<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>完全正準性のオペレーターオリジナル</td>
</tr>
<tr>
<td>著者</td>
<td>富山 嘉</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析レクチャー・ノート 数理数理解析講演稿</td>
</tr>
<tr>
<td>発行日</td>
<td>1978-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/217231</td>
</tr>
<tr>
<td>タイプ</td>
<td>本</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>出版社</td>
</tr>
</tbody>
</table>

京都大学
Complete positivity in operator algebras

富 山 淳 著

1978年5月

数理解析レクチャー・ノート刊行会
Complete positivity in operator algebras
ま え が き

この稿は1978年3月数理解析研究所で行った作用系環におけるcompletely positiveの概念についての集中講義でまとまったものである。completely positiveの概念は作用系環論でははじめpositivityの議論（GNS一表現の構成等）の核にかかれた形で存在していたが非可換無限次元の対象としての作用系環の順序構造をとる基本的共通概念として最近関連する研究が急速に作用系環の構造論の中心的な話題にとってきている。ここでは内容の構成は若干ではあるがsemi-discrete von Neumann環とinjective与von Neumann環（§3）又 nuclear C*環のcharacterization（§4）を中心に関連するcompletely positiveについての基本的な結果を証明すべく述べたがに講義を行ったがいくつかの問題はめぐっており得なかったのであがきとしてそれらについて簡単に説明を付
け加えた。

京都大学数理研究所みちさき大仏で東京から又遠く沖縄から講義に参加して下さった方々に又種々御世話になった数理研の
荒木教授，F. Hansen氏に深く感謝申し上げ

1978年4月

富山洋
Complete positivity in operator algebras

목　次

はじめがき

§1 Operator algebra 周の completely positive map

§2. Algebra とその dual の周の completely positive map

§3 Completely positive map と§3 approximation property, von Neumann 環の場合

§4. Completely positive map と§3 approximation property, \(\mathcal{B}_* \) 環の場合

あとがき

文　献
§ 1. Operator algebra に つ つ こま つ く て 完 全 に 正 負 の な "map" を考える。全線型環は、特に c* 環をすべてにとって、単位元とは、全線型環とユニタリな c* 環と呼ぶ。M_n を n × n の行列 c* 環、又 A 上の n × n の行列 c* 環を M_n(A) と呼ぶ。M_n(A) は A と M_n を c* 自己同形の関係としてみられる。ことで c* 環 A から c* 環 B への線型写像としたとき、たとえば Urkにこった M_n(A) から M_n(B) への写像

\[\tau_n = \tau \circ 1 : M_n(A) \to M_n(B) \]

\[[a_{ij}] \to [\tau(a_{ij})] \]

を考える。\(\tau \) が positive map の時、\(\tau_n \) は n-positive map という。従来の n について n-positive のとき、\(\tau \) を completely positive map という。以下これを略して CP-map と呼ぶこととする。A, B がユニタリ c* 環で \(\tau(1) = 1_B \) のとき、\(\tau \) はユニタリ map ということがある。CP-map は特に positive map であるから、c* 環の positive functional が有界になることもともにとるここと、自動的に有界な写像になることがわかる。

CP-map については先に最初に positive map と仮想関 seri

題になったが、実際の作用素環が非可換になったときにどう

取り扱うか、即ち positive map で CP-map でとりあい、最

も簡単な例は次のようにあるである。

1.1
2

\[\tau : M_2 \rightarrow M_2 \text{ は transpose map とします} \]
\[(\alpha, \beta) \rightarrow (\alpha \rho, \beta) \]

この \(\tau \) は positive map であると明示される。ただし \(\{ e_{ij} \} \in M_2 \) の matrix unit とし \(\in M_2(M_2) \) と

\[\mathcal{E} = \begin{pmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{pmatrix} = \begin{pmatrix} e_{11} & e_{12}^* \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e_{11} & e_{12} \\ 0 & 0 \end{pmatrix} \]

とすると, \(\mathcal{E} \) は positive であるが \(T_2(\mathcal{E}) \) は以下の様な形でありものである。

\[T_2(\mathcal{E}) = \begin{pmatrix} e_{11} & e_{12} \\ e_{12}^* & e_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

この Lemma はその構造の簡単さと mớiにこの場面の全部で示された場合に用いられるがある。

Lemma 1.1 \(M_n(A) \) の positive を元は

\[[a_i^* a_j] \quad (a_i, a_j, \ldots, a_n \in A) \]

の形で与えられた。

証明. \(M_n(A) \) の positive から \(\mathbb{R} \times \mathbb{R} \) とし, \(x = [b_{ij}] \) とみ墨西哥

\[x^* x = \sum_{k} b_{ki}^* b_{kj} = \sum_{k} [b_{ki}^* b_{kj}] \]

