
Chemical Compound Enumeration and
Host-Pathogen Protein Interaction Prediction by

Graph-Based Approaches

グラフ構造に基づく手法による化合物の列挙および
宿主・病原体間のタンパク質相互作用予測

Jira Jindalertudomdee

September 2016

Abstract

The rapid development of technology and experiment leads to the large amount of data

to be analyzed and studied. The representation of data is important because it has an

affect on the complexity of data analysis. Because of its versatility and representation

power, a graph has been used as a data structure to represent several biological and

chemical data such as protein interaction data, cell metabolism data, and a chemical

compound in the form of a protein-protein interaction network, a metabolic network, and

a molecular graph, respectively. Moreover, representing data by a graph is one method

to apply mathematical knowledge, such as graph algorithm, to examine those data. This

thesis makes use of a graph representation of biological and chemical data to solve two

chemoinformatics and bioinformatics problems, which is the first part and the second part

of this thesis, repectively.

In the first part of this thesis, we propose two efficient chemical compounds enu-

meration methods from a chemical formula using a tree structure, an acyclic connected

graph, to represent a chemical compound. The enumeration algorithm can be applied

to several problems including drug discovery by filtering the unnecessary compounds out

and returning only all non-redundant compounds with the desired properties. The first

proposed method is the enumeration method for tree-like chemical compounds containing

benzene rings and naphthalene rings from a chemical formula. The second enumeration

method allows users to input a chemical formula and desired cyclic substructures and gen-

erates all non-redundant chemical compounds containing no cycles except for the input

substructures. Two proposed algorithms can help the chemists spend less time to discover

compounds with the desired number of atoms and substructures. Both of them use a tree

structure to represent a chemical compound, where nodes and edges denote atoms and

chemical bonds, respectively. One cyclic structure (a benzene ring in the first method and

an input substructure in the second method) is compressed into one node with an addi-

tional attribute to keep how atoms in the cyclic structure bond with adjacent atoms, while

a naphthalene ring in the first method is denoted by two benzene nodes bonding together

with a special bond. The results and computational time of proposed methods are com-

pared with those of a commercial general purpose structure generator named MOLGEN.

Giving the same number of the enumerated compounds, proposed methods are signific-

antly faster than the existing tool. This result shows both the reliability and the efficiency

i

of two proposed methods.

The second part is the prediction of the interaction between host proteins and pathogen

proteins using a feature extracted from a protein-protein interaction network, called a

graphlet degree vector. It has been shown that: 1) different pathogens tend to target

proteins involving in the same biological pathway, and 2) the proteins with similar function

are not always close to each other but share common topological structure in the protein-

protein interaction network. Accordingly, we hypothesize that pathogen proteins interact

with host proteins that have similar topology in the protein-protein interaction network

and used a graphlet degree vector as a representation of a topological structure of the

protein-protein interaction network to test that hypothesis. We used stochastic gradient

descent method with logistic loss and soft confidence-weighted learning method to train the

prediction model. Then, we predicted the protein-protein interaction between human and

four pathogens and used F-score of 10-fold cross validation to evaluate the accuracy of the

models. The average accuracy of the proposed method is better than the existing method,

that does not use a graphlet degree vector as a feature, for all pathogens. The results

suggest that a graphlet degree vector is an excellent feature for solving host-pathogen

protein interaction prediction problem.

ii

Acknowledgments

First and foremost, I would like to express my sincere thankfulness to my supervisor,

Professor Dr. Tatsuya Akutsu, for the continuous support throughout 5 years and a half

in this laboratory since I was a research student until Ph.D. course. His beneficial advice,

encouragement, and inestimable guidance have assisted me conducting the research and

writing this dissertation, improved my critical thinking skill, and inspired me to pursue

research as my future career. He has provided me several research-related opportunities,

which lets me gain a lot of valuable experience and become a better researcher.

Besides my supervisor, I would like to thanks Professor Dr. Hiroshi Nagamochi. With

his precious comments and suggestion, my research regarding the enumeration method

for tree-like compounds containing benzene rings and naphthalene rings was significantly

enhanced.

My thanks also goes to Assistant Professor Dr. Morihiro Hayashida for the academic

support and advice, which help me conducting my research smoothly. He also helped me

gained a lot of confidence in my first conference by proofreading my presentation, which

was in Japanese. I thank Assistant Professor Dr. Takeyuki Tamura and secretary Ms.

Tamami Fukushiro for their kind support in scientific and administrative issues.

I must also acknowledge the Japanese Ministry of Education, Culture, Sports, Science,

and Technology (MEXT) for supporting my daily expense and tuition fee during my

graduate school life. MEXT also provided me a scholarship for purchasing a structure

generator software, which is necessary for my research.

I would also like to thanks the committee of this disseration: Professor Dr. Tatsuya

Akutsu, Professor Dr. Akihiro Yamamoto, and Professor Dr. Yasuo Okabe for the signi-

ficant review and suggestion to ensure the quality of this work.

I wish to thank Kyoto for being a nice and beautiful city to live for almost six years.

Having an opportunity to visiting a plenty of marvellous temples and shrines as well as

attending wonderful cultural events always makes me enjoys my Ph.D. life and refreshes

me from working stress.

Last but not the least, I would like to thank my family for supporting me spiritually

throughout the completion of this work as well as all of my friends for encouraging me

and sharing good memories together.

iii

Publication Notes

Chapter 2 is based on the paper [38], which is published in BMC Bioinformatics.

Chapter 3 is based on the paper [37], which is published in Journal of Computational

Biology.

Chapter 4 is based on the paper accepted for IEEE 16th International Conference on

BioInformatics and BioEngineering.

v

Contents

Abstract i

Acknowledgments iii

Publication Notes v

1 Introduction 1

1.1 Background . 1

1.2 Enumeration problem . 2

1.3 Molecular graph and its redundancy . 6

1.3.1 Molecular graph . 6

1.3.2 Detecting graph redundancy by isomorphism 8

1.4 Host-pathogen protein interaction . 11

1.4.1 Fundamental of protein . 11

1.4.2 Protein interaction . 12

1.4.3 Interaction between host and pathogen 13

1.5 Thesis organization . 13

2 Enumeration method for tree-like chemical compounds with benzene

rings and naphthalene rings by breadth-first search order 15

2.1 Background . 15

2.2 Problem definition . 17

2.3 Preliminaries . 19

2.3.1 Benzene ring and naphthalene ring 19

2.3.2 Center-rooted and left-heavy condition 21

2.3.3 Carbon position list . 22

2.3.4 Normal form of a carbon position-assigned molecular tree 27

2.4 Proof . 32

2.5 Methods . 33

2.5.1 Calculation of the number of benzene rings and naphthalene rings . 33

2.5.2 Modification of BfsSimEnum and BfsMulEnum 34

vii

CONTENTS

2.5.3 Assignment of carbon positions for molecular trees 34

2.5.4 Complexity analysis . 40

2.6 Results . 42

2.7 Discussion . 45

3 Enumeration method for structural isomers containing user-defined struc-

tures based on breadth-first search approach 49

3.1 Background . 49

3.2 Problem definition . 52

3.3 Preliminaries . 53

3.3.1 A position list . 53

3.3.2 An automorphism group . 55

3.3.3 Normal form of a molecular tree . 56

3.4 Proof . 58

3.5 Methods . 61

3.5.1 Finding an automorphism group . 61

3.5.2 Calculating the number of specified substructures 63

3.5.3 Enumerating molecular trees . 64

3.5.4 Assigning position list to structure nodes 65

3.5.5 Conversion of molecular trees to molecular graphs 68

3.5.6 Complexity analysis . 68

3.6 Results . 71

3.7 Discussion . 73

4 Host-pathogen protein interaction prediction based on local topology

structures of a protein interaction network 77

4.1 Background . 77

4.2 Preliminaries . 78

4.2.1 Protein-protein interaction network 78

4.2.2 Graphlet degree vector . 79

4.3 Methods . 80

4.3.1 Prediction model . 80

4.3.2 Feature set . 81

4.4 Results . 82

4.4.1 Data set . 82

4.4.2 Experiments and results . 82

4.5 Discussion . 85

5 Conclusion and future work 89

5.1 Conclusion . 89

viii

CONTENTS

5.2 Future work . 90

Bibliography 91

List of Publications 101

ix

List of Figures

1.1 Illustration of the enumeration problem . 3

1.2 A chemical compound and its corresponding atomic signature with distance

one. 4

1.3 Example of a molecular graph . 7

1.4 A molecular tree representing an alkane compound 8

1.5 Examples of isomorphic labeled graphs . 9

1.6 Different rooted ordered trees . 9

1.7 A graph to a rooted-ordered tree conversion process 10

1.8 Examples of isomorphic molecular trees . 11

2.1 The flowchart concluding main processes of BfsBenNaphEnum 17

2.2 Example of a molecular graph including benzene rings and naphthalene rings 18

2.3 Illustration of a benzene ring . 19

2.4 Illustration of a naphthalene ring . 20

2.5 Illustration of automorphism of a benzene ring and a naphthalene ring . . . 20

2.6 Center-rooted molecular trees . 21

2.7 Left-heavy molecular trees . 22

2.8 Illustration of breadth-first search order . 22

2.9 Illustration of subtree T sub(v1, v2) . 23

2.10 Examples of adjacent node lists and carbon position lists 24

2.11 Correspondence between carbon positions in a naphthalene ring 26

2.12 Example of carbon position lists for a naphthalene ring 27

2.13 Examples of symmetric paths . 29

2.14 Illustration of an automorphism φ . 31

2.15 Process of assigning position lists to a benzene node 39

2.16 Example of a molecular tree T7. 40

2.17 Relation between the number of enumerated structures and the computational

time . 44

2.18 Relation between the number of heavy atoms and the computational time . 45

2.19 A representation of an anthracene ring and a phenanthrene ring 46

xi

LIST OF FIGURES

2.20 A center-rooted left-heavy molecular tree 47

3.1 Example of a biconnected structure (a) and a non-biconnected structure (b) 50

3.2 The flowchart concluding main processes of BfsBenNaphEnum 51

3.3 Example of a molecular tree with structure nodes 52

3.4 Illustration of a structure of a node v2 with respect to a node v1 in T 53

3.5 Examples of position-assigned molecular trees 54

3.6 Illustration of an automorphism of a pyridine ring 55

3.7 Examples of difference of two subtrees T1 and T2 in a molecular tree T . . . 56

3.8 Example of a symmetric path . 57

3.9 Correspondence between nodes of two normal trees T1 and T2 60

3.10 Example of a substructure to be calculated an automorphism group 61

3.11 A molecular tree and nodes which a child node can be added to 65

3.12 Process of assigning position lists to structure nodes 67

3.13 Process of conversion from a molecular tree to a molecular graph 69

3.14 Relationship between the number of enumerated structures and computational

time . 73

3.15 A center-rooted left-heavy molecular tree 74

4.1 30 graphlets from two to five nodes where nodes are labeled with the cor-

responding orbit and nodes with the same color in one graphlet have the

same topology and belong to the same orbit 79

4.2 Calculation of the first eight elements of GDV(a), where the elements with

value zero are omitted . 80

4.3 F-score of prediction using three missing-data handling methods 84

4.4 F-score of prediction using three sets of features (noGDV, GDV4, and GDV5) 85

4.5 F-score of the host-pathogen protein interaction prediction by the proposed

methods and the existing algorithm . 86

xii

List of Tables

1.1 Twenty amino acids and their corresponding codons 12

2.1 Carbon position lists for ATv , where v is the root, and |ATv [1]| ≥ 3 34

2.2 Results on execution time (sec), the number of enumerated structures by

BfsBenNaphEnum and MOLGEN for several instances. 43

2.3 The number of enumerated structures by BfsBenNaphEnum and the num-

ber of chemical compounds exist in PubChem database for several instances. 46

3.1 The number of enumerated structures and computational time of BfsStructEnum

and MOLGEN . 72

4.1 Classification of 20 amino acids into seven groups 82

4.2 The numbers of all positive samples and positive samples without missing

features . 83

4.3 The number of features in noGDV, GDV4, and GDV5 features sets 83

4.4 The number of features used in the multitask learning method 85

xiii

Chapter 1

Introduction

1.1 Background

Graph is an abstract data type utilized in various fields of computer science including

bioinformatics and chemoinformatics because it can capture the structure of the data it

representing and make the data easier to be analyzed. An example of the utilization of

graph in bioinformatics is a representation of a metabolic network, a network of chemical

reactions of compounds in a living cell. A metabolic network is represented by a Boolean

network, where a node denotes either a reaction or a compound and an edge connecting a

compound and a reaction together if that compound is either a reactant or a product of

that reaction.

For chemoinformatics, a chemical compound can be simply converted to a graph by

regarding an atom as a node colored by a chemical element and connecting two nodes by

an edge if there is a bond between two corresponding atoms. Colored graph generating

algorithm can be modified to solve chemical compound enumeration algorithm, which is

a problem of generating non-redundant chemical compounds from given constraints, by

treating a color of nodes as a chemical element. The frequently used constraint in the

enumeration problem is a chemical formula, which corresponds to the number of nodes for

each color. The enumeration problem is a fundamental problem in chemoinformatics since

it can be applied to many practical problems including drug design as well as structure

elucidation of an unknown compound by generating a library of candidate compounds

from the desired number of atoms.

Another graph representation of biological data is a protein-protein interaction network

(PIN). A PIN is a graph of interacting proteins, where a node denotes a protein and an

edge connecting two interacting proteins. Some properties of proteins can be implied from

a PIN using graph algorithms or graph properties. For instance, the higher the degree

of a protein node in a PIN, the more other proteins it interacts with, which reflects how

important it is. There are several researches study the relation of PIN and other biological

problems such as host-pathogen protein interaction prediction, which is a prediction of the

1

1.2. ENUMERATION PROBLEM

interaction of proteins between a host and a pathogen.

Infectious diseases, such as HIV, lower respiratory infections, and diarrhoeal, are caused

by various pathogens such as bacteria, viruses, and fungi. Because infectious diseases can

spread from one person to another person, they have been the main cause of death in

human since 1990 [60] and are also predicted to be one of the leading causes in 2030

[50]. Accordingly, discovery of drugs being able to cure those diseases or prevent the

transmission of infectious diseases can significantly decrease human death and illness.

Because most drug targets are host proteins interacting with pathogen proteins [21],

such as cell membrane receptors and enzymes, several computational methods to predict

the protein-protein interaction between human and pathogens have been developed to find

a drug target. Development of a prediction method with high accuracy remains a challenge

and is important to find the correct and efficient drug targets. PIN is introduced into this

problem because it was studied that pathogens tend to target hubs protein in a human

PIN [23].

After a drug target is known, we have to design a molecule which can interact with

the drug target to inhibit the mechanism involved in the disease. Treating the receptors

interacting with the drug target as molecular fragments of the desired compounds, we can

generate a list of candidate drugs using a structure enumeration tool and find an optimal

drug from that list. Therefore, an efficient structure enumeration tool, which can generate

a compound library from receptors using low computational time, decreases the time spent

to search for an optimal drug and leads to the improvement of drug design process.

In this thesis, our goal is to provide three efficient computational methods using a graph

data structure in the algorithm. The first two methods are two novel efficient chemical

compound enumeration methods representing a chemical compound by a tree structure,

a connected graph without cycle. These proposed methods optimize the discovery of a

target compound in term of execution time. The last method is a host-pathogen protein

interaction prediction method based on a graph-based feature of PIN to discover a protein

which is suitable to be a drug target. These methods can be applied to search for a novel

therapeutics, which can decrease the consequence of disease. In order for audience to

understand the content without referring to other documents, we give knowledge related

to this work in this chapter.

1.2 Enumeration problem

Chemoinformatics is a field of applying knowledge and techniques in computer science to

analyze and solve problems in chemistry. The main goal of chemoinformatics is to save

resources in terms of time and labor spent to solve that problem. One of the fundamental

problems in chemoinformatics is the enumeration problem. Enumeration is a problem

of generating all non-redundant chemical compounds satisfying the provided constraints.

2

CHAPTER 1. INTRODUCTION

Those constraints are properties of chemical compounds that users would like to find,

which can be either physical properties, such as the number of atom types, the number

of fragments and molecular weight, or chemical properties, such as hydrophobicity and

polarity. An example of enumeration using the number of atom types is illustrated in

Figure 1.1.

Figure 1.1: Illustration of input and output of the enumeration problem where constraint
is the number of atom types

The main point of an enumeration algorithm is to reduce the size of chemical space from

all possible compounds to only compounds satisfying the given constraints and guarantee

that all such compounds are considered. Decreasing the size of chemical space shortens

the time used to find the desired compound significantly. Depending on the constraints

and the desired compound, an enumeration algorithm can be used to solve various kinds of

problem [67], such as drug design by constructing chemical compounds from a set of atoms

and/or fragments that have desired pharmacological properties [74], molecular design us-

ing chemical properties as the input [58], and structure identification by constructing a

collection of molecules satisfying a given spectral data of unknown compound and search

for the exact molecule from that collection [59, 72, 79, 91].

One of the example of the application of enumeration problem is the inverse quantitat-

ive structure-activity relationship (inverse QSAR) problem [17, 49], which is a problem of

discovering a collection of compounds that are predicted to have given properties. First,

those algorithms implement a QSAR model using an atomic signature as a molecular

descriptor of a compound to reduce the chemical search space. An atomic signature

defined in these works is the number of all fragments in a chemical compound consisting

of the specified atom and all atoms within a given distance from that specified atom. An

example of an atomic signature is shown in Figure 1.2, where the given distance is one.

After that, they examine whether the predicted atomic signature satisfies two constraint

equations or not to ensure that the compound can be reconstructed from the solution of

equations. Then, the enumeration tool is utilized to enumerate chemical compounds from

the validated atomic signature. Finally, the QSAR is applied one more time to ensure

that all of the results satisfy given properties.

Because of its versatility, a numerous number of enumeration algorithms have been

3

1.2. ENUMERATION PROBLEM

C CC

H

H

H

H

H

H

Atomic Signature
1 C(HHH)
1 C(CH=C)
1 C(HH=C)
6 H(C)

Figure 1.2: A chemical compound and its corresponding atomic signature with distance
one.

developed for several decades since DENDRAL project [9] such as CONGEN [12] a struc-

ture generator, which is a component of DENDRAL project, GENOA [13] a later ver-

sion of CONGEN, SMOG [56] an enumeration software based on a graph-theoretical

algorithm, MOLGEN [7, 30, 40, 92] a commercial general-purpose structure generator,

EnuMol [28, 35, 78] an exact enumeration algorithm for treelike chemical graphs, OMG

[63] an open source structure generator, and a novel method for tree-like chemical graphs

with naphthalene nodes [33].

These existing algorithms use various kinds of technique to generate compounds without

redundancy as listed below.

• CONGEN enumerates chemical compounds by three main steps. First, it generates

a composition list and a constraint list from the input. A composition list is a

list of atoms and fragments of the desired compound and a constraint list is a list

of undesired and desired substructures. Then, it enumerates compounds via the

repetition of two steps, the generate step and the imbed step. The generate step

generates intermediate structures by adding available atoms or desired fragments

(called superatoms). If the added component is a superatom, the imbed step restores

the superatom back to its original structure, connects atoms in the superatom with

other atoms in all possible ways, and removes the duplicate ones. The complete

structures are checked for the constraints in a constraint list at the final step.

• GENOA allows only one additional constraint, which is a fragment and the range

of the number of that compound. It generates intermediate structures by adding

one fragment/atom to the compound at a time and uses the concept of constructive

substructure search to find all structures resulting from the overlap between the

added fragment and fragments in the intermediate structures. For each overlapped

structure found, it extends the structure in that many ways and keeps adding new

fragments/atoms until all fragments and atoms are added to the structure.

• SMOG uses an adjacency matrix to store the information of a molecular graph. It

4

CHAPTER 1. INTRODUCTION

starts from an empty adjacency matrix, and fills the entries corresponding to the

input superatoms, which are fixed throughout the enumeration. Then, it fills the

elements in the adjacency matrix row by row and checks whether it is a canonical

matrix or not based on the lexicographical order of the entries. At the last step, it

checks whether the molecular graphs satisfy the input constraints, e.g. connectivity,

good lists, and bad lists.

• MOLGEN represents a compound by two data structures, a non-hydrogen adjacency

matrix and a hydrogen vector. To enumerate chemical compounds, first, it generates

all possible hydrogen vectors from the input chemical formula. Then, it generates all

canonical matrices for each hydrogen vector in the previous step using the orderly

generation approach to prune the redundant matrices as soon as possible.

• EnuMol focuses on tree-like chemical compounds containing benzene rings, because

it uses a tree structure to represent a chemical compound for the efficiency of the

enumeration. The input of enumol is not the number of atoms but the number of

paths represented by a feature vector. It starts from an empty tree and adding

a node to the tree using the proposed branch-and-bound algorithm. In branching

step, a new leaf node is attached to the tree such that the left-heavy condition is

preserved. In bounding step, it prunes the trees, which violate at least one of three

constraints: 1) the center-rooted constraint, 2) the feature vector constraint, and 3)

the valence constraint. These two steps are repeated until the number of paths in

the tree is the same as that in the feature vector.

• OMG starts from a set of fully disconnected atoms and continuously connects atoms

until the number of bonds of each atom equals to its valence. The enumeration

process is considered as a family tree of molecular graphs, where a node of a family

tree is a molecular graph.The child node in a family tree can be obtained by adding

a bond to a pair of atoms in its parent node or adding the multiplicity of an existing

bond by one. After a bond or the multiplicity of a bond is added, it checks for the ca-

nonicity by a graph canonizer which calculates the canonical labeling of a multigraph

and compares the current molecular graph with the result of the canonizer.

• The combination of BfsSimEnum and BfsMulEnum uses a tree to represent a chem-

ical compound. It consists of two main parts, BfsSimEnum and BfsMulEnum. First,

BfsSimEnum generates compounds using the concept of a family tree similar to OMG

except that it starts from an empty tree instead of a fully disconnected graph and

the child node of a family tree is obtaned by adding an atom to the tree of its parent.

After adding an atom, it checks for the canonicity using the proposed concept called

a center-rooted left-heavy condition. If all atoms are added, BfsSimEnum passes

the chemical compounds to BfsMulEnum, which adds the proper multiplicity of the

5

1.3. MOLECULAR GRAPH AND ITS REDUNDANCY

existing bonds such that the degree of atoms does not exceed their valence. The final

result of this method is the tree structures representing acyclic chemical compounds.

• An efficient algorithm for the enumeration of naphthalene isomers of tree-like chem-

ical graphs proposed in [33] enumerates tree-like compounds containing naphthalene

rings from a tree structure containing naphthalene nodes in two steps. First, it counts

the number of all isomers obtained from the input tree based on dynamic program-

ming. Next, it applies the backtracking technique to the counting computation to

generate each isomer counted in the first step.

These existing enumeration tools can be classified into two main groups based on the

structure of the enumerated compounds. The first group has no limitation on the structure

that can be enumerated, which are CONGEN, GENOA, SMOG, MOLGEN, OMG. How-

ever, enumeration tools in this group consume high computational time. Another group

has a limitation on the enumerated structure such as only tree-like chemical compounds

for BfsSimEnum and BfsMulEnum, only tree-like chemical compounds with benzene rings

for EnuMol, or tree-like compounds with naphthalene rings for [33] but this group requires

significantly less computational cost.

In this work, we proposed two novel efficient enumeration methods. The first one is an

enumeration method for tree-like chemical compounds with benzene rings and naphthalene

rings, a bicyclic aromatic compound, whose detail is explained in Chapter 2. Another

method explained in Chapter 3 allows users to input desired cyclic substructures and enu-

merate tree-like chemical compounds without cycles except for the specified substructure.

Both of them use a molecular graph explained in Section 1.3.1 to represent a chemical com-

pound. These methods are proposed with the main objective of combining the advantages

of both groups of the existing enumeration tools together. Compared with the first group,

the proposed methods can be executed in a short period of time. At the same time, the

proposed methods are able to enumerate chemical compounds with more complex cyclic

structures than the tools in the second group. Although BfsBenNaphEnum and the one

proposed in [33] can enumerate the same scope of chemical compounds, which are tree-like

compounds containing naphthalene rings, BfsBenNaphEnum has been developed before

[33]. Moreover, BfsBenNaphEnum is simpler than [33], which makes it can be extended

to more complex structures.

1.3 Molecular graph and its redundancy

1.3.1 Molecular graph

To use a computer to enumerate chemical compounds, a data structure representing a

chemical compound must be introduced. The most popular representation is a graph

because its structure is similar to that of a chemical compound. A graph whose nodes

6

CHAPTER 1. INTRODUCTION

represent atoms and edges represent bonds is called a molecular graph [52]. Thus, nodes

and edges of a molecular graph are labeled by atom types and bond types, respectively.

In other words, letting Σ be a set of atom types, e.g. {C,N,O,H}, a molecular graph

is defined as a graph G(V,E), where V and E are a set of nodes and a set of edges of G,

respectively. Label of any nodes v in V , l(v), must be an element of Σ (l(v) ∈ Σ). Let

val(li) denote a valence of an atom type li in Σ. A covalent bond is a sharing of electron

between two atoms. A covalent compound is a compound whose all atoms bonding with

covalent bonds only. It is stable when the number of covalent bond of atoms in that

compound equals to their valence. Therefore, degree of a node with atom type li equals to

val(li) in order for a compound to be stable. An example of a molecular graph representing

ethane is illustrated in Figure 1.3, where C and H denote carbon and hydrogen atoms,

respectively, val(C) = 4 and val(H) = 1.

