stage in generation of translation rules is alignment. We found

that alignment accuracy has a major impact on translation quality and therefore

use a relatively complex multi-stage alignment process in an attempt to obtain

the highest possible accuracy.

Figure 2.4 shows an example of the output of our alignment pipeline. The black

squares show final alignments and the filled areas represent the human annotated

gold alignments.

In the first stage of alignment, we use the GIZA++ tool [72] to perform word

alignment for both source-to-target and target-to-source directions using a com-

bination of IBM models [9] and HMM alignment [103]. The initial alignments are

not symmetrized and are of relatively low quality, however it is important to have

some initial alignments for the second step.

In the second stage, we perform syntactically motivated alignment using a
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ASPEC-JE ASPEC-JC

Precision Recall F-Score Precision Recall F-Score

Stage 1 0.63 0.74 0.68 0.70 0.72 0.71

Stage 2 0.71 0.83 0.76 0.72 0.67 0.70

Stage 3 0.85 0.84 0.85 0.88 0.81 0.84

Table 2.1: Comparison of alignment quality after each step of our alignment

pipeline.

Bayesian subtree model based on dependency trees [65]. This contains a tree-

based reordering model and can capture non-local reorderings, which sequential

word-based models often cannot handle effectively. It also performs monolingual

derivations for function words, increasing their alignment accuracy.

In the third stage, we conduct supervised alignment using the Nile [81] tool.

Supervised alignment has been shown in previous work [69] to be effective in im-

proving tree-based translation, and we also observed a considerable improvement

to translation quality. Since Nile currently supports only constituency parses, we

also perform constituency parsing for source and target languages for generating

bidirectional word alignments. We use the alignments generated in the second

stage as the initial alignments for supervised alignment. Finally, the Nile align-

ments are post-processed to ensure their compatibility with our dependency-based

rule extraction.

Table 2.1 shows a comparison of the alignment quality after each alignment

step. The precision, recall and F-score are shown for 100 sentences manually an-

notated with gold alignment. The sentences were taken from the ASPEC corpus1

for Japanese–English (ASPEC-JE) and Japanese–Chinese (ASPEC-JC) language

pairs. This is the same data we use for the experiments in Section 2.6.

Let the system output alignment links be denoted as A, with gold standard

alignments denoted by sure S and possible P links. The precision, recall and

F-score are then calculated as follows:

1http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
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Precision(A,P ) =
|P ∩A|
|A|

(2.1)

Recall(A,S) =
|S ∩A|
|S|

(2.2)

FScore(A,P, S) =
2 · Precision(A,P ) ·Recall(A,S)

Precision(A,P ) +Recall(A,S)
(2.3)

2.4.2 Example Database and Retrieval

An important characteristic of our system is that we do not extract and store

translation rules in advance: the process of finding examples partially matching

a given input sentence and extracting their translation hypotheses is an online

process. A similar approach has been proposed for phrase-based [11], hierarchical

[56], and syntax-based [24] systems, however it is rarely seen integrated into syntax-

based MT.

This online approach has several benefits. The first is that we are not required

to impose a limit on the size of translation hypotheses. Systems extracting rules in

advance typically restrict the size and number of extracted rules to avoid becoming

unmanageable. A particular advantage is that we will be able to retrieve a near-

perfect translation if an input sentence is the same or very similar to one of our

translation examples. A second advantage is that we can make use of the full

context of the example to assign features and scores to each translation hypothesis.

The main drawback of the online method is that it can be computationally

more expensive to retrieve arbitrarily large matchings in the example database

online than it is to match pre-computed rules.

We first compact the parsed and aligned training sentences from the parallel

corpus into a hypergraph structure. This hypergraph is known as the example

database. We use the techniques described in previous work [24] to perform this

step as efficiently as possible.

The process of rule construction begins by searching the example database for

an example, i.e. an aligned and parsed sentence pair (s, t), for which s matches

a subtree of the input sentence in terms of both word tokens and tree structure.

This matched example forms the basis of a translation hypothesis. Figure 2.5
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A

photogate

is

used

for

the

photodetector

(accept)

(light)

(device)

(photo)

(gate)

(used)

(ni)

(ha)

(wo)

Figure 2.5: Example of bilingual treelet pairs that can be extraction from an

aligned and parsed parallel sentence.

illustrates examples of treelet pairs that can be extracted from a sentence in the

training corpus.

The target-side of the matched example is extended with non-terminals to

represent the insertion positions for the translations of the remaining parts of

the input sentence that connect directly to the source-side tree. This is done by

replacing unmatched leaves of the example dependency tree with non-terminal

symbols. The non-terminal symbols also encode the original input position n

(shown as [Xn] in Figure 2.2) to ensure that only the corresponding part of the

input sentence is inserted into that non-terminal position.

In some cases it is possible to have multiple positions for non-terminals. This

occurs in the case where we have untranslated input tokens but no aligned position

on the target side of the rule. We therefore cannot be certain of where the trans-

lation should be inserted on the target side, and therefore add multiple candidates

for all possible insertion positions. For example, the translation hypothesis con-

taining ‘textbook’ in Figure 2.2 has three possible positions for the non-terminal
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matching input position 3. These positions are as a left-side child before ‘a’, a

left-side child after ‘a’ or as a right-side child.

This formulation of non-terminals is complicated to handle and does not weight

possible insertion points by their likelihood. In Chapter 6, we generalize and

expand the model described here to create ‘flexible non-terminals’.

Translation hypotheses can also contain optional target-side words. These

are added for null-aligned function words that were not matched in example re-

trieval, and usually correspond to determiners and punctuation. Optional words

are handled by the decoder, which decides whether to include them in the final

translation.

Finally we add various features, described in Section 2.5.3, to each translation

hypotheses in order to guide the decoding process. Features include statistics

about the frequency of occurrence of the matched examples and nature of the

non-terminals added.

2.5 Decoding

After having extracted translation hypotheses to cover the entire input tree, we

need to decide how to select and combine them to create a complete translation.

2.5.1 Lattice Decoder

The decoder performs a search over the space of rule combinations. This space is

constrained by the non-terminal positions, which preserve the structure of the in-

put dependency tree. We use a log linear combination of features to score possible

combinations of hypotheses (see Section 2.5.3), and attempt to find the completed

sentence that maximizes this model score.

If we only consider local features2, then a simple bottom-up dynamic program-

ming approach can efficiently find the optimal combination of a setH of translation

hypotheses with linear O(|H|) complexity. However, non-local features (such as

language model scores) will force us to prune the search space.

2The score of a combination will be the sum of the local scores of each translation hypothesis.
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Figure 2.6: A translation hypothesis encoded as a lattice. This representation

allows us to handle efficiently the various options encoded in our translation rules.

Paths in this lattice correspond to different choices of insertion position for non-

terminal ‘X2’, morphological forms of ‘be’, and the optional insertion of ‘at’.

In our experiments we use a lattice-based decoder [25]. As described Sec-

tion 2.4.2, the translation hypotheses we extract initially from examples have mul-

tiple possibilities for non-terminal positions and contain optional words. In order

to handle such variations, we use a lattice-based internal representation that can

encode them efficiently. An example of such a lattice is shown in Figure 2.6. This

lattice representation also allows the decoder to make choices between various

morphological variations of a word (e.g. ‘be’/‘is’/‘are’) and such morphological

variants can be added in the form of a lookup table.

In addition, our decoder is designed to handle an arbitrary number of non-

terminals, which is not considered in previous work such as the original cube-

pruning algorithm [18]. This is made simple by the lattice structure, as we simply

add sets of edges representing each non-terminal position.

2.5.2 Language Model

For the target-side language model we use KenLM3, a linear 5-gram language

model with modified Kneser-Ney smoothing. The target-side tree is compacted

into a string representation to calculate the language model score. We use state-

reduction [52, 38] and rest-cost estimations [39] to increase the efficiency of han-

dling non-linear language model score combinations.

While allowing for efficient decoding, the use of a standard string-based lan-

guage model has the disadvantage of not exploiting the target-side syntactic in-

formation available to our system. In Chapter 4 and Chapter 5 we explore the
3http://kheafield.com/code/kenlm/
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effectiveness of using dependency tree language models.

2.5.3 Features and Tuning

We use a log linear model to score each possible combination of hypotheses during

decoding. The model consists of a set of features f with associated weights w, and

we calculate the model score S as follows:

S =
∑
i

wi log fi (2.4)

We consider a total of 52 features. These can be roughly categorized into three

categories: those scoring the quality of example matching, which are local to initial

hypotheses; sentence-level features such as language model score; and features

describing the path taken by the decoder, for example counting the number of

hypotheses combined and optional words selected.

The optimal weights w for each feature are estimated using k-best batch MIRA

[16] on a held-out development set. This is a batch tuning algorithm that is able

to deal with large numbers of features and works similarly to MIRA, an online

margin-based classification algorithm [36, 20], in a batch as opposed to online

setting. We found that k-best batch MIRA performed better than other tuning

approaches designed for large feature sets, such as PRO [40]. The implementation

included in Moses4 was used in our experiments.

2.6 Experiments

2.6.1 Experimental Settings

In this section we perform evaluation of the KyotoEBMT system in order to as-

certain the strengths and weaknesses of our tree-based approach. Analysis is per-

formed on the experimental results of our submissions to the 1st and 2nd Work-

shops on Asian Translation [66, 67].

4http://www.statmt.org/moses/
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JA ↔ EN JA ↔ ZH

Train 2,020,106 667,520

Dev 1,789 2,115

Test 1,812 2,174

Table 2.2: Number of sentences for each data fold in ASPEC corpus.

The experimental data consisted of parallel scientific paper excerpts from the

ASPEC5 corpus, split into training, development and test folds as shown in Ta-

ble 2.2. Note that the development and test sets are considerably smaller (relative

to the size of the training fold) than those used in other machine learning tasks,

such as information retrieval and speech recognition. This is because translation

is relatively slow (in the order of 1–10 seconds per sentence) and we require as

much of the limited training data as possible. The use of test sets of this size is

common practice in MT.

We conducted translation experiments on the four language pairs in the sci-

entific papers subtask: Japanese-English (JA–EN), English-Japanese (EN–JA),

Japanese-Chinese (JA–ZH) and Chinese-Japanese (ZH–JA).

The two baseline systems are based on the open-source Moses pipeline with

GIZA++ [49]. The baseline system ‘Base-Phrase’ uses the classic phrase-based

SMT pipeline [50], while ‘Base-Hiero’ uses the hierarchical phrase-based paradigm

[18]. Hierarchical phrase-based SMT attempts to improve upon traditional phrase-

based SMT by allowing rules with non-terminal symbols to model long-range

phrase reordering. The motivation is similar to syntax-based SMT, however sen-

tence structure is learned in an unsupervised fashion as opposed to relying on

independent parsing.

Our systems used the following dependency parsers, which are show below with

their approximate parsing accuracies. Accuracies are for unlabeled dependencies

and were evaluated by hand on a random subset of sentences from the test data.

Note that the parsers were not trained on the same domain (scientific papers) as

the translation experiment.

5http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
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• English: NLParser6 (92%) [13]

• Japanese: KNP (96%) [46]

• Chinese: SKP (88%) [89]

For generating input for Nile we used the following constituency parsers:

• English: Berkeley Parser [75]

• Japanese: Cyklark [73]

• Chinese: Berkeley Parser [75]

Our 2014 submission (‘WAT14’) was the basic KyotoEBMT framework using 1-

best tree input and the first two alignment stages (GIZA++ and Bayesian subtree

alignment).

The 2015 submission (‘WAT15’) improves upon the 2014 submission primar-

ily by using forest input and supervised alignment (all three stages described in

Section 2.4.1). Forests were created by packing the 200-best dependency parses

for Japanese and English, and 50-best parses for Chinese. The same dependency

parsers were used. The feature set was also expanded, in particular adding features

considering input parse scores.

2.6.2 Results

Table 2.3 gives the official evaluation results for BLEU and RIBES metrics (see

Section 1.4). The results shown are for evaluation on the test set after tuning.

Tuning was conducted over 50 iterations on the development set using a 500-best

list.

The results show that the WAT15 system achieves the highest translation

quality for all language pairs and metrics, with the exception of RIBES for JA–

ZH. We can also see a considerable improvement in translation quality between

the WAT14 and WAT15 systems.

While it is clear from the automatic evaluation that the proposed system out-

performs the baseline systems, it is necessary to analyze the translations in more
6Converted to dependency parses with in-house tool.
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Language Pair System BLEU RIBES

JA–EN Base-Phrase 18.45 64.51

Base-Hiero 18.72 65.11

WAT14 20.60 70.12

WAT15 21.31 70.65

EN–JA Base-Phrase 27.48 68.37

Base-Hiero 30.19 73.47

WAT14 29.76 75.21

WAT15 30.69 76.78

JA–ZH Base-Phrase 27.96 78.90

Base-Hiero 27.71 80.91

WAT14 27.21 79.13

WAT15 29.99 80.71

ZH–JA Base-Phrase 34.65 77.25

Base-Hiero 35.43 81.04

WAT14 33.57 80.10

WAT15 36.30 81.97

Table 2.3: Official BLEU/RIBES evaluation results for KyotoEBMT submissions

(WAT14 and WAT15).
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Error Category JA–EN EN–JA JA–ZH ZH–JA Total

Word order 10 5 13 9 37

Fluency 15 7 7 5 34

Alignment 2 11 9 5 27

Parsing 2 3 1 6 12

Word segmentation 1 0 0 4 5

OOV 0 4 0 1 5

Table 2.4: Categorization of 30 translation errors for each language pair.

detail to discover the areas where translation quality requires further improvement.

This is discussed in the following section.

2.6.3 Error Analysis

We performed a categorization of 30 errors observed in the output of the WAT15

system for each language pair. The results are shown in Table 2.4.

Overall the most common errors were incorrect word order and word choice

(fluency). This is perhaps not surprising for distant language pairs with widely

different syntax and vocabulary. The majority of fluency errors were for English

as the target language, as there were many morphological (e.g. word agreement)

errors.

While Japanese and Chinese display almost no word agreement, mistranslation

of Japanese particles was a major cause of loss in translation fluency. The trans-

lation below exhibits poor fluency, where the direct object particle ‘を’ is missing

at (1) and there is a repeated subject particle ‘が’ at (2).

• Input: By converting the phase detected by such a method to angle of

projected sheet beam , there can be obtained three-dimensional shapes of

the object in real time .

• Output: この 方法 で 検出 さ れる 位相 (1) 角 の 投影 シート ビーム に 変

換 する こと に より ，実 時間 で 物体 の ３ 次元 形状 が が (2) 得 られる

。
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The next most serious issue was word alignment. While we observed quality

gains with our three-step alignment approach, the end-to-end translation results

show that there is still much room for improvement. The most common issue with

alignment was for Japanese particles, which were often mistranslated or omitted.

This is because there is often no word-level equivalent in English or Chinese. The

example below shows a poor translation caused by misaligned particles. Aligned

phrases are marked with (1) and (2):

• Input: The motion of water molecules of local parts [which have made (2)]

hydrogen bond move collectively [while (1)] water molecules of the other

parts do not move .

• Output: 水分 子 の 水素 結合 の 動き [を (2)] 一括 して 局所 の 水分 子

[が (1)] 他の 部分 の 運動 に は 移動 し ない 。

It is common that syntax-based approaches fail due to incorrect upstream

monolingual analysis (in particular parsing). These errors were kept to a minimum

by employing forest input, however Chinese parsing remains an issue for future

improvement. All English parsing errors were caused by incorrect PP attach-

ment. OOV (out-of-vocabulary) errors were most prevalent for English–Japanese

translation. This is because the English side of the ASPEC corpus is particularly

noisy, containing numerous misspellings and typos, and was not written by native

speakers.

The results of our error analysis showed that word order and choice are the ar-

eas requiring the most attention. We address function word selection in Chapter 3,

then more general word choice in Chapter 4 and Chapter 5, where we attempt to

improve morphological agreement in a generalized setting. To improve word order,

we propose a novel reordering approach in Chapter 6.

2.7 Open-Source Release

The system has been made available an open-source toolkit in order to promote

research on dependency tree-to-tree translation. The code and documentation are
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Figure 2.7: Increase in translation quality (BLEU) for official releases of Ky-

otoEBMT. The Moses baseline score is included for comparison.

available7 under the AGPLv3 license8.