1.2.
既に \((b_{k1}, b_{k2}, \ldots b_{kn})\) というような形の行列の和にはなる

3. 以上の形の行列は

\[
[a^* a_j] = [a_1, a_2, \ldots a_n]^* [a_i \cdots a_n] \geq 0
\]

Lemma 1.2. \(C^*\) 環 \(A\) 上の positive linear functional \(\varphi\) は CP である．

証明．ある Lemma から \(M_n(A)\) の positive matrix と \([a^* a_j]\) の
形を考えており、任意の複素数の n 個の組 \((\lambda_1, \lambda_2, \ldots \lambda_n)\) につ
いて

\[
\sum_{ij} \varphi(a^* a_j) \lambda_i \lambda_j = \sum_{ij} \varphi((\lambda_i a_i)^* (\lambda_j a_j))
\]

\[
= \varphi((\sum_{i} \lambda_i a_i)^* (\sum_{i} \lambda_i a_i)) \geq 0
\]

よって \([\varphi(a^* a_j)]\) は positive matrix である．

以下 linear functional の値を求もろもろに、かつとがる
重なり合うときに dualiy が関連する時には \(\varphi(a^* a_j)\) の形
を代わりに \(a^* a_j\) のような形がそうも用いることになる．

前の CP-map でない例と上の Lemma を合わせば次の命題
は予想されることである．
Proposition 1.3 \(T : A \to B \) positive map

このとき \(A \) は \(B \) が可換ならば \(T \) は \(C_P \) map である。

証明. \(A \) が可換と仮定し. \(A = C_0(X) \) とし. \(B \) と \(H \) はベクトルの
空間 \(H \) 上に作用しているものとしよう. \(H \) のベクトルの組
\[\{ z_1, \ldots, z_n \} \] に対し \(X \) 上のregular measure \(\mu \) として
\[
\sum_{i=1}^{n} (T(a) z_i, z_i) = \int a(t) \, d\mu
\]
とかける. 更に Radon-Nikodym の定理から, \(X \) 上の積分の
関数 \(h_{ij} \) が各 \((i, j) \) の組に対して与えられ
\[
(T(a) z_i, z_i) = \int a(t) h_{ij}(t) \, d\mu
\]
とかける. 任意の複素数の組 \((\lambda_1, \lambda_2, \ldots, \lambda_n) \) に対し
\[
\int a(t) \sum_{i,j} h_{ij}(t) \lambda_j \bar{\lambda}_i \, d\mu = \sum_{i,j} (T(a) \lambda_j z_i, \lambda_i z_i)
\]
\[
= (T(a) \sum \lambda_i z_i, (\sum \lambda_i z_i))
\]
とおくと. \(a \geq 0 \) の時上式は non-negative である. よって関
数 \(\sum_{i,j} h_{ij} \lambda_j \bar{\lambda}_i \) は a.e. で non-negative. この時上除外
null set 上 \((\lambda_1, \lambda_2, \ldots, \lambda_n) \) に関係 \(0 \) から通底の議論で \(a \) と
をかけた結果, a.e. の \(X \) の上でつり合って
\[
\sum_{i,j} h_{ij}(t) \lambda_j \bar{\lambda}_i \geq 0
\]

1.4
不等式の複数列の組 \((a_1, a_2, \ldots, a_n)\) について逐次とりうること、かつ
逐次進行 \([a_{ij}(t)]\) は \(a.e.\) で正値行列となる。次いで
\([a_{ij}] \in M_n(A)\) で正値行列とするとき、Lemma 1.2 から
\[[a_{ij}(t)] > 0 \quad \forall t \in X \]

\[\sum_{i,j} a_{ij}(t) h_{ij}(t) > 0 \quad a.e. \]

\[\sum_{i,j} (t(a_{ij}, z_j, z_i)) = \sum_{i,j} a_{ij}(t) h_{ij}(t) \, d\mu \]

\[= \int_X \sum_{i,j} a_{ij}(t) h_{ij}(t) \, d\mu > 0 \quad q.e.d. \]

\(B\) が可換のとき、\(B = C_0(X)\)

\(M_n(A)\) の positive matrix \([a_{ij}]\) をとると、Lemma 1.2 から

\[[t(a_{ij})] > 0 \quad \forall t \in X \]

次いで \(M_n(B) = C_0(X, M_n)\) の元の positivity は \(M_n\)-valued
関数の positivity と同じだから（例として [51] 参照）。上から

\([t(a_{ij})]\) は positive である。即ち \(B\) は CP-map.