C C

H

H

H

H

H

H
(a)

C

H H HC

H H H

(b)

Figure 1.3: Ethane (A) and a molecular graph representing ethane (B)

A tree structure is a connected graph containing no cycles [94] which makes tree

structures easier to detect the redundancy than a graph. Therefore, the enumeration of

non-redundant tree structures is more efficient than that of non-redundant graphs. In

order to optimize the algorithm, this work focuses on tree-like chemical compounds or

chemical compounds without cycles so that a chemical compound can be represented by

a tree structure. We call a tree structure whose nodes are labeled by atom type and

edges are labeled by bond type as “a molecular tree”. The molecular tree is firstly used

in the enumeration to count the number of alkane compounds (compounds with chemical

formula CnH2n+2) by counting the number of non-redundant trees with n nodes and all

nodes have degree four or less [15]. Those nodes represent carbon atoms of the compound,

while hydrogen atoms are ignored because there is only one way to add hydrogen atoms

to the compound such that the compound is valid (the degree of an atom equals to its

valence). An example of this molecular tree in this enumeration is illustrated in Figure

1.4.

In this work, we use a rooted-ordered molecular tree to represent a chemical compound.

A rooted tree is a tree, G(V,E, r), where r is a root node. The root node is a node

distinguished from other nodes [93] and located at the top of the tree. Given a node v in

7

1.3. MOLECULAR GRAPH AND ITS REDUNDANCY

C C C

C

H

H

H

H H

H

HH H

H
Figure 1.4: An alkane compound and its corresponding molecular tree

G, an adjacent node of v which lies in the path from v to r is a parent node of v and all

other adjacent nodes are the child nodes of v. Each node, except the root node, in the

tree must have exactly one parent node unless there are two paths from that node to the

root node, which implies that there is a cycle in a graph. Nodes whose parent node is the

same node are sibling nodes.

A rooted-ordered tree is a rooted tree, G(V,E, r), such that for all nodes v ∈ V there

exists a function child(v) that return a list of child nodes of v from the leftmost child node

to the rightmost child node. If u is a child node of v and u is the ith element in child(v),

u is the ith child node of v.

1.3.2 Detecting graph redundancy by isomorphism

Isomorphism is known as a way to compare the equivalence of two graphs. Given two

graphs, G1(V1, E1) and G2(V2, E2), isomorphism between G1 and G2 is a one-to-one map-

ping function θ : V1 → V2 that preserves the adjacency [31]. In other words, θ must satisfy

the following properties.

1. If G1 and G2 are labeled graphs, v must have the same label as θ(v).

2. For any two nodes v1 and v2 in V1, if (v1, v2) /∈ E1, then (θ(v1), θ(v2)) /∈ E2. Other-

wise, mul(v1, v2) = mul(θ(v1), θ(v2)) must hold, where mul(u,w) is the multiplicity

of edge connecting node u and node w.

Two graphs G1 and G2 are isomorphic if there is an isomorphism between G1 and G2.

The example of isomorphism is shown in Figure 1.5, where the red edges are the mapping

of nodes corresponding to the isomorphism between two rooted trees.

In the case of rooted trees, given two rooted trees, T1(V1, E1, r1) and T2(V2, E2, r2),

they are redundant if T1 and T2 are isomorphic and that isomorphism also maps r1 with

r2. For example, trees in Figure 1.6 have the uppermost node whose label is A as their

root nodes. Those trees are the same rooted trees because they are isomorphic and have

the same corresponding root node.

8

CHAPTER 1. INTRODUCTION

A

B B CA

B C A

A

A B C

B B C

A

Figure 1.5: Examples of two isomorphic labeled graphs where dashed lines indicate the
correspondences between nodes of two graphs

A

B B CA

B C A

A

C B BA

B C A

Figure 1.6: Examples of rooted trees that are different ordered trees but the same un-
ordered trees

For rooted-ordered trees, the function child(v), which returns a list of child nodes of

v from the leftmost child node to the rightmost, is taken into account in the comparison.

Two rooted-ordered trees, T1(V1, E1, r1) and T2(V2, E2, r2), are redundant if there is an

isomorphism θ such that three following consitions are satisfied.

1. θ maps V1 to V2,

2. θ(r1) = r2, and

3. ∀u ∈ V1, θ maps the ith element of child(u) to the ith element in child(θ(u)).

For example, trees in Figure 1.6 are different rooted-ordered trees because θ maps the

second element of child(r) to the third element of child(θ(r)), where r is the root node of

the left tree.

We use a rooted-ordered tree, instead of a graph, to represent a chemical compound

because it takes significantly less time to examine the redundancy of the rooted-ordered

trees than the redundancy of graphs. To check for the redundancy of two graphs, we have

9

1.3. MOLECULAR GRAPH AND ITS REDUNDANCY

to utilize a graph canonizer to find a canonical form of the structure every time a graph

is modified, e.g. a node is added, which consumes a lot of computational time. On the

other hand, we can eliminate the redundancy of rooted-ordered trees by defining a rule

to select which node to be the root node and a rule to arrange the order of sibling nodes.

The redundancy of the tree can be examined only by checking whether the generated trees

violate the defined rule or not.

We convert a molecular graph into a rooted-ordered tree by three main steps. First, we

generate the corresponding tree structure from a graph by replacing each cyclic substruc-

ture with a single node and connecting that node with nodes bonding with any atoms in

the corresponding substructure (step (1) Figure 1.7). These nodes contain the information

of how atoms in that substructure bond with their adjacent nodes. Then, we generate the

corresponding rooted tree by selecting a node to be the root node (step (2) Figure 1.7).

Based on the center-rooted condition, the center node of the longest path is the root node.

Finally, we sort the sibling nodes in the rooted tree according to the left-heavy rule, which

results in a canonical rooted-ordered tree (step (3) Figure 1.7).

C

C C

O

O

C

C

O

COC

C

(1)
bOC C

O

O

O

(2)

b

O

C

O C

O O

b

O

C

OC

OO

(3)

Figure 1.7: A graph to a rooted-ordered tree conversion process

Let C1 and C2, be two chemical compounds represented by two isomorphic molecular

trees, T1 and T2, respectively. C1 and C2 are the same compound because the isomorphism

guarantees that the number of nodes with the same atom types in T1 and T2 and the way

they bond with each other are the same. An example of two isomorphic molecular trees is

given in Figure 1.8. Because the enumeration must guarantee non-redundancy of chemical

compounds, only one out of all isomorphic molecular trees must be generated.

10

CHAPTER 1. INTRODUCTION

C CC

H

H

H

H

H

H

(a)

C

C C H

H H H H H

C

C H H

HC

H H H

(b)

Figure 1.8: Examples of two isomorphic molecular trees (b) representing propene (a) where
dashed lines indicate the correspondence between atoms of two molecular trees

1.4 Host-pathogen protein interaction

1.4.1 Fundamental of protein

Protein, the main component in a living cell, is a sequence of amino acids. More than

half of dry weight of cell is proteins [18]. Because there are 20 kinds of amino acid as

shown in Table. 1.1, there are several ways to combine those amino acids together, which

results in the existence of abundant kinds of protein. A protein is synthesized from a

DNA, a polynucleotide, via two processes. First, an RNA, which is also a polynucleotide,

is generated from a DNA via a transcription process. Then, a protein is translated from

that RNA via a translation process. Because there are only four kinds of nucleotide, one

amino acid is encoded by three consecutive nucleotides, called a codon, in the RNA.

Proteins are essential for living organisms because they perform various functions in

order for the cell to grow and develop smoothly. For example, enzymes stimulate the

chemical reactions such as metabolism in a cell, transport proteins in the cell membrane

control the transportation of particles inward and outward the cell, etc. In nature, a

protein does not stay as a long thin sequence but folds into a specific shape as a result of

weak noncovalent bonds, such as hydrogen bonds and van der Waals attraction [2]. The

same kind of protein always folds into the same specific shape called a conformation of

that protein with a minor change when it binds with another molecule. However, the

mechanism underlying the protein folding has still not been discovered yet.

Although a conformation is the final structure of one protein, the structure of protein

is not only the conformation but can be classified into four levels, which are primary, sec-

ondary, tertiary, and quaternary structure. The primary structure, which is the simplest

level of protein, is the unfolded amino acid sequence. The secondary structure is the form-

11

1.4. HOST-PATHOGEN PROTEIN INTERACTION

Amino acid Abbreviation Corresponding codons

Isoleucine Ile AUU, AUC, AUA
Leucine Leu CUU, CUC, CUA, CUG, UUA, UUG
Valine Val GUU, GUC, GUA, GUG
Phenylalanine Phe UUU, UUC
Methionine Met AUG
Cysteine Cys UGU, UGC
Alanine Ala GCU, GCC, GCA, GCG
Glycine Gly GGU, GGC, GGA, GGG
Proline Pro CCU, CCC, CCA, CCG
Threonine Thr ACU, ACC, ACA, ACG
Serine Ser UCU, UCC, UCA, UCG, AGU, AGC
Tyrosine Tyr UAU, UAC
Tryptophan Trp UGG
Glutamine Gln CAA, CAG
Asparagine Asn AAU, AAC
Histidine His CAU, CAC
Glutamic acid Glu GAA, GAG
Aspartic acid Asp GAU, GAC
Lysine Lys AAA, AAG
Arginine Arg CGU, CGC, CGA, CGG, AGA, AGG

Table 1.1: Twenty amino acids and their corresponding codons

ation of weak bond between atoms in the local region, which results in α-helix structure

or β-sheet structure, the two most frequent folding patterns. The final form of folded pro-

tein is its tertiary structure, which is a conformation of protein. This tertiary structure

consists of one or more protein domains, which are parts of amino acid sequence whose

foldings are independent to each other. The quaternary structure is a binding of several

proteins to form a protein complex.

1.4.2 Protein interaction

A protein does not perform its function alone but usually binds with other proteins to

form a protein complex. The binding between proteins is considered as a physical protein-

protein interaction, which is the important mechanism of protein to perform its function.

Most of the physical interaction is caused by weak non-covalent bonds because of the

reversibility, flexibility, and stability of those bonds. However, a few proteins, such as

collagen, interact with each other by the covalent bond. Apart from physical interaction,

there is another type of interaction between proteins called a functional interaction. Func-

tional interaction is the interaction such that proteins do not contact each other but are

subunits of the same protein complex or are involved in the same biological pathway [18].

The protein complex can bind with other substances, which can be ions or molecules.

The substance binding with protein is called ligand. Both protein-protein binding and

12

CHAPTER 1. INTRODUCTION

protein-ligand binding are extremely specific because the binding regions of one protein

must exactly match with those of another protein or ligand in order to interact with each

other. This means a protein can bind to only one or a few specific proteins/ligands.

1.4.3 Interaction between host and pathogen

Pathogens are microbes that cause the infectious disease, which is one of the leading

causes of human’s death, by interrupting or damaging their hosts. The interaction between

microbes and human does not always cause the disease to human, e.g. E coli. [14]. This

kind of microbes is not classified as pathogens. The infectious process of pathogens consists

of several steps. The first step of the infection is adhering to the host cell using pathogens’

specialized organelles called adhesins. This adhesion is the interaction between adhesins

and the host’s membrane proteins. After a pathogen attaches to a host, it invades the

host cell to damage or interrupt its host. How it invades the host cell depends on that

host cell. If the host cell is a phagocyte, a pathogen enters the host cell via phagocytosis

of the host itself. Otherwise, a pathogen invades host by either of two internalization

mechanisms, which are zipper mechanism and trigger mechanism. Both of them are the

rearrangement of cytoskeleton induced by the protein-protein interaction in the adhesion

step [69]. Once a pathogen enters the host cell successfully, it secretes a protein toxin to

disrupt or destroy a host cell [57]. There are various kinds of protein toxins depending

on the pathogens, but it can be classified into two main types, which are: 1) toxin that

disrupts cell membrane, and 2) toxin that modifies components within cell using enzyme.

The first kind of toxins modifies the permeability of the cell membrane or the pathways

involved in the cell membrane. The latter one is the enzyme that modifies or interrupts

function of the host cell.

One common thing among all steps in the infectious process is that they are involved

in the interaction between host proteins and pathogen proteins. Therefore, understanding

the host-pathogen protein interactions can clarify how pathogens invade and damage host’s

cell as well as how to prevent those mechanisms, which results in the improvement of the

infectious disease therapeutics. In this work, we introduce the first method for solving

the host-pathogen protein interaction prediction problem using a graphlet degree vector

of a host protein in the protein-protein interaction network as a feature. We explain the

rationale behind this feature, how we train the model, as well as the prediction results in

Chapter 4.

1.5 Thesis organization

The content of this thesis is organized as follows.

In chapter 2, a novel efficient enumeration algorithm for tree-like chemical compounds

containing benzene rings and naphthalene rings is proposed. To optimize the computation

13

1.5. THESIS ORGANIZATION

time, a chemical compound is represented by a tree-structure instead of a graph, where a

node denotes an atom, and an edge denotes a chemical bond. A benzene ring is compressed

into a single node and a naphthalene ring is represented by two benzene nodes connected

by a special bond. The results of the proposed method are compared with those of a well-

known commercial structure generator MOLGEN, which can enumerate not only tree-like

chemical compounds but any kind of chemical compounds. Giving the same number of

the enumerated compounds, the computation time of the proposed method is significantly

less than that of MOLGEN.

In chapter 3, we propose an enumeration algorithm that allows users to define de-

sired cyclic substructures and enumerate all tree-like chemical compounds containing that

substructures without redundancy. Before enumerating compounds, we analyze the input

substructures to find their automorphisms. We enumerate molecular trees representing

the chemical compounds, where one input substructure is denoted by a single node, and

use their automorphisms to eliminate the redundancy. The computational experiment was

conducted to confirm the reliability and efficiency of the proposed algorithm.

In chapter 4, we hypothesize that pathogen proteins tend to interact with host proteins

with similar topology structure in the PIN. This hypothesis arises because there have

been shown that: 1) different pathogens tend to target host proteins involved in the

same biological pathway and have similar function, and 2) there is a relation between

function and local topology structure in a protein-protein interaction network (PIN) of

different proteins. A prediction model of protein-protein interactions between human and

four pathogens is proposed using a graphlet degree vector (GDV) of the human PIN as

a feature. The results show that the prediction accuracy of model using GDV is better

than that not using GDV, which implies the importance of GDV as a feature for solving

host-pathogen protein interaction prediction problem.

Finally, chapter 5 concludes the importance and empirical finding of this work and

guides the direction of possible future work of all proposed methods.

14

Chapter 2

Enumeration method for tree-like

chemical compounds with benzene

rings and naphthalene rings by

breadth-first search order

2.1 Background

Enumeration of chemical compounds is important in bioinformatics, and has been adapted

to several applications such as drug discovery and design [8, 55, 90], structure elucidation

[29, 44, 54], and analyses of chemical spaces [3, 10, 11, 25, 43, 51, 68]. It is defined as a

problem of generating all non-redundant chemical structures satisfying some constraints.

For example, a chemical formula, which consists of the number of each atom included

in the compound, is given as an input. There are several algorithms for enumerating

chemical compounds from a chemical formula and most of them use a molecular graph to

represent a chemical compound, where the nodes and edges of the graph refer to atoms

and bonds of the chemical compound, respectively. Some of those algorithms are claimed

to be able to enumerate various chemical structures without restriction of the structure,

such as MOLGEN [30] and Open Molecule Generator (OMG) [63]. It was reported that

OMG is able to deal with different valences for a kind of atom, and was not efficient for

several instances compared with MOLGEN. While the remaining ones, such as EnuMol

[28, 35] as well as BfsSimEnum and BfsMulEnum [95], have a limitation of the structure

of enumerated compounds, such as acyclic compounds for BfsSimEnum and BfsMulEnum

and compounds with no cycle except for benzene rings for EnuMol, the methods consume

significantly less computational time. There are also related application softwares, e.g.

SmiLib [76] and CLEVER [81], that generate chemical compounds from given fragments.

The limitation of these tools is that they require a library of desired chemical fragments,

15

2.1. BACKGROUND

which can be generated by the enumeration tool.

The enumeration of chemical compounds consumes too high execution time to put into

practice. The problem of high execution time can be relieved by limiting the structure of

the enumerated compounds. Accordingly, alternative enumeration algorithms using a tree

structure to represent a chemical compound have been developed.

Due to the limitation of a tree structure, the alternative algorithms can enumerate

only acyclic chemical compounds or tree-like chemical compounds containing benzene

rings. This work aims to decrease the limitation of a tree structure by developing an

enumeration tool called BfsBenNaphEnum, which uses a tree structure to represent a

chemical compound and, at the same time, can enumerate tree-like chemical compounds

containing two kinds of cyclic structure, a benzene ring and a naphthalene ring.

Pólya proposed a group-theoretic method for isomer counting of single cyclic struc-

tures such as a benzene ring, a naphthalene ring, and an anthracene ring using the cycle

index, from which many studies followed [88]. However, structures enumerated by these

methods are restricted to certain types. Indeed, Meringer wrote that up to now the only

way to calculate the number of isomers belonging to an arbitrary molecular formula is

to use structure generators [53]. Suzuki et al. considered the problem of enumerating

structures having monocyclic graph structures, each of which has exactly one cycle [84].

An enumeration method for tree-like chemical compounds containing only benzene rings

as cyclic structures has been implemented on EnuMol web server [1]. On the other hand,

our method can enumerate compounds containing naphthalene rings in addition to ben-

zene rings. Moreover, the proposed algorithm can calculate the number of benzene rings

and naphthalene rings from chemical formula, while users have to specify the number of

benzene rings in EnuMol.

Chemical structures considered in this study can be represented by a molecular tree,

where a benzene ring is converted to a node with valence six called a benzene node. We

propose a new representation for a naphthalene ring. Instead of converting it into a single

node with another atom label, we regard it as two benzene nodes fused together by a new

kind of bond named a merge bond, which has never been used before. Since a merge bond

merges two carbon atoms of two benzene rings together, it reduces the number of carbon

atoms with free valence electron of two benzene rings by two so we represent a merge bond

by a double-edge. Moreover, benzene nodes cannot have double bonds with other nodes

because they bond with other non-benzene atoms by a single bond [32]. This means that

a double-edge represents a double bond if it connects two non-benzene nodes, while it

represents a merge bond if it connects two benzene nodes. Therefore, bonds in a benzene

ring and a naphthalene ring are considered as the same bond and Kekulé representation

is not included in this work. Besides, this work uses a two-dimensional molecular tree to

represent a chemical structure so it cannot deal with stereoisomers. For tautomeric, this

work considers two structures in a pair of tautomeric as non- redundant compounds and

16

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

generates both of them.

Because we treat a benzene ring as a node and treat a naphthalene ring as two nodes,

similar to other type of nodes, the number of benzene rings and naphthalene rings must be

determined before enumerating the molecular trees. Then, BfsSimEnum and BfsMulEnum

are modified to return a set of molecular trees as the output, given a chemical formula, the

number of benzene rings, and the number of naphthalene rings. After that, an attribute

called carbon position list is added into benzene nodes in a molecular tree to represent

the way that benzene nodes bond with their adjacent nodes. This attribute is important

because bonding with different carbon atoms in a benzene ring may result in different

chemical structures. Finally, for each molecular tree from BfsSimEnum and BfsMulEnum,

we generate a set of molecular trees whose nodes adjacent to benzene nodes are labeled with

a carbon position such that all chemical structures are enumerated without redundancy

based on normal form rule. The flowchart concluding the main steps of this work is given

in Figure 2.1

1) Calculation of the number of benzene rings and naphthalene rings

2) Enumeration of molecular trees with benzene nodes

3) Assignment of carbon position to benzene nodes

Figure 2.1: The flowchart concluding main processes of BfsBenNaphEnum

For evaluating our proposed method, we perform computational experiments for several

instances, and compare the execution time by our method with that by MOLGEN. We

show that our proposed method is efficient for enumerating chemical compounds containing

benzene rings and naphthalene rings, and is from 50 times to 5,000,000 times faster than

MOLGEN for several instances in our experiments.

2.2 Problem definition

Let we recall the definition of a set of atom labels (Σ), a molecular graph (G(V,E)), a label

of a node v (l(v)), and a valence of an atom label li (val(li)) provided in Section 1.3.1. It

should be noted that there exist different valences for a kind of atom, for example, carbon

atoms of CO2 and CO. For this case, it is sufficient to put two distinct labels C and C(2)

in Σ, and to define val(C) = 4 and val(C(2)) = 2. Let deg(v) be the degree of a node v

and num(G, li) be the total number of nodes labeled with label li in a molecular graph G.

From the definition of isomorphism of Section 1.3.2, we define that two molecular

17

2.2. PROBLEM DEFINITION

graphs G1(V1, E1) and G2(V2, E2) are redundant with each other if G1 and G2 are iso-

morphic because they correspond to the same chemical compounds. Then, the enumera-

tion problem is defined as follows.

Problem 1. Given the numbers nli of atoms for all labels li ∈ Σ, the number nb of benzene

rings, and the number nn of naphthalene rings, enumerate all non-redundant connected

molecular graphs G such that num(G, li) = nli for all li ∈ Σ, deg(v) = val(l(v)) for all

nodes v ∈ V (G), and G includes exactly nb benzene rings, nn naphthalene rings, and no

other cyclic structures. It must be noted that nb and nn can be zero.

If the input chemical formula contains five or less carbon atoms, BfsBenNaphEnum will

enumerate only tree-like chemical compounds by specifying the number of benzene rings

and the number of naphthalene rings to be zero because the number of carbon atoms is

not enough for one benzene ring. Because we enumerate molecular trees such that degree

of each node equals to valence of atom label of that node, charged molecules cannot be

enumerated automatically. However, they can still be enumerated by specifying a charged

atom as a new kind of atom type with appropriate valence value.

Since our enumeration methods deal with a chemical compound as a node-labeled

rooted ordered tree for efficient enumeration, we contract cyclic structures appearing in a

molecular graph to single nodes. Concretely, we contract a benzene ring to a node, called

benzene node, labeled with a special label ‘b’, and contract a naphthalene ring to two

benzene nodes connected by a special bond, called merge bond, represented by a double

edge (see Figure 2.2).

4
3 6

5

1

6
5

4

O

3
2

4
3

12

21

O

6
5

(a)

b ((1,2),(5))

b((1,2),(6),(4)) b ((1),(3))

C C O

O

(b)

Figure 2.2: Example of a molecular graph including benzene rings and naphthalene rings.
(a) A molecular graph including one benzene ring and one naphthalene ring. (b) A rooted
tree contracted from the left graph. It is noted that hydrogen atoms are omitted.

Since six carbon atoms contained in a benzene ring are contracted into a benzene node,

we need to remember which carbon atom in the benzene ring connects to its adjacent

node in a molecular graph. Hence, we add an attribute called carbon position list to

each benzene node. Figure 2.2 b shows examples of carbon position lists using numbers

18

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

assigned to carbon atoms in benzene rings in Figure 2.2 a. We call such a node-labeled

rooted ordered tree whose benzene nodes are attributed with carbon position lists a carbon

position-assigned molecular tree. We enumerate carbon position-assigned molecular trees

instead of molecular graphs. Because hydrogen atom has a valence one (it can be the

leaf node of the molecular tree only) and there is only one way to assign hydrogen atoms

to the compound, which is assign to all nodes whose degree less than their valence such

that degree of those nodes is equal to their valence, we ignore hydrogen atoms during the

enumeration step for the efficiency. Those hydrogen atoms are added to the molecular

tree at the final step.

2.3 Preliminaries

2.3.1 Benzene ring and naphthalene ring

A benzene ring is a six-carbon atoms ring with alternating three single bonds and three

double bonds. As a result of the delocalization of six electrons in p orbital of carbon

atoms, the distant between all six carbon atoms is the same although the length of single

bonds is expected to be longer than the length of double bond [80]. This suggests that

a benzene ring is a resonance hybrid of two structures shown in Figure 2.3 a, which is

usually represented by Figure 2.3 b. In other words, all bonds between two carbon atoms

in a benzene ring are considered as one and a half bond. It is a prototype of aromatic

compounds, a group of unsaturated cyclic hydrocarbon compounds such as naphthalene,

anthracene, phenanthrene.

(a) (b)

Figure 2.3: Illustration of a benzene ring. (a) Two structures which are the hybrid reson-
ance of a benzene ring. (b) Representation of a benzene ring.

Two benzene rings can be fused together by sharing two carbon atoms and form a

naphthalene ring, a bicyclic structure consisting of ten carbon atoms (see Figure 2.4) [48].

A naphthalene ring is the simplest polycyclic aromatic hydrocarbons. Similar to a benzene

ring, all bonds between carbon atoms are considered as the same bond so a naphthalene

ring is a hybrid of three structures (Figure 2.4), where the most important structure is

shown in Figure 2.4 a [80]. Two carbon atoms shared by both rings are at the points of

ring fusion. These atoms share all their electrons to adjacent carbon atoms so they do not

bond with hydrogen atoms as all other atoms do.

19

2.3. PRELIMINARIES

(a) (b) (c)

Figure 2.4: Three structures which are hybrid structures of a naphthalene ring.

Because bonds between carbon atoms in a benzene ring and a naphthalene ring are

considered as the same kind of bond, a benzene ring and a naphthalene ring are symmetric.

The redundancy of chemical compounds can occur due to their symmetry. Accordingly,

we use the concept of an automorphism group as a method to discover such redundancy

and eliminate it. An automorphism φ of a graph G is a one-to-one mapping function of a

vertex set of G onto a vertex set of G itself that preserves the adjacency [94]. This means

that for any two nodes u and v, φ(u) is adjacent to φ(v) if and only if u is adjacent to v

and the label of edge between u and v must be the same as that of edge between φ(u) and

φ(v). There always exists at least one automorphism called identity mapping, which is an

automorphism such that φ(u) = u for all nodes u. An automorphism group of a graph G

is a set of all automorphisms of G.

Next, we find automorphism groups of a benzene ring and a naphthalene ring when

they are treated as two molecular graphs. Let Autb and Autn be the automorphism groups

of a benzene ring and a naphthalene ring, respectively (see Figure 2.5).

(a) (b)

Figure 2.5: Illustration of automorphism of a benzene ring and a naphthalene ring. (a) A
benzene ring. (b) A naphthalene ring. Dashed lines indicate reflections, curves indicate
rotations, where all automorphisms are not shown.