The major changes for each numbered release are summarized in Table 2.5.

We have performed on-going evaluation on the ASPEC data (see Section 2.6) for

each public release and have seen a constant improvement in translation quality.

Figure 2.7 shows how the quality has improved over the last four official releases,

along with Moses baseline scores for comparison. Note that these results use

slightly different settings from the WAT evaluation in Section 2.6.

7http://lotus.kuee.kyoto-u.ac.jp/̃john/kyotoebmt.html
8https://opensource.org/licenses/AGPL-3.0
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Version Date Major Changes

0.1 May 2013 First C++ version

0.2 Aug 2013 Improved decoding, sibling dependency support

0.3 Feb 2014 Lattice decoding, improved features

0.4 June 2014 First public release, tuning improvements

0.5 Oct 2014 Reranking (see Section 7.2), n-best input

0.6 Mar 2015 Expanded feature set, decoder improvements

1.0 Sep 2015 Forest input, improved reranking

Table 2.5: Summary of major open-source releases.

2.8 Conclusion

In this chapter we have described the KyotoEBMT translation system. Ky-

otoEBMT exploits both source and target dependency analysis to improve the

quality of translation between distant language pairs. We also employ online ex-

ample retrieving to enable extraction of arbitrarily large translation examples at

translation time.

We believe that the use of dependency syntax is important for accurate transla-

tion across distant language pairs, especially in settings such as the WAT transla-

tion tasks with many long sentences with convoluted structure. We have designed

a complete translation framework around this concept, using dependency trees at

each step from alignment to example retrieval to example combination.

Our evaluation demonstrated that the current performance (in terms of BLEU

and RIBES) of our system has overtaken state-of-the-art open-source PBSMT

systems. Comparison of 2014 and 2015 submissions to the Workshop of Asian

Translation showed that improved alignment and the addition of forest input were

effective in improving translation quality. Error analysis showed however that

parsing and alignment errors do remain. A potential improvement would be to

consider using forests for all the translation examples and not simply the input

sentence.

Word order and target-side fluency remain serious challenges, as shown by our
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error analysis. We address these in the following chapters of this thesis: fluency

in Chapters 3, 4 and 5; and word order in Chapter 6.



Chapter 3

Post-Editing with Dependency

Syntax

We commence our exploration of target-side syntax with the simplest application:

syntax-based post-editing. We show that translation fluency can be improved by

exploiting the target-side structure of tree-to-tree machine translation output to

post-edit function words automatically.

3.1 Introduction

Post-editing is the process of improving the output of a translation system after

decoding has completed. The primary advantages of this approach are its speed

and simplicity, as post-editing methods are decoder independent and restrict the

search space from the entire hypothesis space to the k-best translation output. In

this study we consider 1-best post-editing, i.e. the direct editing of 1-best decoder

output, as opposed to the other popular approach of reranking, which attempts

to rerank the top k translation candidates.

In our error analysis in Section 2.6.3, we found that word choice and word order

are key areas requiring improvement. Indeed, these errors constituted roughly 30%

of all mistranslations. In this chapter we attempt to reduce such errors with our

proposed syntax-based post-editing approach.

Word choice and ordering errors can cause a significant drop in translation

39
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comprehensibility, especially if function words are omitted or incorrectly trans-

lated. In particular, it is important to translate negation and passive structures

using correctly placed function words, and prepositional phrases must be correctly

ordered and use the appropriate prepositions. We found in our error analysis of

current systems that the lack or incorrect placement of relative pronouns has a

largely negative effect on preserving sentence meaning, and also that badly formed

punctuation impedes understanding.

In the previous chapter we introduced KyotoEBMT, a state-of-the-art depen-

dency tree-to-tree machine translation framework. One of the major advantages of

such a system is that we have access to structured output, in the form of a depen-

dency tree, as opposed to a flat string. We believe that this additional structure

can help to recover the intended meaning of a poorly translated sentence, and that

this is often unclear from flat MT output.

For example, the intended meaning of the translation in Figure 3.1 is much

clearer from the dependency tree representation. We can recover the information

that ‘translate documents’ is a (mistranslated) relative clause only by inspecting

the tree structure of the output. Based on this observation, we consider how it

can be possible to use this richer output representation to understand better the

cause of function word errors and correct them more effectively.

We propose a post-editing algorithm for editing function words based on a sim-

ple dependency tree language model that is able to predict additions, replacements

and deletions. We show that a significant improvement in human evaluation can

be achieved with our proposed method.

3.2 Related Work

The generation of precise and comprehensible automatic translations remains a

considerable challenge. In particular, function words are often poorly translated

by standard machine translation systems, particularly across language pairs with

greatly differing syntax.

Surprisingly few studies have aimed specifically at improving function word

translation for statistical machine translation systems, despite this having been
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Figure 3.1: String vs tree output. The intended meaning of a translation is of-

ten unclear from only string output. In this example, we cannot tell easily that

‘translate documents’ is a relative clause (missing the relative pronoun ‘which’ or

‘that’) and that ‘the paper’ is a prepositional phrase (missing the preposition ‘in’)

rather than the direct object of ‘described’.

considered for rule-based systems [1]. While we were unable to find any previous

studies specifically on statistical function word post-editing, function words have

been exploited to generate improved translation rules in previous work [104].

The most similar approach to our method of editing function words uses struc-

tural templates and was proposed for SMT [59]. Statistical post-editing of MT

output in a more general sense [93] and learning post-editing rules based on com-

mon errors [28, 41] have shown promising results. The majority of statistical

post-editing methods work directly with string output, however a syntactically

motivated approach has been tried for post-editing verb-noun valency [82].

While a high level of machine translation accuracy is sought after in all sub-

ject domains, the correct translation of function words is especially important for

patent and scientific translation, where it is necessary for the translation to pre-

serve strictly the meaning of the input sentence. This has led to the promotion

of research in this field, especially with shared tasks and workshops on scientific
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translation, such as the Workshop on Patent and Scientific Literature Translation1

and Workshop on Asian Translation [66, 67].

3.3 Syntax-Based Post-Editing

Our proposed method starts with the dependency tree output of a tree-to-tree

machine translation system. From this we analyze the position of function words

and attempt to modify them with a tree-based function word language model.

We assume a set of function words F , a subset of the entire target-side vocab-

ulary. We also define an empty token ϵ which represents the lack of a function

word. A root node and leaf nodes can be added to the tree to allow insertion of

function words as the sentence root and leaves respectively.

A dependency tree can be decomposed into token–head pairs (t, t′). We derive

a simple language model P (f | t, t′) approximating the probability of function

word f ∈ F being inserted between t and t′. The model is estimated over the

training data by counting the occurrence of (f, t, t′) tuples where f is a function

word appearing between t and t′. Note that to make this definition well-defined, we

strictly require that function words have only one child. The probability P (f | t, t′)
is then calculated as:

P (f | t, t′) = count(f, t, t′)∑
g∈F∪{ϵ} count(g, t, t

′)
(3.1)

In our experiments we include part-of-speech tags inside tokens to reduce

homonym ambiguity (e.g. use ‘set-NN’ instead of ‘set’). We also split P (f | t, t′)
into two cases, Pleft(f | t, t′) and Pright(f | t, t′), to consider the difference between

t being a left or right descendant of t′. We will write Ps to refer to whichever of

Pleft or Pright applies in each case.

3.3.1 Operations

For a token–head pair (t, t′), word insertion is performed when Ps(f | t, t′) >

Ps(ϵ | t, t′) for some function word f . We choose the function word with the
1http://aamtjapio.com/pslt2015/
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highest probability if there are multiple candidates. Replacement of function word

t is performed similarly if Ps(child(t) | f, t′) > Ps(child(t) | t, t′) for some other

function word f . Similarly we choose the best f if there are multiple candidates.

Deletion can be performed using the same method as for replacement by adding

the function word ϵ to F . The full algorithm for post-editing a dependency tree

T is shown in Algorithm 1.

3.3.2 Filtering Replacements/Deletions with Word Alignments

In the majority of cases we found it counter-productive to replace or delete function

words corresponding directly to non-trivial source words in the input sentence. For

example, in a Chinese–English translation task, consider the two translations:

• 听/声音 (listen/sound) → listen to a sound

• 下面/100/米 (below/100/m) → 100m below

In the first sentence, the function words ‘to’ and ‘a’ in the English translation

have no corresponding words in the Chinese input and therefore its existence is

based only on the target language model. In contrast, the preposition ‘below’ in

the second sentence directly corresponds to ‘下面 (below)’ in the input and care

should be taken not to delete it (or change it to a completely different preposition

such as ‘above’).

We therefore propose restricting replacement/deletion to function words that

are aligned to trivial or ambiguous source-side words (function words without

concrete meaning, whitespace, punctuation). This allows us to change for instance

the unaligned ‘to’ in ‘listen to’ but not ‘below’ with an input alignment. The

source–target word alignments are stored in the translation examples used by the

baseline SMT system and kept track of during decoding.
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Algorithm 1 Post-Edit Tree
1: loop:

2: # Traverse tree from left-to-right

3: for (t, t′) ∈ T do

4: if t ∈ F then

5: child ← GetUniqueChild(t)

6: # Find the best function word to replace t

7: max_f , max_p ← t, Ps(t | child, t′)
8: for f ∈ F ∪ {ϵ} do

9: if Ps(f | child, t′) > max_p then

10: max_f , max_p ← f , Ps(f | child, t′)
11: end if

12: end for

13: if max_f ̸= t then

14: # Replace t with max_f and restart for entire tree

15: Tree.Replace(max_f , child, t′)

16: goto loop

17: end if

18: else

19: max_f , max_p ← t, Ps(ϵ | t, t′)
20: # Find the best function word to insert

21: for f ∈ F do

22: if Ps(f | t, t′) > max_p then

23: max_f , max_p ← f , Ps(f | t, t′)
24: end if

25: end for

26: if max_f ̸= ϵ then

27: # Add function word max_f and restart for entire tree

28: Tree.Add(max_f , t, t′)

29: goto loop

30: end if

31: end if

32: end for
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3.4 Experiments

3.4.1 Data and Settings

We performed translation experiments on the Asian Scientific Paper Excerpt Cor-

pus (ASPEC)2 for Japanese–English translation. The data was split into training,

development and test sentences as described in Section 2.6.

We defined English function words as those tokens with POS tags of func-

tional types such as determinants and prepositions, and treated Japanese parti-

cles as function words for the purposes of alignment-based filtering. The primary

post-editing model was trained on the training fold of the ASPEC data. Since

our model only requires monolingual data, for comparison we also trained a sep-

arate model on a larger (30M sentences) in-house monolingual corpus (Mono) of

technical/scientific documents.

KyotoEBMT (see Chapter 2) was used as the baseline SMT system, and post-

editing was performed on the top-1 translation. After editing we recalculated the

decoder model score (by updating the language model score and word penalty)

and used the edited sentence if the model score improved. We found this was

slightly more effective than relying solely on the post-edited output.

Japanese segmentation and parsing were performed with JUMAN and KNP

[47]. For English we used NLParser [13], converted to dependency parses with an

in-house tool. Alignment was performed with the three steps described in Sec-

tion 2.4.1, including supervised alignment with Nile [81] and our in-house align-

ment tool based on Gibbs sampling [65]. We used a 5-gram language model with

modified Kneser-Ney smoothing built with KenLM [37].

3.4.2 Evaluation

Human evaluation was conducted to evaluate directly the change in translation

quality of function words. We found that automatic evaluation metrics such as

BLEU [74] were not sufficiently sensitive to changes (the change rate is relatively

low for post-editing tasks) and did not accurately measure the function word

accuracy.
2http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
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In human evaluation we asked two native speakers of the target language (En-

glish) with knowledge of the source language (Japanese) to decide if the system

output was better, worse, or neutral compared to the baseline. A random sample

of 5 sets of 20 (development) and 2 sets of 40 (test) edited sentences were selected

for each experiment and the identity of the systems was hidden from the raters.

The Fleiss’ kappa inter-annotator agreement [30] for wins/losses was 0.663, and

when including neutral results this was reduced to 0.285.

3.4.3 Tuning and Test Experiments

We first performed a preliminary tuning experiment on the development fold of

ASPEC to investigate the effect of model parameters. The results in Table 3.1

show for each row the model settings, the number of wins (+), losses (–) and

neutral (?) results compared to the baseline, and the change rate (CR) over the

entire development set.

The first three settings (‘OnlyIns’, ‘OnlyRep’, ‘OnlyDel’) show the effects of

allowing only insertions, replacements and deletions respectively without using

source–target alignments (see Section 3.3.2). We can see that the quality for

deletions is lower than insertions and replacements, and error analysis showed

that the major cause was deletion of function words aligned to content words in

the input.

We reran the experiments using the alignment-based filtering (‘AlignA’ and

‘AlignB’) and found the results improved. While possible to achieve a higher

change rate by allowing all three operations, we could only achieve a slight in-

crease in accuracy by disallowing replacements (the setting ‘AlignB’). The differ-

ence was mainly due to alignment errors, which caused more serious problems for

replacement as they were able to alter sentence meaning more severely.

The best settings in the tuning experiment (‘AlignB’) were used to conduct

the final evaluation on the unseen test data from ASPEC. We also compared

models trained on the ASPEC training fold and on our larger monolingual corpus.

Table 3.2 shows the final evaluation results. The results on the test set show

significant improvement on win/loss sentences at p < 0.01. There was no clear

improvement gained by increasing the size of model training corpus, however the
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change rate could be improved by using more data.

Insert Replace Delete Align + – ? CR

OnlyIns Yes No No No 10 6 4 2.3

OnlyRep No Yes No No 11 7 2 5.5

OnlyDel No No Yes No 7 8 5 8.6

AlignA Yes Yes Yes Yes 11 7 2 10.5

AlignB Yes No Yes Yes 11 4 2 3.3

Table 3.1: Results of tuning experiments on development set.

Insert Replace Delete Align + - ? CR

ASPEC Yes No Yes Yes 19 8 13 2.3

Mono Yes No Yes Yes 23 13 4 4.1

Both Yes No Yes Yes 42 21 17 3.9

Table 3.2: Final evaluation results on unseen data.

3.5 Error Analysis and Conclusion

The experimental results show that in general our proposed method is effective

at improving the comprehensibility of translations by correctly editing function

words. Table 3.3 gives examples of improved translations and Table 3.4 shows

examples of worsened translations.

We found that using source–target alignments was effective in avoiding errors

such as the first example in Table 3.4, however there remained some trickier cases

where the alignment information was not sufficient, for example when function

words were null or incorrectly aligned. The remainder errors were primarily caused

by incorrect parsing and sparsity issues. The second example in Table 3.4 shows

such a sparsity error, which could perhaps be fixed by normalizing numerical

values.
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Input 転倒予防が重視されるのは，大腿骨頚部骨折との因果関係にある。

Baseline Of fall prevention is emphasized is the causal relation with femoral

neck fracture.

Proposed Fall prevention is emphasized is the causal relation with femoral

neck fracture.

Input 今後は，難治性疾患 (...) へと期待が寄せられる。

Baseline In the future , the expectation is being placed to the treatment of

the intractable disease (...).

Proposed In the future , the expectation is being placed on the treatment of

the intractable disease (...).

Table 3.3: Examples of improved translations after deleting and replacing incorrect

function words.

Input 特に，簡易比色計によるりん酸塩の測定（モリブデン法）では，(...)

。

Baseline Especially, in the measurement of phosphate by simple colorimeter

(molybdenum method), (...).

Proposed Especially, the measurement of phosphate by simple colorimeter

(molybdenum method), (...).

Input (...) 小型個体 (...) の水揚げ量を (...) １５％以下に抑えることが

勧告された。

Basline (...) it was recommended that (...) suppress fish catch of small

individuals (...) to 0,15%.

Proposed (...) it was recommended that (...) suppress fish catch of small

individuals (...) 0,15%.

Table 3.4: Examples of worsened translations. The first example shows a case

where an important function word is lost, and this example was fixed by using the

source–target alignments. The second example shows an error caused by model

sparsity.
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3.6 Summary

In our first application of target-side dependency syntax, we have shown the quality

of machine translation can be improved through the automatic post-editing of

function words using a simple syntax-based function word language model.