CP-map の形は後に Stinespring の定理で完全に決定される
が、ここに重要な CP-map の 1 つとして次のことである。

1.5
Proposition 4.1.4. B ∈ C*-環 A の C*-部分環とつる。
\[E : A \rightarrow B \] norm 1 の projection

E は CP-map である。

（証明）以下の記号では [29] の結果である。E が positive map と
いうことも、module property \[E(\lambda x) = \lambda E(x) \] (\(\lambda, x \in B \))
も用いるのが [27] の計算は A, B が unital であり、E(1) = 1B を
ついていることが本質的であった。そこで E に依存している状況が
みられることを示してみる。これは竹崎氏の注意
によると、E の second transpose は A の enveloping von Neu-
mann 環 \(\hat{A} \) からその von Neumann 部分環としての B の envel-
oping von Neumann 環 \(\hat{B} \) の norm 1 の projection である。よ
って \(\hat{E} \) の \(1 \hat{A} \) が成り立つことによって \(\hat{E} \) は positive で
module property と \(\hat{E} \) と \(\hat{E} \) に依存しないと必要条件
が得られる。従って A, B が unital なとき E(1) = 1B
が成り立つことを示せばよい。1A = 1, 1B = E とおく。

\[E(1 - \epsilon) = \alpha + \epsilon \beta, \quad \alpha \in \sigma(E); \quad \text{として実数}
\]

\[\lambda E + E(1-\epsilon) \]

\[\| \lambda E + E(1-\epsilon) \| = \| E(\lambda E + (1-\epsilon)) \| \leq \| \lambda E + (1-\epsilon) \| = \max \{ 1, |\lambda| \} \]

- \(\lambda \) は上に

\[\| \lambda E + \alpha + \epsilon \beta \| \geq \| \lambda E + \alpha \| \geq |\lambda + \beta| \]

1.6
今 \(\beta \neq 0 \) とし、\(x \) を \(\beta \) と同様で \(|x| > 1 \) ととると、従って

\[
|x| \geq |x + \beta| = |x| + |\beta|
\]

だから \(\beta = 0 \) i.e. \(a = 0 \)。次に \(a \neq 0 \) のうえに \(x \lambda e \) をとれば

同様にして \(b = 0 \) が出てくる。従って \(E(1) = E \) となる。

命題の証明にもとづく。\(E_n : M_n(A) \to M_n(B) \)

をとれると \(\beta \) の性質から \(E_n + \beta \) の - preserves \(A \) で \(M_n(B) \) が \(\beta \) で

module property が \(E_n(1) = E_n(A) \) の positive をとれると

\(\forall A, M_n(B), \forall B \) に state \(\phi, M_n \) で state \(\psi

もとれと

\[
\langle a^* E_n(x) a, \phi \otimes \psi \rangle = \langle E_n(a^* x a), \phi \otimes \psi \rangle = \langle a^* x a, \phi \circ \phi \otimes \psi \rangle \geq 0.
\]

ここで positive linear functional \(a \phi \otimes \phi a^* \) と

\[
\langle x, a \phi \otimes \phi a^* \rangle = \langle a^* x a, \phi \otimes \psi \rangle
\]

de 定義したときその族

\[
\{ a \phi \otimes \phi a^* \mid \forall A, M_n(B), \forall \phi, \psi \}
\]

は \(M_n(B) \) の order とも呼ばれるから \(E_n(x) \geq 0 \)。

即ち \(E_n \) は \(CP \)-map である。

ヒルベルト空間 \(H \) への有界な線型作用素全体の環を \(\mathcal{B}(H) \) と

かく。次に Stein'spring の定理は、\(CP \)-map を非可換 order に

関する vector valued state という名に理解するならば state の

1. 7
GNS - 表現の構成に対比するものである。そして証明もこれ観光からなるとすれば非常に自然なものである。

定理1.5. てこC*-環 A から X(H)への CP-map とする。こ
うとヒルベルト空間 K と A の K 上への表現π及び H と K
への有界な linear operator v があるで

\[\pi(x) = v^* \pi(x) v \]

とかれる。特に A が von Neumann 環で、πが normal な時に
は表現πも normal な表現にとれる。

(証明) 先に A がユニタリーやときについて、A と H の代数の
テンソル積 A ⊗ H における、\(\alpha = \sum a_i \otimes \lambda_i \), \(\beta = \sum b_i \otimes \lambda_i \) の
内積も

\[(\alpha, \beta) = \sum_i (\pi(b_i^* a_i) \lambda_i \lambda_i^*) \]

と定義すると、てこ CP-map のことからその内積は positive semi-
definite となる。

\[\mathcal{H} = \{ \alpha \in A \otimes H \mid (\alpha, \alpha) = 0 \} \]

と定義すると、A の H 上への表現π、\(\pi(x) \)
と定義する。

\[\pi(x)[\alpha] = [xa_1 \otimes \lambda_1 + \ldots + xa_n \otimes \lambda_n] \]