Autb is generated from rotation of π/3 radians and reflection. For φb ∈ Autb, v1 is

adjacent to v2 in a benzene ring if and only if φb(v1) is adjacent to φb(v2) in a benzene

20

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

ring. Autn is generated from rotation of π radians and reflection. This results in 12

automorphisms and 4 automorphisms including identity mapping for a benzene ring and

a naphthalene ring, respectively.

2.3.2 Center-rooted and left-heavy condition

In our previous work [95], we defined the normal form for molecular trees without any cyclic

structures using center-rooted and left-heavy to avoid its redundant generation. In this

work, we also utilize center-rooted and left-heavy for carbon position-assigned molecular

trees, of which properties do not depend on carbon position lists.

A molecular tree T is called center-rooted if its root is the center node (see Figure 2.6

a) or one endpoint of the center edge of the longest path in T (see Figure 2.6 b). The

center can be either a node or an edge depending on the length of the longest path.

C

C

O O

C C O

O

(a)

C

C

O O

C C O

(b)

Figure 2.6: Illustration of center-rooted molecular trees. (a) Center of the longest path
is a node. (b) Center of the longest path is an edge. The thick lines indicate one of the
longest paths and the center node/edge is shown in red.

In order to define a left-heavy tree, atom-labels must be ordered so that they can

be compared with each other, for example, b>C>N>O>H for Σ = {b,C,N,O,H}, where

‘b’ denotes a special atom representing a benzene ring. Let T (u) be the ordered subtree

rooted at u in T . Let u and v be two nodes in a molecular tree T , (u1, u2, ..., uh) and

(v1, v2, ..., vk) be lists of child nodes of u and v, respectively. It is defined that T (u) >s T (v)

if l(u) > l(v) (Figure 2.7 a) or there exists an integer i such that T (uj) =s T (vj) for all

j < i and (T (ui) >s T (vi) (Figure 2.7 b) or i = k + 1 ≤ h (Figure 2.7 c). If T (u) >s T (v)

or T (v) >s T (u) does not hold, it is said that T (u) =s T (v).

Let mul(e) and mul(u, v) be the multiplicity of edge e = (u, v). Let (e1, e2, ..., em) and

(e′1, e
′
2, ..., e

′
m) be two lists of edges in T (u) and T (v) in breadth-first search (BFS) order

(see Figure 2.8), respectively. T (u) >m T (v) if T (u) >s T (v), or if T (u) =s T (v) and there

exists an integer i such thatmul(ej) = mul(e′j) for all j < i, andmul(ei) > mul(e′i) (Figure

2.7 d). If T (u) >m T (v) or T (v) >m T (u) does not hold, it is said that T (u) =m T (v).

Let child(v) = (v1, v2, ...) be a list of all child nodes of node v in BFS order. It is

21

2.3. PRELIMINARIES

>

C

C

u

C

O

v

C O

(a)

=

>

O

C

u

C

v

C

u1

O

v1

(b)

=

>

C

C

u

C

u1

O

u2

C

v

C

v1

(c)

=

>

C

C

u

e1

O

C

v

e′1

O

(d)

Figure 2.7: Illustration of three molecular trees such that T (u) >s T (v) or T (u) >m T (v).
(a) l(u) > l(v). (b) l(u) = l(v), T (u1) >s T (v1). (c) l(u) = l(v), T (u1) =s T (v1),
h = 2 > 1 = k. (d) T (u) =s T (v), mul(e1) > mul(e′1).

defined that a molecular tree T is left-heavy if T (vi) ≥m T (vi+1) holds for all nodes v in

T and all i = 1, . . . , |child(v)| − 1.

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15

Figure 2.8: Illustration of breadth-first search (BFS) order. Numbers indicate BFS order
for this example.

It should be noted that center-rooted and left-heavy are different from centroid-rooted

and left-heavy defined by Fujiwara et al. [28], for example, the molecular tree in Figure 2.2

b is center-rooted and is not centroid-rooted because the number of nodes in the left subtree

by removing the root, 4, is more than (total number of nodes −1)/2 = (7− 1)/2 = 3. In

addition, their left-heavy is defined using depth-first search order, not our breadth-first

search order.

2.3.3 Carbon position list

Let s = (v1, v2, . . . , vn) be a list of nodes, |s| and s[i] denote the size and the i-th element

of s, respectively. Let T sub(v1, v2) be the left-heavy tree rooted at v1 that consists of the

connected component including v1 when the edge (v1, v2) is deleted from T (see Figure

2.9). T sub(v1, v2) =m T (v1) if v1 is a child of v2 in T . Let index(v, T) be the order of

22

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

v ∈ V (T) by traversing a center-rooted left-heavy molecular tree T with BFS order, which

is also denoted by index(v) if T is clear.

v2

v1

(a)

v2

(b)

Figure 2.9: Illustration of subtree T sub(v1, v2). (a) A molecular tree T and T sub(v1, v2),
which is surrounded by a red rectangle. (b) T sub(v2, v1).

Proposition 1. For a node v that has the parent node vp and a child node vc in a center-

rooted molecular tree T , T sub(vp, v) 6=m T sub(vc, v).

Proof. The height of T sub(vp, v) is larger than that of T sub(vc, v) because T is center-

rooted. Hence, T sub(vp, v) is always different from T sub(vc, v).

We define an equality T1 =C T2 for two rooted carbon-position assigned trees T1 and

T2 if T1 =m T2, and CT1v1 = CT2v2 for all benzene nodes v1 ∈ V (T1), where v2 ∈ V (T2)

satisfies index(v1, T1) = index(v2, T2), and CTv is a list of lists, called a carbon position

list explained later, for a benzene node v in T . For convenience, we define another equality

T1 =C T2 by removing the condition that CT1r1 = CT2r2 for the roots r1 and r2 of T1 and T2,

respectively, from the conditions of T1 =C T2, if r1 and r2 are benzene nodes.

For a node v having the parent node vp and a child node vc, T
sub(vp, v) 6=C T

sub(vc, v)

if T sub(vp, v) 6=m T sub(vc, v). Hence, only carbon position lists of descendant benzene

nodes are needed to determine whether or not T sub(vc1 , v) =C T
sub(vc2 , v) for child nodes

vc1 and vc2 of v.

Definition 1. An adjacent node list ATv of a benzene node v in a carbon position-assigned

molecular tree T is defined as a list of lists of nodes adjacent to v using carbon position

lists of descendant benzene nodes such that

• |ATv [i]| ≤ |ATv [i+ 1]| for all i,

• index(ATv [i][1]) < index(ATv [i+ 1][1]) if |ATv [i]| = |ATv [i+ 1]|,

• index(ATv [i][j]) < index(ATv [i][j + 1]) for all i, j,

23

2.3. PRELIMINARIES

• ATv [i] = (v′) if (v, v′) is a merge bond for some i,

• v′ ∈ ATv [i] if (v, v′) is not a merge bond, and T sub(v′, v) =C T
sub(ATv [i][1], v).

b

v1

Cv2

1
Cv3

2
Cv4

3
Ov5

4

Ov6 Ov7

(a)

b

v1

Cv2

2
Cv3

3
Cv4

1
Ov5

4

Ov6 Ov7

(b)

b

v1

bv2

1,2
bv3

3
Cv4

5
Ov5

4

Ov6 Ov7

(c)

4

O

3

C

2
CO

1

CO

6

5

(d)

4

O

3

CO

2
CO

1

C

6

5

(e)

4

O

3
O

2

O

1

6

5
C

(f)

Figure 2.10: Examples of adjacent node lists and carbon position lists. (a) T1. (b) T2. (c)
T3. (d) Molecular graph of T1. (e) Molecular graph of T2. (f) Molecular graph of T3. Red
numbers represent carbon positions of node v1.

Figure 2.10 shows examples of carbon position-assigned molecular trees, where ben-

zene node v1 in each tree has adjacent nodes v2, v3, v4, and v5. Then, T sub1 (v2, v1) =C

T sub1 (v3, v1) 6=C T sub1 (v4, v1) 6=C T sub1 (v5, v1) and index(v4) < index(v5), so we have

AT1v1 = ((v4), (v5), (v2, v3)). Also for T2, AT2v1 = ((v4), (v5), (v2, v3)). For T3, AT3v1 =

((v2), (v3), (v4), (v5)) because (v2, v1) is a merge bond. If (v2, v1) is not a merge bond

and CT3v2 = CT3v3 , then AT3v1 = ((v4), (v5), (v2, v3)).

Proposition 2. For a benzene node v that has the parent node vp in a center-rooted

molecular tree T , ATv [1] = (vp).

Proof. If v has no child, it is clear because the adjacent node of v is only vp. We assume

that v has a child vc. From Proposition 1 and index(vp) < index(vc), A
T
v [1] = (vp) always

holds.

A carbon position list CTv of a benzene node v in T is a list of lists, where CTv [i] is

a list of carbon positions of the nodes in ATv [i]. It is sufficient to enumerate CTv [i] in

ascending order because each node in ATv [i] has the same subtree. If (ATv [i][1], v) is a

merge bond, CTv [i] has two carbon positions instead of one as usual. It should be noted

that CTv [i] ⊆ {1, . . . , 6} and two carbon positions are assigned for a merge bond because

a naphthalene ring shares two carbon atoms between two benzene rings. In the examples

24

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

of Figure 2.10, CT1v1 = ((3), (4), (1, 2)) for AT1v1 = ((v4), (v5), (v2, v3)), CT2v1 = ((1), (4), (2, 3))

for AT2v1 = ((v4), (v5), (v2, v3)), CT3v1 = ((1, 2), (3), (5), (4)) for AT3v1 = ((v2), (v3), (v4), (v5)).

Definition 2. An adjacent node list AT(v1,v2) for a naphthalene ring with two benzene nodes

v1, v2, where (v1, v2) is a merge bond, is defined as a list of lists of nodes adjacent to v1

or v2 except v1 and v2 such that

• |AT(v1,v2)[i]| ≤ |A
T
(v1,v2)[i+ 1]| for all i,

• index(AT(v1,v2)[i][1]) < index(AT(v1,v2)[i+ 1][1]) if |AT(v1,v2)[i]| = |A
T
(v1,v2)[i+ 1]|,

• index(AT(v1,v2)[i][j]) < index(AT(v1,v2)[i][j + 1]) for all i, j,

• v′ ∈ AT(v1,v2)[i] if T sub(v′, bn(v′)) =C T
sub(AT(v1,v2)[i][1], bn(AT(v1,v2)[i][1])), where bn(v)

is v1 or v2 that is adjacent to v.

For a benzene node v2 that is connected by a merge bond with the parent node v1, we

suppose that the carbon atoms having positions 1,2 in v2 are connected with the carbon

atoms having positions x+ 1, x in v1, respectively, where x takes an integer between 1 and

6, and x = (x mod 6)+1 (see Figure 2.11 a). Here, consider the case that v1 has the parent

node vp. If T is in normal form (Definition 6), position 1 is assigned to the carbon atom

connected with vp (Proposition 5). Then, from Proposition 1, T sub(vp, v1) 6=C T
sub(vc, v2)

for any child node vc of v2, T sub(vp, v1) 6=C T
sub(vc, v1) for any child node vc of v1 except

v2, and the naphthalene ring is not symmetric. Consider the case that v1 does not have a

parent node, that is, v1 is the root. If T sub(v1, v2) 6=C T sub(v2, v1), the naphthalene ring

can be symmetric only with respect to the axis denoted by the dashed red line in Figure

2.11 a. Then, it is not needed to consider the other symmetry for the naphthalene ring.

Consider the case that T sub(v1, v2) =C T sub(v2, v1). We can prove that x = 1 if T is

in normal form (see Proposition 4). Then, a carbon position list CT(v1,v2) of a naphthalene

ring consisting of two benzene nodes v1, v2 is a list of lists determined from CTv1 and CTv2
according to the following rule, where CT(v1,v2)[i] is a list of carbon positions of nodes in

AT(v1,v2)[i] in ascending order.

Definition 3. Carbon positions in a naphthalene ring correspond to carbon positions in

two benzene nodes v1, v2, where v1 is the parent node of v2, if T sub(v1, v2) =C T
sub(v2, v1),

as follows (see Figure 2.11 b).

• For the benzene ring of v1, positions 1, 2 are assigned to carbons of the merge bond

in CTv1. Position i (i = 3, . . . , 6) in CTv1 corresponds to i− 2 in CT(v1,v2).

• For the benzene ring of v2, positions 1, 2 are assigned to carbons of the merge bond

in CTv2. Position i (i = 3, . . . , 6) in CTv2 corresponds to i+ 2 in CT(v1,v2).

25

2.3. PRELIMINARIES

4

3

2

x x+ 5

x+ 4

x+ 3

x+ 2 v1

1
x+ 1

v26

5

(a)

6

4 5
3

2

1

v1
6

4

5
34

2

3
1

v2

1
2

8
6

7
5

(b)

Figure 2.11: Correspondence between carbon positions in a naphthalene ring. (a) Corres-
pondence between carbon positions involved with a merge bond in two benzene rings. (b)
Correspondence between carbon positions of a naphthalene ring and two benzene rings in
the case of T sub(v1, v2) =C T sub(v2, v1). The upper benzene ring v1 is the parent of the
lower benzene ring v2. x denotes (x mod 6) + 1. Blue, red, and green numbers are pos-
itions of CTv1 , CTv2 , and CT(v1,v2), respectively. The dashed red line denotes the symmetric
axis of φref .

Figure 2.12 shows examples of carbon position lists for a naphthalene ring, where

T ′4 is T4 with C
T ′4
v1 = ((1, 2), (4), (3)) and C

T ′4
v2 = ((1, 2), (4), (5)), T ′′4 is T4 with C

T ′′4
v1 =

((1, 2), (4), (5)) and C
T ′′4
v2 = ((1, 2), (4), (3)). Then, A

T ′4
(v1,v2) = A

T ′′4
(v1,v2) = ((v3, v5), (v4, v6)),

C
T ′4
(v1,v2) = ((2, 6), (1, 7)), and C

T ′′4
(v1,v2) = ((2, 6), (3, 5)).

Definition 4. For carbon position lists CT1v , CT2v , where AT1v = AT2v , it is defined that

CT1v < CT2v if there exist two integers i and j such that

• CT1v [i′][j′] = CT2v [i′][j′] for all i′ < i and all j′ = 1, . . . , |CT1v [i′]|,

• CT1v [i][j′] = CT2v [i][j′] for all j′ < j,

• CT1v [i][j] < CT2v [i][j].

This definition is applied to comparison of CT1(v1,v2) and CT2(v1,v2) for a naphthalene ring

with v1 and v2 in the same way.

In the example of Figure 2.10, T1 and T2 have the same tree structure, and CT2v1 =

((1), (4), (2, 3)) < ((3), (4), (1, 2)) = CT1v1 because CT2v1 [1][1] = 1 < 3 = CT1v1 [1][1].

Let Autb and Autn be the automorphism groups of a benzene ring and a naphthalene

ring, respectively (see Figure 2.5). We suppose that a list φ(CTv [i]) of carbon positions for

a map φ and i = 1, . . . , |CTv | is in ascending order by sorting elements of the list because

all nodes in ATv [i] have the same subtree. For example, φb(C
T1
v1) = ((6), (5), (1, 2)) for

26

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

b

v1

bv2 Cv3 Ov4

Cv5 Ov6

(a)

6

4 5
3

2

1

v1
6

4

5
34

2

3

1
O

v2

1
2

8
6

7

5

O

(b)

6

4

53

O

2

1

v1
6

4

5

3
O

4

2

3
1

v2

1
2

8
6

7
5

(c)

Figure 2.12: Example of carbon position lists for a naphthalene ring. (a) T4. (b) Molecular

graph of T ′4, which is T4 with C
T ′4
v1 = ((1, 2), (4), (3)), C

T ′4
v2 = ((1, 2), (4), (5)). (c) Molecular

graph of T ′′4 , which is T4 with C
T ′′4
v1 = ((1, 2), (4), (5)), and C

T ′′4
v2 = ((1, 2), (4), (3)).

CT1v1 = ((3), (4), (1, 2)) and the reflection map φb by the perpendicular bisector between

carbon atoms of 1 and 2.

2.3.4 Normal form of a carbon position-assigned molecular tree

In order to prevent generating redundant molecular trees in enumeration, we define a

normal form of a carbon position-assigned molecular tree. During the enumeration step,

we generate only molecular trees satisfying this normal form rule and discard the rest.

Definition 5. Let P be a path in T consisting of n nodes (v1, v2, ..., vn) (n ≥ 2). P is

called a symmetric path if the following conditions are satisfied.

• T sub(vbn
2
c, vbn

2
c+1) =m T sub(vn−bn

2
c+1, vn−bn

2
c),

• index(vi, T
sub(vbn

2
c, vbn

2
c+1)) = index(vn−i+1, T

sub(vn−bn
2
c+1, vn−bn

2
c)) for all i =

1, · · · , bn2 c, where bxc is the largest integer less than or equal to x,

• CTv = CTv′ for all benzene nodes v ∈ V (T sub(vbn
2
c, vbn

2
c+1))\V (T sub(v1, v2)), where

v′ ∈ V (T sub(vn−bn
2
c+1, vn−bn

2
c)) satisfies index(v′, T sub(vn−bn

2
c+1, vn−bn

2
c)) =

index(v, T sub(vbn
2
c, vbn

2
c+1)), and v ∈ V1\V2 means that v ∈ V1 and v /∈ V2.

Proposition 3. For a center-rooted molecular tree, either of vn
2

and vn
2

+1 is the root if

the length of a symmetric path (v1, · · · , vn) is even. Otherwise, the depth of vn+1
2

is less

than that of any node in the path.

Proof. For a path (v1, · · · , vn), vi+1 and vn−i must be the parent nodes of vi and vn−i+1,

respectively, for i = 1, · · · , n−1
2 if n is odd and for i = 1, · · · , n2 − 1 if n is even due to the

center rooted property. Therefore, if the length of path is odd, vn+1
2

is the parent node

27

2.3. PRELIMINARIES

of both vn+1
2
−1 and vn+1

2
+1, which means that the depth of vn+1

2
is less than that of any

node in the path.

In the case that n is even, either vn
2

or vn
2

+1 has the least depth among all nodes in

the path and another node is the child node of that node. Assume that between these two

nodes the parent node is va and the child node is vb. va cannot have a parent node because

the height of T sub(vp, va), where vp is the parent node of va, cannot be equal to the height

of T sub(vc, vb) for any nodes vc that are adjacent to vb due the center-rooted condition,

which means that T sub(va, vb) =m T sub(vb, va) cannot be hold and the first condition of

symmetric path is violated. In other words, va, which is either vn
2

or vn
2

+1, is the root

node of the tree if n is even.

We say that v1 is left of vn for a symmetric path (v1, . . . , vn) when vn−bn
2
c+1 is the

root, or index(v1) < index(vn).

Figure 2.13 shows examples of symmetric paths, (v2, v1, v3) in T5 and (v5, v2, v1, v3) in

T6, where T sub5 (v2, v1) =m T sub5 (v3, v1), T sub6 (v2, v1) =m T sub6 (v1, v2), and CT6v4 = CT6v6 .

We define an inequality T1 >C T2 for carbon position-assigned molecular trees T1 and

T2 if T1 >m T2, or T1 =m T2, and there exists an integer i such that vi is a benzene node,

CT1vi > CT2
v′i

, and CT1vj = CT2
v′j

for all benzene nodes vj with j > i, where index(vk, T1) =

index(v′k, T2) for all k = 1, . . . , |V (T1)|.

Definition 6. Let φref be the reflection map with the symmetric axis shown in Figure

2.11A. A carbon position-assigned molecular tree T that contains a carbon position list CTv
for each benzene node v is in normal form if the following conditions are satisfied.

1. T is center-rooted and left-heavy.

2. T (v) ≥m T sub(r, v) if the center of the longest path in T with the root r is the edge

(r, v).

3. Positions in each sublist of CTv for each benzene node v are in ascending order.

4. CTv ≤ φb(CTv) for all benzene nodes v that is not connected by a merge bond with the

parent node and all φb ∈ Autb.

5. For benzene nodes v1, v2 connected by a merge bond such that v1 is the root of T ,

(a) CT(v1,v2) ≤ φn(CT(v1,v2)) for all φn ∈ Autn if T sub(v1, v2) =C T sub(v2, v1), where

CT(v1,v2) is related with CTv1 and CTv2 by Definition 3.

(b) CTv2 ≤ φref (CTv2) if T sub(v1, v2) 6=C T
sub(v2, v1) and CTv1 = φref (CTv1).

6. T sub(v1, v2) ≥C T sub(vn, vn−1) for all pairs v1,vn of nodes such that the path (v1, . . . , vn)

is a symmetric path, v1 and vn(= v2) are not connected by a merge bond, and v1 is

left of vn.

28

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

b

v1

Cv2 Cv3 Cv4

b

v5

b

v6

b

v7

b

v8

(a)

C

v1

Cv2 bv3 b v4

bv5 b

v6

C v7

Cv8

(b)

Figure 2.13: Examples of symmetric paths. The red lines denote symmetric paths. (a)
T5, where (v2, v1, v3) is a symmetric path, and T sub5 (v2, v1) =m T sub5 (v3, v1). (b) T6, where
(v5, v2, v1, v3) is a symmetric path, T sub6 (v2, v1) =m T sub6 (v1, v2) and CT6v4 = CT6v6 .

29

2.3. PRELIMINARIES

We call a tree in normal form a normal tree.

Figure 2.12 also shows molecular trees in normal form and not in normal form. For

condition 4 of the definition, C
T ′4
v1 = ((1, 2), (4), (3)) ≤ φb(C

T ′4
v1), C

T ′′4
v1 = ((1, 2), (4), (5))

≤ φb(C
T ′′4
v1). T ′4 and T ′′4 satisfy conditions 1,2, 3, and 4. For condition 5, C

T ′4
(v1,v2) =

((2, 6), (1, 7)) ≤ φn(C
T ′4
(v1,v2)), whereas C

T ′′4
(v1,v2) = ((2, 6), (3, 5)) > ((2, 6), (1, 7)) = φrot(C

T ′′4
(v1,v2))

for rotation φrot of π radians, and T ′′4 violates the condition. It is noted that T ′′4 is rotated

by π radians from T ′4. For condition 6, v1 and v2 are connected by a merge bond. Thus,

T ′4 is a normal tree, and T ′′4 is not a normal tree.

Proposition 4. For a normal tree T with a benzene node v1 that is connected by a merge

bond with its child node v2 and satisfies T sub(v1, v2) =C T sub(v2, v1), positions 1,2 are

assigned to the merge bond in the benzene ring of v1. Furthermore, if CT(v1,v2) ≤ φn(CT(v1,v2))

for all φn ∈ Autn, then CTv1 ≤ φb(C
T
v1) for all φb ∈ Autb.

Proof. We assume that there exists a node vl as a left sibling of v2, and vl is the leftmost

child of v1. Since T is left-heavy, T (vl) ≥m T (v2), and l(vl) = l(v2) =‘b’ is needed.

However, T (vl) =C T (vc), where vc is the leftmost child of v2, because T sub(v1, v2) =C

T sub(v2, v1) =C T (v2). Hence, T (vl) <m T (v2). It contradicts the assumption, and v2

is the leftmost child of v1. Therefore, ATv1 [1] = (v2). From condition 4 of Definition 6,

CTv1 [1] = (1, 2), and positions 1,2 are assigned to the merge bond, that is x = 1 in Figure

2.11 a.

For a map φb ∈ Autb other than the identity and reflection map φref for a benzene ring,

CTv1 < φb(C
T
v1) because each of φb(1) and φb(2) is at least 2. From CT(v1,v2) ≤ φref (CT(v1,v2))

and the correspondence between CTv1 and CT(v1,v2), C
T
v1 ≤ φref (CTv1). Therefore, CTv1 ≤

φb(C
T
v1) for all φb ∈ Autb.

Proposition 5. For a benzene node v of a normal tree T , CTv [1][1] is always equal to 1.

Proof. If v is not connected by a merge bond with the parent node, from condition 4, CTv
must be the least possible carbon position list. Hence, CTv [1][1] = 1. Otherwise, from

Definition 3, CTv [1][1] = 1.

Proposition 6. For a normal tree T with a path (v1, . . . , vn), G′ is the molecular graph

obtained from the tree T ′ by removing T sub(v1, v2) and T sub(vn, vn−1) except v1 and vn

from T , where v1 is left of vn. If there is a non-identity map φ of the automorphism group

of G′ satisfying φ(vi) = vn−i+1 for all i = 1, . . . , n, then T sub(v1, v2) ≥C T sub(vn, vn−1),

where φ in G′ is naturally extended to T .

Proof. If T sub(vbn
2
c, vbn

2
c+1) >m T sub(vn−bn

2
c+1, vn−bn

2
c), then T sub(v1, v2) >m T sub(vn, vn−1),

and T sub(v1, v2) >C T
sub(vn, vn−1). We assume T sub(vbn

2
c, vbn

2
c+1) =m T sub(vn−bn

2
c+1, vn−bn

2
c).

If the path (v1, . . . , vn) is a symmetric path, T sub(v1, v2) ≥C T sub(vn, vn−1) from condition

30

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

6. We assume that (vi+1, . . . , vn−i) is a symmetric path for some i, and index(vi, T
sub(vi+1, vi+2)) >

index(vn−i+1, T
sub(vn−i, vn−i−1)) (see Figure 2.14). Then,

T sub(vi+1, vi+2) =m T sub(vn−i, vn−i−1), (2.1)

T sub(vi+1, vi+2) ≥C T sub(vn−i, vn−i−1). (2.2)

vi+1 vn−i

uj1 vi

vn−i+1

wj2

Figure 2.14: Illustration of an automorphism φ in the proof. The red path indicates
(v1, . . . , vn), where φ(vi) = vn−i+1 for all i = 1, . . . , n.