We have presented an algorithm for inserting, deleting and replacing function

words, and have demonstrated the effectiveness of using source–target alignments

to improve accuracy. The results show however that steps must be taken to provide

more robustness against parsing/alignment errors. One possible approach would

be to consider target-side forests, however it is likely that the increased decoding

complexity would also cause search errors.

It is clear from this first simple application that there is promise in using

target-side dependency syntax for post-editing, however the scope of this approach

requires expanding. In the next chapter we develop the ideas presented here to

build a considerably more sophisticated model for generalized post-editing with

dependency language models.



Chapter 4

Dependency Tree Language

Model I

Our error analysis in Section 2.6.3 showed that poor target-side fluency was the

second most prevalent error category for our dependency tree-to-tree system. In

the previous chapter we considered a simple approach to solve this using target-

side syntax: syntax-based function word post-editing. We develop these ideas in

this chapter into a fully generalized dependency tree language model. In order

to evaluate the effectiveness of our approach in a more general and challenging

setting, we make an in-depth study into improving word agreement for a variety

of language families displaying rich morphology.

4.1 Introduction

In this chapter we consider the task of language modeling. Classic n-gram language

models are effective at capturing translation fluency at the word level, however

such approaches often fail at the syntactic and semantic level. We abstract the

traditional definition of a classic n-gram to dependency trees and show how our

approach is able to improve more challenging issues such as long-distance word

agreement.

The primary motivation for using structured language models is that we can

reduce the ‘distance’ between words that are interdependent on a syntactic (and

50
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often semantic) level. While tree-based models have more complicated structure

than their string-based counterparts, the sparsity of the most important informa-

tion is reduced, giving a more compact and relevant representation of context.

Despite recent advances in neural and structured language modeling technol-

ogy, the most widespread language modeling paradigm in major translation sys-

tems is still classic n-gram modeling. Classic n-gram models are combined with

a variety of smoothing methods, the most popular being modified Kneser-Ney

[15] and Stupid Backoff [7], to form simple and robust models of linear word con-

text. There exist highly optimized implementations, such as KenLM [37], making

n-gram models popular in modern systems [49, 68, 79].

There have been a number of issues that have prevented the widespread adop-

tion of tree-based language models. We believe that the two main problems are

the lack of an agreed standard on the most effective definition of tree-based con-

text, and the requirement for a syntax-based decoder for full integration into a

machine translation system. The use of parsers as language models has shown

little improvement in translation experiments [71, 77] and there have been previ-

ous attempts to use syntax-based language modeling that have failed to show any

statistically significant increase in BLEU [84] (see errata1). We show that it is

still possible to achieve a significant improvement in translation quality judged by

humans without requiring a syntax-based decoder.

In the following two chapters we frequently refer to the problem of long-distance

word agreement. We use the term ‘long-distance’ to refer to agreements that would

not usually be captured in a standard 5-gram language model, i.e. word pairs more

than five words apart. Long-distance agreement is a tricky issue for string-based

machine translation, which is susceptible to errors such as incorrect noun/verb

agreements. We show that our model is most effective for languages that are

morphologically rich and allow for free word order, such as those in the Slavic

family, because they contain more examples of non-local dependencies that effect

fluency. See Figure 4.1 for an example of such a long-distance word agreement

error.

1https://www.cs.jhu.edu/~ccb/publications/incremental-syntactic-language-models-for-

phrase-based-translation-errata.pdf
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Figure 4.1: Example of long-distance agreement error in a French translation. The

grammatical gender of the adjective utilisées (f.pl.) should be corrected to utilisés

(m.pl.) to agree with the noun minéraux (m.pl.). The verb sont also demonstrates

long-distance agreement that would be difficult to capture with a classic n-gram

model.

4.2 Related Work

The idea of capturing structure in a language model has been around since the late

1990s [14], particularly in the speech recognition community. Such tree-based, or

‘structured’ language models have mainly considered only limited word histories,

such as ancestors [35] or specific parent/sibling relationships [88], however more

recent attempts have started to define more general syntactic word histories [91].

The beginnings of such generalized approaches can be traced back to ‘arbori-

context’ trees [63], which are designed to select optimal partial histories.

Other effective syntactic approaches in recent years have included a bilingual

language model [58, 70] enhanced with some dependency information [32], specifi-

cally the POS tags of parent/grandparent and closest left/right siblings, and mod-

eling a generative dependency structure on top of a classic n-gram language model

[27].

While not directly designed as ‘syntax-based’ language models, approaches

based on neural networks have also been shown to be effective at capturing a

more general word history than classic n-gram models. Such approaches include

feed-forward [4, 85] and recurrent [62] neural network language models and more

recently LSTM-based language models [96]. The most recent approach at the time

of writing considers a hybrid approach of syntactic and neural network components
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[86].

Two major drawbacks of neural network based approaches are that it can

be difficult to ‘reverse engineer’ the syntactic knowledge learned and that model

training can struggle computationally on large data.

Our approach expands on existing studies by proposing a more generalized

framework for syntactic context and analyzing its effectiveness for a large range of

language pairs. We show that it is applicable even to systems without target-side

syntax.

4.3 Model Details

4.3.1 Classic n-grams with Linear History

The classic generative story for language models is as a Markov process. Gener-

ation of a sequence of words is based on the notion of ‘history’ or ‘context’, i.e.

the ordered list of words already generated. It would be desirable to consider

complete histories, however in practice this is not tractable. To counter sparsity

and computational issues, a selective history must be used.

These ideas inspire the design of the classic n-gram language model. We assume

an (n − 1)th order Markov property and use a linear context, i.e. model the

probability of any given word as being conditional on the previous n − 1 words.

The probability of a sentence w1, ..., wm can be written as:

P (w1, ..., wm) =

m∏
i

P (wi | w1, ..., wi−1) (4.1)

≈
m∏
i

P (wi | wi−n+1, ..., wi−1). (4.2)

In many cases, this linear history can be helpful in determining the next word.

For example, the word ‘Francisco’ is more likely to appear after ‘San’ than ‘Los’.

But when it comes to modeling other issues affecting fluency, such as word agree-

ment, we must also use non-local context, ideally at the same time without in-

creasing model sparsity. This is the primary motivation for our tree-based language

model.
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4.3.2 Syntax-Based History and t-treelets

We now consider how to define the history of a word on the syntactic level. First

we define generalized tree n-grams, or ‘t-treelets’, as the syntax-based equivalent of

the classic n-gram. Our definition of t-treelets is similar to the concept of syntactic

n-grams [91], which we formalize and expand over arbitrary tree structures. This

is in contrast to previous work that considers only a limited subset of possible

syntactic relations.

Let us assume a sentence S = {w1, w2, ..., wm} of length m with a virtual root

R and a connected tree structure T : S → S ∪ {R} mapping each word wi to one

head T (wi) ∈ S ∪ {R} with T (wi) ̸= wi. The design of T can be motivated by

any arbitrary set of standards, however a natural choice for machine translation

applications would be dependency parses.

We now define the ‘history’ Hi for wi as the subset of S consisting of the words

visited by in-order depth-first traversal of {S, T} starting at R and ending at wi.

The diagram on the right of Figure 4.2 shows the tree-based history of an example

sentence (shown on the left).

The core reasoning behind this definition of history is that we wish to ensure

that the t-treelet history of all words respects a well-defined ordering (in this case

the order of visiting nodes by depth-first traversal). This ensures that we never

encounter any cyclic dependencies or ambiguity when calculating the probability

of an entire tree. Note that this well-defined ordering is trivial in the case of classic

n-gram models, however this is an important consideration in tree-based models.

While in this study we use in-order depth-first traversal, any well-defined order-

ing could be used, for example to reflect the ordering used for hypothesis combina-

tion in a tree-based decoder. As an example of differences caused by this choice, an

in-order depth-first traversal allows us to include the children of left-side siblings

into word history, and this is useful for many word agreement problems, however

this is not possible with breadth-first traversal.

Conversely we cannot make use of the right-side siblings of a word. This could

be useful in rare cases such as ‘le prix fixe’ (‘the set price’) when we need to

use a modifier to the right of a determiner (the adjective ‘fixe’) to determine the

gender/number of its head noun (‘prix’), which in this case could be either singular
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Figure 4.2: Example of t-treelet extraction. The left figure shows an example

sentence {S, T} and the right figure shows the history H for ‘mice’. The five

possible t-treelets of order l ≤ 3 are shown beneath.

or plural.

We now define the ‘t-treelets of size l for wi’, as all connected subtrees S′ ∈ Hi

where wi ∈ S′ and |S′| = l, along with the tree structure T . See the lower half

of Figure 4.2 for the t-treelets of order l ≤ 3 extracted for the word ‘mice’ in the

example sentence. Our t-treelet definition captures in particular the difference

between left and right dependencies, e.g. whether wi is to the left or right of

T (wi) (we treat each case separately), and relative sibling positions, which are to

our knowledge not considered in previous work.

While there is only one possible linear n-gram of given size for any word, the

same cannot be said for t-treelets. Furthermore, the number of possible t-treelet

shapes increases with l and depends on the sentence structure. For convenience

we normalize the {S′, T} by renumbering the words and dependencies from 1 to

l. This allows us to classify t-treelet shapes into groups.

The possible shapes for t-treelets for l ≤ 3 are shown with natural language

examples in Figure 4.3. For completeness we also add the empty t-treelet. There

are 10 possible such t-treelets: 1 of size 1, 2 of size 2 and 7 of size 3. A major

benefit of this approach is that we are able to turn each shape g ‘on’ and ‘off’, a

process which is described in Section 4.3.2 below.
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Figure 4.3: The shapes of all possible t-treelet types for l ≤ 3 with natural language

examples and word-by-word glosses. The words marked with dark nodes represent

the wi around which the t-treelets are centered.
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We can now model the probability of generating a given word wi with t-treelets

G as P (wi | H) ≈ P (wi | G). Note that the different g ∈ G are not always

independent, so this probability can be rather complicated to calculate. We found

that the approximation P (wi | G) ≈ |G|
√∏

g∈G P (wi | g) works well, although it

could also be possible for example to treat the individual P (wi | g) as scores and

combine with a log-linear model. In our case we found that it was difficult to learn

weights for a log-linear model, since in our experiments BLEU was not sensitive

to changes in long-distance word agreements.

Task-Specific Shape Selection

Previous definitions of tree-based histories have considered subsets of the possible

t-treelet shapes that we have defined above, such as ancestor chains (wi, T (wi), ...,

T l−1(wi)) [35] and restricted parent/sibling relations [88]. Our definition not only

expands upon these, but also adds flexibility as we are able to turn each shape type

‘on’ and ‘off’ depending on the requirements of the task. An additional benefit

is that it becomes possible to compare directly with previous work by simply

selecting t-treelet shapes.

In particular, we found that there are types of dependency relations that may

or may not affect word agreement depending on languages and parsing standards.

The natural language examples shown in Figure 4.3 give classic cases where certain

t-treelet shapes are important for determining word morphology. There equally

are types that are never (or very rarely) used in certain languages, and we found

that considering these types at times caused unnecessary noise. This is similar to

using unnecessarily long n-gram sizes in classic language models, where there is

often not enough gain in expressiveness to warrant the additional errors caused by

sparsity and irregular smoothing.

See Section 4.5 for experimental results and a more detailed analysis of the

relative performance of various special cases of our model, including comparison

with previous work.
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4.3.3 Smoothing

Since we conducted our translation experiments on web-scale data, we designed

our model to be used with Stupid Backoff [7] smoothing, which has been shown

to perform well on this kind of data.

The mathematical formulation of Stupid Backoff smoothing is shown below.

The formula below is applied recursively until a known n-gram is found, and uni-

gram scores are defined as SB(wi) = c(wi)/
∑

w c(w), where c(w) is the observed

frequency of word w in the training corpus. The parameter α controls the degree

to which we penalize backing off to shorter n-grams.

SB(wi | wi−1
i−n+1) =


c(wi

i−n+1)

c(wi−1
i−n+1)

, if c(wi
i−n+1) > 0

αSB(wi | wi−1
i−n+2), otherwise.

(4.3)

The primary advantage of this smoothing method is that it does not require the

calculation or lookup of modified t-treelet counts. This allows for fast and simple

calculation of backoff probabilities, and works well when using each t-treelet type

score as a feature. Note that Stupid Backoff smoothing was also used in similar

work [35] that we use for comparison.

When backing off to shorter t-treelets, note that we calculate probabilities

based on the shorter shape type, and that this type is always unique because of

the (in-order depth-first) ordering constraint. For example (in Figure 4.3), ‘il est

grand’ (type 4) is backed off to ‘est grand’ (type 2) non-ambiguously.

4.3.4 Application to SMT: Filtering and Reranking

In our experiments (see Section 4.4) we measure the translation improvement

gained by reranking k-best machine translation output using our language model.

Reranking is a very flexible and simple approach. In particular we do not make

any assumptions about the decoding algorithm of the underlying MT system and

we are able to use a standard string-to-string system by simply parsing the output.

As mentioned in the introduction, we believe that a major stumbling block for

syntax-based language modeling has been the lack of applicability to string-based
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MT systems (which are still the most common), and we show that for our model

this is not an issue.

The obvious problem of using string output is that we cannot guarantee re-

liable parsing, particularly of (poorly formed) machine translation output. We

propose the simple approach of using a filtering heuristic based on dependency

tree consistency to reduce this problem.

We parse all k-best candidates and extract the dependency treelets of size l

centered on each word that differs between each candidate and the 1-best (baseline)

translation. We then discard any k-best candidates that contain any such treelets

with a different dependency structure to the corresponding treelet in the 1-best

translation. This simple heuristic was very effective at reducing errors caused by

bad translations/parses, as simple word changes (e.g. changing the gender of a

definite article) should not affect the parse tree. Naturally this filtering leads to a

small reduction in recall.

4.4 Experimental Setup

We performed a series of experiments to measure the improvement in translation

quality obtainable by reranking MT output using our proposed tree-based language

model. In particular we were interested in improving morphological errors such as

word agreement.

4.4.1 Language Choice

In our experiments we built and evaluated models for nine major languages. This

allowed us to analyze clearly the types of morphological error that the proposed

model was able to improve. The languages were selected from a variety of language

families and all display word agreement to various degrees.

The languages chosen were: Czech and Russian [Slavic]; Hungarian [Uralic];

Dutch and German [Germanic]; French, Portuguese and Spanish [Romance]; and

Hebrew [Semitic]. For consistency we used English as the source language for all

translation experiments. See Table 4.1 for an overview of the characteristics of

these languages affecting (long-distance) word agreements.
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Family Cases Genders Other

Czech Slavic 7 4 Highly flexible word order.

Russian Slavic 6 3 Highly flexible word order.

Hungarian Uralic 182 0 Displays verb-object agreement.

Dutch Germanic 03 2 Diminutive inflections.

German Germanic 4 3 Long-range word order flexibility.

French Romance 0 2 Rich verb forms.

Portuguese Romance 0 2 Rich verb forms.

Spanish Romance 0 2 Rich verb forms.

Hebrew Semitic 0 2 Highly inflected Semitic roots.

Table 4.1: Word agreement/ordering characteristics of the nine languages selected

for translation experiments.

All language models were trained on mixed domain monolingual web corpora

of 5–10 billion unique sentences per language.

4.4.2 Automatic Evaluation Metrics

Translation quality was measured with BLEU [74] and the language model was

intrinsically evaluated using a method of evaluation we call ‘win-rate’ (see below).

The formulation of BLEU is described in Section 1.4.1. As can be seen from the

definition, BLEU considers only the precision of local n-grams. BLEU has been

shown in the past to be ineffective in evaluating syntax-based approaches, with

improvements being ‘invisible to [such] an n-gram metric’ [86]. We also found that

BLEU was unreliable at reflecting changes in translation quality for long-distance

dependencies, and that the sensitivity was low because only a small fraction of

words were changed by using the proposed model (for example many sentences do

not contain word agreement errors). Nonetheless it was practical to use such an

automatic measurement for parameter tuning.