と定義する。 \(\pi(x) \alpha, \alpha \) は \(A \) 上の positive linear functional
であるから
$$(\pi(x)\alpha, \pi(x)\alpha) = (\pi(x^*x)\alpha, \alpha) \leq \|x^*x\| (\pi(1)\alpha, \alpha)$$

$$= \|x\|^2 (\alpha, \alpha).$$

よって上の定義は well-defined で且つ $\pi(x)$ は $A@H$ 上の有界作用素をとる。K を $A@H$ の定従化とし $\pi(x)$ と
K で拡大しもう一つは $\pi(x)$ とおく。x で \(x \in H \rightarrow [x @ 3] \in K \)
と定める。

$$\|v_3\|^2 = (\tau(1), 3) \leq \|\tau(1)\| \|3\|^2$$

から 3 は有界、スークル方かう。

$$\tau(x) = v^* \pi(x) v \quad \forall x \in A$$

ここで π はスークル方かうが nonnormal ならば π は von Neumann 理 A の nonnormal を現わるコツ。

A が nonunital の時には A の second transpose では

$$\hat{\tau} = \tau_c; \hat{A} \rightarrow \mathcal{L}(H) \quad (\sim \text{envelope von Neumann 理})$$

$\mathcal{L}(H)$ は von Neumann 理だから、$\mathcal{L}(H)$ から $\mathcal{L}(H)$ へ射影する proj-
tion 可能存在する。$E_0 \hat{\tau}$ は \hat{A} から $\mathcal{L}(H)$ へ射影する map であり \hat{A} はユニタリであるから前々の現象をあてはめ、結果 A に対応する射影は $E_0 \hat{\tau}A = \tau_c$ であるからポツの形が得られる。

＜注 1＞ $K_0 = [\pi(A)uH]$ とし $\pi(x)K_0 = \pi_0(x) \tau_c$ とおくと、π_0 は
A の表現で且つ $\tau(x) = v^* \pi_0(x) v$

1.9
よって一般に \(K = K_0 \) と仮定してもよい。この意味で \(K \) は minimal であると仮定すると、minimal な \(K \) は上の表現の上で \(\pi = \lambda \) 同値をつセットで一意である。

＜注＞このとき \(\pi = \lambda \) であるのは \(\pi(1) = 1 \) であるから \(u \pi v = 1 \) とし \(v \) は isometric map である。従って \(H \) と \(uH \) とは同一視する。 \(H \subset K \) と果てなく \(P \) で \(H \) へ \(\pi \) により projection とすると \(\pi(x) = P \pi(x) | H \) とかくことが出来る。この時上の形からわかるように \(H \subset N \) とし Schwary の不等式 \(\pi(x)^* x \leq \pi(x^* x) \) が成り立つ。

次に Arveson の定理[2] は positive functional の扩大定理に対応するものである。非可換の場合には、それは positive な operator valued state (map) の扩大定理にはならずと注目すべきである。

定理 1.6 A を半環、\(B \) を \(C^* \) 部分環として \(\theta \) により \(\theta \) へ \(CP \)-map とる。このとき \(A \) により \(\theta \) へ \(CP \)-map で \(\theta \) 扩大に \(\theta \) をおわることが存在する。

（証明）前定理から \(A \) が表現 \(\pi \) で \(K_0 \) と \(\pi \) で \(H \rightarrow K_0 \) が存
在して \(\pi (x) = U^* \pi (x) U \)

又 \(\pi \) に対しても表現空間 \(K \) つ \(K \)、と \(K \) 上への \(A \) の表現 \(\hat{\pi} \) が存在して
\(\hat{\pi}(x)|_{K} = \pi (x) \ (x \in B) \)

と \(A \in H \) から \(K \) への写像と仮定

\(\hat{\pi}(x) = U^* \pi (x) U \ (x \in A) \)

とすれば、これが \(CP \)-map としての拡大である。

注. Arveson[2] の条件の結果は \(B \) が \(A \) の self-adjoint な部分空間の場合だけで定理 1.5 が仮とすれば非常に長く証明にとれていた。

Proposition 1.7. \(T: A \rightarrow B \ CP \)-map

\(A \) が \(\mathbb{C} \) ファルと仮

証明. \(T(x) = U^* \pi (x) U \) とすると

\[\| T(x) \| \leq \| U^* \| \| \pi (x) \| \| U \| \leq \| x \| \| U^* \| \| U \| \]

\[= \| x \| \| U^* U \| = \| x \| \| T(x) \| \]