Let uj and wj be child nodes of vi+1 and vn−i, respectively. Then, vi = uj2 and

vn−i+1 = wj1 , where j1 = index(vn−i+1, T
sub(vn−i, vn−i−1)) and j2 = index(vi, T

sub(vi+1, vi+2)).

If vi+1 and vn−i are benzene nodes, T (uj1) =C T (vi), T (vn−i+1) =C T (wj2), and T (vi) =C

T (vn−i+1) because CTvi+1
= CTvn−i

and φ(vi) = vn−i+1.

We assume that vi+1 and vn−i are not benzene nodes. For child nodes uj of vi+1,

T (uj) ≥C T (uj+1) because (uj , vi+1, uj+1) is a symmetric path. Also for child nodes

wj of vn−i, T (wj) ≥C T (wj+1). From the definition of φ, T (uj) =C T (φ(uj)) for all

uj 6= vi. If index(φ(uj+l)) < index(φ(uj)) for uj , uj+l 6= vi and l > 0, T (uj) ≥C
T (uj+l) =C T (φ(uj+l)) ≥C T (φ(uj)) =C T (uj). It means T (uj) =C T (uj+l). We as-

sume that index(φ(uj)) < index(φ(uj+l)) for all uj 6= vi, that is, φ(uj) = wj+1 for all

j = j1, . . . , j2 − 1. Then,

T (uj) =C T (wj+1) ≤C T (wj), and T (vi) ≤C T (uj2−1) =C T (wj2). (2.3)

If T sub(vi+1, vi+2) >C T sub(vn−i, vn−i−1), then there is an integer j (j1 ≤ j ≤ j2) such

that T (uj) >C T (wj), and it contradicts Eq. (2.3). Therefore, T sub(vi+1, vi+2) =C

T sub(vn−i, vn−i−1), and T (vi) =C T (vn−i+1). Also for the case that (vi+1, . . . , vn−i) is a

symmetric path for some i and index(vi, T
sub(vi+1, vi+2)) < index(vn−i+1, T

sub(vn−i, vn−i−1)),

then T (vi) =C T (vn−i+1).

Thus, T sub(v1, v2) ≥C T sub(vn, vn−1).

31

2.4. PROOF

2.4 Proof

Lemma 1. Given a molecular graph G without cyclic structures except benzene rings and

naphthalene rings, G can be represented by a normal tree.

Proof. We can assign numbers to carbons in benzene rings and naphthalene rings of G

such that the conditions of Definition 6 are satisfied.

Lemma 2. Given two different molecular graphs G1 and G2, they cannot be represented

by the same normal tree.

Proof. We can unambiguously obtain a molecular graph from a normal tree by replacing

all benzene nodes with benzene rings according to its carbon position lists.

Lemma 3. Given two different normal trees T1 and T2, T1 does not represent the same

molecular graph as T2.

Proof. We assume that T1 represents the same molecular graph as T2. Let G1 and G2 be

molecular graphs transformed from T1 and T2, respectively, where each carbon in benzene

rings and naphthalene rings is connected with adjacent atoms according to carbon position

lists of T1 and T2. From the assumption, there is an isomorphism ψ from G1 to G2. It

means that l(v1) = l(ψ(v1)) for all v1 ∈ V (G1), (ψ(v1), ψ(v2)) ∈ E(G2) if and only if

(v1, v2) ∈ E(G1), and mul(ψ(v1), ψ(v2)) = mul(v1, v2).

Consider the case that the automorphism group Aut(G1) of G1 has only elements φ

such that φ(v1) 6= v2 for v1 and v2 belonging to distinct benzene rings. Let T (G) be

the molecular tree without carbon position lists, obtained from G by contracting benzene

rings and naphthalene rings to benzene nodes, and satisfying conditions 1,2 of Definition

6. We suppose that maps ψ and φ in G1 are naturally extended to T (G1). Since T1 is

different from T2, there is a benzene node v1 ∈ V (T1) such that

CT1v1 6= CT2ψ(v1). (2.4)

If v1 is not connected by a merge bond with the parent node, there is a non-identity map

φb ∈ Autb such that CT1v1 = φb(C
T2
ψ(v1)) because T1 and T2 represent the same molecular

graph. It contradicts condition 4 of Definition 6. Suppose that v1 is connected by a

merge bond with the parent node vp and CT1vp = CT2ψ(vp). If T sub(vp, v1) =C T sub(v1, vp),

then vp is the root, and there is a non-identity map φn ∈ Autn such that CT1(vp,v1) =

φn(CT2(ψ(vp),ψ(v1))) because T1 and T2 represent the same molecular graph. It contradicts

condition 5a. Otherwise, T sub(vp, v1) 6=C T sub(v1, vp). If vp is not the root, then T1 does

not represent the same molecular graph as T2 because T sub(va, vp), where va is the parent

of vp, is different from other subtrees connected to the naphthalene ring. It contradicts

the assumption. If vp is the root, CT1vp = φref (CT1vp) and CT1v1 = φref (CT2ψ(v1)) because T1

and T2 represent the same molecular graph. It contradicts condition 5b.

32

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

Consider the case that there is an element φ ∈ Aut(G1) such that φ(v1) = v2 for v1 and

v2 belonging to distinct benzene rings. Since T1 is different from T2, there is a benzene

node v1 ∈ V (T1) such that

CT1v1 6= CT2ψ(v1). (2.5)

Here, we suppose that conditions 3, 4, 5 are satisfied for all benzene nodes in T1 and T2.

Then, there is a path from v1 to φ(v1) = vn, (v1, . . . , vn), in T1. Since T1 and T2 represent

the same molecular graph,

T sub1 (v1, v2) =C T
sub
2 (ψ(vn), ψ(vn−1)) and T sub1 (vn, vn−1) =C T

sub
2 (ψ(v1), ψ(v2)). (2.6)

Here, we can assume that v1 is left of vn and ψ(v1) is left of ψ(vn) without loss of generality.

Then, from Proposition 6, for paths of (v1, . . . , vn) and (ψ(v1), . . . , ψ(vn)),

T sub1 (v1, v2) ≥C T sub1 (vn, vn−1) and T sub2 (ψ(v1), ψ(v2)) ≥C T sub2 (ψ(vn), ψ(vn−1)) (2.7)

because T1 and T2 are normal trees. There is no carbon position lists that satisfy Eq.

(2.5), (2.6), and (2.7).

Therefore, T1 does not represent the same molecular graph as T2.

2.5 Methods

We propose an algorithm BfsBenNaphEnum for enumerating chemical compounds contain-

ing benzene rings and naphthalene rings as cyclic structures. BfsBenNaphEnum utilizes

our previously developed algorithms BfsSimEnum, BfsMulEnum [95], and assigns carbon

position lists.

2.5.1 Calculation of the number of benzene rings and naphthalene rings

Before enumerating the molecular trees, the number of benzene rings and naphthalene

rings in the trees must be defined first. Since a naphthalene ring is represented by two

benzene nodes bonding together with a merge bond, the number of merge bonds is calcu-

lated to determine the number of naphthalene rings. To calculate the number if benzene

nodes and merge bonds, degree of unsaturation (DoU) of a chemical formula and the

number of carbon atoms are used. DoU is equal to the number of double bonds and the

number of cyclics plus twice the number of triple bonds in that chemical structure, which

can be calculated directly from the chemical formula by the Equation 2.8 [75].

DoU = 1 +

∑
li
num(li)(val(li)− 2)

2
(2.8)

, where num(li) is the number of atom type li in that chemical formula and val(li)

33

2.5. METHODS

is the valence of atom type li. Let Σ = {l1, l2, ..., lm} be a set of m atom types and

S = {nb, nl1 , nl2 , ..., nlm} be a vector representation of a chemical formula, where nli is the

number of atom type li, and nb is the number of benzene nodes in a chemical structure,

which is initialized to zero. Let num(S, li) be the number of atom with label li in S, and

DoU(S) be degree of unsaturation of chemical formula S calculated from Equation 2.8.

Algorithm 1 takes a chemical formula as the input and computes a set of all possible pairs

of chemical formula with the number of benzene nodes and the corresponding number of

merge bonds.

2.5.2 Modification of BfsSimEnum and BfsMulEnum

Suppose that the numbers nli of atoms with label li for all li ∈ Σ, the numbers nb, nn

of benzene rings and naphthalene rings are given. BfsBenNaphEnum introduces a special

label ‘b’ representing a benzene node to Σ with b > li ∈ Σ and val(b) = 6, and executes

BfsSimEnum to generate all non-redundant molecular trees T such that num(T, li) = nli
for li ∈ Σ except li = b, C and num(T, b) = nb + 2nn, num(T,C) = nC − 6nb − 10nn.

At this time, all edges of enumerated trees are single because BfsSimEnum generates

only simple trees. Then, we modify BfsMulEnum to assign nn merge bonds to edges

between benzene nodes in each tree enumerated by BfsSimEnum in addition to adding

1 +
∑

li∈Σ,li 6=b num(T, li)(val(li)− 2)/2 bonds to edges between usual nodes. It should be

noted that multiple bonds cannot be assigned to edges connected to benzene nodes since

a carbon atom in benzene rings and naphthalene rings is connected with another adjacent

atom by a single bond.

2.5.3 Assignment of carbon positions for molecular trees

In this algorithm, we traverse along the tree T from the rightmost deepest benzene node

to the root in reverse BFS order because an adjacent node list depends on carbon position

lists of descendant nodes. For each benzene node v we found, we assign a carbon position

list not to violate the conditions of normal form.

Table 2.1: Carbon position lists for ATv , where v is the root, and |ATv [1]| ≥ 3

|ATv [1]| |ATv [2]| CTv
3 0 ((1,2,3)), ((1,2,4)), ((1,3,5))
3 3 ((1,2,3),(4,5,6)), ((1,2,4),(3,5,6)), ((1,3,5),(2,4,6))
4 0 ((1,2,3,4)), ((1,2,3,5)), ((1,2,4,5))
5 0 ((1,2,3,4,5))
6 0 ((1,2,3,4,5,6))

The pseudocode of assignment part in BfsBenNaphEnum is given in Algorithms 2 and

3. We always assign carbon position 1 to the first node in ATv (line 27 in ASSIGN function)

due to Proposition 5, which is the parent node of v if v is not the root (Proposition 2). If

34

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

Algorithm 1 Calculation algorithm of the number of benzene nodes and merge bonds

1: function calculate num benzene(S)
2: Result := ∅
3: Result.push((S, 0))
4: unfinish list := Result
5: while |unfinish list| > 0 do
6: (S1, num mergebond) := unfinish list.pop()
7: S2 := S1

8: if DoU(S2) ≥ 4 and num(S2, carbon) ≥ 6 and num mergebond = 0 then
9: nb := num(S2, benzene) + 1

10: set(S2, benzene, nb)
11: nC := num(S2, carbon)− 6
12: set(S2, carbon, nC)
13: Result.push((S2, num mergebond))
14: unfinish list.push((S2, num mergebond))
15: end if
16: if DoU(S1) ≥ 3 and num(S1, carbon) ≥ 4 then
17: if num(S1, benzene)− (2 · num mergebond) ≥ 1 then
18: nb := num(S1, benzene) + 1
19: set(S1, benzene, nb)
20: nC := num(S1, carbon)− 4
21: set(S1, carbon, nC)
22: num mergebond := num mergebond+ 1
23: Result.push((S1, num mergebond))
24: unfinish list.push((S1, num mergebond))
25: end if
26: end if
27: end while
28: return Result
29: end function

35

2.5. METHODS

Algorithm 2 Assignment algorithm of carbon positions for a molecular tree T

1: function assign carbon positions(T)
2: v := the last benzene node of T in BFS order
3: ASSIGN(T, v)
4: end function

1: function assign(T, v)
2: if v is null then
3: P := the set of all pairs of nodes (v1, . . . , vn) such that v1 is left of vn, the path

from v1 to vn is a symmetric path, and v1 and vn are not connected by a merge bond
4: if T sub(v1, v2) ≥C T sub(vn, vn−1) for all (v1, vn) ∈ P then
5: output T
6: end if
7: return
8: end if
9: if the next benzene node of v in reverse BFS order exists then

10: v′ := the next benzene node of v in reverse BFS order
11: else
12: v′ := null
13: end if
14: if |ATv | = 0 then
15: ASSIGN(T, v′)
16: return
17: end if
18: if v is the root of T then
19: if |ATv [1]| ≥ 3 then
20: for each valid carbon position list p in Table 2.1 do
21: CTv := p
22: ASSIGN(T, v′)
23: end for
24: return
25: end if
26: end if
27: CTv [1][1] := 1
28: if (v,ATv [1][1]) is a merge bond then
29: CTv [1][2] := 2
30: end if
31: ASSIGN CHILD(T, v,ATv [1][1], v′)
32: end function

36

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

Algorithm 3 Assignment algorithm for adjacent nodes of a benzene node v

1: function assign child(T, v, w, v′)
2: if w is null then
3: flag := true
4: if v is not connected by a merge bond with the parent node then
5: if φb ∈ Autb such that CT

v > φb(C
T
v) exists then

6: flag := false
7: end if
8: end if
9: if v is the root of T then

10: if a benzene node connected by a merge bond with v exists then
11: vc := the benzene node connected by a merge bond with v
12: if T sub(v, vc) =C T sub(vc, v) then
13: if φn ∈ Autn such that CT

(v,vc)
> φn(CT

(v,vc)
) exists then

14: flag := false
15: end if
16: else
17: if CT

v = φref (CT
v) and CT

vc > φref (CT
vc) then

18: flag := false
19: end if
20: end if
21: end if
22: end if
23: if flag then
24: ASSIGN(T, v′)
25: end if
26: return
27: end if
28: if the next node of w in AT

v exists then
29: w′ := the next node of w in AT

v

30: else
31: w′ := null
32: end if
33: if w has been already assigned then
34: ASSIGN CHILD(T, v, w′, v′)
35: return
36: end if
37: Let i and j be two integers such that AT

v [i][j] = w
38: for p = 2, . . . , 6 do
39: if p has not been assigned and p > maxj′<j C

T
v [i][j′] then

40: CT
v [i][j] := p

41: if (v,AT
v [i][j]) is a merge bond then

42: CT
v [i][j + 1] := p+ 1

43: end if
44: ASSIGN CHILD(T, v, w′, v′)
45: end if
46: end for
47: end function

37

2.5. METHODS

v is the root and |ATv [1]| ≥ 3, we assign carbon position lists in Table 2.1 to v immediately

for the sake of efficiency. Carbon position lists in Table 2.1 satisfy condition 4 of the nor-

mal form, and all the cases are included in the table. For other carbon positions from 2 to

6, we use ASSIGN CHILD to assign such positions to the remaining adjacent nodes. For

example, let T1 in Figure 2.10 be output without any carbon position list by BfsMulEnum.

T1 has a benzene node v1, and AT1v1 = ((v4), (v5), (v2, v3)). First, carbon position 1 is as-

signed to AT1v1 [1][1] = v4, that is, CT1v1 [1][1] = 1. Since v1 is the root and |AT1v1 [1]| = 1 < 3,

Table 2.1 is not used, and the other nodes v5, v2, v3 are assigned by ASSIGN CHILD. For

v5, each carbon position from 2 to 6 is examined (line 38 in ASSIGN CHILD). For v2,

each position from 2 to 6 except the position assigned to v5 is examined (line 39). For v3,

each position from 2 to 6 that is more than the position assigned to v2 except the position

assigned to v5 is examined (line 39) because v2 and v3 have the same subtree and condi-

tion 3 must be satisfied. Thus, CT1v1 = ((1), (2), (3, 4)), ((1), (2), (3, 5)), ((1), (2), (3, 6)), . . . ,

((1), (3), (2, 4)), ((1), (3), (2, 5)), . . . , ((1), (6), (4, 5)) are examined, where ((1), (6), (2, 3)),

((1), (6), (2, 4)), ((1), (5), (2, 3)) and so on are discarded in the next step.

The illustration of assigning position lists process is given in Figure 2.15, where the

molecular tree in the rightmost leaf of family tree is discarded because its carbon posi-

tion list is ((1), (4), (3, 6)) and there is a mapping function φ such that ((1), (4), (3, 6)) >

φ((1), (4), (3, 6)) = ((1), (4), (2, 5)) which violates the normal form rule.

Since an input of this part, that is, an output of BfsMulEnum, satisfies conditions 1, 2

of the normal form, BfsBenNaphEnum always outputs normal trees. In ASSIGN CHILD,

a distinct carbon position list is always assigned, and all patterns are assigned (line 40). For

each benzene node v, after assignment of a carbon position list to ATv , whether or not CTv
violates conditions 4, 5 of the normal form is confirmed (lines 5, 13, 17 in ASSIGN CHILD).

After carbon position lists are assigned to all benzene nodes, condition 6 is confirmed (line

4 in ASSIGN). Hence, BfsBenNaphEnum outputs all distinct normal trees corresponding

to the input chemical formula.

Theorem 1. BfsBenNaphEnum outputs all non-redundant molecular graphs that are solu-

tions of Problem 1.

Figure 2.16 shows another example T7 of molecular trees. T7 includes four benzene

nodes v5, v4, v3, v2 in reverse BFS order, and edges (v2, v4), (v3, v5) are merge bonds.

To generate normal trees from T7, first, our algorithm assigns carbon position lists for

AT7v5 = ((v3), (v7)) as CT7v5 = ((1, 2), (3)), ((1, 2), (4)), ((1, 2), (5)), ((1, 2), (6)). In a similar

way, for AT7v4 = ((v2), (v6)), CT7v4 = ((1, 2), (3)), ((1, 2), (4)), ((1, 2), (5)), ((1, 2), (6)). For

AT7v3 = ((v1), (v5)), CT7v3 = ((1), (2, 3)), ((1), (3, 4)), ((1), (4, 5)),

((1), (5, 6)) are examined. In line 5 of ASSIGN CHILD, ((1), (4, 5)) and ((1), (5, 6)) are

discarded because φb(((1), (4, 5))) = ((1), (3, 4)), φb(((1), (5, 6))) = ((1), (2, 3)) for the re-

flection map φb with respect to the axis through positions 1 and 4, and these violate condi-

tion 4. In a similar way, for AT7v2 = ((v1), (v4)), CT7v2 = ((1), (2, 3)), ((1), (3, 4)) are assigned.

38

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

b

C

O

C

O

C O

b

C

O

C

O

C1 O

b

C

O

C

O

C1 O2

...

b

C

O

C

O

C1 O3

...

b

C

O

C

O

C1 O4

b

C

O

C

O

C1 O5

...

b

C

O

C

O

C1 O6

...

b

C2

O

C

O

C1 O4

...

b

C3

O

C

O

C1 O4

b

C5

O

C

O

C1 O4

...

b

C6

O

C

O

C1 O4

...

b

C3

O

C5

O

C1 O4

b

C3

O

C6

O

C1 O4

Figure 2.15: Family tree showing process of assigning carbon position lists to a benzene
node, where b is a label of benzene node. Molecular graphs with low opacity contain
invalid position lists.

39

2.5. METHODS

C

v1

bv2 bv3

bv4 bv5

Cv6 Cv7

Figure 2.16: Example of a molecular tree T7.

After carbon position lists are assigned to all benzene nodes, condition 6 is confirmed in

line 4 of ASSIGN. If CT7v2 6= CT7v3 , then there is one symmetric path, P = {(v2, v3)}, and

T7(v2) ≥C T7(v3) must be satisfied. It means that CT7v4 = CT7v5 = ((1, 2), (3)), ((1, 2), (4)),

((1, 2), (5)), ((1, 2), (6)) and CT7v2 = ((1), (3, 4)) > CT7v3 = ((1), (2, 3)), or CT7v4 > CT7v5 and

CT7v2 6= CT7v3 . Hence, there are 4 +

(
4

2

)
· 2 = 16 structures. On the other hands, if

CT7v2 = CT7v3 = ((1), (2, 3)) (or CT7v2 = CT7v3 = ((1), (3, 4))), then P = {(v2, v3), (v4, v5)}, and

both of T7(v2) ≥C T7(v3) and T7(v4) ≥C T7(v5), that is, CT7v4 ≥ CT7v5 , must be satisfied.

Hence, there are 4 + 3 + 2 + 1 = 10 structures. In total, 16 + 10 · 2 = 36 structures are

generated by BfsBenNaphEnum for T7.

2.5.4 Complexity analysis

Let n and nC be the total number of input atoms and carbon atoms from users, respect-

ively. First, we analyze the time complexity of the calculation of the number of benzene

rings and naphthalene rings (Algorithm 1). In this algorithm, we perform a constant num-

ber of operations for one iteration, decrease the number of carbon atoms by at least four,

and add at most two elements to the unfinish list. The first time (line 14) is adding one

benzene ring to the chemical formula and another time (line 24) is adding one benzene

ring and one merge bond to the chemical formula. Therefore, the time complexity for the

first iteration is

T1(nC) ≤ O(1) + 2 · T1(nC − 4). (2.9)

For each chemical formula added in the previous iteration, we perform the same set of

operations as the previous one. Therefore, the time complexity for one chemical formula

40

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

in the second iteration is

T1(nC − 4) ≤ O(1) + 2 · T1(nC − 8). (2.10)

Next, we substitute Equation 2.10 into Equation 2.9, which results in

T1(nC) ≤ O(1) + 2 (O(1) + 2 · T1(nC − 8)) (2.11)

≤ (1 + 2) ·O(1) + 22 · T1(nC − 4 · 2) (2.12)

≤

[
k−1∑
i=0

2i

]
·O(1) + 2k · T1(nC − 4 · k) (2.13)

≤ (2k − 1) ·O(1) + 2k · T1(nC − 4 · k), (2.14)

where k is the number of iterations. In the worst case, we iterate until the number of

carbon atoms equals to zero (nC − 4 · k = 0) so the maximum number of iterations, k,

we need is nC
4 . Moreover, the last iteration performs a constant number of operations so

T1(0) = O(1). Substitute k = nC
4 and T1(0) = O(1) into Equation 2.14, we obtain

T1(nC) ≤ (2
nC
4 − 1) ·O(1) + 2

nC
4 · T1(nC − 4 · nC

4
) (2.15)

≤ (2
nC
4 − 1) ·O(1) + 2

nC
4 · T1(0) (2.16)

≤ (2
nC
4 − 1) ·O(1) + 2

nC
4 ·O(1) = O(2

nC
4). (2.17)

Since 21/4 ≤ 1.1893 and nC ≤ n, the time complexity of Algorithm 1 is O(1.1893n).

For the enumeration of molecular trees step, we utilize our previous work BfsSimEnum

and BfsMulEnum [95], whose time complexity is exponential.

Algorithm 2, which is the algorithm for assigning carbon position lists to benzene nodes

in a molecular tree, begins with function ASSIGN CARBON POSITIONS, which initial-

izes a variable v and calls function ASSIGN. ASSIGN CARBON POSITIONS function

requires the same time complexity as ASSIGN function for the same tree.

In ASSIGN function, we examine at most
(
n
2

)
= O(n2) paths to obtain the set P in

line 3. For each path, we check whether it is a symmetric path or not by looking at label

and a carbon position list of each node, which can be done in a constant time so the time

complexity of line 3 is O(n2). However, we access line 3 in not all iterations but only

when v is null (line 2) or we reach the root node of the tree, which is the last iteration of

ASSIGN function.

Then, there are three ways to recursively call ASSIGN function itself (line 15, line

22, and line 31 via ASSIGN CHILD function) depending on the condition of v. Line 15

and line 31 is called at most one time per iteration, while line 22 is called at most three

times. However, line 22 is called only when v is the root node and thus we can ignore

this factor. Because calling via ASSIGN CHILD function (line 31) requires higher time

complexity than line 15, we analyze the time complexity only by looking at Algorithm 3.

41

2.6. RESULTS

ASSIGN CHILD recursively calls itself at most 56 times per a benzene ring because there

are at most 56 ways to assign a carbon position list. Each time the number of atoms, n,

decreases by six because one benzene node represents six carbon atoms. Moreover, there

are a constant number of operations in one iteration of ASSIGN function so the time

complexity of ASSIGN function is

T2(n) ≤ O(1) + 56T2(n− 6) (2.18)

≤ O(1) +
(
56
)k · T2(n− 6 · k), (2.19)

where k is the number of iterations. In the worst case, ASSIGN function is repeated

until n− 6 · k = 0 or k = n/6.

T2(n) ≤ O(1) + (56)n/6 · T2(0) (2.20)

Because the time complexity of the last iteration is O(n2), T2(0) = O(n2), due to line

3, we obtain

T2(n) ≤ O(1) + 5n ·O(n2) = O(5n · n2). (2.21)

It is to be noted that if K chemical structures are outputted, the computation time

per structure is O(n2 · 5n/K) for Algorithm 2 and Algorithm 3. Therefore, these two

algorithms are not an output polynomial-time one. However, the factor 5n is the worst-

case estimate and it is highly expected that the algorithm works much faster in practice

because of the pruning step, which discards the intermediate trees violating normal form

rule immediately.

For space complexity, we store only one molecular graph at a time and do not store the

information of previously enumerated compounds. Because we keep the information of a

molecular tree in an array of C++ structures, where one structure represents one node in

a molecular tree, this work uses a polynomial space complexity of degree one excluding

the output file of the enumerated compounds.

2.6 Results

In this section, we show that our proposed method can enumerate chemical compounds

with benzene rings and naphthalene rings correctly and efficiently. The implementation

of BfsBenNaphEnum is available on our supplementary web site, http://sunflower.

kuicr.kyoto-u.ac.jp/jira/bfsenum/. For the evaluation, although MOLGEN 3.5 is

more suitable than MOLGEN 5.0 to enumerate tree-like compounds because MOLGEN

3.5 offered the possibility to define substructures like benzene or naphthalene as macro

atoms but MOLGEN 3.5 cannot handle all the cases provided in Table 2.2, we compared

proposed algorithm with MOLGEN 5.0. Thereby, we implemented the proposed algorithm

42

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

and a well-known general purpose structure generator, MOLGEN 5.0, on a computer with

3.47 GHz intel Xeon CPU and 23.5 GiB memory and compared their computational time

and enumerated structures together.