As another point of reference, we also used a method of intrinsic language
2Sources disagree about this number, however it is generally agreed to be between 16–24.
3There remain some rare examples of declension taken from archaic usage.
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French German Russian

f = 100
BLEU 30.32 22.39 19.23

win-rate 0.505 0.612 0.649

f = 10
BLEU 30.32 22.45 19.23

win-rate 0.512 0.635 0.674

f = 1
BLEU 30.33 22.49 19.23

win-rate 0.534 0.667 0.737

Table 4.2: Result of varying model size by changing t-treelet filtering threshold f

in training. These results used the setting ‘AllTypes’.

model evaluation we call ‘win-rate’. For each sentence we calculated the language

model score (using the proposed model) of the baseline MT system output and the

reference translation. The win rate was then calculated as follows, giving the ratio

of number of times our model gives a higher score to the reference translation than

to the baseline output. The model can be considered useful if it can successfully

give a higher score to the reference translation than the baseline MT output. While

we do not claim that this metric is strongly correlated with human judgment, we

believe it gives useful information and is very simple to implement.

win-rate =
#(score(reference) > score(baseline))

#sentences
(4.4)

The classic method of intrinsic language model evaluation is perplexity, how-

ever we chose not to use this measure because it assumes normalized probabilities,

which we cannot strictly guarantee when using our model approximations and

Stupid Backoff smoothing.

4.4.3 Training and Lookup

Prior to model training, we tokenized the entire training corpus and collected word

frequencies. Tokens with frequency less than or equal to a certain threshold (in our

case 1) were replaced with an ‘unknown’ token in order to model t-treelet counts

during lookup that include out-of-vocabulary tokens.
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Training was conducted by parsing training sentences and counting all t-treelets

of size ≤ 3. It would be possible to use longer t-treelets however we found that

there were not many cases where longer context was necessary for determining

correct word agreement. To save memory t-treelets could be pruned based on

frequency, however we found that this negatively impacted performance (see Ta-

ble 4.2). Parsing was conducted with the shift-reduce dependency parser described

in [51].

4.4.4 Reranking SMT Output

In order to evaluate the effectiveness of the proposed model we tested the ability

of our language model to rerank the 1000-best translation output of a string-based

SMT system.

The baseline translation system was a state-of-the-art in-house phrase-based

translation system trained on large web data. The baseline used a standard 5-

gram language model trained on the same data as the proposed tree-based model

and for comparison also used Stupid Backoff smoothing.

The 1000-best translation candidates were filtered using the dependency tree

consistency heuristic described in Section 4.3.4. We also removed noisy sentences

consisting over 50% non-alphanumeric characters, and evaluated on sentences with

length between 10 and 30 words.

4.5 Optimization of Model Parameters

We first explored the effects of varying our model parameters, in particular the

selection of t-treelet shapes, comparing with previous work. The experiments were

conducted on a development data set consisting of approximately 10000 sentences

per language that were held out from our baseline and language model training

data.

For comparison with previous work, we first experimented with settings en-

abling various sets of t-treelet shapes (for size l ≤ 3). The setups ‘Ancestors’ and

‘Siblings’ were designed to correspond to the models of [35] and [88] respectively.

Note that there are some slight differences, in particular the smoothing algorithm
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for ‘Siblings’ (Shen et al. did not mention any smoothing) and the fact that our

models are more general than previous work, differentiating between left and right

children.

The four model variants tested were as follows:

• Ancestors: ancestors, no siblings (types: 1–2, 6–9)

• Siblings: siblings, no ancestors (types: 1–5)

• AllTypes: all t-treelet types (types: 1–9)

• Trigrams: all pure 3-grams, siblings and ancestors (types: 3–9)

4.5.1 Results

Table 4.3 shows the results for the four system variants. We can see that the most

effective settings were to use all t-treelets or all trigrams, and these more general

setups performed better than the more restrictive settings based on previous work.

We found that using only trigrams gave better results than for all t-treelets because

the lower order t-treelets often gave less reliable information (i.e. we need longer

context).

Additional tuning experiments showed that improvements were made by in-

creasing model size (reducing t-treelet filtering threshold frequency f for training,

see Table 4.2). An increase of on average 0.1 BLEU per language was observed by

varying the beam width from 1 to 100, and we used a beam width of 100 for all

our evaluation results. We note that the parsing quality was roughly the same for

all languages. For detailed parser evaluation, see [51].

We also found empirically that it was effective to penalize unseen t-treelets

more heavily than in previous work [7] by changing the backoff parameter α from

the standard 0.4 to 0.004 (see Section 4.3.3 for more details). We did not conduct

a full-scale experiment to find the optimum value.
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Slavic Uralic Germanic

System Language CS RU HU NL DE

Baseline
BLEU 18.75 19.19 13.60 28.42 22.40

win-rate - - - - -

Ancestors
BLEU 18.81 19.23 13.64 28.41 22.43

win-rate 0.540 0.681 0.533 0.584 0.631

Siblings
BLEU 18.81 19.21 13.62 28.44 22.44

win-rate 0.542 0.637 0.550 0.578 0.604

AllTypes
BLEU 18.83 19.23 13.63 28.44 22.44

win-rate 0.548 0.676 0.547 0.591 0.636

Trigrams
BLEU 18.82 19.22 13.63 28.48 22.43

win-rate 0.563 0.681 0.552 0.592 0.645

Romance Semitic

System Language FR PT ES IW

Baseline
BLEU 30.25 34.51 32.36 20.96

win-rate - - - -

Ancestors
BLEU 30.26 34.62 32.36 20.98

win-rate 0.504 0.604 0.545 0.505

Siblings
BLEU 30.28 34.57 32.33 20.97

win-rate 0.509 0.604 0.541 0.520

AllTypes
BLEU 30.30 34.63 32.39 20.97

win-rate 0.509 0.615 0.539 0.517

Trigrams
BLEU 30.30 34.67 32.38 20.99

win-rate 0.528 0.607 0.549 0.520

Table 4.3: Comparison of model formulations enabling various t-treelet types.

BLEU and win-rate are shown for each proposed system. The best results are

shown in bold type.
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4.6 Final Evaluation and Error Analysis

4.6.1 Experimental Settings

We conducted a full evaluation of our proposed approach on nine language pairs.

For the final evaluation we used the ‘Trigrams’ settings that were shown in Sec-

tion 4.5 to be the most effective overall. We decided to use this setting for all

language pairs, since we did not believe that the BLEU and win-rate scores gave

a clear enough winner for each individual language pair.

The experiments were conducted by translating mixed-domain English web

sentences that were held out from the baseline SMT system and language model

training data. As we were interested in evaluating the differences between the

baseline and proposed models, we translated a large test set then for evaluation

randomly selected (on average) 400 sentences per language that had different out-

put between the baseline and proposed systems. The change rates in Table 4.4

shows the percentages of sentences that were translated differently.

4.6.2 Human Evaluation

Translation quality was measured by skilled human raters in order to maximize the

reliability of the evaluation. The raters were bilingual speakers of each language

pair but not professional translators.

For each sentence the raters were instructed to give a score between 0 and 6

(inclusive), given the source sentence and translation, one rater per sentence, as

described in Section 1.4. The rating guidelines are shown in Table 1.1 and the

number of raters per language pair can be found in Table 4.4.

We calculated the following scores for each language pair:

• ‘mean-diff’: The mean difference between the sentence-level human ratings

of the proposed and baseline systems.

• ‘mean-sign’: The mean difference between the number of sentence-level wins

and losses (in terms of human ratings) of the proposed and baseline systems.

• ‘change-rate’: Percentage of sentences that were different between the base-

line and proposed systems.
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Slavic Uralic Germanic

Language Czech Russian Hungarian Dutch German

mean-diff +0.0771 +0.0985 +0.0600 -0.0248 +0.0599

mean-sign +0.0771 +0.0803 +0.0600 -0.0199 +0.0599

change-rate (%) 8.51 2.74 5.57 7.04 7.57

baseline (0–6) 2.86 2.76 2.27 3.75 3.14

proposed (0–6) 2.94 2.86 2.33 3.73 3.20

Number of raters 18 61 14 25 75

Romance Semitic

Language French Portuguese Spanish Hebrew

mean-diff +0.1075 -0.0050 -0.0124 +0.0099

mean-sign +0.1025 -0.0100 -0.0299 -0.0199

change-rate (%) 4.71 10.21 4.98 6.18

baseline (0–6) 3.54 4.30 3.98 3.01

proposed (0–6) 3.65 4.29 3.97 3.02

Number of raters 74 81 73 18

Table 4.4: Human evaluation results, comparing mean difference between proposed

and baseline systems, sorted by language group.

• ‘baseline’: Mean sentence-level human evaluation score for the baseline sys-

tem.

• ‘proposed’: Mean sentence-level human evaluation score for the proposed

system.

4.6.3 Results

Table 4.4 shows the results sorted by language family. Significantly positive (p <

0.05) results for ‘mean-diff’ and ‘mean-sign’ are shown in bold type. Table 4.5

shows the exact number of test sentences with each score difference (-6 to +6)

between proposed and baseline systems.
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-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

Czech 0 0 0 0 3 29 307 61 1 1 0 0 0

Russian 0 0 0 0 2 18 212 35 7 0 0 0 0

Hungarian 0 0 0 0 3 29 312 53 3 0 0 0 0

Dutch 0 0 0 0 8 85 225 80 4 1 0 0 0

German 0 0 0 0 5 40 287 64 5 0 0 0 0

French 0 0 0 1 6 45 255 83 10 0 0 0 0

Portuguese 0 0 0 0 13 58 263 52 15 0 0 0 0

Spanish 1 0 1 0 9 71 250 60 5 2 0 0 3

Hebrew 0 0 0 1 8 48 297 38 5 2 3 1 0

Table 4.5: Number of test sentences with each score difference (-6 to +6) between

proposed and baseline systems.

The results show a significantly positive4 improvement for Czech, Russian,

Hungarian, German and French, with more fluent output as judged by human

raters. In particular, all the languages displaying noun declension were signifi-

cantly improved (Czech, Russian, Hungarian and German). The translation qual-

ity for Romance languages (with the exception of French), Hebrew and Dutch

did not change significantly when using a tree-based language model. In the next

section we analyze these findings in detail.

4.6.4 Discussion

The results of the human evaluation showed a noticeable difference between the ef-

fectiveness of the tree-based language model for different languages. In particular,

the morphological characteristics of each language (to some extent captured by

the language family) appear to effect greatly the utility of a structured language

model in comparison to the baseline, which uses a standard n-gram model.

All nine languages require correct word agreement for high fluency, however
4More precisely, we calculated the 95% confidence interval for the observed mean using the

Student’s t-distribution, where the degrees of freedom were set to the sample size minus 1. The

result was deemed significantly positive if the lower bound was greater than zero.



68 CHAPTER 4. DEPENDENCY TREE LANGUAGE MODEL I

the type and nature of these agreements varies between language. For example,

adjective-noun and noun-verb agreement in Romance languages can be expressed

relatively simply with an n-gram model as the words in question normally ap-

pear together, which could explain why we saw less improvement for this lan-

guage family. In contrast, case choice in Slavic languages requires consideration

of complicated and long-distance dependencies, which is consistent with the large

improvement shown by our proposed system. Similar observations that such ap-

proaches are more effective for languages with relatively free word order have been

made in previous work [86].

The magnitude of improvement per language also showed some correlation

with the baseline translation quality. Analysis of the scores given by human raters

showed a tendency for lowered sensitivity to word endings when the translation

quality was high. We found many examples of generally well-translated sentences

(particularly in Portuguese and Spanish) that were given a score of 6 (out of

6) irrespective of word ending errors. This means that there were a number of

improvements not reflected in our results. Conversely, Russian sentences with a

lower average score tended to gain or lose a whole point when word endings were

changed. This could also be due to the type of errors themselves, as for example

adjective agreement mistakes are unlikely to impede understanding as much as

case errors, and shows the importance of accurate long-distance agreement.

4.6.5 Error Categorization

Table 4.6 gives an error categorization for a random sample of ten incorrect sen-

tences for each of five languages (Dutch, French, German, Portuguese and Rus-

sian). The categories are defined as follows:

• OOV (26%): t-treelet not seen in training data

• Meaning (22%): Meaning of original sentence changed (e.g. tense)

• Tricky (16%): Various tricky cases5

5For example, incorrect choice of indicative/subjunctive, case selection requiring semantic

inference.
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Dutch French German Portuguese Russian Total

OOV 0 0 5 4 4 26%

Meaning 3 3 1 4 0 22%

Tricky 3 0 2 0 3 16%

Parse 1 2 1 0 3 14%

Noise 2 2 0 2 0 12%

Context 1 3 1 0 0 10%

Table 4.6: Error categories for analyzed test sentences.

• Parse (14%): Parse error caused incorrect t-treelet lookup

• Noise (12%): Broken input sentence, incorrect human rating

• Context (10%): Model used inappropriate context (e.g. too short)

Overall the most common cause for errors was out-of-vocabulary t-treelets,

particularly phrases involving rare nouns. Our current model does not attempt

to guess deep information, such as the gender or case of out-of-vocabulary words,

however this would make for interesting future work. The second most common

error was changing the original sentence meaning by for example modifying the

tense or changing singular to plural. This could be improved in the future by

considering a bilingual approach incorporating source tokens.

Despite parse error reduction by our filtering method, errors in the parsing of

the training corpus still led to learning some incorrect t-treelets. In particular,

structures such as ‘the JJ NN and NN’ (for example ‘the unusual character and

Amy’) caused the most errors, as they were often incorrectly parsed and caused

word agreement errors (e.g. ‘unusual’ had plural agreement). While in the ma-

jority of cases the proposed model formulation picked sufficient and appropriate

context, there were some difficult cases requiring larger context that was not cov-

ered by length 3 t-treelets, in particular for words with many (> 3) siblings.
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4.7 Example Sentences (Improved)

Below we give illustrative examples of improved translations for the five languages

analyzed in Table 4.6 (Dutch, French, German, Portuguese and Russian).

Dutch

• Input: Then you might also be interested in Innolog Holdings Corporation

• Baseline: Dan is dit misschien ook geïnteresseerd in Innolog Holdings Cor-

poration

• Proposed: Dan ben jij misschien ook geïnteresseerd in Innolog Holdings

Corporation

French

• Input: This is an example of how a complex data structure must be broken

in basic data elements.

• Baseline: Ceci est un exemple de la manière dont une structure de données

complexe doit être brisé en éléments de base de données.

• Proposed: Ceci est un exemple de la manière dont une structure de données

complexe doit être brisée en éléments de base de données.

German

• Input: The aim of this game is to help your child with their shape and

visual recognition skills.

• Baseline: Das Ziel dieses Spiels ist es, Ihr Kind mit ihrer Form und visuelle

Erkennung Fähigkeiten helfen.

• Proposed: Das Ziel dieses Spiels ist es, Ihrem Kind mit ihrer Form und

visuelle Erkennung Fähigkeiten helfen.
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Portuguese

• Input: Many of the students play video games all the time at home.

• Baseline: Muitos dos estudantes jogar videogames o tempo todo em casa.

• Proposed: Muitos dos estudantes jogam videogames o tempo todo em

casa.

Russian

• Input: In 2013 we are believing for revival over your church and our cities.

• Baseline: V 2013 godu my verim v vozro�denie nad vaxeĭ cerkvi

i naxih gorodah.

• Proposed: V 2013 godu my verim v vozro�denie nad vaxeĭ cerkvi

i naxih gorodov.

4.8 Example Sentences (Worsened)

Below we give illustrative examples of worsened translations.

Dutch

This error was caused by incorrect parsing of the noun sequence of repeated ‘wijn’

(wine) tokens.

• Input: Donnafugata Wines - White wines, Red wines, Natural sweet wines

• Baseline: Donnafugata Wijnen - Witte wijn, rode wijn, natuurlijke zoete

wijnen

• Proposed: Donnafugata Wijn - Witte wijn, rode wijn, natuurlijke zoete

wijnen
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French

While the change is grammatically correct, it incorrectly modifies the original

tense (past into present).

• Input: Aurel Stein‘s identification seemed rather tentative

• Baseline: L‘identification de Aurel Stein semblait plutôt provisoire

• Proposed: L‘identification de Aurel Stein semble plutôt provisoire

German

The error is caused by an OOV t-treelet ‘dem taktischen Rückzug’ (‘the tactical

withdrawal’).

• Input: The song is sung by a soldier on the island of Corfu, following the

tactical withdrawal of the Serbian Army through east and west Albania.

• Baseline: Der Song wird von einem Soldaten auf der Insel Korfu gesungen,

nach dem taktischen Rückzug der serbischen Armee durch Ost und West

Albanien.

• Proposed: Der Song wird von einem Soldaten auf der Insel Korfu gesungen,

nach der taktischen Rückzug der serbischen Armee durch Ost und West

Albanien.