より \(\| T \| \leq \| T(x) \| \)。逆の不等式は明らか。

\(C^* \) 環 \(A_1, A_2 \) について、それぞれ minimal な \(C^* \) フレームルムについての \(C^* \) フレームルム（special な \(C^* \) フレームルム）と \(A_1 \otimes A_2 \) と呼ぶことを考える。\(A_1 \) が von Neumann 環の時、von Neumann 環としてのフレームルムを \(A_1 \otimes A_2 \) と呼ぶ。
Proposition 1.8 \(\pi_i : A_i \rightarrow B_i \ (i = 1, 2) \) CP-map．

このとき CP-map \(\pi_1 \circ \pi_2 : A_1 \otimes A_2 \rightarrow B_1 \otimes B_2 \)

が一意に存在して． \(\pi_1 \circ \pi_2 (a \otimes b) = \pi_1 (a) \otimes \pi_2 (b) \)

又 \(A_i, B_i \) が von Neumann 環で \(\pi_i \) normal CP-map

の時 \(\pi_1 \circ \pi_2 \) は \(A_1 \otimes A_2 \rightarrow B_1 \otimes B_2 \) への normal CP-map に

一意に拡大出来る．

（証明） \(B_i \) を \(\mathcal{H}_i \) とヒルベルト空間 \(\mathcal{H}_i \) 上に作用していると

するとレヴィ S から \(\mathcal{H}_i \) を表現する組 \((K_i, \pi_i, \mathcal{H}_i) \) が存在する． \(\pi_i \) を持つ \(* \)-homomorphism が存在するから

\[\exists \pi_1 \otimes \pi_2 : A_1 \otimes A_2 \rightarrow \mathcal{L}(K_1) \otimes \mathcal{L}(K_2) \] \(* \)-homomorphism

又 \(\forall \mathcal{V}_1 \otimes \mathcal{V}_2 : \mathcal{H}_1 \otimes \mathcal{H}_2 \rightarrow K_1 \otimes K_2 \) bounded linear map．

とすれば \(\pi_1 \otimes \pi_2 (x) = (\mathcal{V}_1 \otimes \mathcal{V}_2) * \pi_1 \otimes \pi_2 (x) \mathcal{V}_1 \otimes \mathcal{V}_2 \)

とすれば、形からこれは CP-map で一意的条件をみたしている．

又 \(\pi_i \) が normal の時 \(\pi_1 \otimes \pi_2 \) も \(\pi_i \) が normal を表現する

ならばから \(\pi_1 \otimes \pi_2 \) は \(A_1 \otimes A_2 \) で拡大出来、ゆるやの CP-map が上

と同様に定義出来る．

注．\(A_i \) が von Neumann 環のとき、\(\delta \) でのべる様に上記結

果は更に一般化出来る．ここで minimal な C*-トポロジーの

\(\delta \)-ノルムは uniform norm ではないので \([35]\) 上のように数

1.12
果も一般の有限体形学に期待する間かた。上りようの写像を product mapと呼ぶこととする。

\[A, B \ni \epsilon = \text{エニャルな取扱い} \ni \Rightarrow A \rightarrow B \ni \epsilon = \text{エニャル写像とし} \]

\[A^\circ = \{ a \in A \mid \tau(a^*a) = \tau(a)^* \tau(a) \} \]
\[A^\circ = \{ a \in A \mid \tau(a^*a) = \tau(a) \tau(a)^* \} \]

とする。

定理 1.9 エニャルな \(CP-map \ni \tau: A \rightarrow B \) については次のこととき似た形で

\[A^\circ = \{ a \in A \mid \tau(xa) = \tau(x) \tau(a) \quad \forall x \in A \} \]
\[A^\circ = \{ a \in A \mid \tau(ax) = \tau(a) \tau(x) \quad \forall x \in A \} \]

さて \(A^\circ, A^\circ \) は \(A \) の closed な \(\tau \) 多項環となる。

これらを multiplicative domain と呼ぶ。

証明 定理 1.5 より既約の表現を用い

\[\tau(x) = p \pi(x) | H \quad (H \ni K) \quad \text{とする。} \]

\[\forall a \in A^\circ \ni \tau \]

\[p \pi(a^*a) | H = p \pi(a)^* p \pi(a) | H \quad \text{より} \]
\[p \pi(a)^* (1-p) \pi(a) | H = [(1-p) \pi(a) P]^* [(1-p) \pi(a) P] | H \]

\[= 0 \]

従って \((1-p) \pi(a) | H = 0 \), i.e. \(p \pi(a) | H = \pi(a) | H \)

1.13
14

\[s \leq 0 \quad A \in A \quad \text{if and only if} \]

\[\tau(xa) = p \pi(xa) \quad \text{if} \quad H = p \pi(x) \pi(a) \quad \text{if} \quad H = p \pi(x) \pi(a) \quad \text{if} \]

\[= \tau(x) \tau(a) \]

\[A_r^* \quad \text{for} \quad r \in \mathbb{R} \quad \text{とも同値である} \]