Since MOLGEN can enumerate chemical compounds without restriction on the struc-

ture, we must specify a benzene ring and a naphthalene ring as a substructure as well as

input the number of cycles and aromatic bonds so that the enumerated structures contain

only benzene rings and naphthalene rings as cyclic structures.

Table 2.2: Results on execution time (sec), the number of enumerated structures by Bfs-
BenNaphEnum and MOLGEN for several instances.

Chemical #atoms #enumerated Computational time (sec)

formula n b C N O H structures BfsBenNaphEnum MOLGEN

C7O2H8 0 1 1 0 2 8 19 0.001 0.053

C8O3H10 0 1 2 0 3 10 307 0.002 0.124

C9O4H10 0 1 3 0 4 10 6,406 0.010 1.699

C10N2O4H10 0 1 4 2 4 10 8,333,991 12.260 957.53

1 0 0 2 4 10 7,980 0.031 69.51

C11N2H10 0 1 5 2 0 10 9,012 0.021 630.44

1 0 1 2 0 10 56 0.005 24.061

C12N1O1H11 0 1 6 1 1 11 80,883 0.155 2, 611.57

0 2 0 1 1 11 33 0.001 98.99

1 0 2 1 1 11 888 0.009 560.98

C13O2H12 0 1 7 0 2 12 162,122 0.289 6, 497.55

0 2 1 0 2 12 190 0.002 2, 069.3

1 0 3 0 2 12 2,458 0.013 1, 731.92

C14O4H12 0 1 8 0 4 12 19,514,480 35.655 197, 264.54

0 2 2 0 4 12 15,581 0.021 107, 509.42

1 0 4 0 4 12 337,178 1.061 97, 326.71

As can be seen from Table 2.2, where ‘n’ and ‘b’ denote a naphthalene ring and

a benzene ring, respectively, BfsBenNaphEnum enumerated chemical compounds much

faster than MOLGEN while giving the same number of enumerated structures. BfsBen-

NaphEnum was from 50 times to 5,000,000 times faster than MOLGEN for instances with

7 to 14 carbon atoms. In this study, we examined chemical formulas including up to two

benzene rings and one naphthalene ring because MOLGEN was not able to output res-

ults in practical time for chemical formulas including more benzene rings and naphthalene

rings.

We plotted the relation between the number of enumerated structures and the computational

time for BfsBenNaphEnum and MOLGEN 5.0 in Figure 2.17, where both x-axis and y-axis

are in a log scale. It is seen from the figure that the execution time of BfsBenNaphEnum

43

2.6. RESULTS

is much smaller than that of MOLGEN. The period of time which MOLGEN 5.0 used

to enumerate approximate 10 compounds is similar to the period of time which BfsBen-

NaphEnum used to enumerate approximate 10,000 compounds, which is 1000 times more

than MOLGEN.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

enumerated structures

BfsBenNaphEnum
MOLGEN

Figure 2.17: Relation between the number of enumerated structures and the computational
time (sec).

The relation between the number of heavy atoms in a chemical formula and the

computational time used to enumerate that chemical formula is also illustrated in Figure

2.18, where the y-axis is in a log scale. It is shown that BfsBenNaphEnum is significantly

faster than MOLGEN. The enumeration of a chemical formula containing 13 heavy atoms

by BfsBenNaphEnum is faster than the enumeration of a chemical formula containing nine

heavy atoms by MOLGEN.

Table 2.3 also compares the number of discovered compounds in PubChem, which are

not limited to tree-like chemical compounds, with the number of compounds enumerated

by the proposed algorithm for several chemical formulas. When the number of carbon

atoms grows, the number of discovered compounds is much less than that of enumerated

compounds. This implies that there are a numerous number of unknown large compounds

to be discovered, which possibly include important compounds with desired properties.

44

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 8 9 10 11 12 13 14 15 16 17 18 19

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

heavy atoms

BfsBenNaphEnum
MOLGEN

Figure 2.18: Relation between the number of heavy atoms in the chemical formula and
the computational time (sec).

2.7 Discussion

We proposed a way to represent a benzene ring in a molecular tree by regarding it as a

new defined atom called a benzene node (nodes with label b in Figure 2.20) with valence

six and introducing a new attribute named a carbon position list (a list next to benzene

nodes in Figure 2.20) to benzene rings. Carbon position of an atom specifies which carbon

in a benzene ring that the corresponding atom bonds with.

We also proposed a novel representation of a naphthalene ring in a tree structure.

This representation considers a naphthalene ring as two fused benzene rings and denotes

it as two benzene nodes bonding with a newly defined type of bond called a merge bond

(a double edge between two benzene nodes in Figure 2.20). With a merge bond, a

molecular tree can represent a structure containing naphthalene rings without defining

new kind of atom. Moreover, the concept of this merge bond can be generalized to

illustrate several polycyclic aromatic compounds, which decreases the limitation of the

enumerated structures. For example, anthracene and phenanthrene can be represented by

three benzene nodes bonding with two merge bonds with different carbon position lists

(see Figure 2.19).

Moreover, since a benzene ring and a naphthalene ring are symmetric structures, we

defined a rule to assign carbon position lists such that no redundant structures due to the

symmetry of a benzene ring and a naphthalene ring are enumerated using the concept of

45

2.7. DISCUSSION

Table 2.3: The number of enumerated structures by BfsBenNaphEnum and the number
of chemical compounds exist in PubChem database for several instances.

Chemical formula #compounds in PubChem #enumerated compounds

C7O2H8 728 19

C8O3H10 1,602 307

C9O4H10 1,469 6,406

C10N2O4H10 1,592 8,341,971

C11N2H10 790 9,068

C12N1O1H11 1,582 81,804

C13O2H12 1,239 164,770

C14O4H12 1,397 19,867,239

1
5

6
1 2

3
4 2

3
4

5
6

15
6

12
3

4 b

((1,2),(4,5))

b

((1,2))

b

((1,2))

(a)

1
5

6
1 2

3

2

3
4

5

6
1

4

5
6

12
3

4

b

((1,2),(3,4))

b

((1,2))

b

((1,2))

(b)

Figure 2.19: A representation of an anthracene ring (a) and a phenanthrene ring (b) by
tree structures using the concept of merge bond

an automorphism group.

The algorithm of this work consists of two main steps. Given the number of benzene

rings, the number of naphthalene rings as well as a chemical formula, BfsSimEnum and

BfsMulEnum are applied such that they can enumerate non-redundant molecular trees

with benzene nodes based on the center-rooted left-heavy condition. Next, the new exten-

sion BfsBenNaphEnum generates normal molecular trees by assigning all canonical carbon

position lists to all benzene nodes. The canonical carbon position list is a list which is

the smallest list among all lists representing the same structure. The example of a final-

ized center-rooted left-heavy molecular tree whose benzene nodes are assigned canonical

carbon position lists is illustrated in Figure 2.20.

To show the performance of our algorithm, all non-redundant chemical structures were

enumerated for several chemical formulas by BfsBenNaphEnum and MOLGEN 5.0, a well-

known general purpose structure generator. It is shown that our algorithm is reliable

46

CHAPTER 2. ENUMERATION OF BENZENE AND NAPHTHALENE

b ((1,2),(4),(5))

b((1,2),(4))

C

b ((1)) C

O

(a)

5
5

6
1 2

3
4

1

2
3

4

5
6

5

C O
6

12
3

4

C

(b)

Figure 2.20: Illustration of a center-rooted left-heavy molecular tree (a) representing a
chemical compound (b).

since it generated the same number of structures as MOLGEN, while expended much less

computational time. BfsBenNaphEnum was from 50 times to 5,000,000 times faster than

MOLGEN for instances with 7 to 14 carbon atoms in our experiments. This is mainly

because the number of nodes decreases from six to one for each benzene ring and from

ten to two for each naphthalene ring in a chemical structure. Another reason is that we

enumerate chemical structures in the form of tree structures, which are easier to examine

the redundancy than normal graphs.

However, our algorithm is limited to tree-like chemical structures without any cyclic

structures except benzene rings and naphthalene rings while MOLGEN does not have such

limitation. Therefore, in the future, we would like to extend the algorithm such that it

can enumerate more complex cyclic structures, such as polycyclic aromatic compounds

and nucleotides. Besides, in order to make enumeration tools practical, we need to rank

enumerated structures because a large number of structures are usually enumerated. For

that purpose, it might be useful to employ drug likeness filters such as Lipinski RO5, and

QED score. Incorporation of such filters into our system is also important future work.

47

Chapter 3

Enumeration method for

structural isomers containing

user-defined structures based on

breadth-first search approach

3.1 Background

Structure enumeration is a problem of generating all non-redundant chemical compounds

based on given constraints. It can be applied to many problems in chemoinformatics

and computational biology. For example, in structure elucidation and identification of

unknown compounds, high-resolution mass spectrometry and nuclear magnetic resonance

technique are widely used [5, 39, 41, 62]. The information obtained from these techniques

is molecular fragments of a given compound, which requires a structure enumeration tool

to generate candidate compounds before the exact structure is determined [26, 36, 54, 72].

Moreover, structure enumeration can also be applied in a kinetic modeling problem by

generating reactant molecules from given analytic information [42] and to drug design by

generating a list of compounds containing defined functional groups, active sites, or atom

types [6, 71].

Structure enumeration has received much attention since the beginning of the DEND-

RAL project [47]. Since then, various software tools for structure enumeration have been

developed, such as ASSEMBLE [4] and MOLGEN 5.0 [30], which aim to generate all the-

oretically possible compounds, and thus they may include unrealistic compounds. For this

reason, OMG [63] was proposed using the dictionary of atom types provided in Chemistry

Development Kit (CDK) [82, 83], a Java library for chemoinformatics, to eliminate the un-

realistic compounds. These tools can generate all compounds but they consume significant

resources in terms of time and computational power. On the other hand, alternative tools

49

3.1. BACKGROUND

such as EnuMol [28, 35, 78], BfsSimEnum and BfsMulEnum [95], and BfsBenNaphEnum

[38] have been developed in order to optimize the computation time but they have lim-

itation in terms of the structure of compounds that can be enumerated. Because of this

limitation, these alternative tools may not generate chemical compounds that satisfy users’

requirements.

Moreover, the enumeration tool can be applied to several problems such as structure

elucidation and drug design. Some of those problems have data of molecular fragments in

the desired compounds. Accordingly, the objective of this work is to propose a novel enu-

meration tool, called BfsStructEnum, which uses a tree structure to represent a chemical

compound for the efficiency of the computational time and allows users to input bicon-

nected cyclic substructure of the desired compounds. The proposed tool, then, generates

all non-redundant tree-like chemical compounds containing cyclic substructures defined

by users corresponding to the input chemical formula. Allowing users to input cyclic

substructures of the desired compounds has two main advantages over other enumeration

tools consuming similarly low computation time. First, it ensures that all enumerated

structures contain the required substructures. This can help them spending less time to

find the target compound. Another one is that the scope of the structure of enumerated

compounds is expanded from compounds containing a few kinds of cyclic substructure to

acyclic compounds containing any cyclic substructures defined by users.

BfsStructEnum takes a chemical formula and biconnected chemical structures specified

by users and returns all non-redundant chemical compounds containing no cyclic struc-

tures except for those provided by users. The chemical structures specified by users are

called substructures, which must be biconnected structures. A cyclic structure is a struc-

ture containing at least one cycle. A biconnected structure with more than two nodes is a

structure such that there exists no atom whose removal disconnects a structure. For ex-

ample, Figure 3.1 (a) is a biconnected structure, while Figure 3.1 b is not because removing

the red carbon atom disconnects the structure, where hydrogen atoms are omitted.

C

N

C

C

C

C

C

(a)

C

N

C

C

C

C

OO

C

C

(b)

Figure 3.1: Example of a biconnected structure (a) and a non-biconnected structure (b)

In this work, a compound is represented by a molecular tree for the efficiency of the

50

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

enumeration. In order for the molecular tree to keep the information of substructures, a

substructure is compressed into a single node called a substructure node. A substructure

node is labeled with special atom label indicating substructure that it represents. Besides,

it has an attribute called a position list to keep the information of which atoms in the

substructure bond with which adjacent nodes.

This work consists of four main steps as given in Figure 3.2 First, we analyze the

structure of input substructures to determine their automorphism, which is necessary

to detect the redundancy and calculate the number of structure nodes in the molecular

graphs. After that, modified version of BfsSimEnum and BfsMulEnum [95] is used to

generate molecular trees from the number of each atom types and structure nodes. Then,

the position lists are assigned to all structure nodes in the tree such that no redundant

structures are enumerated. The final result of this work is a collection of molecular graphs

converted from molecular trees whose nodes and edges illustrate atoms and bonds of

chemical compounds, respectively.

1) Discover automorphism of input substructures

2) Calculation of the number of structure nodes

3) Enumeration of molecular trees with structure nodes

4) Assignment of atom position lists to structure nodes

5) Conversion of molecular trees to molecular graphs

Figure 3.2: The flowchart concluding main processes of BfsBenNaphEnum

To assess the accuracy and efficiency of BfsStructEnum, we used it to enumerate chem-

ical compounds from various chemical formulas and compared the results and computation

time to those of MOLGEN 5.0. The comparison suggests that BfsStructEnum can enu-

merate chemical compounds correctly and efficiently.

51

3.2. PROBLEM DEFINITION

3.2 Problem definition

We first recall the definition of a set of atom labels (Σ), a molecular graph (G(V,E)), a

label of a node l(v), and a valence of an atom label val(li) from Section 1.3.1, as well as

the definition of a degree of a node deg(v) and the number of nodes with label li in a graph

G (num(G, li)) from Section 2.2. It must be noted that BfsStructEnum provides the most

common valence for each chemical element. Users have to specify the valence manually

if a chemical element has different valences. BfsStructEnum regards the same chemical

element with different valences as different chemical elements. For example, nitrogen (N),

which has valences of three and five, is generally considered to have a valence of three.

If users would like to include nitrogen with valence five in the enumeration, they must

specify nitrogen with valence five as another label, e.g. N (5), in Σ.

From the definition of isomorphism from Section 1.3.2, we define that two molecular

graphs G1(V1, E1) and G2(V2, E2) are redundant with each other if there is an isomorphism

between V1 and V2 because they correspond to the same chemical compounds. In this

paper, the enumeration problem is defined as follows:

Problem 2. Given the number nli for each chemical element li ∈ Σ, a set of distinct

cyclic and biconnected chemical structures with more than two nodes S = {s1, s2, ...} such

that sa is not a subgraph of sb, as well as the number nsj and valence of input structure sj,

val(sj), for each input structure sj ∈ S, generate all non-redundant connected molecular

graphs G(V,E) containing cyclic structures sj ∈ S and no other cyclic structures such that

deg(v) = val(l(v)) for all nodes v ∈ V and num(G, li) = nli.

O

O

N

O

(a)

C

a b O

O C

O

(b)

Figure 3.3: Example of a chemical compound (a) and its corresponding molecular tree
(b), where a benzene ring and a pyridine ring are compressed into a node with label a and
a node with label b, respectively, and hydrogen atoms are omitted.

During the enumeration step of this work, a chemical compound is represented by a tree

structure, called a molecular tree, such that the specified substructure must be compressed

52

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

into a single node, as shown in Figure 3.3. A molecular tree is defined as a rooted ordered

tree G(V,E), where V is a set of nodes labeled by chemical elements li ∈ Σ or substructures

sj ∈ S and E is a set of edges. A node whose label is a specified substructure is called a

structure node. A molecular tree in which all structure nodes are labeled with the position

lists is called a position-assigned molecular tree. A position-assigned molecular tree is

converted to a molecular graph later by replacing structure nodes with cyclic structures

and connecting atoms in cyclic structures with adjacent atoms based on the position lists

of those structure nodes.

3.3 Preliminaries

3.3.1 A position list

C

v2

C

v1

N

O O O

T sub(v1, v2)

C

v1

O O

(a)

C

v1

C

v2

N

O O O

T sub(v1, v2)

C v1

N

O

(b)

Figure 3.4: T sub(v1, v2), when v1 is a child node of v2 (a) and v1 is the parent node of v2

(b).

Given a molecular tree, T , and two nodes, v1 and v2, in T , T sub(v1, v2) is defined as

an ordered tree rooted at v1 obtained from T by eliminating the edge (v1, v2), as well as

the connected component containing v2 (see Figure 3.4). Let A be a list of lists of nodes,

A[i] is defined as the ith list of A and A[i][j] is defined as the jth element of A[i].

Definition 7. An adjacent node list, AT (v), of a structure node v in a molecular tree T

is a list of lists of nodes adjacent to v such that

• u ∈ AT (v)[i] if T sub(u, v) = T sub(AT (v)[i][1], s), where T sub(u, v) is defined in Sec-

tion 2.3.3,

• index(AT (v)[i][j]) < index(AT (v)[i][j + 1]) for all i, j,

• index(AT (v)[i][1]) < index(AT (v)[i+ 1][1]) for all i,

• all nodes w adjacent to v appear in AT (v)[i] for some i, and

53

3.3. PRELIMINARIES

• AT (v)[i] and AT (v)[j] are disjoint for all i and j such that i 6= j.

a
v1

Cv2

1
Cv3

2
Cv4

4
Ov5

5

Ov6 Ov7 Ov8

(a)

a
v1

Cv2

4
Cv3

5
Cv4

2
Ov5

1

Ov6 Ov7 Ov8

(b)

C

v14

av2 Cv3

Cv4

3
Ov5

1
Ov6

(c)

O C
2

3
C O

4

O
5

N
6

CO
1

(d)

O C
2

3
C O

4

C O
5

N
6

O
1

(e)

O
1

2
C

3

C C O
4

5

N
6

(f)

Figure 3.5: Examples of position-assigned molecular trees T1 (a), T2 (b), and T3 (c) and
corresponding molecular graphs of T1 (d), T2 (e), and T3 (f), where a denotes a special
atom type for a pyridine ring, and the red numbers represent the position of atoms in a
pyridine ring that its adjacent nodes bond with.

From the examples of position-assigned molecular trees provided in Figure 3.5, we

start by finding an adjacent node list of v1 in T1. Because T sub1 (v2, v1) = T sub1 (v3, v1) 6=
T sub1 (v4, v1) 6= T sub1 (v5, v1) and T sub1 (v4, v1) 6= T sub1 (v5, v1), v2 and v1 are clustered together,

whereas v4 and v5 are not. Accordingly, AT1(v1) is ((v2, v3), (v4), (v5)). T2 is isomorphic

to T1; therefore, AT2(v1) is the same as AT1(v1), which is ((v2, v3), (v4), (v5)). However,

T sub3 (v1, v2) 6= T sub3 (v4, v2) 6= T sub3 (v5, v2), so AT3(v1) = ((v1), (v4), (v5)).

Definition 8. A position list, P T (v), of a structure node v in a position-assigned molecular

tree T is defined as a list of lists with the same dimension as AT (v), such that P T (v)[i][j] is

a position of the atom in v that node AT (v)[i][j] bonds with and P T (v)[i][j] < P T (v)[i][j+1]

holds for all i and j.

It is worth noting that changing the order of the same set of positions in a position list

of node v does not affect the overall structure of v because nodes in the same set correspond

to the same substructure. As a result, the molecular graphs obtained from a molecular

tree with different permutations of the same list of positions are isomorphic to each other.

For example, the molecular graph obtained from a molecular tree with a position list

((1, 2), (3)) is isomorphic to that with a position list ((2, 1), (3)), which is denoted as

((1, 2), (3)) ∼= ((2, 1), (3)). Accordingly, we define that P T (v)[i][j] < P T (v)[i][j + 1] for all

i and j to remove the redundancy.

For example, given T1 in Figure 3.5, because v2, v3, v4, and v5 bond with atoms

at positions 1, 2, 4, and 5 of v1, respectively (as shown in red numbers), and AT1(v1) =

((v2, v3), (v4), (v5)), P T1(v1) is equal to ((1, 2), (4), (5)). Similarly, P T2(v1) is ((4, 5), (2), (1))

and P T3(v1) is ((5), (1), (2)).

54

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

3.3.2 An automorphism group

If the specified substructure is symmetric, then different position-assigned molecular trees

may represent the same structure, e.g. T1 and T2 in Figure 3.5. An automorphism group

of the specified substructure is introduced to handle this kind of redundancy.

Given a graph G(V,E), an automorphism of G is an isomorphism between nodes in G

(θ : V → V) that preserves the adjacency [31], which means that

• l(v) = l(θ(v)),

• {v1, v2} ∈ E if and only if {θ(v1), θ(v2)} ∈ E, and

• ∀v1, v2 ∈ V , if {v1, v2} ∈ E, then mul(v1, v2) = mul(θ(v1), θ(v2)).

Definition 9. An automorphism group of a structure node s, Aut(s), is defined as a set

of all automorphisms of a molecular graph corresponding to s.

2

3

4

5
N

6

1

(a)

4

3

2

1
N
6

5

(b)

Figure 3.6: A molecular graph of a pyridine ring when nitrogen is at atom position 6
(a) and atom position 2 (c) and the automorphism of the first graph (b), where numbers
indicate the index of corresponding nodes and red arrows indicate the mappings between
two nodes.

For example, a pyridine ring has one automorphism, which is the following mapping

function, where x is the position of an atom in a pyridine ring and y is the position of

nitrogen in that pyridine ring. It is noted that the position of atoms in a substructure

depends on the MOL file of substructure that users provide so y can be any number from

one to six. For example, y is equal to 6 in Figure 3.6 (a) and (b), and is equal to 2 in Figure

3.6 (c). Let node p in Figure 3.6 (c) be the parent node of pyridine ring in a molecular

tree. In this case, this pyridine ring contains no automorphism because the bijection of

pyridine ring cannot map node p to another node and preserves the adjacency.

θ(x) =

(2 · y − x) modulo 6, if (2 · y − x) modulo 6 6= 0

6, if (2 · y − x) modulo 6 = 0
(3.1)

55

3.3. PRELIMINARIES

Given a position list p and an automorphism function θ of p, θ(p) is a position list

obtained by applying θ to each element in p before sorting elements in all sets in ascending

order so that the condition P T (v)[i][j] < P T (v)[i][j + 1] holds.

Two different position lists, p1 and p2, of a structure node s are defined to be equivalent

to each other, p1
∼= p2, if and only if there exists an automorphism θ in Aut(s) such that

p1 = θ(p2). Moreover, p1
∼= p2 means that p1 and p2 represent the same structure and

are redundant with each other. For instance, from T1 and T2 in Figure 3.5, P T1(v1) and

P T2(v1) are ((1, 2), (4), (5)) and ((4, 5), (2), (1)), respectively. Given a mapping function

θ defined in Equation 3.1, we have θ(P T2(v1)) = θ(((4, 5), (2), (1))) = ((2, 1), (4), (5)) ∼=
((1, 2), (4), (5)) = P T1(v1), which corresponds to the fact that the structure of a pyridine

node in T1 is isomorphic to that in T2.

3.3.3 Normal form of a molecular tree

Because a molecular graph can be represented by several molecular trees depending on

which node is the root node and how the sibling nodes are ordered, the center-rooted and

left-heavy conditions, defined in Section 2.3.2, are used as a canonical way to select the

root node and to sort the sibling nodes.

Then, we define that a position list p1 is greater than another position list p2 (p1 > p2)

with the same dimension as p1 if there exist two positive integers i and k such that (1)

for all positive integers j < i, p1[j][l] = p2[j][l] for all l, (2) for all positive integers l < k,

p1[i][l] = p2[i][l], and (3) p1[i][k] > p2[i][k]. From T1 and T2 in Figure 3.5, P T2(v1) =

((4, 5), (2), (1)) > P T1(v1) = ((1, 2), (4), (5)) because there exist two integers i = 1 and

k = 1 that satisfy these three conditions.

C

C C

N O

C C

N

O

T2

T1 T1 − T2

C

O

(a)

C

C C

N O

C C

N

O

T2

T1 T1 − T2

C

O

(b)

Figure 3.7: Examples of T1−T2, where T1 overlaps T2 (a) and T1 does not overlap T2 (b).

Given a subtree T1 in a left-heavy molecular tree T and a node v in T1, index(v, T1) is

defined as the order of v when traversing T1 in the breadth-first search order. Moreover,

given two subtrees T1(V1, E1) and T2(V2, E2) in T , T1−T2 is defined as a subtree consisting

of a set of nodes V1−2 and a set of edges E1−2, where V1−2 = {v|v ∈ V1, v /∈ V2} and

E1−2 = {{va, vb}|va ∈ V1−2, vb ∈ V1−2 and {va, vb} ∈ E1} (see Figure 3.7).

56

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

C

v3

a

v2

C

v1

N

a O

a

v4

C

v5

N

a O

(a)

C

v3

a

v2

C

v1

N

a C

a

v4

C

v5

N

a O

(b)

C

v3

a

v2

C

v1

N

a O

a

v4

C

v5

N

a O

(c)

Figure 3.8: An example of a position-assigned molecular tree such that the path between
v1 and v5 is a symmetric path (a) and the path between v1 and v5 is not a symmetric path
(b,c), where “a” is a label of the structure node, and the black and red dash curves indicate
the equality and inequality of position lists between two structure nodes, respectively.

For a path q = (v1, v2, ..., vn) from v1 to vn, we say that v1 is left of vn if vn−bn
2
c+1 is

the root node or index(v1) < index(vn). Given two nodes u and w in a position-assigned

molecular tree T and two sequences of structure nodes, (u1, u2, ..., ua) and (w1, w2, ..., wb),

obtained by traversing T (u) and T (w), respectively, in the breadth-first search order, we

define that T (u) >p T (w) if

1. T (u) >m T (w), or

2. T (u) =m T (w) and there exists an integer i (1 ≤ i ≤ n) such that ∀j, i < j ≤ n,

P T (uj) = P T (wj) and P T (ui) > P T (wi).