Portuguese

This is caused by a parse error around the infinitive construction ‘não saber’ (‘not

knowing’).

• Input: Charms, demons in caves, and the mediator‘s art of not knowing

• Baseline: Pendentes, demônios em cavernas, e arte do mediador de não

saber

• Proposed: Pendentes, demônios em cavernas, e arte do mediador de não

sabendo
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Russian

This is a tricky example where the Russian preposition ‘na’ (‘to/on’) can take ei-

ther of two grammatical cases (accusative or prepositional) depending on meaning,

and the incorrect meaning is selected.

• Input: Sending a notification to update a badge on the tile

• Baseline: Otpravka uvedomleni� obnovit~ znaqok na plitke

• Proposed: Otpravka uvedomleni� obnovit~ znaqok na plitku

4.9 Summary

In this chapter we have described a generalized dependency tree language model for

machine translation. We performed a thorough human evaluation on nine major

languages using models trained on large web data, and have shown significantly

positive improvement in translation quality for five morphologically rich languages.

Analysis suggests that a generalized tree-based language model is best suited

to languages groups such as Slavic and Uralic that display many non-local features

such as cases, as we saw no significant improvement over a classic n-gram language

model for groups such as Romance languages with high baseline quality and few

non-local word agreements. Despite the common concern that tree-based language

models are incompatible with string-based MT systems, we have shown that our

model is capable of performing well even in this scenario by using filtered parses

of string MT output.

As future work we would like to experiment with other methods of integrating

the language model score into machine translation systems. The natural starting

point is to query the tree language model during decoding, as the reranking method

proposed in this paper has access to a limited number of hypotheses and does not

integrate other features that are available to the decoder. In addition, as we have

shown that BLEU is insensitive to changes made using a syntax-based language

model, in the future we would like to explore metrics based on syntactic n-grams

[86]. This would allow for improved model tuning.
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We have shown in this chapter that dependency tree language models can

be effective in improving translation fluency for morphologically rich languages,

however there remain two major drawbacks. The first is our assumption of the

availability of a high-quality target-side parser. Furthermore, we require partic-

ularly robust parsing for reranking (potentially malformed) string output. The

second disadvantage is that we do not consider source-side context, which can be

important for preserving the intended meaning of a translation. We address these

two issues in the next chapter.



Chapter 5

Dependency Tree Language

Model II

In the previous chapter we learned that dependency tree language models can be

effective in improving word agreement for morphologically rich languages. Our

proposed approach relied however on high quality target-side parsing and did not

consider source-side context.

In this chapter we present a practical solution to syntax-based post-editing that

does not require target-side parsers. We exploit source-side dependencies from a

resource-rich language, such as English, to build a projected syntax language model

that is independent of target language. To overcome sparsity issues caused by

mapping syntax across distant and low-resource language pairs, we design simple

yet inclusive context rules.

The proposed approach gives a significant improvement in translation quality,

judged by skilled human raters, for all 20 languages tested. Our post-editing

method is simple, fast and decoder independent. To improve the coverage of our

approach we also consider an extension to a more general delexicalized language

model.

75
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5.1 Introduction

Word agreement is a bottleneck in the improvement of automatic translation.

Morphologically rich languages have a large number of surface word forms and

this leads to data sparsity problems that affect both phrase-based and neural

network MT systems. The problem is particularly challenging for morphologically

poor-to-rich language pairs, such as English–Russian, where it can be difficult to

infer target-side features such as grammatical cases from the source language.

Previous work has used a variety of source-side approaches such as source

enrichment with generated morphology [2, 100] and generation of synthetic phrases

[12]. The most effective target-side approaches have involved dependency-based

language models [88, 35, 80], however these suffer from unreliable parsing accuracy.

Bilingual language models are another possibility [32], however they suffer from

sparsity problems.

The main idea of this study is to project source-side syntax (specifically de-

pendency trees) to the target-side using word alignment1, then to construct a

target-side language model using these projected dependencies.

There are a number of benefits of projecting the source-side syntax. The first

is that we do not require a parser for the target-side, which is often not available

(or of low quality) for morphologically rich languages. In most cases the source

language will be English, for which there exist high-quality dependency parsers.

The second major advantage of our approach compared to the use of target-side

language models is that source-side information is not distorted by the noisy trans-

lation process. It is difficult to use a target-side language model for post-editing

because we must either use an X-to-tree decoder or attempt to parse decoder out-

put that is likely to contain errors. In contrast we can easily employ projected

language models for post-editing.

The greatest potential fallback of a mapping approach is that we assume the

syntax of the source language is sufficiently similar to the target language. While
1The generation of word alignments is out of the scope of this study. Our approach simply

requires each source word to have a corresponding target word (or null token), which can be

inferred using traditional SMT word alignment, dictionary-based matching or extracted from a

neural attention model.
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we cannot assure this for long sentence fragments, for most context affecting word

agreement (such as verb–noun and noun–adjective pairs) we only require bigram

mappings.

We elect to use post-editing as it is simple, efficient and decoder-independent.

Furthermore, we edit the 1-best translation directly as this is k times more efficient

than popular reranking approaches that process k-best lists. Unlike much post-

editing work, such as the WMT15 post-editing shared task [6], we do not require

human post-edit logs as training data, and instead train directly on the parallel

corpus.

5.2 Syntactic Transfer

5.2.1 Related Work

Syntactic transfer by projection has been proposed for a variety of NLP tasks, such

as training POS taggers, named-entity taggers and parsers [106, 43]. The basic

principle is to transfer knowledge from a resource-rich language to a resource-poor

language.

In the context of machine translation, syntax projection has mainly been used

to enrich training data for tree-based MT systems, i.e. parse trees of one or

both sides of a parallel corpus. For example, dependency parsers can be trained

by projecting an English treebank to a resource-poor language [95]. It has been

shown that MT systems trained with such projected parses can perform as well as

those trained on standard treebanks [45].

Syntactic transfer can be used not only for creating training data for syntax-

based MT systems, but also indirectly to train a reordering model for phrase-based

systems [33], in this case inferring source syntax from the target side. As another

example, the parser with higher quality in a tree-to-tree scenario can be used to

improve the parse trees generated by the lower quality parser [90].

To the best of our knowledge, this is the first study to apply syntactic transfer

to structured language modeling and MT post-editing.
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Figure 5.1: Post-editing an incorrect word form. Firstly the context is extracted

for the word in question (‘Hund’) on both source (green) and target (blue) sides

using mapping based on the word alignment (shown with double-headed arrows).

‘Hund’ is replaced by ‘Hundes’, the word with the highest probability of having the

marked bilingual context according to the projected dependency language model.

5.2.2 Source-to-Target Dependency Mapping

In the following discussion we map source dependency trees to the target side as fol-

lows. Consider a source-side sentence (ordered multiset of words) S = {s1, ..., sm}
and target-side sentence T = {t1, ..., tn} with artificial root nodes s∗ and t∗.

Let source-side dependencies be denoted by d : S × (S ∪ {s∗}) → L for depen-

dency labels L (including a null label l0) and source-to-target word alignment be

a : S → T ∪ {t0}, where t0 is a null token. The projected dependency map d′ (on

the target-side) is then defined by d′ : T × (T ∪ {t∗})→ L where:

a(si), a(sj) 7→

d(si, sj), if a(si) ̸= a(sj) ̸= t0

l0, otherwise
(5.1)

Figure 5.1 shows an example of dependency projection for the pobj relation

between the source-side noun ‘dog’ and its head ‘of’. ‘Dog’ is mapped to ‘Hund’

and ‘of’ to the target-side null token via word alignment (shown by double-ended

arrows), and the dependency is copied to the target side with its label pobj.
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5.3 Projected Language Model

5.3.1 Word Context

Previous work has considered a number of definitions of word context for depen-

dency trees. These include parent/siblings [88], ancestors [35] and general syntac-

tic n-grams [80]. While larger, more general contexts are effective in the case of

standard target-side language models, there are two major disadvantages: sparsity

and projection difficulty.

Data sparsity is problematic for morphologically-rich languages and much of

the context used in previous work is irrelevant to improving word agreement. We

therefore design simple rules to capture the important linguistic clues (for example

the modified noun for determining adjective endings) as opposed to considering

arbitrary neighboring words. These rules are sufficient to cover the large majority

of word agreements for 20 major languages (see Section 5.4.2).

The projected syntax setting requires us to map dependencies for large source

subtrees to the target side, which can be difficult (even for humans) for distant

language pairs. By focusing on the important words, our approach does not require

high quality word alignment and reduces sparsity, allowing us to use not only

monolingual but bilingual tree contexts.

We define three types of word context for ‘noun-like’, ‘adjective-like’ and ‘verb-

like’ structures, shown in Figure 5.2. ‘Noun-like’ captures noun inflections, such

as for number, gender and case, when used as direct/indirect objects or in preposi-

tional phrases. ‘Adjective-like’ captures modifier inflections based on the modified

noun and its grammatical case. ‘Verb-like’ covers verb conjugations based on the

number/person/gender of their subject. We also include any auxiliary modifiers

(such as ‘will’ and ‘let’) to cover inflections for modal constructions.

The context type of a word is determined by the dependency label2 between

the word and its head, as shown below. We ignore words with other labels, such

as conjunctions and punctuation.

• Noun-like: dobj, pobj, iobj
2We use the Stanford dependency labels:

http://nlp.stanford.edu/software/dependencies_manual.pdf
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Figure 5.2: Definition of the three types of context: ‘Noun-like’, ‘Adjective-like’

and ‘Verb-like’. The green and blue boxes denote respectively the source and

target context for the word marked in red. Dashed lines indicate optional context

for languages displaying case agreement.

• Adjective-like: amod, det, predet, poss

• Verb-like: nsubj

5.3.2 Exploiting Linguistic Knowledge

While our rules are language-independent, they can be easily augmented with

language-dependent knowledge.

We found that case endings caused the majority of morphological errors for

languages such as Russian, however there were no such errors for French, which

does not inflect nouns for case. Since we know in advance whether the target

language has grammatical cases, we are able to decide whether to include richer

context or to ignore certain agreements (e.g. between prepositions and nouns) in

order to reduce model sparsity and undesired edits. The dashed boxes in Figure 5.2

show the words we ignored for caseless languages.
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Another common phenomenon we found was the necessity to consider defi-

niteness of nouns in some Germanic (particularly Scandinavian) languages. For

example, the English ‘a green house’ is translated into Norwegian as ‘et grønt

hus’, however ‘the green house’ should inflect to ‘det grønne huset’, with both

the noun and adjectives changing to show definiteness. We therefore included all

dependencies with the label ‘det’ to noun-like and adjective-like contexts.

5.3.3 Language Model Training

A language model can be trained to predict the most likely word given some

bilingual context. We count the words appearing with each bilingual context in

a parallel corpus and store them as key-value pairs, where the key is the context

and the value is a list of the possible words W with their corresponding frequency

across the parallel corpus. The model score for each word w given a context tree

c is given as:

P (w | c) = fw,c

fc
(5.2)

where fc is the corpus-wide frequency of context c and fw,c is the number of

occurrences of w with context c.

For an example, see Figure 5.1, which shows the possible words W (‘Hundes’,

‘Hund’, ...) for a bilingual context c (green and blue words) and their language

model scores P (w | c).

5.3.4 Post-editing

The following algorithm is then used to post-edit translations of a baseline system

using the projected language model. Firstly we parse the input sentence and map

the source-side parse tree to the target-side baseline output. For each word in the

translation, we first check the dependency label to its head and select the rule

type defined in Section 5.3.1 (or skip if there is no matching rule). The context

c for that rule type is extracted and the most likely word w′ given the context is

returned as follows:

w′ = argmax
w

P (w | c) (5.3)
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The process is repeated for each word in the sentence in left-to-right order.

While we also tried using a depth-first traversal of the projected target-side de-

pendency tree to allow for multiple edits in a natural hierarchy, this did not give

any significant improvement over the simplest approach. The same was true for a

lattice search over all post-editing candidates, obtaining only a small improvement

for the considerable increase in computational complexity. We therefore used the

left-to-right one-pass approach, whose time complexity is linear in the sentence

length and does not require generation of a k-best list.

To improve the post-editing accuracy we used a maximum entropy classifier

[5] to decide whether to commit each edit based on a variety of features θ. The

decision to edit was made if and only if w ·log θ > b, where w is a weight vector and

b is a bias term. The weights and bias were tuned to maximize human evaluation

scores (see Section 5.4.2) on a development set for the post-edited system versus

the baseline.

In our experiments the features used were: projected tree LM score, baseline

LM score (standard n-gram language model), sentence length, context type (3

binary features) and additional context type (2 binary features).

5.4 Experiments

We performed comprehensive experiments to assess the improvement in translation

quality obtained by post-editing the output of a strong baseline system, which we

treated as a black box. Translation experiments were performed for 20 target

languages with English used as the source language, and the baseline and post-

edited translations were evaluated by human raters (see Section 5.4.2).

The baseline was a state-of-the-art in-house MT system trained on a large-scale

web corpus. The baseline combined SMT and NMT approaches and used settings

optimized for the best baseline translation quality for each language pair. We

used a standard n-gram language model trained on the target side of the parallel

corpus.

The proposed (projected syntax) language model was trained on the same

parallel corpus as the baseline. We used the same word alignments as in the
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baseline MT system and the source (English) text was parsed with a shift-reduce

dependency parser similar to previous work [51]. Evaluation was conducted on

400 randomly held-out web sentences for each language pair, and we used another

400 sentences to tune the post-edit classifier.

We used the following languages: Bulgarian (bg), Catalan (ca), Czech (cs),

Danish (da), German (de), Greek (el), Spanish (es), French (fr), Croatian (hg),

Italian (it), Lithuanian (lt), Latvian (lv), Dutch (nl), Norwegian (no), Polish (pl),

Portuguese (pt), Russian (ru), Slovenian (sl), Swedish (sv), Ukrainian (uk). As

for the additional context features explained in Section 5.3.2, we used grammat-

ical cases for Croatian, Czech, German, Greek, Hungarian, Latvian, Lithuanian,

Polish, Russian, Slovenian and Ukrainian; and we marked definiteness for Danish,

Norwegian and Swedish.

5.4.1 Filtering

Since we were working with a noisy web corpus we applied some simple filtering to

reduce model error. We removed any word/context pairs from the training data

that appeared fewer than 5 times in total and kept only the words that were seen

in at least 10% of examples for each context.

To ensure we only edited words with morphological variants, we filtered any

candidates whose word endings differed by more than 3 characters, for example

replacing ‘cat’ with ‘cats’ but not ‘crabs’. We filtered tokens containing multiple

punctuation marks and rare short words of fewer than 5 characters.

5.4.2 Evaluation

Similar to our evaluation in Chapter 4, translation quality was measured by skilled

human raters in order to maximize the reliability of the evaluation. Raters were

instructed to give a score between 0 and 6 (inclusive) for each of the baseline and

proposed system translations, and the rating guidelines are shown in Table 1.1.

We calculated the following scores for each language pair:

• ‘CR’: Change rate, i.e. percentage of sentences that differed between the

baseline and proposed systems.
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• ‘mean-diff’: The mean difference between the sentence-level human ratings

of the proposed and baseline systems.

• ‘mean-sign’: The mean difference between the number of sentence-level wins

and losses (in terms of human ratings) of the proposed and baseline systems.

5.4.3 Results and Error Analysis

The results are shown in Table 5.1. The projected syntax post-editing model was

able to improve significantly the translations for all 20 of the target languages

tested compared to a competitive baseline3.