系 1.9. ユニタリ CP-map が \(C^* \)-homomorphism (自己共役を \(\pi \) に付けて \(\tau(a^2) = \tau(a)^2 \) に比べて \(\pi \)-homomorphism である。

このときは \(A_r^* \), \(\pi \) よりも \(\pi \) や自己共役を含まない、\(A \) 全体に反応して \(\tau \) \(\pi \)-homomorphism である。

定理 1.9 は \(2 \)-positive な map に対する成立とする (Choi [10]) がこれでは CP-map として定理 1.5 を用いた。この結果は lifting よりもよく用いることができる(例を除く [11])。

ユニタリを作用系環の間の CP-map については、ユニタリを map としそれでは CP-map の間の関係が重要な問題にとるが値域は von Neumann 環の時には次のような形でとらえる。

\[\text{Proposition 1.10} \quad A \in \text{ユニタリ CP-環, } R \in H \text{上の } \text{von Neumann } \text{環とする. } \tau: A \to R \text{ CP-map.} \]

このとき、\(\tau(1) = b \) とおくと、\(A \) は \(R \) ヘフニタリ CP-map
存在

\[T(x) = b^{\frac{1}{2}} \sigma(x) b^{\frac{1}{2}} \]

(訳明) \(b \) が invertible なら \(\sigma(x) = b^{-\frac{1}{2}} T(x) b^{-\frac{1}{2}} \) とおくとよい

というのが訳明の基本である。

\(A \) を \(K \) 上に作用させて \(x \) とし \(K \) の単位ベクトルとせとる。

\(\sigma(x) \) の support projection とし整数 \(n \geq 0 \) に対して

\[\sigma^n(x) = (b + \frac{1}{n})^{-\frac{1}{2}} T(x) (b + \frac{1}{n})^{\frac{1}{2}} + (x, x) (1-e) \]

とおく。 \(\sigma^n \) は定義から CP-map であるから \(\sigma^n \) 各々について強収束する \(2 \) をとする。ただし

\[b(b + \frac{1}{n})^{-\frac{1}{2}} \rightarrow e(s) \]

又 \(\lambda_n = e - b(b + \frac{1}{n})^{-\frac{1}{2}} \geq 0 \) す \(\lambda_n^{\frac{1}{2}} \rightarrow 0 \) (s)

\[\sum \lambda_n \]

\[\lambda_n^{\frac{1}{2}} \geq e - b^{\frac{1}{2}} (b + \frac{1}{n})^{-\frac{1}{2}} \geq 0 \]

\[b(b + \frac{1}{n})^{-\frac{1}{2}} \rightarrow e(s) \]

\[0 < \lambda_n \leq 0 \leq \lambda_n \leq 1 \] ととる。\(0 \leq T(a) \leq b + 1 \)

\[T(a)^{\frac{1}{2}} \leq b^{\frac{1}{2}} \]

\[\exists s \in \mathcal{L}(H); \quad T(a)^{\frac{1}{2}} = s b^{\frac{1}{2}} = b^{\frac{1}{2}} s^* \]

これから \(\{ T(a)^{\frac{1}{2}} (b + \frac{1}{n})^{-\frac{1}{2}} \}, \{ (b + \frac{1}{n})^{-\frac{1}{2}} T(a)^{\frac{1}{2}} \} \) は共に有界

強収束列である。従って \(\{ \sigma^n(x) \} \) は入強収束列である。

\[\sigma(x) = \lim_{n} \sigma^n(x) \]

とすればこ sehが得られる \(2 = \ker CP-map \) である。
参考文献

[2], [10], [14], [42], [43], [44]
§2. アレブラとdualの間のcompletely positive map

A，BともC*-環で、A⊗Bをそれぞれの代数的ファニルル環とすら、A⊗B上のノルム ||x||_{A⊗B}で

||x||_{A⊗B} = ||x||_A ||x||_B

と与えるものをC*-ループという。A⊗B上の任意のC*-ループは単位元を含むか1次C*-環のファニルル環A⊗Bにまで拡大出来る。その結果としてファニルル環にはすることが知られている。