Then, we define that T (u) =p T (w) if and only if neither T (u) >p T (w) nor T (w) >p

T (u).

Definition 10. A path q = (v1, v2, ..., vn) in a position-assigned molecular tree T is a

symmetric path if q holds all of the following three conditions:

1. if the length of q is odd and vn+1
2

is a structure node, then there exists a non-identity

mapping function θ ∈ Aut(l(vn+1
2

)) such that θ(P T (vn+1
2

)) = P T (vn+1
2

),

2. T sub(vi, vi+1) =m T sub(vn−i+1, vn−i) for all i = 1 to bn2 c, and

3. T sub(vi, vi+1) − T sub(v1, v2) =p T
sub(vn−i+1, vn−i) − T sub(vn, vn−1) for all i = 2 to

bn2 c (see Figure 3.8).

Definition 11. A position-assigned molecular tree T is a normal tree if it holds all of the

following conditions:

1. T is a left-heavy tree.

57

3.4. PROOF

2. T is a center-rooted tree. In the case that there are two center nodes, u and v, if

T sub(u, v) ≥p T sub(v, u), v is the root node.

3. For each structure node v representing a chemical structure s in T , there exists no

mapping function θ in Aut(s) such that P T (v) > θ(P T (v)).

4. For each symmetric path P = (v1, v2, ..., vn) between two structure nodes v1 and vn

in T such that v1 is left of vn, T sub(v1, v2) ≥p T sub(vn, vn−1).

3.4 Proof

Lemma 4. Given a molecular graph G, G can be represented by a normal tree.

Proof. By contracting all cyclic structures in G into structure nodes, selecting the root

node according to the center-rooted condition and sorting sibling nodes according to the

left-heavy condition, G can be represented by a molecular tree satisfying the first and

second conditions of the normal form. Then, the information about which atoms in those

cyclic structures bond with which atoms is stored in position lists of structure nodes. For

each structure node, we can find a position list that satisfies the third condition because

there must exist the least position list among position lists obtained from all mapping

functions in one automorphism group. Moreover, when a path between any two nodes v1

and v2 in a molecular tree T1 is a symmetric path, swapping v1 and v2 does not structurally

change the molecular tree. Consequently, the fourth condition eliminates only a molecular

tree with T sub(v1, v2) <p T
sub(vn, vn−1) for a symmetric path (v1, ..., vn) that represents the

same molecular graph as a molecular tree with T sub(v1, v2) >p T
sub(vn, vn−1). Therefore,

the fourth condition does not decrease the number of molecular graphs that normal trees

can represent. In conclusion, any molecular graphs can be represented by normal trees.

Lemma 5. Given two different molecular graphs G1 and G2, they cannot be represented

by the same normal tree.

Proof. Because G1 and G2 have different structures, they must be represented by either

different left-heavy center-rooted trees or the same left-heavy center-rooted tree containing

at least one structure node with different position lists. Thus, we can uniquely generate

two normal trees for G1 and G2.

Proposition 7. Given a normal tree T with a path P = (v1, ..., vn), where v1 is left of

vn, let G′(V,E) be a molecular graph obtained from a molecular tree T ′, which is obtained

by removing T (v1) and T (vn) except v1 and vn from T . If there is a non-identity mapping

function φ : V → V in G′ such that φ(v1) = vn and T (v1) =m T (vn), then P is a

symmetric path.

58

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

Proof. First, we consider the case in which v1 and vn are connected to each other. Then,

G′ contains only P , which is a path consisting of two nodes (v1, vn), therefore there is a

mapping function φ such that φ(v1) = vn in G′. Moreover, if T (v1) =m T (vn), then P is

a symmetric path because T sub(v1, vn) =m T sub(vn, v1).

For the case in which v1 and vn are not connected to each other, vi+1 and vn−i are

the parent nodes of vi and vn−i+1, respectively, for i = 1 to dn2 e − 1 unless T violates the

second condition of the normal form. Because φ maps v1 to vn, it also maps T sub(va1 , v1)

to T sub(van , vn) for all pairs of nodes va1 and van adjacent to v1 and vn, respectively.

Moreover, φ must map the parent node of vi, which is vi+1, to the parent node of vn−i+1,

which is vn−i, for i = 1 to dn2 e−1 because for all nodes v in a center-rooted tree, the height

of T sub(vp, v), where vp is a parent node of v, is greater than the height of T sub(vc, v) for

any nodes vc that are child nodes of v. Therefore, T sub(vi, vi+1) = T sub(vn−i+1, vn−i) holds

for i = 1 to dn2 e − 1.

Moreover, in order for φ to be able to map atoms in a specified substructure to those in

another specified substructure after converting T ′ into G′, for all pairs of structure nodes

vs1 and vs2 in T ′ such that φ(vs1) = vs2 , P T (vs1) = P T (vs2) must hold, which means that

T sub(vi, vi+1) =p T
sub(vn−i+1, vn−i).

In conclusion, if there is a non-identity mapping function that maps v1 to vn in G′ and

T (v1) =m T (vn), then the path between v1 and vn satisfies all conditions of a symmetric

path.

Lemma 6. Given two different normal trees T1 and T2, T1 does not represent the same

molecular graph as T2.

Proof. Let T1 and T2 be two different normal trees representing two molecular graphs,

G1 and G2, respectively. If T1 and T2 are different left-heavy center-rooted trees, then

there cannot be an isomorphism θ such that θ(T1) = T2, which implies that there exists

no isomorphism θ that maps G1 to G2. Accordingly, T1 and T2 do not represent the same

molecular graph in this case. If T1 and T2 are the same left-heavy center-rooted tree,

there exists a mapping function θ that maps nodes in T1 to nodes in T2 and preserves the

adjacency of nodes. Nevertheless, T1 and T2 are different normal trees, so there is at least

one structure node v1 in T1 such that

P T1(v1) 6= P T2(θ(v1)). (3.2)

There are two possible cases, which are the case in which v1 and θ(v1) are the same node

(θ(v1) = v1) and the case in which v1 and θ(v1) are two distinct nodes (θ(v1) = v2).

Consider the case in which θ(v1) = v1, if both T1 and T2 correspond to the same molecular

59

3.4. PROOF

graph, there exist two non-identity mapping functions σ1 and σ2 in Aut(l(v1)) such that

P T1(v1) = σ1(P T2(v1)) and P T2(v1) = σ2(P T1(v1)). (3.3)

From Equations 3.2 and 3.3, either P T1(v1) > P T2(v1) = σ2(P T1(v1)) or P T2(v1) >

P T1(v1) = σ1(P T2(v1)) must hold, which violates the third condition of the normal form.

Accordingly, T1 and T2 cannot represent the same molecular graph in this case.

T1

v1 v2 ... vn

T2

v1 v2 ... vn

Figure 3.9: Two different normal trees T1 and T2, where the red dashed lines denote a
mapping function θ that maps nodes in T1 to nodes in T2.

Next, we consider the case in which θ(v1) = v2, where v1 and v2 are two distinct

nodes. We assume that θ(vi) = vi+1 (1 ≤ i ≤ n − 1) and θ(vn) = v1, as shown in Figure

3.9. According to Proposition 7, because θ(vi) = vi+1 and θ(vn) = v1, the paths between

vi and vi+1 (1 ≤ i ≤ n − 1), as well as that between v1 and vn, are symmetric paths.

Consequently, the following equation holds:

T1(v1) =m T1(v2) =m ... =m T1(vn) =m T2(v1) =m ... =m T2(vn) (3.4)

Then, we assume that vi is left of vi+1 in T1 for all i. This also holds in T2 because

T1 and T2 are the same left-heavy center-rooted tree. From the fourth condition of the

normal form,

T1(vi) ≥p T1(vi+1) and T2(vi) ≥p T2(vi+1) (1 ≤ i ≤ n− 1). (3.5)

From Equations 3.4 and 3.5, it can be concluded that

P T1(v1) ≥ P T1(vi+1) and P T2(vi) ≥ P T2(vi+1) (1 ≤ i ≤ n− 1). (3.6)

In order for T1 and T2 to represent the same molecular graph,

P T1(vi) = P T2(θ(vi)) = P T2(vi+1) (1 ≤ i ≤ n− 1) and P T1(vn) = P T2(θ(vn)) = P T2(v1)

(3.7)

must hold.

60

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

To satisfy Equations 3.6 and 3.7,

P T1(v1) = P T1(v2) = ... = P T1(vn) = P T2(v1) = ... = P T2(vn) (3.8)

must hold, which contradicts Equation 3.2.

Therefore, T1 cannot represent the same molecular graph as T2 unless T1 = T2.

3.5 Methods

3.5.1 Finding an automorphism group

An automorphism group of the specified substructure is determined by Algorithm 4 in

order to be able to check for the third and fourth properties of a normal tree. Given a

molecular graph of the substructure G(V,E), where V and E are a set of atoms and a set of

bonds, respectively, we generate an adjacency matrix adj of the atoms in the substructure

(line 2), where adj[i][j] is the multiplicity of a bond between atom i and atom j and

adj[i][j] = 0 if there is no bond between atom i and atom j. Then, we initialize an

empty array denoting a permutation of atoms in the substructure called permu array.

permu array corresponds to a mapping function in an automorphism group, where the ith

element in the group is the index of a node that is mapped to the ith node in V . For

example, a permutation array {5, 4, 3, 2, 1, 6} is a mapping function that maps atom 1 to

5, atom 2 to 4, atom 3 to 3, atom 4 to 2, atom 5 to 1, and atom 6 to 6 because the first

element is 5, the second is 4, the third is 3, the fourth is 2, the fifth is 1, and the sixth is

6.

After an empty permu array is initialized, we find an atom with the same label as the

first element in V and store its index in permu array (line 6). After that, we search for a

node that has the same label as the second element in V (line 12) and bonds with other

nodes in permu array in the same way that the second element in V bonds with other

nodes in V (line 15). If such nodes exist, we copy that many permu array and add their

index as the second element of each copied permu array (line 18) and continue to the next

element in V until the size of permu array becomes the same as the size of V .

N

v1

C
v2

C
v3

C
v4

C
v5

C
v6

Figure 3.10: Example of a substructure to be calculated an automorphism group

61

3.5. METHODS

Algorithm 4 Algorithm for calculating an automorphism group of a substructure

1: function find automorphism(G(V,E))
2: adj := adjacency matrix of G(V,E)
3: permu array := ∅
4: for i from 1 to |V | do
5: if l(V [i]) = l(V [1]) then
6: permu array.push(i)
7: FILL ARRAY(permu array, adj, 2, V)
8: permu array.pop()
9: end if

10: end for
11: return
12: end function
13: function FILL ARRAY(permu array, adj, index, V)
14: Result := ∅
15: for i from 1 to |V | do
16: if l(V [i]) = l(V [index]) then
17: valid := true
18: for j from 1 to index− 1 do
19: if adj[index][j] 6= adj[i][permu array[j]] then
20: valid := false
21: end if
22: end for
23: if valid then
24: permu array.push(i)
25: if index = n then
26: Result.push(permu array)
27: else
28: FILL ARRAY(permu array, adj, index+ 1, V)
29: end if
30: permu array.pop()
31: end if
32: end if
33: end for
34: return Result
35: end function

62

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

For example, the process of calculating an automorphism group of a substructure in

Figure 3.10, where V = {v1, v2, v3, v4, v5, v6}, is as follows. Starting from an empty array

{ }, we find nodes with the same label as v1, generate that many arrays, and add one

of them to each array. Because only one node, v1, in a substructure has a label N , we

have one array {v1} as the output of this step. Then, we find nodes, which have the same

label as the next node, v2, and are bonded with the first element in the same way that

v1 bonded with v2. There are five nodes with the same label as v2, which are v2, v3, v4,

v5, and v6. However, v2 has a single bond with v1 and there are only two nodes out of

five (v2 and v6) that have a single bond with the first element in the current array so

we duplicate that one array and add v2 and v6 as the second element of each array. As

a result, we have two permutation arrays, {v1, v2} and {v1, v6}. Because the next node

is v3, we find nodes, which have the same label as v3 and are bonded with all previous

elements in the same way as v3 bonded with v1 and v2. Nodes satisfying these conditions

for {v1, v2} is v3 and those for {v1, v6} is v5 so we add v3 and v5 to their corresponding

arrays, which results in two arrays, {v1, v2, v3} and {v1, v6, v5}. We continuously move to

the next node in V until we reach the end of V . The final automorphism group for this

structure contains two permutation arrays, which are {v1, v2, v3, v4, v5, v6} (an identity

mapping) and {v1, v6, v5, v4, v3, v2}.

3.5.2 Calculating the number of specified substructures

In this part, we calculate all possible combinations of the number of specified substructures

that the given chemical formula can have to determine the number of structure nodes in

the enumerated molecular trees. To calculate the number of specified substructures, the

degree of unsaturation and the number of atoms of each atom type are used. The degree

of unsaturation (DoU) is the summation of the number of double bonds, twice the number

of triple bonds, and the number of rings in a structure, which can be calculated from the

chemical formula by the following equation:

DoU = 1 +

∑
li
nli(vli − 2)

2
, (3.9)

where nli and vli are the number and valence of chemical element li in a chemical

formula, respectively. We look at the number of chemical elements and DoU of the given

chemical formula. If they are greater than or equal to those of the substructure, one

substructure is added to the chemical formula. Then, we subtract the number of atoms and

DoU of the substructure from that chemical formula and the calculated DoU, respectively.

Afterwards, we continue verifying the adequacy of the new chemical formula for one more

substructure until either the number of atoms is less than that of the substructure or the

DoU is less than that of the substructure.

For example, given a chemical formula C14N2H14 and a benzene ring (C6H6, DoU = 4)

63

3.5. METHODS

as a specified substructure, first, an output set is initialized by the input chemical formula

(output = {C14N2H14}) and DoU is calculated from Equation 3.9 as shown in Equation

3.10.

DoU = 1 +
nC(vC − 2) + nN (vN − 2) + nH(vH − 2)

2

= 1 +
14(4− 2) + 2(3− 2) + 14(1− 2)

2

= 1 +
28 + 2− 14

2
= 9 (3.10)

Then, we check whether a benzene ring can be added or not. Since both the number of

carbon atoms and the number of hydrogen atoms in the chemical formula are greater than

six and DoU is greater than four, we add one benzene ring, subtract six carbon atoms

and six hydrogen atoms from the chemical formula and subtract four from DoU, which

results in a new chemical formula C8N2H8b1 with DoU five. The new chemical formula is

added to the output set (output = {C14N2H14, C8N2H8b1}). After that, the new chemical

formula is checked to see if it can contain a benzene ring or not. Because the number of

carbon atoms, the number of hydrogen atoms, and DoU of the new chemical formula are

greater than those of one benzene ring, another benzene ring is added to the chemical

formula. At the same time, six carbon atoms and six hydrogen atoms are subtracted

from the chemical formula and DoU is decreased by four. Then, the retrieved chemical

formula is included in the output set (output = {{C14N2H14, C8N2H8b1, C2N2H2b2}}).
This process is repeated until the number of carbon atoms or hydrogen atoms becomes

less than six or DoU becomes less than four.

3.5.3 Enumerating molecular trees

Molecular trees are enumerated from the input chemical formula and the previously calcu-

lated number of specified substructures in this step. First, we generate one special chemical

element for one specified substructure. After that, we enumerate left-heavy center-rooted

trees under the condition that a structure node cannot have multiple bonds with other

nodes.

The enumeration of molecular trees starts from an empty tree. Nodes labeled with

available chemical elements are added to the tree one by one until there is no available

chemical element left. We define that a chemical element is available if the number of

nodes labeled with that chemical element in the molecular tree is less than the number of

that chemical element in the chemical formula. To prevent redundancy, a node is added

to the molecular tree T as a child node of the last internal node u in T by breadth-first

search traversal or any leaf node v such that index(v) > index(u) (see Figure 3.11).

64

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

u

Figure 3.11: Example of a molecular tree, where the blue nodes are nodes that can be
added a child node in this work and node u is the last internal node in breadth-first search
order

After adding the node, the left-heavy condition and the center-rooted condition are

verified and the tree is discarded if it fails either of two conditions according to method

provided in [95]. If no available chemical element remains and the tree has not been

discarded, then it is guaranteed that this tree satisfies the first two conditions of the

normal form.

3.5.4 Assigning position list to structure nodes

For each left-heavy center-rooted molecular tree T generated in the previous step, we

traverse along T from the rightmost deepest node to the root node in the reverse order

of the breadth-first search and assign position lists to all structure nodes such that the

third and fourth conditions of the normal form are satisfied. The pseudocode of position

list assignment is given in Algorithm 5. The third condition is verified immediately after

a new element is added to the position list (line 25) to reduce the search space for the

valid position lists. However, the fourth condition is determined when position lists of

all structure nodes are known (line 7) because position lists of all structure nodes are

necessary to determine the symmetry of a path.

The output of this algorithm is a collection of position-assigned molecular trees, which

can be converted to molecular graphs by removing all bonds between structure nodes and

their adjacent nodes, converting all structure nodes into corresponding cyclic structures

and connecting atoms in cyclic structures to their adjacent nodes according to the position

lists.

Details of how position lists are assigned to structure nodes are illustrated in Figure

3.12. The input of this process is the uppermost left-heavy center-rooted molecular tree,

where both a1 and a2 are structure nodes representing pyridine rings whose automorphism

group contains one mapping function θ defined in Equation 3.1. We traverse the tree in

reverse order of the breadth-first search and assign position lists to the structure nodes

65

3.5. METHODS

Algorithm 5 Algorithm for assigning position list to structure nodes in a molecular tree

1: function assign tree(T)
2: v := the last structure node of T in BFS order
3: ASSIGN NODE(T ,v)
4: return
5: end function
6: function assign node(T , v)
7: if v is null then
8: P := {(v1, v2, ..., vn)|(v1, ..., vn) is a symmetric path and v1 is left of vn}
9: if ∀(v1, ..., vn) ∈ P , T sub(v1, v2) >p T

sub(vn, vn−1) then
10: output T
11: end if
12: return
13: end if
14: A := an adjacent nodes list of v from Definition 7
15: ASSIGN POSITION(T , v, A[1][1], A)
16: return
17: end function
18: function assign position(T , v, w, A)
19: if w is null then
20: if the structure node next to v in reverse BFS order exists then
21: v′ := the structure node before v in BFS order
22: else
23: v′ := null
24: end if
25: ASSIGN NODE(T , v′)
26: return
27: end if
28: if the node next to w in A exists then
29: w′ := the node next to w in A
30: else
31: w′ := null
32: end if
33: for i from 1 to the number of atoms in substructure l(v) do
34: Let j and k be two integers such that w corresponds to the node A[j][k]
35: for each atom p in substructure l(v) do
36: if p is unsaturated and p > PT

v [j][k′] for all k′ < k then
37: PT

v [j][k] := p
38: if θ ∈ Aut(l(v)) such that PT

v > θ(PT
v) exists then

39: return
40: end if
41: ASSIGN POSITION(T , v, w′)
42: end if
43: end for
44: end for
45: return
46: end function

66

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

Figure 3.12: Process of assigning position lists to structure nodes, where a1 and a2 are
structure nodes representing a pyridine ring whose automorphism group consists of one
mapping function θ defined in Equation 3.1. Molecular graphs with low opacity contain
invalid position lists.

67

3.5. METHODS

found in this order. The structure node being assigned the position list is indicated by

a dashed circle. The number next to a node is a position of an atom in the structure

node with a dashed circle that the corresponding node bonds with. The current position

list of a structure node with a dashed circle is written below the molecular tree, where X

represents an unknown position for adjacent nodes that are not assigned a position yet.

The current position list is compared with another position list obtained from θ. If the

current position list is less than or equal to the one obtained from θ, it does not violate

the third property of the normal form and we assign the position to the next adjacent

node. Otherwise, the current position list violates the third property and is discarded, as

indicated by the low opacity of the molecular tree.

Because the third part of the algorithm (Section 3.5.3) generates all left-heavy center-

rooted molecular trees from a chemical formula, input trees of this part are guaranteed

to satisfy the first two conditions of the normal form. Moreover, all possible position lists

are generated (line 23) before checking for the third (line 25) and fourth conditions (line

7), so BfsStructEnum enumerates all distinct normal trees.

Theorem 2. Algorithm 5 enumerates all non-redundant molecular graphs that are the

solution of Problem 2.

3.5.5 Conversion of molecular trees to molecular graphs

After all structure nodes in a molecular tree is assigned a position list, we can convert

that molecular tree to the corresponding molecular graphs, which represent a chemical

compound, by three main steps. The first step is removing the edges connecting a structure

node with its adjacent node (see Figure 3.13 B). Second, we replace a structure node with a

molecular graph of its corresponding substructure, where nodes of the extracted molecular

graph are labeled according to the order of atoms in the input Mol file (see Figure 3.13 C).

Finally, we connect the adjacent nodes with nodes of extracted molecular graph according

to the position in the position list. In this step, the adjacent node, whose corresponding

position is i, is bonded with nodes, whose label is i (see Figure 3.13 D).

3.5.6 Complexity analysis

First, we analyze the time complexity of Algorithm 4, which calculates an automorphism

group of one input substructure. Let that substructure contain ns atoms and G be the

graph representing the substructure. FIND AUTOMORPHISM function contains a loop

from one to n (line 4). Each loop checks the condition of the first node in G (line 5)

and calls FILL ARRAY function at most one time to check for the second node (line 7) if

the condition is satisfied. Accordingly, the time complexity of FIND AUTOMORPHISM,

T1(ns), is

T1(ns) ≤ O(ns) + ns · T2(ns − 1), (3.11)

68

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

p

C
2

C

4

O

5
O

(a)

p

C
2

C

4

O

5
O

(b)

N

1

C2

C3
C

4

C 5

C 6

C
2

C

4

O

5

O

(c)

N

1

C2

C3
C

4

C 5

C 6

C

4

O

5

C
2

O

Figure 3.13: Process of conversion from a molecular tree to a molecular graph, where p is
a label of a pyridine substructure, blue edges are aromatic bonds, blue numbers are the
label of atoms in the substructure according to the input Mol file, and red numbers are
the corresponding position in the position list

where T2(ns − 1) is the time complexity of FILL ARRAY function starting from the

second node in G. In FILL ARRAY function, there is a loop with ns iterations (line 15).

Each loop performs at most one loop, which contains a constant number of operations

with ns iterations (line 18), as well as a recursive call of itself to move to the next node

(line 28) if the current node holds some conditions (line 16, line 23, and line 27). The time

complexity of this function is

T2(ns − 1) ≤ ns · [(ns ·O(1)) + T2(ns − 2)] (3.12)

≤

[
k+1∑
i=2

nis

]
+ nks · T2(ns − (k + 1)) (3.13)

≤
[
nk+2
s − n− 1

]
+ nks · T2(ns − k − 1), (3.14)

where k is the number of iterations of FILL ARRAY function. Because we tra-

verse from the second node to the last node in G by moving to the next node via the

FILL ARRAY function, the FILL ARRAY function is called ns − 1 times, or k = ns − 1.

Moreover, the last iteration performs at most two loops (line 15 and line 18). Both loops

iterate ns times and one loop is inside another loop so the time complexity of the last

iteration is O(n2
s). Then, the time complexity of Algorithm 4 can be written as

69

3.5. METHODS

T2(ns − 1) ≤ (nns+1
s − ns − 1) + nns−1

s · T2(ns − (ns − 1)− 1) (3.15)

≤ (nns+1
s − ns − 1) + nns−1

s · T2(0) (3.16)

≤ (nns+1
s − ns − 1) + nns−1

s ·O(n2
s) (3.17)

≤ O(nns+1
s) +O(nns+1

s (3.18)

≤ O(2 · nns+1
s). (3.19)

Then, we substitute Equation 3.19 into Equation 3.11 and have

T1(ns) ≤ ns ·O(2 · nns+1
s) = O(2 · nns+2

s). (3.20)

It must be noted that ns is the number of atoms in the input substructure, which is

expected to be significantly less than the number of input atoms.

Next, we analyze the time complexity of Algorithm 5. This algorithm, first, calls

function ASSIGN TREE. This function initializes a variable v and calls another function

ASSIGN NODE. Therefore, the time complexity of ASSIGN TREE is the same as that of

ASSIGN NODE for the same tree.

Let n be the number of nodes in a tree being assigned an atom position list. If we reach

is the root node of the tree, v will be null and we examine at most
(
n
2

)
= O(n2) paths to

obtain the set P in line 8. For each path, we check the label and the atom position list

of each node, which can be done in a constant time so the time complexity of line 8 is

O(n2). Therefore, the time complexity of the last iteration of ASSIGN NODE, where we

reach the root node, is O(n2) and the time complexity of other iterations is a constant of

n or O(1).

The ASSIGN NODE recursively calls itself via a function ASSIGN POSITION (line

25). In ASSIGN POSITION function, it calls itself at most nns
s times, where ns is the

number of atoms in the substructure representing by the current node, because there are

at most nns
s possible atom position lists for the substructure. When ASSIGN NODE is

called, a constant number of operations, except ASSIGN POSITION, are performed and

the number of atoms in the tree decreases by ns instead of 1. Thus, the time complexity

of ASSIGN NODE function is

T3(n) ≤ O(1) + nns
s · T3(n− ns) (3.21)

≤ O(1) + (ns
ns)k · T3(n− ns · k), (3.22)

where k is the number of iterations. The ASSIGN NODE calls itself until all structure

nodes are assigned an atom position list, which is at most n/ns times (k = n/ns). Then,

70

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

we have

T3(n) ≤ O(1) + (ns
ns)n/ns · T3(n− ns ·

n

ns
) (3.23)

≤ O(1) + nns · T3(0). (3.24)

Because T3(0) is the time complexity of the last iteration of ASSIGN NODE, we sub-

stitute T3(0) = O(n2) in 3.24 to obtain the time complexity of ASSIGN NODE.