We performed error categorization for 20 random sentences for each of three

languages (German, French and Russian) to analyze the main causes of incorrect

post-edits. The categorization is shown in Table 5.2 and the meaning of each

category is explained below:

• Noise: Broken input sentence, meaningless baseline translation, bad human

evaluation

• Tricky: Error caused by a special/rare case4

• Model: Incorrect word form selected by model (training noise)

• Mapping: Incorrect mapping caused by incompatible source and target struc-

tures5

• Meaning: Grammatically correct but changing sentence meaning (e.g. re-

placing ‘he’ with ‘she’)

• Parse: Incorrect source-side parsing

• Class: Original word not replaced by a morphological variant

3We omit the details of the baseline in this review copy for anonymity.
4For example, Russian numbers that take the genitive case, verbs in the subjunctive or im-

perative mood, word-sense disambiguation errors.
5For example, ‘the entire X’ on the source side becoming ‘the entirety of X’ on the target

side.
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CR mean-diff mean-sign

bg 0.63 0.34 [0.25, 0.42] 0.28 [0.21, 0.35]

ca 0.76 0.15 [0.08, 0.22] 0.14 [0.08, 0.20]

cs 4.34 0.12 [0.05, 0.18] 0.10 [0.04, 0.17]

da 1.70 0.45 [0.38, 0.52] 0.42 [0.35, 0.48]

de 2.82 0.29 [0.22, 0.37] 0.24 [0.19, 0.30]

el 1.10 0.07 [0.01, 0.13] 0.06 [0.01, 0.11]

es 1.09 0.27 [0.18, 0.37] 0.23 [0.17, 0.30]

fr 1.51 0.10 [0.02, 0.17] 0.10 [0.04, 0.16]

hr 2.15 0.19 [0.12, 0.25] 0.17 [0.11, 0.23]

it 1.07 0.27 [0.17, 0.36] 0.21 [0.15, 0.27]

lt 3.72 0.24 [0.18, 0.31] 0.21 [0.15, 0.27]

lv 3.76 0.11 [0.06, 0.17] 0.11 [0.06, 0.16]

nl 2.58 0.46 [0.38, 0.54] 0.42 [0.34, 0.49]

no 1.34 0.23 [0.16, 0.31] 0.22 [0.16, 0.29]

pl 2.97 0.11 [0.03, 0.19] 0.11 [0.04, 0.18]

pt 2.02 0.29 [0.20, 0.39] 0.24 [0.18, 0.31]

ru 2.73 0.09 [0.02, 0.15] 0.06 [0.01, 0.12]

sl 3.42 0.10 [0.05, 0.15] 0.08 [0.04, 0.13]

sv 1.70 0.34 [0.26, 0.42] 0.28 [0.22, 0.35]

uk 2.38 0.07 [0.01, 0.14] 0.06 [0.01, 0.11]

Table 5.1: Mean sentence-level improvement compared to baseline with confidence

interval for p < 0.05. All results are significantly positive.
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DE FR RU Total

Noise 7 7 2 16

Tricky 0 5 8 13

Model 5 1 5 11

Mapping 4 3 3 10

Meaning 2 3 0 5

Parse 1 1 2 4

Class 1 0 0 1

Table 5.2: Error categorization for sentences worsened by the proposed post-

editing method.

DE FR RU Total

OOV 4 2 5 11

Context 2 5 0 7

Tricky 1 2 3 6

Noise 2 0 1 3

Parse 1 0 1 2

Filtered 0 1 0 1

Table 5.3: Categorization of baseline errors not improved by the proposed system.

Among the real losses (ignoring errors caused by data/evaluation noise), the

clearest problem was handling tricky cases where isolated contexts were insufficient

to determine word endings. While it is possible to reduce such errors by enlarging

context size, we found that doing so caused more negative side effects by increasing

model sparsity than it did to fix these errors.

5.5 Improving Coverage with Delexicalization

Our experiments showed a clear increase in translation quality for all languages

tested. However the coverage was not as high as we expected.

We performed analysis of our baseline system and found that on average there
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Wiktionary Lexicalized Wiktionary + Lexicalized

unigram full context unigram full context unigram full context

CS 10.6 6.3 98.2 34.8 98.2 36.3

DE 27.3 16.9 96.9 61.4 96.9 64.7

ES 63.5 63.2 98.6 80.3 98.6 85.7

FR 65.0 64.6 98.5 77.9 98.5 84.5

PT 43.4 43.4 98.3 77.5 98.3 82.0

RU 42.7 23.2 96.1 51.9 96.1 57.8

Table 5.4: Coverage of unigrams and full contexts using Wiktionary, our lexicalized

model and delexicalized model. Coverage is defined as the percentage of LM

lookups finding matches at inference time.

Lexicalized Delexicalized

CR mean-diff CR mean-diff

CS 4.42 0.119 [0.058, 0.181] 4.44 0.204 [0.128, 0.281]

DE 2.91 0.280 [0.185, 0.376] 5.06 0.197 [0.117, 0.277]

ES 1.06 0.191 [0.061, 0.321] 1.30 0.310 [0.178, 0.441]

FR 1.42 0.289 [0.168, 0.410] 1.91 0.144 [0.041, 0.247]

PT 1.84 0.374 [0.243, 0.505] 2.58 0.349 [0.223, 0.475]

RU 2.81 0.122 [0.024, 0.219] 1.71 0.187 [0.036, 0.337]

Table 5.5: Human evaluation results of delexicalized model with original lexical-

ized model results for comparison. The coverage is greatly improved for similar

translation quality.
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were morphological errors in roughly 3–5% of sentences for Romance and Ger-

manic languages and up to 25% of sentences for Slavic languages displaying rich

inflections. The proposed model was not able to correct all of these errors, with a

relatively low change rate for complex and low resource languages.

5.5.1 Change Rate Analysis

We analyzed the reasons why incorrect word forms were not improved and sum-

marized the findings in Table 5.3. The error categories are the same as in Table 5.2

with the addition of ‘OOV’ (out-of-vocabulary words and unseen n-grams), ‘Con-

text’ (context size too small to find error6) and ‘Filtered’ (filtered by the rules

described in Section 5.4.1).

5.5.2 Delexicalization

The most common cause of drop in change rate was OOV words and unseen n-

grams, in particular for Russian and German, which display rich case endings and

agglutination respectively. We observed that many errors were caused by unseen

combinations of known words. For example, we were able to correct agreements

such as ‘vin blanche’ (white wine) but not ‘vin verte’ (green wine), as we had not

seen the term ‘green wine’ even though the individual words are common. The

word ‘vin’ is not necessary however to determine the correct adjective form, instead

only the information that it is a singular masculine noun. Based on this observation

we attempted to generalize the proposed language model with delexicalization.

We mined word inflections from Wiktionary7 for six languages (Czech, German,

Spanish, French, Portuguese and Russian), creating a mapping of word forms to

grammatical attributes including gender, number and person. All available words

and attributes (as of early 2016) were included and we set a special wildcard value

to all unknown attributes.

The language model was retrained, replacing all context words with their cor-

responding list of tags from the mined lexicon. In the example above of ‘vin verte’,
6For example, not finding the incorrect agreement between ‘she’ and ‘were’ in the sentence

‘She swam in the sea and were bitten by a shark.’
7https://en.wiktionary.org
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we replaced the context ‘vin’ with singular-masculine. Whenever a word was not

found in the lexicon we backed off to the original (lexicalized) form.

Table 5.4 shows the increase in unigram and full context coverage we were able

to achieve by delexicalizing the model. Despite the Wiktionary coverage vary-

ing considerably by language, the proposed model is able to improve full context

coverage for all languages tested.

We conducted a translation experiment with the delexicalized language model,

using the exact same settings as the experiment in Section 5.4 with the lexicalized

model. Table 5.5 shows the results, with the lexicalized model scores for compari-

son. The results show a considerable improvement in change rate for all languages

except Russian8 at on average a similar level of translation quality.

We conclude that model coverage (and depending on language also quality)

can be greatly improved by delexicalization. This method is only possible however

for languages for which we have a sufficiently large inflection lexicon.

5.6 Summary

In this chapter we have demonstrated that the quality of target-side word agree-

ment can be improved significantly using mapped word dependencies. This allows

us to use a dependency tree language model for languages without dependency

parsers. We proposed a simple definition of linguistically motivated context that

was powerful enough to show improvement for all 20 languages tested. Our post-

editing approach is simple and fast, requiring no dependence on decoding algo-

rithm.

Our extension was able to improve OOV n-gram coverage however there re-

mains room for improvement in recall. We would like to combine morphological

form generation, for example using character-based neural networks [29], with our

delexicalized approach to further mitigate the data sparseness problem. While

the aim of our study was to show improvement in a decoder-independent setting,

it would also be interesting to experiment whether integration into a tree-to-tree

8A side effect of delexicalization is increase in filtering, which causes an increase in translation

quality at the expense of coverage.
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decoder can further improve translation quality.

This chapter concludes our exploration of dependency tree language models.

We have found that the keys to effectual language modeling lie in the use of source-

side context and exploitation of accurate parsing on both source and target sides

whenever available.



Chapter 6

Dependency T2T Reordering

We now turn our attention to the issue of reordering, which was identified to be

the most prevalent case of errors in our analysis in Section 2.6.3. We ask how

target-side dependency syntax can be used to improve reordering for tree-to-tree

translation systems.

Syntax-based reordering is relatively simple for binarized constituency parses,

as it is sufficient to decide either to retain the order of children or to swap them.

However, reordering is considerably tougher for dependency grammar, as words

can have arbitrarily many children, giving n! possible reorderings for n children.

It can also be desirable to consider subtrees not covering all children for building

translation rules, and this leads to further complications. Previous approaches

have tackled these problem by restricting the definition of grammar rules, reducing

the expressive power of the translation model.

In this chapter, we propose a generalized model for dependency tree-to-tree

reordering based on flexible non-terminals that can compactly encode multiple

insertion positions. We explore how insertion positions can be selected even in

cases where rules do not entirely cover the children of input sentence words. The

proposed method greatly improves the flexibility of translation rules at the cost

of only a 30% increase in decoding time, and we demonstrate a 1.2–1.9 BLEU

improvement over the system described in Chapter 2.

91
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6.1 Introduction

Translation is most commonly performed by splitting an input sentence into man-

ageable parts, translating these segments, then arranging them in an appropriate

order. The first two steps have roughly the same difficulty for close and distant

language pairs, however the reordering step is considerably more challenging for

language pairs with dissimilar syntax. We need to be able to make linguistic

generalizations, such as learning to translate between SVO and SOV clauses and

converting post-modifying prepositional and pre-modifying postpositional phrases

[78]. Such generalizations often require syntactically motivated long-distance re-

ordering.

The first approaches to reordering were based on linear distortion [50], which

models the probability of swapping pairs of phrases over some given distance.

The linear distance is the only parameter, ignoring any contextual information,

however this model has been shown to work well for string-to-string translation.

Linear reordering was improved with lexical distortion [99], which characterizes

reordering in terms of type (monotone, swap, or discontinuous) as opposed to

distance. This approach however is prone to sparsity problems, in particular for

distant language pairs.

In order to improve upon linear string-based approaches, syntax-based ap-

proaches have also been proposed. Tree-to-string translation has been the most

popular syntax-based paradigm in recent years, which is reflected by a number of

reordering approaches considering source-only syntax [54, 68]. One particularly

interesting approach is to project source dependency parses to the target side and

then learn a probability model for reordering children using features such as source

and target head words [78].

While tree-to-tree translation [34, 23, 19] has been somewhat less popular than

tree-to-string translation, we believe there are many benefits of considering target-

side syntax. In particular, reordering can be defined naturally with non-terminals

in the target-side grammar. This is relatively simple when the target structure

of rules is restricted to ‘well-formed’ dependencies [88], however in this study we

consider more general rules with flexible non-terminal insertion positions.
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Figure 6.1: Examples of tree-to-tree translation rules extracted from an aligned

and parsed bitext. Colored boxes represent aligned phrases and [X] is a non-

terminal.

6.2 Dependency Tree-To-Tree Translation

Dependency tree-to-tree translation begins with the extraction of translation rules

from a bilingual corpus that has been parsed and word aligned. Figure 6.1 shows

an example of three rules that can be extracted from aligned and parsed sentence

pairs. In this study we consider rules similar to KyotoEBMT ‘examples’ described

in Section 2.4.2.

The simplest type of rule, containing only terminal symbols, can be extracted

trivially from aligned subtrees (see rules 2 and 3 in Figure 6.1). Non-terminals

can be added to rules (see rule 1 in Figure 6.1) by omitting aligned subtrees and

replacing on each side with non-terminal symbols. We can naturally express phrase

reordering as the source/target-side non-terminals are aligned.

Decoding is performed by combining these rules to form a complete translation,

as shown in Figure 6.2. We are able to translate part of the sentence with non-

ambiguous reordering (‘read a magazine’), as we can insert ‘雑誌 → a magazine’
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Figure 6.2: Combination of translation rules, demonstrating non-terminal substi-

tution and multiple possible insertion positions for a non-matching input phrase

(‘昨日’).

into the rule ‘[X] を 読んだ → read [X]’.

We cannot however decide clearly where to insert the rule ‘昨日 → yesterday’

as there is no matching non-terminal in the rule containing its parent in the input

sentence (‘読んだ’). We use the term floating to describe words such as ‘yesterday’

in this example, i.e. for an input subtree matched to the source side of a rule,

children of the input root that are not contained in the source side of the rule as

terminals and cannot be inserted using fixed-position non-terminals in the rule.

Previous work deals with this problem by either using simple glue rules [17] or

limiting rules in a way to avoid isolated floating children [88]. For example, it is

possible to disallow the first rule in Figure 6.1 when translating a sentence such

as that in Figure 6.2 with uncovered children (in this case the word ‘yesterday’).

This method greatly reduces the expressiveness and flexibility of translation rules.

In our generalized model, we allow any number of terminals and non-terminals

and permit arbitrarily many floating children in each rule. To our knowledge this

is the first study to take this more comprehensive approach.

Note that in the case of constituency-based tree-to-tree translation it is possible

to binarize the input tree and therefore gluing floating children becomes simpler,

as we only have to choose between pre-insertion and post-insertion. In the depen-
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Figure 6.3: Possible insertion positions for flexible non-terminals with target-side

head ‘read’. Allowed positions are shown in green and disallowed positions are

shown in red. We do not allow insertion position 3 because it could allow a non-

projective dependency structure.

dency case it is in general much more difficult because we must order an arbitrarily

large group of children sharing a common head.

6.3 Flexible Non-Terminals

In this study we propose flexible non-terminals in order to create generalized tree-

to-tree translation rules that can overcome the problems described in the previous

section. Rather than fixed insertion positions for child nodes, we instead consider

multiple possible insertion positions and give features to each position. These are

stored in a compact representation allowing for efficient decoding.

We define flexible non-terminals as non-terminals with multiple possible in-

sertion positions and associated features. During decoding we select the most

promising insertion position for each non-terminal.
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6.3.1 Rule Augmentation

As is standard practice in phrase-based SMT, before translation we filter transla-

tion rules to those relevant to the input sentence. At this time, for each accepted

rule we check the input sentence for floating children, and flexible non-terminals

are added for each floating child.

We allow all insertion positions between the children (along with their descen-

dants) of the target-side head for each floating child, including insertion before

the first child and after the last child. We do not allow insertion positions be-

tween deeper descendants of the head to avoid non-projective dependencies. See

Figure 6.3 for an example of allowed/disallowed positions.

Features are then set for each insertion position and these are used to determine

the best insertion position during decoding (see Section 6.3.2). Figure 6.4 shows

an example of the proposed rule augmentation.

6.3.2 Features

In previous work reordering is mostly decided by the combination of a standard

distortion model and language model to score possible insertion positions. We

instead consider the following four features and combine them during decoding to

find the most appropriate insertion positions for floating children. All features are

real numbers between 0 and 1.

Insertion Position Features

We first define a set of features to estimate the likelihood of each insertion position

for some given non-terminal. The features for inserting the translation f of a source

phrase into the target-side e of a rule at insertion position i are defined as follows,

for surface forms (S) and POS tags (P ):

• Reordering probability:

PS(i | f, e), PP (i | f, e)

• Marginalized over target-side:

PS(i | f), PP (i | f)
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Figure 6.4: Example of translation rule with flexible non-terminals generated from

the first parallel sentence in Figure 6.1. [X] has a fixed position (4) but [Y] can

have multiple positions (1, 3, 5). Each position has an associated set of features

shown in curly brackets, where θi,j is the jth feature for insertion position i. The

first feature (0 or 1) shows whether the insertion position is unambiguous.
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• Marginalized over source-side:

PS(i | e), PP (i | e)

The probabilities P (i | X) are calculated by counting insertions of X in each

position i across the whole training corpus (aligned and parsed bitext). The exact

formula is given below, for position i (X is one of {f}, {e} or {f, e}):

P (i | X) =
count(i,X)∑
j count(j,X)

(6.1)

Instead of applying smoothing, in order to reduce sparsity issues we use both

the full probability P (i | f, e) and also probabilities marginalized over the source

and target phrases. We also consider both probabilities trained on surface forms

(S) and POS tags (P ).