A⊗B上のβ-1ループは適当な値をA⊗Bとおく。A⊗B上のC*-1ループは最大のC*-1ループ（U-1ループ）と最小のC*-1ループ（A-1ループ）はspatial C*-1ループである。A⊗B上のpositive linear functional (f(x^*x) ≥ 0)とある。
\[\|f\|_\Lambda = \sup_{\|f\|_\Lambda \leq 1} |f(a \otimes b)| \quad (\Lambda \text{ 有限子集}) \]
とおく。

\[S(A \otimes B) \equiv \{ f; \text{ positive functional, } \|f\|_\Lambda = 1 \} \]
\[A \otimes B \text{ の state space.} \]

\[S^*(A \otimes B) \equiv \{ f; \quad , \|f\|_\Lambda \leq 1 \} \]
ここでは \(A, B \) が \(\mathbb{C} \) 上の代数時

\[S(A \otimes B) = \{ f; \text{ positive }, \ f(1 \otimes 1) = 1 \} \]
とすると \(A \otimes B \) の GNS-表現 \(\pi_f \) をとる。これらの中で最大の \(C^* \)-代数 \(\Gamma \) は次のようになる。

\[\|x\|_\nu = \sup \{ \|\pi_f(x)\| \mid f \in S(A \otimes B) \} \]
\[= \sup \{ \|\pi_f(x)\| \mid f \in S^*(A \otimes B) \} \]
これに対して最小の \(C^* \)-代数 \(\Delta \) は次のようになる state の集合で構成する。

\[\|x\|_\Delta = \sup \{ \|\pi_f(x)\| \mid f \in S(A \otimes B) \cap A^* \otimes B^* \} \]
一般に \(\nu \)-代数 \(\Delta \)-代数 \(\Gamma \) は完全に一致する。\(A \otimes B \) には \(\Gamma \) の同型を持つ \(C^* \)-代数 \(\Delta \) が固定される。state の集合 \(\Delta \subset S(A \otimes B) \) について \(\|x\|_\Delta = \sup \{ \|\pi_f(x)\| \mid f \in \Gamma \} \) が \(A \otimes B \) のノルムを定義するとき \(\Delta \) は separating family と呼ばれる。

\(A \otimes B \) 上の state の separating family \(\Gamma \) は \(C^* \)-代数 \(\Delta \) に対応し、逆に \(A \otimes B \) の \(C^* \)-代数 \(\Gamma \) は、

\[\Gamma = S(A \otimes B) \quad (C^* \text{ 理想 } A \otimes B \text{ の state space } \in S(A \otimes B) \text{ の subfamily と見なす}) \]
separating family を定める。\(A\)との関係は例として \(A\)が convex
で表す条件をみたすとすれば \(A\)は \(A\)の \(-\) closure に含まれる。

\[\forall f \in F \forall x \in A \otimes B \exists y \in E \cap f(\psi x y) = f(\psi y) \psi(x). \]

dとしはみ \(S(A \otimes B)\) の \(A\)の \(-\) closure に含まれる。これら
の議論は \(S(A \otimes B)\) の代わりに \(S^*(A \otimes B)\) の \(-\) closure に
含まれることが言える。

\(A\) の \(B\) に対する \(A \otimes B\) の \(-\) closure には \(A\) を nuclear と \(C^*\)環という。前述の \(\psi\) を \(x\) 方から容易にわかり \(S(A \otimes B)\) が nuclear であるためには
任意の \(B\) に対して \(S(\psi x y)\) が \(S^*(A \otimes B)\) の \(-\) closure に含まれる
ことが必要十分である。 \(A \otimes B\) から \(A \otimes B\) への canonical な
\(-\) homomorphism は着 \(\psi\) に対応するが \(\psi\) は \(\psi\) ルムという、 \(A \otimes B \rightarrow A \otimes B\) という写像が \(\psi\) に対応する
こととは同値である。

\(A\) とも \(B\) と \(A\) とも \(M_n(A)\) は自然な形で \(M_n(A)\) と同
一視出来るから dual として \(\psi\) のdual を \(\psi\) に対応するこ
とが出来る。 \(E, F\) とも \(\psi\) で \(E\) は \(\psi\) dual か dual の closed sub-
space（例として von Neumann 環の predual など）とする。 \(\psi\)
とも相対型写像 \(\psi\) で \(E \rightarrow F\)

\(\psi\)

3.3
か completely positive とないときも上の 5 3 の order ともとに定義する。す 1 のときと違って今度は CP-map が有界でなればその transpose map $T^* : F^* \rightarrow E^*$ はそれが CP のとき CP-map となる。

従って A, B の spatial 5 3 で積 $A \otimes B$ について各 $\varphi \in A^*$ について $R_{\varphi}(a \otimes b) = \varphi(a)b$ とおくと、R_{φ} は $A \otimes B \rightarrow B$ の 4 連続な写像を定義する。これを右 slice map と呼ぶ。

同様に $Y \in B^*$ について左 slice map $L_{\psi} : A \otimes B \rightarrow A$ を定義出来てこの両者の間には

$$\langle R_{\varphi}(x), y \rangle = \langle L_{\psi}(x), y \rangle = \langle x, \psi \otimes y \rangle$$