T3(n) ≤ O(1) + nns ·O(n2) (3.25)

= O(nns · n2) (3.26)

For a memory complexity, we use an array of C++ structures to keep the information

of a molecular tree, where the number of elements in an array is the same as the number

of atoms excluding hydrogen atoms in a molecular tree and keep the information of a

molecular tree being enumerated only. Therefore, this work requires a polynomial space

complexity of degree one.

3.6 Results

We compared the performance of the proposed algorithm, BfsStructEnum, with another

commercial well-known universal structure generator, MOLGEN (version 5.0), by enu-

merating various chemical formulas with two specified substructures, a benzene ring and

a pyridine ring, on a computer with a 3.47 GHz intel Xeon CPU and 23.5 GiB of memory.

Since MOLGEN does not limit the structure of the enumerated compounds, we specified

the number of substructures in the execution of MOLGEN to obtain only desired results.

The results are shown in Table 3.1, where “b” and “p” denote a benzene ring and a pyrid-

ine ring, respectively. We did not compare our proposed method to OMG because it has

been shown that OMG is slower than MOLGEN [63].

Table 3.1 points out the accuracy of our method by showing that the number of

enumerated structures is the same as that of MOLGEN for all input chemical formulas.

Then, we compared the computation time to show that our method is much more efficient

than MOLGEN. With MOLGEN, some executions extended beyond one week or 604,800

seconds, denoted by “-” in the table.

We also plotted the relationship between the number of enumerated structures and

the execution time of the proposed method and MOLGEN in Figure 3.14, where both the

X and Y axes are in log-scale. We can see that the computation time of our method was

significantly less than that of MOLGEN.

71

3.6. RESULTS

Chemical #nodes #enumerated Computation time (sec)
formula b p C N O H structures BfsStructEnum MOLGEN

C7O2H8 1 0 1 0 2 8 19 0.003 0.053

C8N2H10 1 0 2 2 0 10 130 0.005 0.459
0 1 3 1 0 10 293 0.018 0.507

C9N1O1H9 1 0 3 1 1 9 884 0.009 2.566
0 1 4 0 1 9 949 0.006 2.687

C10O2H8 1 0 4 0 2 8 742 0.008 12.133

C11N2H10 1 1 0 1 0 10 22 0.004 7.375
1 0 5 2 0 10 9,012 0.044 630.44
0 2 1 0 0 10 36 0.004 7.315
0 1 6 1 0 10 14,725 0.021 631.75

C12N1O1H11 2 0 0 1 1 11 33 0.004 98.99
1 1 1 0 1 11 205 0.004 98.58
1 0 6 1 1 11 80,883 0.342 2,611.57
0 1 7 0 1 11 52,948 0.066 2,559.38

C13O2H12 2 0 1 0 2 12 190 0.005 2,069.3
1 0 7 0 2 12 162,122 0.686 6,497.55

C14N2H14 2 0 2 2 0 14 1,351 0.014 149,552.32
1 1 3 1 0 14 5,965 0.021 154,156.83
1 0 8 2 0 14 1,742,330 7.940 279,698.37
0 2 4 0 0 14 2,531 0.008 149,630.26
0 1 9 1 0 14 1,698,545 1.882 276,061.83

C16N3H13 2 0 4 3 0 13 135,450 0.728 -
1 2 0 1 0 13 511 0.003 84,698.32
1 1 5 2 0 13 1,753,458 7.107 -
1 0 10 3 0 13 100,773,971 513.35 -
0 3 1 0 0 13 538 0.003 84,738.84
0 2 6 1 0 13 1,583,598 1.871 -
0 1 11 2 0 13 143,255,509 170.29 -

Table 3.1: The number of enumerated structures and computation time for given chemical
formulas by BfsStructEnum and MOLGEN 5.0, where the specified substructures are a
benzene ring (b) and a pyridine ring (p), and “-” denotes that the computation time is
more than one week.

72

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

 0.01

 1

 100

 10000

 1e+06

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

co
m

p
u

ta
ti

o
n

 t
im

e
(s

ec
)

the number of enumerated structures

BfsStructEnum
MOLGEN 5.0

Figure 3.14: Relationship between the number of enumerated structures and computation
time of BfsStructEnum (solid line) and MOLGEN (dashed line).

3.7 Discussion

We propose a novel and efficient enumeration algorithm, BfsStructEnum. This algorithm

takes a chemical formula and additional biconnected cyclic chemical substructures from

users as the input and enumerates all non-redundant molecular graphs without cycles ex-

cept for the biconnected cyclic substructures specified by users. The substructure option

provided in this tool can decrease the time users spend to find the target compounds by us-

ing the substructure as another constraint to filter the enumerated compounds. Moreover,

this option allows the tool to be able to enumerate tree-like chemical compounds containing

any kinds of cyclic substructures given by users.

This work introduced a method to represent a chemical compound containing user-

defined cyclic substructures by a tree structure to optimize the computational cost. It

compresses one cyclic structure into a single node called a structure node. To expand the

tree structure with structure nodes back to a chemical compound, we introduced a new

attribute for the structure node called an atom position list, which stores the way that

atoms in a substructure node bonding with atoms adjacent to the structure node.

Using the first two conditions of the normal form, this algorithm first enumerates

non-redundant molecular trees from a chemical formula, where a specified substructure is

compressed into a single node so a node represents either a chemical atom or a substructure

and an edge represents a chemical bond. Then, position lists are assigned to all structure

73

3.7. DISCUSSION

nodes in molecular trees in order to convert them to molecular graphs.The third and fourth

conditions of the normal form are defined to remove redundancy from the position list.

Figure 3.15 illustrates the example of a normal molecular tree, which is the output of this

work, where a pyridine ring and a naphthalene ring are the input substructures with label

“p” and “n”, respectively.

p((3),(4))

n((2),(7))

C

C

O

(a)

1
5

4

C

O

3

2

3
4 5 6

7

C

8
9101

2

N
1

6

(b)

Figure 3.15: Illustration of a center-rooted left-heavy molecular tree (a) representing a
chemical compound (b).

In order to evaluate the effectiveness of BfsStructEnum, we enumerated chemical struc-

tures from a set of chemical formulas by BfsStructEnum and MOLGEN 5.0, a well-known

general purpose structure generator. In addition to producing the same number of enu-

merated structures, BfsStructEnum could enumerate 17 to approximately 7,000,000 times

faster than MOLGEN, although MOLGEN can enumerate all chemical structures without

limitation while BfsStructEnum restricts to compounds containing no cycles except for

those specified by users. The main reason of this efficiency is that we enumerate molecu-

lar trees, which is less complicated than enumerating molecular graphs. Another reason is

the decrease of the number of nodes during the enumeration by treating a cyclic structure

as a single node.

Drug discovery, synthesis of new chemical compounds, and structure identification

problems use an enumeration tool as a part of their processes, making it a fundamental

problem in the field of chemoinformatics. Because the enumeration tool usually handles a

large number of compounds in practice, the memory usage and computation time are two

important factors to be considered. The proposed algorithm aims to optimize memory

usage by enumerating one structure at a time without storing the information of previous

enumerated structures. The speed of enumeration is maximized by opting to enumerate

tree structures, instead of graphs, because enumerating trees is much more efficient than

enumerating graphs. These tree structures represent the chemical compounds.

However, since some applications of enumeration tool, e.g. drug discovery, require the

enumerated structure to contain desired substructures, it allows users to specify biconnec-

ted chemical compounds as substructures of the enumerated structures and uses a single

74

CHAPTER 3. ENUMERATION OF USER-DEFINED STRUCTURES

node to represent each substructure. Enumerating in such a way limits the enumerated

compounds to be compounds containing no cyclic substructures except for biconnected

substructures provided by users only therefore we aims to extend this limitation in the

future work. Besides, ranking and filtering the enumerated structures based on their prop-

erties, e.g. druglikeness, hydrophobicity, are important options for the enumeration tool.

Including these options to the tool is also our future objective.

75

Chapter 4

Host-pathogen protein interaction

prediction based on local topology

structures of a protein interaction

network

4.1 Background

Infectious diseases cause a significant loss in terms of illness and mortality across the

world. Pathogens, the agent of the infectious disease, cause the infection by adhering to

the host cell, invading the host cell, disturbing the function of its host, and protecting itself

from the host immune system. To adhere the host cell, pathogens uses their specialized

organelle called adhesins to attach with the receptors on the host cell’s membrane. This

attachment triggers the internalization mechanism that allows pathogens to enter the host

cell. After that, pathogens generate a toxic protein to disrupting and damage the host

cell. These processes involve the interaction between their proteins and the host’s proteins

[27]. By recognizing which pathogen’s proteins interact with which host’s proteins, we are

one step closer to understanding the underlying infectious mechanisms, and providing the

opportunity to discover a novel efficient therapeutics.

The simplest way to obtain such information is examining the interaction of all protein

pairs. However, the number of proteins in hosts and pathogens is so large that conducting

a reliable experiment to test all protein pairs is time and resource consuming and practic-

ally infeasible. Due to this limitation, several bioinformatics tools have been introduced

to address this problem by generating the host-pathogen protein interaction prediction

models from available data. These models are implemented to discover protein pairs that

have high probability to interact with each other. Accordingly, we can reduce the number

of protein pairs to be experimentally tested and the development of drugs becomes faster

77

4.2. PRELIMINARIES

and more efficient.

The major challenge of a host-pathogen protein interaction prediction modeling is the

scarcity of the verified host-pathogen protein interaction data [61], which is necessary for

training the model and benchmarking its prediction performance. Thus, extracting the

information from limited available data in the form of suitable features is one important

way to overcome this problem. Several prediction methods have been proposed, where their

features are based on heterogeneous information, such as the homology of proteins [45],

the structure of proteins [20], the biological pathway that the host proteins are involved

in [46], the protein domain and motif [22, 24]. Another method uses the information

of proteins that probably interact with each other but the experimental evidence is not

enough to confirm such interaction [66]. It has also been shown that pathogens tend to

target human proteins that interact with many other proteins or human proteins that

lie on many shortest paths in the protein-protein interaction network (PIN) [23]. As a

result, betweenness centrality and clustering coefficient of the proteins in the PIN are

firstly utilized as features in [85] and demonstrate their usefulness.

Later, it was found that the HIV virus does not always target the proteins that interact

with many other proteins but tends to target the proteins in the cancer-related pathways

[16]. This suggests that the proteins of different pathogens have a high tendency to interact

with proteins involved in the same biological pathway and have the similar function.

Moreover, it has been shown that the proteins with a similar local topology in the PIN

have similar gene ontology and function [19]. Accordingly, we hypothesize that pathogens

tend to target the proteins with a similar local topology in the PIN.

The objective of this work is to test this hypothesis by proposing a high-accuracy

computational method for solving host-pathogen protein interaction prediction problem

using a local topology of a PIN as a feature. The local topology is represented by a

graphlet degree vector (GDV) of a human protein in a human PIN, which has never

been used in the host-pathogen protein interaction prediction problem before. Then, we

compared the performance of the proposed method with the existing method. Our results

showed that the GDV significantly improves the prediction accuracy. This suggests that

this useful feature contains the essential information for host-pathogen protein interaction

prediction.

4.2 Preliminaries

4.2.1 Protein-protein interaction network

In order to perform its function, a protein usually interacts with other proteins and forms

a protein complex. A lot of publications dedicated to the protein-protein interaction result

in an increasing number of experimentally verified interactions. This interaction data is

usually represented as the protein-protein interaction network (PIN), which is a graph

78

CHAPTER 4. HOST-PATHOGEN PROTEIN INTERACTION

representing interacting proteins, where a node denotes a protein and an edge connecting

two interacting proteins. By using the PIN, it is more convenient and easier to analyze

the protein-protein interactions because proteins forming a protein complex are adjacent

to each other in the PIN and graph-related algorithm can be applied to the PIN. PIN is

a scale-free network and the distribution of its edges also follows the power law. In other

words, PIN contains hub nodes, which are more highly connected to other nodes than

average [18].

4.2.2 Graphlet degree vector

A graphlet degree vector (GDV) of a node v, denoted as GDV(v), is a vector of the number

of orbits in the graphlets that v touches, where the ith element (GDV (v)[i]) corresponds

to the orbit i, which is the node with label i in Figure 4.1. It is proposed by [65] to analyze

the protein-protein interaction network of yeast and fruitfly.

0
1

2

3
4

5

6

7

8
10

11

9

13

12

14

17

16

15 20

18

21

19

23

22 25

26

24

27

28

30

29

33

32

31

34
36

37

38

35

41

40

42

39

44

43
46

48

47

45

50

49

52

53

51

54

55

58

56

57

59

61

60

64

63

62

65

67

66

69

68
70

71
72

Figure 4.1: 30 graphlets from two to five nodes where nodes are labeled with the corres-
ponding orbit and nodes with the same color in one graphlet have the same topology and
belong to the same orbit

GDV4 and GDV5 denote a GDV of graphlets containing up to four nodes and five

nodes, respectively. A GDV represents the pattern that a node connects with their ad-

jacent nodes for all possible connecting subgraphs, which captures the local topological

structure of that node in a network. By finding the GDV of a protein in the PIN, we

can approximately determine how many proteins it interacts with, the pattern of those

interactions, and the number and size of protein complexes harboring that protein, which

reflects how important it is.

An example of the calculation of the first eight elements of the GDV of a node with

label a, GDV(a), is illustrated in Figure 4.2, where the elements, whose values are zero,

79

4.3. METHODS

are omitted.

a

b c

d e

f
orbit 0: 4

a b a c a d a e

orbit 1: 2
a c f a e f

orbit 2: 5
ab d ab e ac d ac e ad e

orbit 3: 1

b c

a

orbit 7: 2
b a

d

e c a

d

e

orbit 8: 1

a c

e f

...

orbit 0 1 2 3 4 5 6 7 8 ...
GDV(a) 4 2 5 1 0 0 0 2 1 ...

Figure 4.2: Calculation of the first eight elements of GDV(a), where the elements with
value zero are omitted

4.3 Methods

4.3.1 Prediction model

Given a host protein Ph(i) and a pathogen protein Pp(i), the host-pathogen protein in-

teraction prediction is solved as a binary classification problem, where the input x is a

feature vector of a pair of host-pathogen proteins < Ph(i), Pp(i) >, and the class label

yi ∈ {+1,−1} represents interacting and non-interacting protein pairs, respectively. Two

weight-optimization methods are used for the classification model in this work. The first

one is a stochastic gradient descent (SGD) algorithm with a logistic loss function shown in

Equation 4.1, where w is a weight vector, x is a training feature vector and y is a training

label.

L(w,x, y) =
ln(1 + e(wTx)y)

ln 2
(4.1)

SGD is an optimization method that divides a training data set into several groups

and updates the weight vector based on the gradient of the cost function using training

80

CHAPTER 4. HOST-PATHOGEN PROTEIN INTERACTION

data of each group at one time. The idea of stochastic optimization was firstly introduced

by Robbins and Monroe [70].

Another learning method implemented in this work is a soft confidence-weighted (SCW)

learning method [89], which is a second-order online learning method that allows non-

separable data and conserves an adaptive margin property. SCW assumes that the weight

vector follows the Gaussian distribution and updates the weight using one training data

at a time such that the change of the weight vector and the number of misclassification,

the first term and the second term in Formula 4.2, respectively, are minimized.

1

2
||w−wt||2 + C ·max(0, 1− yt(w · xt)), (4.2)

where w is the updated weight vector, wt is the current weight vector, xt and yt are a

training feature vector and the corresponding label of this round, respectively. Compared

with other online learning methods, SCW has been shown to outperform or generate

comparable accuracy at the low computational cost [89].

From the experiment, we found that overall performance of SCW is better than that

of SGD except for Y. pestis. Thus, we combine these two algorithms together by assigning

label +1 to a sample if at least one of these two method assign label +1 and assigning

label -1 otherwise as shown in the following equation.

y =

+1 if label of SGD or label of SCW is +1

−1 otherwise
(4.3)

4.3.2 Feature set

To optimize the computational time of the model, we select five features to represent a

pair of host-pathogen proteins < Ph, Pp >, which include 1) a conjoint triad of Ph and Pp;

2) degree; 3) betweenness centrality; 4) clustering coefficient, and 5) a GDV of Ph in the

human PIN. The first feature proposed by Shen et al. [77] is the number of all subsequences

of 3-mer amino acids in the amino acid sequence of that protein. However, Shen et al.

further classified 20 amino acids into seven groups according to the electrostaticity and

hydrophobicity as shown in Table 4.1 and counted the compositions of the groups of three

consecutive amino acids.

Thus, a conjoint triad consists of 73 = 343-dimensional feature values instead of 203 =

8000 values. The rest of the features are graph-based features that are calculated from the

human PIN, where degree is the number of edges connecting to that node, betweenness

centrality is the number of the shortest paths passing that node divided by the number

of all shortest paths in the graph, clustering coefficient is the number of edges connecting

any two of its adjacent nodes divided by the number of all possible edges that its adjacent

nodes can have, and GDV is defined in the Section 4.2.2. We used a combinatorial method

proposed by Hoc̆evar and Demsar [34] to generate the GDV features of human proteins.

81

4.4. RESULTS

group number amino acids

1 Ala, Gly, Val

2 Ile, Leu, Phe, Pro

3 Tyr, Met, Thr, Ser

4 His, Asn, Gln, Tpr

5 Arg, Lys

6 Asp, Glu

7 Cys

Table 4.1: Classification of 20 amino acids into seven groups

4.4 Results

4.4.1 Data set

The data of host-pathogen interacting protein pairs used in this work was downloaded from

the PHISTO database [86]. Since we cannot confirm which host protein definitely does

not interact with which pathogen protein, negative samples were generated by randomly

selecting a host protein and a pathogen protein that have not been experimentally verified

to interact with each other in the positive samples. The number of generated negative

samples was 100 times of the number of positive samples according to the previous studies

[46, 85] because they suggested one interacting pair for every 100 random host-pathogen

protein pairs. The amino acid sequences used to calculate the conjoint triad feature in this

work were obtained from the UniProt database [87] and the human PIN was generated

from the interaction data provided in the Human Protein Reference Database (HPRD)

[64]. For a pair of protein < Ph, Pp > whose GDV of Ph cannot be found, we handled

missing values in three ways: 1) eliminating those samples; 2) replacing missing values

with zero, and 3) replacing missing values with the mean, and compare the accuracy of

those methods to find the best one.

4.4.2 Experiments and results

We implemented the proposed method to predict the protein-protein interactions between

human and four pathogens, B. anthracis, F. tularensis, S. typhi, and Y. pestis. 10-fold

cross validation was used to evaluate the performance of this method in terms of the F-

score (Equation 4.4) due to the imbalance between the numbers of positive and negative

data.

82

CHAPTER 4. HOST-PATHOGEN PROTEIN INTERACTION

F − score =
2 · precision · recall
precision+ recall

, where (4.4)

precision =
#true positive

#true positive+ #false positive
, and

recall =
#true positive

#true positive+ #false negative

First, we compared the performance of the prediction model using three missing-data

handling methods based on the SCW optimization technique. The numbers of all positive

samples and those without missing features for all species are shown in Table 4.2.

Pathogens #positive samples
#positive samples

without missing features

B. anthracis 3097 1208

F. tularensis 1332 513

S. typhi 103 49

Y. pestis 4099 1615

Table 4.2: The numbers of all positive samples and positive samples without missing
features

The F-score results of all prediction models illustrated in Figure 4.3 shows that im-

puting with zero led to the highest average accuracy followed by imputing with the mean

and removing samples with missing features, respectively.

Because imputing missing values with zero led to the best and most consistent per-

formance for all species, the result gives rise to the question of whether the GDV contains

necessary information for the prediction or not. To further examine the significance of the

GDV to host-pathogen PPI prediction, we implemented the prediction using three sets of

features: 1) all features except GDV; 2) all features with GDV4, and 3) all features with

GDV5, denoted as noGDV, GDV4, and GDV5, respectively. Missing values were imputed

with zero for GDV4 and GDV5. The number of features in these three features sets is

shown in Table 4.3.

feature sets #features

noGDV 689

GDV4 704

GDV5 762

Table 4.3: The number of features in noGDV, GDV4, and GDV5 features sets

The prediction performance using three sets of features shown in Figure 4.4 confirms

that although missing GDV was imputed with zero, GDV4 and GDV5 increased the pre-

83

4.4. RESULTS

 0

 20

 40

 60

 80

 100

B. anthracis F. tularensis S. typhi Y. pestis

F
-s

c
o

re

pathogen

removing samples with missing features
zero imputation

mean imputation

Figure 4.3: F-score of prediction using three missing-data handling methods

diction accuracy of host-pathogen PPI pairs for all pathogens especially B. anthracis and

F. tularensis.

Then, we implemented the combination of two weight-optimization methods, which

are SGD and SCW, where missing features were imputed by zero. The performance of

the proposed method was compared with that of the existing prediction model using the

multitask learning technique [46]. In the multitask learning, the prediction of a host-

pathogen protein interaction pair is considered as a task and the information of several

tasks is integrated together to predict the interaction between the human host and a

pathogen via the proposed feature called pathway vector. A pathway vector is a vector

representing the biological pathway where the host proteins in positive samples are involved

in. Apart from the pathway vector, features used in this multitask learning also consist

of: 1) n-mer of amino acid sequence (n = 2, 3, 4, 5); 2) degree; 3) betweenness centrality,

and 4) clustering coefficient of human proteins in the PIN; 5) gene ontology similarity

between the host protein and the pathogen protein, and 6) gene expression of the host

protein. The number of features that method is variant among different pathogens, where

the minimum number of features is 349,155 for S. typhi and the maximum is 886,480 for

Y. pestis as shown in Table 4.4.

The first feature is similar to the conjoint triad of this work except it includes the

information of two, four, and five consecutive amino acids. The second, third, and fourth

features are the same as previous work, while we use GDV5 of host proteins instead of

the fifth and sixth features. For the data set of their work, the data of B. anthracis F.

84

CHAPTER 4. HOST-PATHOGEN PROTEIN INTERACTION

 0

 20

 40

 60

 80

 100

B. anthracis F. tularensis S. typhi Y. pestis

F
-s

c
o

re

pathogen

no GDV
GDV4
GDV5

Figure 4.4: F-score of prediction using three sets of features (noGDV, GDV4, and GDV5)

B. anthracis F. tularensis S. typhi Y. pestis

694,715 468,955 349,155 886,480

Table 4.4: The number of features used in the multitask learning method

tularensis and Y. pestis were downloaded from PHISTO, which is the same database as

this work, but the data of S. typhi was downloaded from Salmonella-host interactome [73].

The average F-score of this work and multitask learning are shown in Figure 4.5.

For the three species, B. anthracis F. tularensis and Y. pestis, whose data are extracted

from the same source, this work significantly outperformed the multitask learning method.

For S. typhi, the proposed method is slightly better than the multitask learning method.

The results suggest that by using GDV5 as a feature, the accuracy of the prediction model

outperforms another model using the same feature except GDV5 along with two additional

features, namely, gene ontology similarity and gene expression. This implies that GDV5 is

an outstanding feature of the host protein to predict whether it interacts with a pathogen

protein or not.

4.5 Discussion

Because of the scarcity of the available host-pathogen protein interaction data, especially

for human-bacteria data, extracting useful information from the limited data is one im-

portant task to improve the prediction accuracy. This work introduced a new feature to

85

4.5. DISCUSSION

 0

 20

 40

 60

 80

 100

B. anthracis F. tularensis S. typhi Y. pestis

F
-s

c
o

re

pathogen

proposed method
multitask learning method

Figure 4.5: F-score of the host-pathogen protein interaction prediction by the proposed
method and the existing algorithm (multitask learning)

extract more information from a host-pathogen interacting protein pairs. The introduced

feature is a graphlet degree vector, which is a graph-based feature representing a local

topology of a protein-protein interaction network. A graphlet degree vector has been used

in several problems related with the topology of network but has never been used in this

problem before.

The rationale behind the use of this feature is originated from two previous studies.

The first one suggests that different pathogens tend to target a host protein with similar

function and another one is a study revealing the relationship between the protein function

and its local topological structure in the PIN. Accordingly, in this work, we hypothesize

that pathogens can also target host proteins with a similar local topology in the PIN and

examine it by integrating the GDV of host proteins as a feature during the prediction.

We implemented a prediction model using SCW to optimize the weight using three

methods to deal with such missing data. The best method was imputing with zero, while

the second was imputing with mean and the last one was removing samples with missing

features. By removing samples with missing features, less than half of the training data

remain after the elimination as shown in Table 4.2, resulting in the decrease of the model’s

accuracy. Then, we compared the performance of the prediction models with and without

the GDV as a feature. The model without the GDV as the feature had a decreased

accuracy. The results suggest that proteins without the GDV feature may seldom interact

with other proteins and overall so imputing with zero led to the best performance.

86

CHAPTER 4. HOST-PATHOGEN PROTEIN INTERACTION

Then, we compared the performance of this work with the existing method based on a

multitask learning technique. That existing method does not include GDV in the feature

set but uses a gene ontology similarity between a host protein and a pathogen protein and

a gene expression of a host protein instead. We found that most of the predictions using

GDV outperformed the existing method. This highlights the significance of GDV as an

excellent feature for improving the host-pathogen protein interaction prediction.

This work is at the early-stage of applying GDV to solve the host-pathogen protein

interaction prediction problem. In order to improve the accuracy, more complicated weight

optimization method and parameter-tuning algorithm should be applied to the model.

Moreover, there may exist other unused features containing important information for this

problem similar to GDV. Therefore, apart from developing weight optimization technique

and data preprocessing, identifying new features is also of particular value to improve the

accuracy of the prediction.

87

Chapter 5

Conclusion and future work

5.1 Conclusion

The infectious disease caused by pathogens is one main cause of human death and illness.

Due to the pathogens’ ability to mutate themselves, the discovery of new drugs is necessary

to efficiently eliminate pathogens and decrease the loss from the infectious disease. This

thesis provides three computational methods that can be applied to drug discovery research

according to a graph structure.