While traditional models use linear distance for i, this is impractical for long-

distance reordering. Instead we restrict insertion types i to one of the following

6 types: first-pre-child, mid-pre-child, final-pre-child, first-post-child, mid-post-

child, and final-post-child. These correspond to the first (first), last (final) or

central (mid) children on the left (pre) or right (post) side of the parent word.

We found this was more effective than using either linear distance or a binary

(pre/post) position type.

Relative Position Feature

We also consider a relative position, or ‘swapping’ feature, inspired by the swap

operation of classic lexical distortion [99].

Let T be the children of the root word of the target-side of a rule. We also

include in T a pseudo-token M splitting the left and right children of the target-

side root to differentiate between pre-insertion and post-insertion.

We first learn a model describing the probability of the translation of input

phrase I appearing to the left (PL(I, t)) or right (PR(I, t)) of word t in the target-

side of a translation rule. The probabilities are calculated by counting occurrences

of I being translated to the left/right sides of t over the aligned and parsed training

bitext.
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The relative position feature is calculated by considering the relative position

of the translation of I with all the target-side root children T . For each insertion

position i, let Ti,L be the t ∈ T to the left of position i and Ti,R the t ∈ T to the

right of position i. Then we have:

P (i | I, T ) =
∏

t∈Ti,R

PL(I, t)
∏

t∈Ti,L

PR(I, t) (6.2)

Left/Right Attachment Preference

We also set an attachment direction preference feature for each rule, specifying

whether we prefer to insert the rule as a left child or right child of the root of a

parent rule.

The attachment preference is determined by the position of the target-side of

the rule in the target-side of the parallel sentence from which it was extracted. For

example, in Figure 6.1 the rule ‘昨日 → yesterday’ was extracted from a parallel

sentence in which ‘yesterday’ was a right-side child of its head (‘saw’), so we set

the attachment preference to ‘right’. In cases when we cannot determine the

attachment preference (for example ‘read’ in the first rule in Figure 6.1), because

it is the sentence root), we arbitrarily choose ‘right’.

Unambiguous Insertion Preference

In cases where we have a single unambiguous insertion position for a non-terminal

(e.g. [X] in Figure 6.4), we set an additional binary feature to the value 1 (otherwise

0) to specify that this position is unambiguous. We found that a large positive

weight is almost always given to this feature, which is to be expected as we would

prefer to use fixed non-terminals if possible. We set all features related to insertion

position choice to the maximum value (1).

6.3.3 Decoding

The flexible non-terminals that we are proposing can lead to some interesting

challenges when it comes to decoding. A naive approach is to expand each trans-

lation rule containing flexible non-terminals into a set of ‘simple’ rules with fixed
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non-terminals, and then apply classic decoding with cube-pruning.

However, this can be quite inefficient in practice. Due to the combinatorial

aspect, a single rule can expand into a very large number of simple rules. It is

common for our translation rules to have more than four flexible non-terminals,

each with more than four possible insertion positions. Such rules will already

generate hundreds of simple rules. In the most extreme cases, we may encounter

rules having more than ten flexible non-terminals, leading to the generation of

many millions of simple rules. This explosion of rules can lead to impractical

decoding time and memory usage.

It is therefore important to make use of the compact encoding of many simple

rules provided by the concept of flexible non-terminals in the decoding process

itself. We use the decoding approach of right-hand lattices [25], an efficient way

of encoding many simple rules. The idea is to encode the translation rules into a

lattice form, then use this lattice to decode efficiently without the need to expand

the flexible non-terminals explicitly.

Figure 6.5 shows how the concept of flexible non-terminals can be efficiently

encoded into lattice form. The top half shows a target-side tree translation rule

with flexible non-terminals X1, X2, X3 and X4 allowed to be inserted at any

position that is a child of the word ‘a’, with the constraint that X1 comes before

X2 and that X2 comes before X3. X5 is another flexible non-terminal that will be

a child of the word ‘f’. The lower half shows a lattice compactly encoding all the

possible combinations of non-terminal positions. Each path from the top-left to

the bottom right in this lattice represents a choice for the insertion positions of the

non-terminals. For example, the path marked with a dotted line represents the

flattened sequence ‘b c X1 X2 a X3 X4 d e f X5 g’. The lattice form has only 48

edges, while an explicit enumeration of all combinations of insertion positions for

the flexible non-terminals would force the decoder to consider 8C4×3×12 = 2520

edges.

The insertion position features described above are added to the edges of the

lattice. They are combined alongside the standard set of features, such as word

penalty and language model score, using a standard log-linear model. The weights

for the reordering features are tuned together with the standard features.
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Figure 6.5: Example showing how a rule containing many flexible non-terminals

is encoded into lattice form for decoding.
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JA–EN EN–JA JA–ZH ZH–JA

Moses 18.09 27.48 27.96 34.65

Baseline 19.97 28.41 28.13 33.51

Flexible 21.23† 30.11† 29.42† 35.37†
+Pref 21.66‡ 29.90† 29.48† 35.57‡

+Pref+Ins 21.47‡ 30.03† 29.64† 35.71‡
+Pref+Ins+Rel 21.34† 29.99† 29.78‡ 35.81‡

Table 6.1: Automatic evaluation of translation quality (BLEU). The results

marked with † are significantly higher than the baseline system and those marked

with ‡ are significantly higher than the proposed system with no insertion position

features (‘Flexible’). Significance was calculated with bootstrapping for p < 0.05.

6.4 Experiments

6.4.1 Data and Settings

We performed translation experiments on four distant language pairs, Japanese–

English (JA–EN), English–Japanese (EN–JA), Japanese–Chinese (JA–ZH) and

Chinese–Japanese (ZH–JA), from the Asian Scientific Paper Excerpt Corpus (AS-

PEC).

Our experiments were conducted using KyotoEBMT, which is described in

Chapter 2. The proposed non-terminal reordering features were added to the rules

extracted with the baseline system. Dependency parsing was performed with the

same tools as in Section 2.6 and alignment used the three-step pipeline described

in Section 2.4.1.

6.4.2 Evaluation

As our baseline (‘Baseline’), we used the default settings and features of Ky-

otoEBMT, allowing only fixed-position non-terminals. We dealt with floating

children not covered by any other rules by adding glue rules similar to those in hier-

archical SMT [17], joining floating children to the rightmost slots in the target-side

parent. For reference, we also show results using Moses [49] with default settings
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JA–EN EN–JA JA–ZH ZH–JA

Moses 63.97 68.37 79.03 77.25

Baseline 65.10 74.78 78.00 77.86

Flexible 69.94† 77.11† 80.44† 81.33†
+Pref 70.73‡ 76.85† 80.43† 81.79‡

+Pref+Ins 70.85‡ 77.01† 80.65† 82.05‡
+Pref+Ins+Rel 70.69‡ 76.93† 80.51† 81.95‡

Table 6.2: Automatic evaluation of translation quality (RIBES). The results

marked with † are significantly higher than the baseline system and those marked

with ‡ are significantly higher than the proposed system with no insertion position

features (‘Flexible’). Significance was calculated with bootstrapping for p < 0.05.

and distortion limit set to 20 (‘Moses’).

The proposed system (‘Flexible’) adds flexible non-terminals with multiple in-

sertion positions, however we do not yet add the insertion choice features. This

means that the insertion positions are in practice chosen by the language model.

Note that we do not get a substantial hit in performance by adding the flexi-

ble non-terminals because of their compact lattice representation. The systems

‘+Pref’, ‘+Pref+Ins’ and ‘+Pref+Ins+Rel’ show the results of adding insertion

choice position features (left/right preference, insertion position choice, relative

position choice).

We give translation scores measured in BLEU [74] and RIBES [44], which is

designed to reflect quality of translation word order more effectively than BLEU.

The translation evaluation is shown in Table 6.1 and Table 6.2.

6.5 Discussion and Error Analysis

The experimental results showed a significantly positive improvement in terms of

both BLEU and RIBES over the baseline tree-to-tree system. The baseline system

uses fixed non-terminals and is competitive with the most popular string-to-string

system (Moses).
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JA–EN EN–JA JA–ZH ZH–JA

% rules with flexible NTs 53.2 70.4 55.7 61.2

Average flexible NTs per rule 0.973 1.11 0.977 1.05

% all NTs that are flexible 48.0 48.6 54.5 56.1

% selected NTs that are flexible 32.2 35.1 40.5 58.4

Table 6.3: Results of non-terminal (NT) matching analysis.

The extensions of the proposed model (adding a variety of features) also all

showed significant improvement over the baseline, and approximately half of the

extended settings performed significantly better than the core proposed model.

It is unclear however which of the extended settings is the most effective for all

language pairs. There are a number of factors such as parse quality, corpus size

and out-of-vocabulary occurrence that could affect the potential value of these

features. Furthermore, Japanese is strongly left-branching (head-final), so the

left/right preference distinction is likely to be less useful than for English and

Chinese, which contain both left-branching and right-branching structures.

Compared to the baseline, the flexible non-terminals gave around a 1.2–1.9

BLEU improvement at the cost of only a 30% increase in decoding time (approxi-

mately 2.04 vs. 2.66 seconds per sentence). This is made possible by the compact

non-terminal representation combined with lattice decoding.

6.5.1 Non-Terminal Matching Analysis

We found that roughly half of all our translation rules were augmented with flexi-

ble non-terminals, with one flexible non-terminal added per rule on average. This

led to roughly half of non-terminals having flexible insertion positions. The de-

coder chose to use ambiguous insertion positions between 30%–60% of the time

(depending on language pair), allowing for many more new translation hypotheses

than the baseline system. For detailed results, see Table 6.3.
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6.5.2 Translation Examples

The following translation is an example of an improvement achieved by using

the proposed flexible non-terminals. There were multiple word order errors in

the baseline translation that impeded understanding, and these have all been

corrected.

• Input: 磁場入口と出口の温度差により生ずる磁性流体の圧力差と流速を測

定した。

• Reference: The pressure difference and the flow velocity of the magnetized

fluid caused by the temperature difference between the inlet and outlet of

the magnetic field were measured.

• Baseline: We have measured the pressure difference and flow rate of a mag-

netic fluid generated by an entrance of a magnet and an exit temperature,

and the difference between.

• Proposed: The pressure difference and the flow rate of a magnetic fluid

generated by the temperature difference between the magnetic field inlet

and exit were measured.

There are also cases where the proposed model decreases translation quality.

In the example below, the proposed system output was selected by the decoder

since it had a higher language model score than the baseline output, despite hav-

ing incorrect word order. The incorrect translation was made available by the

increased flexibility of the proposed model, and selected because the LM feature

had a higher impact than the insertion position features.

• Input: このソフトウエアのＲ５バージョンの特徴，利用マニュアルと設計文

書をまとめた。

• Reference: The characteristics of R5 version of this software, instruction

manual, and design document were summarized.

• Baseline: The R5 version of this software features, the manual for the

utilization and design documents are summarized.

• Proposed: This software design documents of R5 version features, the man-

ual for the utilization and summarized.
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6.6 Summary

In this study, we have proposed flexible non-terminals for dependency tree-to-

tree translation. Flexible non-terminals allow multiple insertion positions to be

expressed compactly and selected with features based on both source and target

syntax. We have shown that a significant improvement in BLEU and RIBES

scores can be gained by using the proposed model to increase the generality of

dependency tree-to-tree translation rules.

The work in this chapter has improved reordering, perhaps the most important

problem in translation between distant language pairs. It is clear that target-side

dependency syntax is valuable for choosing word order, as we are able to select

target-side non-terminal insertion positions in a way that ensures the syntactic

fluency of translations.



Chapter 7

Neural Networks: The Future?

7.1 Introduction

As we reach the end of our study on target-side syntax, we consider possible

directions for future research. The approaches described in this thesis are based

on Statistical Machine Translation, which until the last couple of years has been the

major focus of MT research. Recently approaches to translation based on neural

networks, known as Neural Machine Translation (NMT), have become popular

and have already demonstrated impressive results. In this chapter we ask how our

work fits into the world of neural translation.

First we describe the two current major approaches of incorporating neural

networks into MT systems: language models and translation models.

7.1.1 Language Models

One of the first applications of neural networks and deep learning to NLP was the

Recurrent Neural Network Language Model (RNNLM) [62]. RNNLMs are based

on recurrent neural networks, which have a cyclic structure allowing the recursive

combination of states.

The RNNLM has a generative story similar to a standard n-gram language

model, i.e. the next word in a sentence is that with the maximum likelihood given

the previously seen context. For classic n-gram LMs, the previous n − 1 words

are used as context in order to reduce model sparsity as the probabilities are

107
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Figure 7.1: Structure of a RNNLM. The sequence of word embeddings w0, ...,

wt−1, wt are combined recursively to form a state st at time t. The same matrices

W and U are used for each combination.

estimated from limited data. For RNNLMs however, the next word is conditioned

on a ‘context state’, which is updated recursively based on the previous context

state and the next word.

Figure 7.1 shows the unrolled structure of a RNNLM. The context state at

time t, denoted by st, is created by combining the previous state st−1 and the

current word vector wt with matrices W and U respectively. The word vectors are

usually either one-hot vectors or word embeddings [61]. The current state st is

used as the input to a network generating the next word. In practice this is often

simply a softmax layer over the vocabulary.

An additional factor that has led to the success of recurrent models is the Long

Short-Term Memory (LSTM) unit, a more powerful NN unit than the neuron with

a structure designed to model ‘memory’ when combining recurrent states. This
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Figure 7.2: Example of a sequence-to-sequence translation model. Target words

t0, t1 (red) are generated from internal states (green), which in turn are the result

of combining source words s0, s1 (blue) with already translated target words.

allows LSTMs to improve the recurrent nature of RNNs as they can successfully

combine a long sequence of inputs, effectively ‘remembering’ or ‘forgetting’ each

previous input. An alternative to the LSTM unit is the simpler Gated Recurrent

Unit (GRU) unit, which has been shown to have a similar ability to improve

recurrent networks [22].

7.1.2 Translation Models

The simplest approach to building neural translation models has been in fact the

most successful. Sequence-to-sequence methods [97] model translation as a black

box that learns to output a sequence of tokens given an input sequence.

The simplest sequence-to-sequence model is shown in Figure 7.2. The source



110 CHAPTER 7. NEURAL NETWORKS: THE FUTURE?

words s are combined recurrently to form a context state until the end-of-sentence

‘<eos>’ token is seen. The system then outputs target tokens t based on the

current context state until the end-of-sentence token is outputted. The context

state is updated recurrently based on the previous context state and the last

outputted target word.

The idea is similar to Hidden Markov Models (HMMs), which produce output

symbols based on a fixed history of input symbols, however the major differ-

ence is that RNNs are able to consider arbitrarily long history without the model

sparsity penalty faced by HMMs. Sequence-to-sequence models can be improved

by adding an ‘attention mechanism’ [3], which builds the context state from a

weighted combination of the source words in order to emulate the notion of SMT

word alignments and reordering.

7.1.3 Hybrid Syntax with Recursive NNs

Recurrent neural networks are similar to n-gram language models in that they

consider a left-to-right sequence of words. Recursive neural networks [94] are the

syntactic equivalent to recurrent networks in that they instead build context based

on a tree structure.

An example of a recursive neural network is shown in Figure 7.3. The sentence

is first parsed1 and word vectors are combined according to this parse tree structure

to build a sentence state.

Recursive neural networks have been shown to produce high-quality word em-

beddings [57] that are syntactically motivated. It is also possible to create end-to-

end translation systems using recursive neural networks [53]. While this approach

to hybridizing syntactic approaches and neural networks is interesting, such meth-

ods have not yet been shown to outperform recurrent NNs. This could be due to

the reliance on an input parse, which cannot be guaranteed to be of high quality.

1This example uses a binarized constituency parse but dependency parses work similarly.
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Figure 7.3: Building a syntactically motivated sentence state with a recursive

neural network. Words are combined hierarchically with the same structure as

a precomputed syntax tree. In this example we use the binarized constituency

parse: (S (NP (DT the) (NN sun)) (VP (VBP shone) (ADVP (RB brightly)))).

7.1.4 Overview

The core section of this thesis concentrated on two major approaches to improving

dependency tree-to-tree MT: post-editing with language models and syntax-based

reordering. We now consider two simple yet effective neural network extensions to

these approaches.