The first work develops a novel efficient enumeration algorithm that generates all

non-redundant tree-like chemical compounds containing benzene rings and naphthalene

rings from a chemical formula.This algorithm can be applied to various chemoinformatics

problems such as structure elucidation, chemical space analysis, and drug discovery. By

enumerating compounds from a chemical formula, this algorithm can decrease the size

of chemical compound space to be searched for the desired compound if the number of

atoms in that compound is known. This work uses a tree-structure representation of

chemical compound during the enumeration process and compresses a benzene ring and

a naphthalene ring into a single node and two nodes, respectively. The concept of iso-

morphism is used to examine the redundancy of compounds. We utilized the proposed

method and a general-purpose structure generator named MOLGEN to enumerate chem-

ical compounds from several chemical formulas. The results showed that the proposed

method is reliable and consumes significantly less computational time than the existing

method. The number of the enumerated compounds is also compared with the number

of discovered compounds in the PubChem database. The comparison suggests that there

are a numerous number of compounds that have not been discovered yet. Therefore, this

algorithm is one way to discover unknown compounds from a chemical formula.

Second, apart form the atom types, users sometimes have the information of substruc-

tures in the desired compounds, e.g. specific receptors that can interact with a target

protein or spectral data from a nuclear magnetic resonance spectroscopy experiment of an

unknown compound. Therefore, an efficient enumeration algorithm for tree-like chemical

89

5.2. FUTURE WORK

compounds containing cyclic substructures defined by users is proposed. Compared with

our first work, the limitation of the cyclic substructure within the enumerated compounds

decreases from benzene rings and naphthalene rings to any cyclic substructures defined

by users. Allowing users to specify substructures can decrease the scope of enumerated

compounds as well as the time users spend to find a perfect compound from all candid-

ates. We compared the results of our proposed method with those of another state-of-art

method to confirm the correctness and efficiency.

Finally, to design a drug for a specific pathogen, we have to search for the suitable

target of a drug. One of the widely used drug target is a protein because most infection

mechanisms are related to proteins. The host-pathogen protein interaction prediction

method is proposed to inspect the interaction between host proteins and pathogen proteins

and discover proteins involved in the infection mechanisms, which are good candidates for

the drug target. The proposed method is the first one that uses a graphlet degree vector

(GDV) of the host’s protein-protein interaction network (PIN) as a feature for predicting

the interaction between a host protein and a pathogen protein. This model considers a

host-pathogen protein prediction problem as a binary classification with two labels, +1

and -1 denoting interacting and non-interacting protein pairs, respectively. Two learning

methods, stochastic gradient descent and soft confidence-weighted, are combined together

to classify a given pair of host-pathogen proteins. For the protein-protein interaction

between human and four pathogens, the prediction accuracy of this proposed method is

better than that of the multitask learning method using the same feature set as this work

except GDV but using a gene ontology similarity and a gene expression profile instead.

The results suggest that GDV contains information that is important for solving the

host-pathogen protein interaction prediction problem. It also supports the previous study

showing that proteins with similar function tend to have similar local topology in the PIN.

5.2 Future work

Three computational methods proposed in this thesis outperform existing methods in

terms of either computational time or accuracy. However, further development is still ne-

cessary to decrease the remaining limitation or improve the performance of these methods.

In the first work, we regarded a naphthalene ring as two benzene nodes bonding to-

gether with a special kind of bond, named merge bond, instead of another special label

of node. The concept of merge bond can be extended to represent more complicated

polycyclic aromatic compounds, such as anthracene and phenanthrene, by treating those

substructures as a chain of benzene nodes bonded by merge bonds. Being able to enu-

merate polycyclic aromatic compound decreases the limitation on the structure of the

enumerated compounds.

In the second work, the number of the enumerated structures in practical use is usually

90

CHAPTER 5. CONCLUSION AND FUTURE WORK

large. Integrating chemistry with the proposed algorithm to rank the enumerated struc-

tures based on their chemical property is also an important future work because it helps

the users spend less time to find their target compounds. In the drug discovery problem,

the chemical property used to rank the compounds can be druglikeness property such as

water solubility, rule of five proposed by Lipinski, and QED score.

The last work in this thesis introduces a graphlet degree vector (GDV) as a feature for

solving a host-pathogen protein interaction prediction problem with two simple learning

methods. This is the early-stage of using GDV in this problem and the performance can be

improved by implementing more complex learning methods to train the model. Although

GDV has never been used before in this problem, the results of this work show that GDV

is a desirable feature. Accordingly, there might be several unknown yet important features

regarding this problem that could be further investigated.

91

Bibliography

[1] http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell. 4th Edition. Garland Science, 2002.

[3] A. D. Andricopulo, R. V. Guido, and G. Oliva. Virtual screening and its integration

with modern drug design technologies. Current Medicinal Chemistry, 15(1):37–46,

2008.

[4] M. Badertscher, A. Korytko, K. P. Schulz, M. Madison, M. E. Munk, P. Portmann,

M. Junghans, P. Fontana, and E. Pretsch. Assemble 2.0: a structure generator.

Chemometrics and Intelligent Laboratory Systems, 51(1):73–79, 2000.

[5] K. Balasubramanian. Computer-assisted enumeration of NMR signals. Journal of

Magnetic Resonance (1969), 48(2):165–177, 1982.

[6] A. R. Beccari, C. Cavazzoni, C. Beato, and G. Costantino. LiGen: a high performance

workflow for chemistry driven de novo design. Journal of Chemical Information and

Modeling, 53(6):1518–1527, 2013.

[7] C. Benecke, T. Grüner, A. Kerber, R. Laue, and T. Wieland. MOLecular struc-

ture GENeration with MOLGEN, new features and future developments. Fresenius’

Journal of Analytical Chemistry, 359(1):23–32, 1997.

[8] L. C. Blum and J. L. Reymond. 970 million druglike small molecules for virtual screen-

ing in the chemical universe database GDB-13. Journal of the American Chemical

Society, 131(25):8732–8733, 2009.

[9] B. G. Buchanan and E. A. Feigenbaum. DENDRAL and Meta-DENDRAL: Their

applications dimension. Technical report, Defense Technology Information Center,

1978.

[10] J. J. Bürgi, M. Awale, S. D. Boss, T. Schaer, F. Marger, J. M. Viveros Paredes,

S. Bertrand, J. Gertsch, D. Bertrand, and J. L. Reymond. Discovery of potent positive

allosteric modulators of the α3β2 nicotinic acetylcholine receptor by a chemical space

walk in ChEMBL. ACS Chemical Neuroscience, 5(5):346–359, 2014.

93

BIBLIOGRAPHY

[11] L. Bytautas, D. J. Klein, and T. G. Schmalz. All acyclic hydrocarbons: Formula

periodic table and property overlap plots via chemical combinatorics. New Journal

of Chemistry, 24(5):329–336, 2000.

[12] R. E. Carhart, D. H. Smith, H. Brown, and C. Djerassi. Applications of artificial

intelligence for chemical inference. XVII. Approach to computer-assisted elucidation

of molecular structure. Journal of the American Chemical Society, 97(20):5755–5762,

1975.

[13] R. E. Carhart, D. H. Smith, N. A. B. Gray, J. G. Nourse, and C. Djerassi. GENOA:

A computer program for structure elucidation utilizing overlapping and alternative

substructures. Journal of Organic Chemistry, 46:1708–1718, 1981.

[14] A. Casadevall and L. Pirofski. Host-pathogen interactions: Basic concepts of mi-

crobial commensalism, colonization, infection, and disease. Infection and Immunity,

68(12):6511–6518, 2000.

[15] A. Cayley. On the analytical forms called trees, with application to the theory of

chemical combinations. Report of British Association for the Advancement of Science,

45:257–305, 1875.

[16] K. Chen, T. Wang, and C. Chan. Associations between HIV and human pathways

revealed by protein-protein interactions and correlated gene expression profiles. PLOS

ONE, 7(3):e34240, 2012.

[17] C. J. Churchwell, M. D. Rintoul, S. Martin, D. P. Visco, A. Kotu, R. S. Larson,

L. O. Sillerud, D. C. Brown, and J.-L. Faulon. The signature molecular descriptor:

3. inverse-quantitative structure–activity relationship of ICAM-1 inhibitory peptides.

Journal of Molecular Graphics and Modelling, 22(4):263–273, 2004.

[18] M. M. Cox and G. N. Phillips. Handbook of Proteins: Structure, Function and

Methods. Wiley, 2007.

[19] D. Davis, O. N. Yaveroğlu, N. M. Dognin, A. Stojmirovic, and N. Prz̆ulj. Topology-

function conservation in protein-protein interaction networks. Bioinformatics,

31(10):1632–1639, 2015.

[20] F. P. Davis, D. T. Barkan, N. Eswar, J. H. McKerrow, and A. Sali. Host–pathogen pro-

tein interactions predicted by comparative modeling. Protein Science, 16(12):2585–

2596, 2007.

[21] J. Drews. Drug discovery: A historical perspective. Science, 287(5460):1960–1964,

2000.

94

BIBLIOGRAPHY

[22] M. D. Dyer, T. Murali, and B. W. Sobral. Computational prediction of host-pathogen

protein–protein interactions. Bioinformatics, 23(13):i159–i166, 2007.

[23] M. D. Dyer, T. Murali, and B. W. Sobral. The landscape of human proteins inter-

acting with viruses and other pathogens. PLOS Pathogens, 4(2):e32, 2008.

[24] P. Evans, W. Dampier, L. Ungar, and A. Tozeren. Prediction of HIV-1 virus-host

protein interactions using virus and host sequence motifs. BMC Medical Genomics,

2(1):1, 2009.

[25] J. Faulon, D. P. Visco, and D. Roe. Enumerating molecules. Reviews in Computational

Chemistry, 21:209, 2005.

[26] J. L. Faulon. Stochastic generator of chemical structure. 1. Application to the struc-

ture elucidation of large molecules. Journal of Chemical Information and Computer

Sciences, 34(5):1204–1218, 1994.

[27] B. B. Finlay and P. Cossart. Exploitation of mammalian host cell functions by bac-

terial pathogens. Science, 276(5313):718–725, 1997.

[28] H. Fujiwara, J. Wang, L. Zhao, H. Nagamochi, and T. Akutsu. Enumerating treelike

chemical graphs with given path frequency. Journal of Chemical Information and

Modeling, 48(7):1345–1357, 2008.

[29] K. Funatsu and S. Sasaki. Recent advances in the automated structure elucidation

system, CHEMICS. utilization of two-dimensional NMR spectral information and de-

velopment of peripheral functions for examination of candidates. Journal of Chemical

Information and Computer Sciences, 36(2):190–204, 1996.

[30] R. Gugisch, A. Kerber, A. Kohnert, R. Laue, M. Meringer, C. Rücker, A. Wasser-

mann, S. Basak, G. Restrepo, and J. Villavecess. MOLGEN 5.0, a molecular structure

generator. Advances in Mathematical Chemistry and Applications, 1:113–138, 2014.

[31] F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1969.

[32] S. Hardinger and University of California, Los Angeles Department of Chemistry

and Biochemistry. Chemistry 14D: Organic Reactions and Pharmaceuticals : Course

Thinkbook, Lecture Supplements, Concept Focus Questions, OWLS Problems, Prac-

tice Problems. Hayden-McNeil Publishing, Plymouth, MI 48170, 2008.

[33] F. He, A. Hanai, H. Nagamochi, and T. Akutsu. Enumerating naphthalene isomers

of tree-like chemical graphs. Proceedings of the 9th International Joint Conference on

Biomedical Engineering Systems and Technologies, 3:258–265, 2016.

[34] T. Hočevar and J. Demšar. A combinatorial approach to graphlet counting. Bioin-

formatics, 30(4):559–565, 2014.

95

BIBLIOGRAPHY

[35] Y. Ishida, Y. Kato, L. Zhao, H. Nagamochi, and T. Akutsu. Branch-and-bound

algorithms for enumerating treelike chemical graphs with given path frequency using

detachment-cut. Journal of Chemical Information and Modeling, 50(5):934–946, 2010.

[36] M. Jaspars. Computer assisted structure elucidation of natural products using two-

dimensional NMR spectroscopy†. Natural Product Reports, 16(2):241–248, 1999.

[37] J. Jindalertudomdee, M. Hayashida, and T. Akutsu. Enumeration method for struc-

tural isomers containing user-defined structures based on breadth-first search ap-

proach. Journal of Computational Biology, 2016.

[38] J. Jindalertudomdee, M. Hayashida, Y. Zhao, and T. Akutsu. Enumeration method

for tree-like chemical compounds with benzene rings and naphthalene rings by

breadth-first search order. BMC Bioinformatics, 17(1), 2016.

[39] C.-L. Kee, X. Ge, M.-Y. Low, and H.-L. Koh. Structural elucidation of a new sildenafil

analogue using high-resolution Orbitrap mass spectrometry. Rapid Communications

in Mass Spectrometry, 27(12):1380–1384, 2013.

[40] A. Kerber, R. Laue, T. Gruner, and M. Meringer. MOLGEN 4.0. MATCH Commu-

nications in Mathematical and in Computer Chemistry, 37:205–208, 1998.

[41] T. Kind and O. Fiehn. Advances in structure elucidation of small molecules using

mass spectrometry. Bioanalytical Reviews, 2(1-4):23–60, 2010.

[42] M. T. Klein, G. Hou, R. J. Quann, W. Wei, K. H. Liao, R. S. Yang, J. A. Campain,

M. A. Mazurek, and L. J. Broadbelt. BioMOL: a computer-assisted biological mod-

eling tool for complex chemical mixtures and biological processes at the molecular

level. Environmental Health Perspectives, 110(Suppl 6):1025–1029, 2002.

[43] M. A. Koch, A. Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A. Odermatt,

P. Ertl, and H. Waldmann. Charting biologically relevant chemical space: A structural

classification of natural products (SCONP). Proceedings of the National Academy of

Sciences of the United States of America, 102(48):17272–17277, 2005.

[44] S. Koichi, M. Arisaka, H. Koshino, A. Aoki, S. Iwata, T. Uno, and H. Satoh. Chemical

structure elucidation from 13C NMR chemical shifts: Efficient data processing using

bipartite matching and maximal clique algorithms. Journal of Chemical Information

and Modeling, 54(4):1027–1035, 2014.

[45] O. Krishnadev and N. Srinivasan. Prediction of protein–protein interactions between

human host and a pathogen and its application to three pathogenic bacteria. Inter-

national Journal of Biological Macromolecules, 48(4):613–619, 2011.

96

BIBLIOGRAPHY

[46] M. Kshirsagar, J. Carbonell, and J. Klein-Seetharaman. Multitask learning for host–

pathogen protein interactions. Bioinformatics, 29(13):i217–i226, 2013.

[47] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg. Applications

of artificial intelligence for organic chemistry: the DENDRAL project. McGraw-Hill,

Inc., 1980.

[48] J. Maitland Jones. Organic Chemistry 3rd Edition. W. W. Norton & Company, 2004.

[49] S. Martin. Lattice enumeration for inverse molecular design using the signature

descriptor. Journal of Chemical Information and Modeling, 52(7):1787–1797, 2012.

[50] C. D. Mathers and D. Loncar. Projections of global mortality and burden of disease

from 2002 to 2030. PLOS Medicine, 3(11):e442, 2006.

[51] H. Mauser and M. Stahl. Chemical fragment spaces for de novo design. Journal of

Chemical Information and Modeling, 47(2):318–324, 2007.

[52] A. D. McNaught and A. Wilkinson. Compendium of Chemical Terminology: IUPAC

Recommendations. Blackwell Scientific Publications, 1997.

[53] M. Meringer. Handbook of Chemoinformatics Algorithms, chapter 8 Structure Enu-

meration and Sampling, pages 233–267. CRC Press, Boca Raton, Florida, 2010.

[54] M. Meringer and E. L. Schymanski. Small molecule identification with MOLGEN

and mass spectrometry. Metabolites, 3(2):440–462, 2013.

[55] K. Mishima, H. Kaneko, and K. Funatsu. Development of a new de novo design

algorithm for exploring chemical space. Molecular Informatics, 33(11-12):779–789,

2014.

[56] M. S. Molchanova, V. V. Shcherbukhin, and N. S. Zefirov. Computer generation of

molecular structures by the SMOG program. Journal of Chemical Information and

Computer Sciences, 36(4):888–899, 1996.

[57] C. Montecucco, E. Papini, and G. Schiavo. Bacterial protein toxins penetrate cells

via a four-step mechanism. FEBS Letters, 346(1):92–98, 1994.

[58] J. B. Moon and W. J. Howe. Computer design of bioactive molecules: A method for

receptor-based de novo ligand design. Proteins: Structure, Function, and Bioinform-

atics, 11(4):314–328, 1991.

[59] M. E. Munk, C. A. Shelley, H. B. Woodruff, and M. O. Trulson. Computer-assisted

structure elucidation. Fresenius’ Zeitschrift für Analytische Chemie, 313(6):473–479,

1982.

97

BIBLIOGRAPHY

[60] C. J. Murray and A. D. Lopez. Alternative projections of mortality and disability by

cause 1990–2020: Global burden of disease study. The Lancet, 349(9064):1498–1504,

1997.

[61] E. Nourani, F. Khunjush, and S. Durmuş. Computational approaches for prediction

of pathogen-host protein-protein interactions. Frontiers in Microbiology, 6:94–103,

2015.

[62] I. Ojanperä, M. Kolmonen, and A. Pelander. Current use of high-resolution mass

spectrometry in drug screening relevant to clinical and forensic toxicology and doping

control. Analytical and Bioanalytical Chemistry, 403(5):1203–1220, 2012.

[63] J. E. Peironcely, M. Rojas-Chertó, D. Fichera, T. Reijmers, L. Coulier, J.-L. Faulon,

and T. Hankemeier. OMG: open molecule generator. Journal of Cheminformatics,

4(1), 2012.

[64] T. K. Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S. Mathivanan,

D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal, et al. Human protein reference

database—2009 update. Nucleic Acids Research, 37(suppl 1):D767–D772, 2009.

[65] N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale-free or geo-

metric? Bioinformatics, 20(18):3508–3515, 2004.

[66] Y. Qi, O. Tastan, J. G. Carbonell, J. Klein-Seetharaman, and J. Weston. Semi-

supervised multi-task learning for predicting interactions between HIV-1 and human

proteins. Bioinformatics, 26(18):i645–i652, 2010.

[67] J.-L. Reymond, L. Ruddigkeit, L. Blum, and R. van Deursen. The enumeration of

chemical space. Wiley Interdisciplinary Reviews: Computational Molecular Science,

2(5):717–733, 2012.

[68] J. L. Reymond, R. van Deursen, L. C. Blum, and L. Ruddigkeit. Chemical space as

a source for new drugs. MedChemComm, 1(1):30–38, 2010.

[69] D. Ribet and P. Cossart. How bacterial pathogens colonize their hosts and invade

deeper tissues. Microbes and Infection, 17(3):173–183, 2015.

[70] H. Robbins and S. Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, pages 400–407, 1951.

[71] L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J.-L. Reymond. Enumeration of 166

billion organic small molecules in the chemical universe database GDB-17. Journal

of Chemical Information and Modeling, 52(11):2864–2875, 2012.

[72] K. Scheubert, F. Hufsky, and S. Böcker. Computational mass spectrometry for small

molecules. Journal of Cheminformatics, 5(1), 2013.

98

BIBLIOGRAPHY

[73] S. Schleker, J. Sun, B. Raghavan, M. Srnec, N. Müller, M. Koepfinger, L. Murthy,

Z. Zhao, and J. K. Seetharaman. The current Salmonella–host interactome. Proteo-

mics Clinical Applications, 6:117–133, 2012.

[74] G. Schneider and U. Fechner. Computer-based de novo design of drug-like molecules.

Nature Reviews Drug Discovery, 4(8):649–663, 2005.

[75] N. Schore and P. Vollhardt. Organic Chemistry: Structure and Function 6th Edition.

Freeman Publisher, 2011.

[76] A. Schüller, V. Hähnke, and G. Schneider. SmiLib v2.0: A java-based tool for rapid

combinatorial library enumeration. QSAR & Combinatorial Science, 26(3):407–410,

2007.

[77] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang. Predicting

protein–protein interactions based only on sequences information. Proceedings of the

National Academy of Sciences of the United States of America, 104(11):4337–4341,

2007.

[78] M. Shimizu, H. Nagamochi, and T. Akutsu. Enumerating tree-like chemical graphs

with given upper and lower bounds on path frequencies. BMC Bioinformatics, 12(14),

2011.

[79] D. H. Smith, N. A. Gray, J. G. Nourse, and C. W. Crandell. The DENDRAL project:

Recent advances in computer-assisted structure elucidation. Analytica Chimica Acta,

133:471–497, 1981.

[80] T. G. Solomons, C. B. Fryhle, and S. A. Snyder. Organic Chemistry 11th Edition.

Wiley, 2012.

[81] C. M. Song, P. H. Bernardo, C. L. Chai, and J. C. Tong. CLEVER: Pipeline for

designing in silico chemical libraries. Journal of Molecular Graphics and Modelling,

27(5):578–583, 2009.

[82] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen.

The chemistry development kit (CDK): An open-source java library for chemo-and

bioinformatics. Journal of Chemical Information and Computer Sciences, 43(2):493–

500, 2003.

[83] C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. L. Willighagen. Recent

developments of the chemistry development kit (CDK)-an open-source java library for

chemo-and bioinformatics. Current Pharmaceutical Design, 12(17):2111–2120, 2006.

[84] M. Suzuki, H. Nagamochi, and T. Akutsu. Efficient enumeration of monocyclic chem-

ical graphs with given path frequencies. Journal of Cheminformatics, 6(1), 2014.

99

BIBLIOGRAPHY

[85] O. Tastan, Y. Qi, J. G. Carbonell, and J. Klein-Seetharaman. Prediction of in-

teractions between HIV-1 and human proteins by information integration. Pacific

Symposium on Biocomputing, pages 516–527, 2009.

[86] S. D. Tekir, T. Çakır, E. Ardıç, A. S. Sayılırbaş, G. Konuk, M. Konuk, H. Sarıyer,

A. Uğurlu, İ. Karadeniz, A. Özgür, et al. PHISTO: pathogen-host interaction search

tool. Bioinformatics, 29(10):1357–1358, 2013.

[87] The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids

Research, 43:D204–D212, 2015.

[88] N. Trinajstić. Chemical Graph Theory, chapter 11 Isomer Enumeration, pages 275–

391. CRC press, Boca Raton, Florida, 2 edition, 1992.

[89] J. Wang, P. Zhao, and S. C. Hoi. Exact soft confidence-weighted learning. arXiv

preprint arXiv:1206.4612, 2012.

[90] R. A. Ward and J. G. Kettle. Systematic enumeration of heteroaromatic ring sys-

tems as reagents for use in medicinal chemistry. Journal of Medicinal Chemistry,

54(13):4670–4677, 2011.

[91] W. A. Warr. Computer-assisted structure elucidation. Analytical Chemistry,

65(24):1087A–1095A, 1993.

[92] T. Wieland, A. Kerber, and R. Laue. Principles of the generation of constitutional and

configurational isomers. Journal of Chemical Information and Computer Sciences,

36:413–419, 1996.

[93] S. G. Williamson. Combinatorics for Computer Science. Courier Corporation, 1985.

[94] R. J. Wilson. Introduction to Graph Theory (5th Edition). Pearson Education Lim-

ited, 2012.

[95] Y. Zhao, M. Hayashida, J. Jindalertudomdee, H. Nagamochi, and T. Akutsu.

Breadth-first search approach to enumeration of tree-like chemical compounds.

Journal of Bioinformatics and Computational Biology, 11(06), 2013.

100

List of Publications

Journal Papers

1. Jindalertudomdee, J., Hayashida, M., and Akutsu, T. (2016). Enumeration Method

for Structural Isomers Containing User-defined Structures Based on Breadth-first

Search Approach. Journal of Computational Biology, (Chapter 3)

2. Jindalertudomdee, J., Hayashida, M., Zhao, Y., and Akutsu, T. (2016). Enumera-

tion method for tree-like chemical compounds with benzene rings and naphthalene

rings by breadth-first search order. BMC bioinformatics, 17(1), 1. (Chapter 2)

3. Hayashida, M., Jindalertudomdee, J., Zhao, Y., and Akutsu, T. (2015). Parallel-

ization of enumerating tree-like chemical compounds by breadth-first search order.

BMC medical genomics, 8(Suppl 2), S15.

4. Zhao, Y., Hayashida, M., Jindalertudomdee, J., Nagamochi, H., and Akutsu, T.

(2013). Breadth-first search approach to enumeration of tree-like chemical com-

pounds. Journal of bioinformatics and computational biology, 11(06), 1343007.

Conference Paper
1. Jindalertudomdee, J., Hayashida, M., Song, J., and Akutsu, T. Host-pathogen Protein In-

teraction Prediction Based on Local Topology Structures of a Protein Interaction Network.

Accepted for IEEE 16th International Conference on BioInformatics and BioEngineering,

Taichung Taiwan, 31 October - 2 November 2016.

Conference Abstracts
1. Jindalertudomdee, J. Breadth-first Search Based Approach to Enumerating Chemical Com-

pounds Containing Outerplanar Fused Benzen Ring Substructures. International Workshop

on Bioinformatics and Systems Biology, Boston University, 19-22 July 2015.

2. Jindalertudomdee, J., Hayashida, M., Zhao, Y., and Akutsu, T. ナフタレン環を持つ木状

化学構造の幅優先探索による列挙手法. 第37回情報化学討論会, Toyohashi Chamber of

Commerce and Industry, 20 November 2014.

3. Jindalertudomdee, J., Hayashida, M., Zhao, Y., and Akutsu, T. ベンゼン環を持つ木状

化学構造の幅優先探索による列挙手法. 第36回情報化学討論会, Tsukuba University, 31

October 2013.

101