In Section 7.2 we employ state-of-the-art neural language models to improve

post-editing (specifically reranking). Section 7.3 considers neural network features

for selecting flexible non-terminal insertion positions.

7.2 Neural Networks for Reranking

In our language modeling experiments we concentrated on post-editing. One of the

major benefits of post-editing methods is that they are decoder independent and

therefore compatible with both SMT and NMT systems. Indeed our approach

in Chapter 5 was shown to be effective with a baseline that contained neural

translation components.

Another possible decoder-independent application of neural networks is to use

them to rerank k-best translation output. We performed a simple experiment to
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assess whether neural network features are able to improve our baseline depen-

dency tree-to-tree SMT system, which uses features mainly inspired by syntax.

One of the major benefits of a reranking step is that it allows us to use features

that are more expensive to calculate. For example, a RNNLM model score takes

considerably longer to calculate than for a standard language model, thus making

such features difficult to consider during decoding. More importantly, we make

heavy use of language model state optimizations during decoding and these are not

compatible with a neural language model. Decoding with neural LMs is beyond

the scope of this thesis.

7.2.1 Reranking Framework

We introduced a reranking step into the KyotoEBMT pipeline, taking the k-best

system output and selecting the optimal translation based on a log-linear score

similar to that used during decoding. For each translation in the k-best list,

we calculated a number of additional features (described in Section 7.2.2) and

appended these to the original features in the k-best list.

We then reran the tuning pipeline on the k-best list augmented with additional

features. The tuning algorithm and settings were the same as for standard tuning

(see Section 2.5.3 for details). This retuning step was added because some original

features, such as the sentence length, could interact with the additional features.

It is therefore necessary to retune in order to find the optimal combination of the

extended feature set.

7.2.2 Features

In our experiments we added the following additional neural network features:

• Monolingual RNNLM (word-based)

• Bilingual RNNLM (word-based)

• Monolingual RNNLM (character-based, Japanese/Chinese only)

• Bilingual RNNLM (character-based, Japanese/Chinese only)
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We added character-based models as additional features for Japanese and Chi-

nese, as these languages do not have marked word boundaries. There are two

major advantages of character-based models: we do not rely on word segmenta-

tion tools, which are not always accurate; and models can be more compact as we

have a smaller vocabulary size, i.e. the number of unique characters, not words.

7.2.3 Experiments

The monolingual RNNLM model was trained with the RNNLM toolkit2 using a

hidden layer size of 200. We held out 5000 sentences from the training data for

validation.

The bilingual RNNLM was the sequence-to-sequence translation model with

attention [3]. We used the open source implementation in the GroundHog/Theano

framework3. We used a hidden layer size of 1000 and training was performed with

a minibatch size of 64 and the ADADELTA algorithm [107] (ρ = 0.95, ϵ = 10−6).

The vocabulary size was reduced to 20K for the word-segmented model. The

models took two to four days each to train on a GPU.

For comparison, our experiments used exactly the same settings as those de-

scribed in Section 2.6 for the WAT14/WAT15 experiments. We used the 1000-best

translations for reranking and the results are shown in Table 7.1.

7.2.4 Conclusion

The results show that a clear improvement was achieved by using the additional

neural network language model features.

It is interesting to note that, despite the fact the bilingual neural models on

their own are not as powerful as our system for end-to-end translation, they appear

to be very useful for reranking our system output. This suggests that the neural

models learn different types of information to our system (and make different

errors), since they represent a completely distinct approach to translation. In the

future it would be interesting to try to understand concretely the nature of these

differences.
2http://rnnlm.org
3https://github.com/lisa-groundhog/GroundHog
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Language Pair System BLEU RIBES

JA–EN Base-Phrase 18.45 64.51

Base-Hiero 18.72 65.11

WAT14 20.60 70.12

WAT14+Rerank 21.07 69.90

WAT15 21.31 70.65

WAT15+Rerank 22.89 72.46

EN–JA Base-Phrase 27.48 68.37

Base-Hiero 30.19 73.47

WAT14 29.76 75.21

WAT14+Rerank 31.09 75.96

WAT15 30.69 76.78

WAT15+Rerank 33.06 78.95

JA–ZH Base-Phrase 27.96 78.90

Base-Hiero 27.71 80.91

WAT14 27.21 79.13

WAT14+Rerank 27.67 78.83

WAT15 29.99 80.71

WAT15+Rerank 31.40 82.70

ZH–JA Base-Phrase 34.65 77.25

Base-Hiero 35.43 81.04

WAT14 33.57 80.10

WAT14+Rerank 34.75 80.26

WAT15 36.30 81.97

WAT15+Rerank 38.53 84.07

Table 7.1: Evaluation results (BLEU/RIBES) for our WAT14/WAT15 submissions

after reranking with neural network features.
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Our simple experiment showed that neural network language models are able

to complement the information learned by our system and therefore it seems also

worth considering their use during decoding. The ideal approach would be to

design a tree-based neural LM in order to combine the modeling power of syntactic

and neural methods.

7.3 Improving Flexible Non-Terminals with NNs

Chapter 6 described flexible non-terminals and their effectiveness in ordering

target-side dependency trees. We used traditional lexicalized language model fea-

tures to guide the choice of insertion position during decoding.

In this section we replace these SMT-style features with a neural network that

selects insertion positions before decoding. The proposed approach improves upon

the translation quality achieved in Chapter 6. An additional benefit of this method

is that the decoder search space is greatly reduced and we show that this can lead

to a considerable reduction in decoding time.

7.3.1 Insertion Position Selection

Our tree-to-tree translation system makes use of translation hypotheses encoding

multiple insertion positions for each non-terminal on the target-side. For each

source-side word I to be inserted, we extract both source-side and target-side

features for each possible target-side insertion point J . These features are used

as the input to a neural network that predicts the optimal non-terminal insertion

position.

We use the parent of I (Ps) and the linear distance between I and Ps (Ds)

as source-side features. Target-side features are the previous (Sp) and next (Sn)

siblings of J , the parent of the insertion position (Pt) and the number of siblings

between J and Pt (Dt). We express the number of intermediate siblings as negative

when J is to the left of Pt.

The word-based features are converted into 220-dimensional vector representa-

tions by concatenating embeddings for the surface form (dimension 200), part-of-

speech (dimension 10) and dependency type (dimension 10). These are combined
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Figure 7.4: Neural network for insertion position selection. The numbers inside

boxes show the dimensions of the corresponding vectors.

to form source and target vectors, which are again combined into a single context

vector for each position. We use a tanh layer for each combination, compacting the

representations to 100 dimensions. All the links between layers are fully-connected,

however we use dropout (50%) to avoid overfitting.

Figure 7.4 shows the design of the neural network combining these features

to decide the insertion position. At inference time, the network is applied to

all insertion positions to obtain their scores, which are normalized by a softmax

function. The position with the highest corresponding score is selected.
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7.3.2 Experiments

We first conducted an experiment to assess the insertion position selection accuracy

of the proposed system. Training data for the neural network model was extracted

from a word-aligned parallel corpus (ASPEC). We removed each aligned target-side

node from its tree and used the original position as gold data. In total we extracted

approximately 16M/6M examples for JA↔EN/JA↔ZH respectively, 160K/60K of

which were used for each of development and test sets. Training was conducted

for 100 epochs.

The test set insertion position accuracies measured were: 97.08 (JA–EN), 97.72

(EN–JA), 96.51 (JA–ZH) and 97.99 (ZH–JA). The observed accuracies suggested

that the proposed method is promising for selecting flexible non-terminal insertion

positions. The results were highest for Japanese as the target language, since most

children are inserted to the left of their parents (strongly head-final).

We then conducted an experiment to measure the resulting translation qual-

ity (BLEU/RIBES) and decoding time when using only the insertion positions

predicted by the proposed model. We used the same data and baseline system

settings as in Section 6.4. The systems we compared were as follows:

• No Flexible: Simple glue rules (‘Baseline’ in Section 6.4)

• Baseline: Flexible non-terminals (‘+Pref’ in Section 6.4)

• Proposed: Single best insertion position caused by neural network model

Table 7.2 gives the results of the translation experiment. The proposed method

achieved significantly higher automatic evaluation scores than the baseline for all

language pairs tested, except BLEU for EN–JA. Furthermore, the decoding time

was reduced by about 60% relative to the baseline, since we greatly reduced the

translation search space by not considering insertion positions not predicted by

the NN model.

7.3.3 Conclusion

Our experiments in this section have shown that neural networks can be integrated

successfully into our dependency tree-to-tree reordering model. Furthermore, it
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JA–EN EN–JA

BLEU RIBES Time BLEU RIBES Time

No Flexible 20.28 65.08 1.00 28.77 75.21 1.00

Baseline 21.61 69.82 6.28 30.57 76.13 3.30

Proposed 22.07 70.49 2.25 30.50 76.69 1.27

JA–ZH ZH–JA

BLEU RIBES Time BLEU RIBES Time

No Flexible 24.85 66.60 1.00 30.51 73.08 1.00

Baseline 28.79 78.11 5.16 34.32 77.82 5.28

Proposed 29.83 79.73 2.21 34.71 79.25 1.89

Table 7.2: Translation results using neural networks to determine non-terminal

insertion positions. Bold type signifies results significantly better than the baseline

(p < 0.01).

seems that they are even more effective than our original SMT-style features at

predicting non-terminal insertion positions. We also saw a significant increase in

decoding speed facilitated by the reduction of search space size.

In this first exploration we restricted context to individual words (subtree

heads), however it could be more promising to generalize this to complete subtrees.

For example, the information in the context subtree ‘in fact’ is more informative

than simply ‘in’. This could be achieved by employing recursive neural networks

to encode context. It would also be interesting to combine the decoding time

approach in Chapter 6 to use the NN prediction scores to guide decoding, although

this would negate the speed increase made possible by the proposed approach.

7.4 Summary

Neural MT is fundamentally different from SMT. In this chapter we have shown

that this fact opens new avenues for extending our models with neural components.

We have proposed a number of post-editing and reranking approaches (see
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Chapters 3–5) that are decoder independent, allowing them to be applied trivially

to neural decoders. We can also expand these reranking frameworks by integrating

neural network components, such as neural LMs, as demonstrated in Section 7.2.

We have shown that adding neural features to reranking was able to improve

significantly improve the quality of KyotoEBMT, our tree-to-tree SMT system.

Neural features can also be used to improve the quality of our proposed syn-

tactic reordering model. We have shown in Section 7.3 that selecting insertion

positions of flexible non-terminals can be achieved more efficiently and accurately

with neural networks than the traditional lexicalized LM features proposed in

Chapter 6. This is a clear example of the possibility of building hybrid systems.

While the construction of purely neural syntactic approaches is beyond the

scope of this thesis, our survey of previous studies on recursive neural networks

has shown that there is clear potential in such approaches. The important question

remaining is whether syntactically motivated neural methods can be more effective

than end-to-end neural systems that are not explicitly fed syntactic information.



Chapter 8

Conclusion

8.1 Overview

The goal of this thesis has been to explore the effectiveness of target-side depen-

dency syntax in the improvement of statistical machine translation. We have asked

how to design tree-to-tree models robustly and efficiently, considering their com-

plexity and reliance on parsing quality, and asked in which areas of the translation

pipeline target-side syntax can be exploited most effectively.

To answer these questions, we have performed empirical studies comparing

the effectiveness of traditional phrase-based systems and approaches exploiting

the target-side syntax of a tree-to-tree system. As our tree-to-tree experimental

framework we have developed KyotoEBMT, a state-of-the-art dependency forest-

to-tree translation system, which is described in detail in Chapter 2.

The approaches that we have considered in this thesis can be classified into

two major categories: decoding-time approaches with tree reordering rules, and

post-editing approaches with tree-based language models.

We began our exploration of post-editing approaches with a simple dependen-

cy-based language model for editing function words in Chapter 3. The observation

that the intended meaning of a translation is preserved more closely in structured

than flat output allowed us to correct function word errors in tree-to-tree transla-

tions. While we showed that this method was able to give a significant improve-

ment in translation quality as judged by human raters, the scope of this approach

120
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was not sufficient.

In Chapter 4, we described the design and implementation of a generalized de-

pendency tree language model. Using this model in post-editing we were able to

improve the long-range dependencies in even flat string output by parsing transla-

tions. It was clear however that parsing quality and the lack of source-side context

were serious drawbacks to the proposed approach. We therefore attempted in our

work described in Chapter 5 to overcome these issues by training a language model

on projected source-side dependency syntax as opposed to training directly on the

target side. We found that this approach was considerably more effective, giving

strongly positive results for all twenty language pairs tested.

We considered the enhancement of translation and reordering rules as our

second major application of target-side syntax. In Chapter 6 we proposed non-

terminals with variable insertion positions that enable the design of flexible depen-

dency tree-to-tree translation rules. Our experiments showed that improving the

expressiveness of the reordering model led to a considerable increase in translation

quality.

It is difficult to say which of these approaches is more effective as they focus on

tackling difficulties for translation caused by distinct linguistic phenomena: mor-

phology and word ordering. We can expect the greatest improvement to be seen

for language pairs where both morphology and word order differ greatly between

source and target languages.

A fundamental difference between our two proposed approaches is the use of

post-editing (language modeling) versus decoder integration (reordering). This

means the two approaches are independent and can be combined trivially to gain

potentially further improvement. We believe however that it makes sense to tune

on separate evaluation metrics (human evaluation or BLEU respectively) depend-

ing on whether the optimization is conducted manually or automatically. While

this makes it less clear which of the two approaches is the most effective, by per-

forming independent tuning we are able to achieve the the optimal performance

for each model individually. It should also be noted that we used a larger corpus

to train the monolingual language models than the bilingual systems owing to the

availability of data.
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8.2 Future Work

8.2.1 Traditional Approaches

It is clear that target-side syntax is of value to statistical machine translation

systems despite its drawbacks of complexity and reliance upon upstream linguistic

analysis. We were able to achieve state-of-the-art results by applying our methods

to traditional translation tasks for a variety of language pairs.

In the coming years we can expect to see further improvement in monolingual

analysis (particularly parsing) of major languages and this would further increase

the value of syntax-based approaches. However there will remain low-resource

languages for which we do not reach an adequate level of parsing quality for the

foreseeable future. There is therefore value in pursing work that adds robustness

to syntax-based approaches, such as forest-based methods and models that exploit

rich source language syntax similar to our work in Chapter 5.

The majority of syntax-based MT research is motivated by monolingual lin-

guistic theory, which can be challenging at times to adapt to the bilingual setting

of translation. Joint alignment and parsing models, syntax projection, and unsu-

pervised learning of bilingual grammars could allow for the construction of more

robust translation rules. This area has seen very little exploration and could be

an exciting direction for future research.

8.2.2 Neural Networks

While at the time of writing statistical methods are still leading the field for

distant language pairs such as Japanese–English, neural approaches have recently

overtaken SMT for a number of language pairs, and their development continues

to grow at a rapid pace. It is therefore natural that future work must consider

whether it is possible to integrate syntax-based approaches into neural translation

frameworks.

In Chapter 7 we begin this exploration by suggesting a variety of hybrid ap-

proaches. It can be relatively simple to integrate neural features into traditional

SMT systems and we have shown in our preliminary experiments that these can

give clear quality improvements. While previous studies have shown that pure neu-
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ral approaches tend in general to outperform hybrid methods, there are cases such

as low-resource scenarios where hybrid approaches are likely to remain effective.

It remains to be seen to what extent pure neural systems can make use of

syntax. Long Short-Term Memory (LSTM) cells combined to form ‘attention’

mechanisms can be considered a parallel of SMT alignment and reordering, but

can these benefit from being fed with existing syntactic structures?

8.2.3 Final Words

The core hypothesis of tree-based MT is that syntax is a valuable abstraction

for modeling translation. We have shown in this thesis that syntax (in particular

dependency grammar) is certainly valuable, however it remains to be seen whether

our current linguistic theories can express the optimal abstractions for translation.

Future research will further generalize and abstract both syntactic and seman-

tic representations of natural languages. Indeed, recent advancements in neural

network research have hinted that linguistic theories are already being learned and

not taught. Once we are able to understand abstractions learned using unsuper-

vised methods, we can aim improve existing linguistic theories to increase their

impact on MT applications.
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