という関係がある。

A, B が von Neumann 環のときは、$\varphi \in A^*$ (predual) について slice map R_{φ} は 6-weakly continuous で更に $A \otimes B \rightarrow B$ の map に拡大出来る。これを又 R_{φ} と呼ぶ 6-weakly continuous な slice map と呼ぶ。このときは更に一般の $\psi \in A^*$ についても $R_{\psi} : A \otimes B \rightarrow B$ が次のように定義出来る。

$$\langle R_{\psi}(x), y \rangle = \langle L_{\psi}(x), y \rangle \quad (\forall \psi \in B^*)$$

この map を generalized right slice map と呼びます。次に $\forall \varphi \in A$ について right dual slice map

$$Y_{\varphi} : (A \otimes B)^* \rightarrow B^*$$

24
\[\langle b, \varphi(a) \rangle = \langle a \otimes b, f \rangle \quad (b \in B) \]

で定義する。\(\varphi \) は有界な写像である。

Proposition 2.1 すべての slice map \(\varphi \) は dual slice map は \(\sigma \)-weakly continuous である。\(A, B \) が von Neumann 環のとき \(\varphi \) は \(\sigma \)-weakly continuous である。Proposition 1.8 の（証明）より連続な slice map \(\varphi \) は

\[
A \otimes B \xrightarrow{\varphi \otimes 1} 1 \otimes B \xrightarrow{\varphi} B
\]

という写像の組合せであるから、Lemma 1.2 と Proposition 1.8 から CP-map である。\(A, B \) が von Neumann 環のとき \(\varphi \) は \(\sigma \)-weakly continuous である。Proposition 1.8 の（証明）より連続な slice map \(\varphi \) は、定義から \(\varphi \) は weak * で \(A^\ast \) で \(R_\varphi \) は \(R_\varphi \) は point-

\(\sigma \)-weak 付加で収束するから、\(\varphi \) は normal functional \(\varphi \) で weak * 近似とれば \(R_\varphi \) は CP-map であらか \(\varphi \) で CP-map であることを示す。

最後に dual slice map については、\([f_{ij}] \in M_n((A \otimes B)^\ast) \)

とすると、\(A, b_1, \ldots, b_n \in B \) について

\[
\sum_{i,j} \langle b_i \otimes b_j, \varphi(f_{ij}) \rangle = \sum_{i,j} \langle a \otimes b_i \otimes b_j, f_{ij} \rangle = \sum_{i,j} \langle (a_i \otimes b_i)^\ast (a_i \otimes b_j), f_{ij} \rangle \geq 0
\]

2.5
定理 2.2 \(f \in (A \otimes B)^* \leftrightarrow R(f) \) とし, それに応じて \(S^c(A \otimes B) \) は \(A \otimes B^* \) へ \(\text{contractive} \) な \(\mathcal{C} \mathcal{P} \)-map の集合へ対応し, \(\text{isometric, onto} \) である. これらに対応する \(S^c(A \otimes B) \) は弱代数相乘集合に \(\text{point} \) と \(\text{弱} \) 代数位相を考慮すると \(\text{homeomorphism} \) である.

\(A, B \) が互いに有限のときは, \(f \in S(A \otimes B) \) に対応して \(R(f)(1) \) は \(B \) の \(\text{state} \) なる (\(\mathcal{C} \mathcal{P} \)-state map と呼ぶことがある).

＜証明＞ \(A, B \) の最大クロスルーム \((B^* \otimes B) \) による積 \(A \otimes B \) （Banach *-algebra）をとると, \(A \otimes B \) は \(A \otimes B \) の \(C^* \)-enve-
ローレル環である ([39]). よってノルムを含めて次のように整理ができる。

\[S^0(A \otimes B) = S^0(A \otimes B) \]

一方 [28] の結果から \((A \otimes B)^* \) は次と同一視出来た。

\[(A \otimes B)^* = \mathcal{L}(A, B^*) = \mathcal{B}(A, B) \] (有限二變数線形形式)

よって \(S^0(A \otimes B) \) の元に応じて \(\| f \|_A \) で定義されるとき \(f \in S^0(A \otimes B) \) と \(R(f) \in \mathcal{L}(A, B^*) \) のノルムは同じである。次に

\[f \geq 0 \iff f[(\sum_i a_i \otimes b_i)^* (\sum_i a_i \otimes b_i)] \geq 0 \]

\[(a_1, \ldots, a_n \in A, \ b_1, \ldots, b_n \in B) \]

このとき上のフタ値は

\[= \sum_{i,j} f(a_i^* a_j \otimes b_i^* b_j) = \sum_{i,j} R(f)(a_i^* a_j)(b_i^* b_j) \]

\[= \langle [b_i^* b_j], [R(f)(a_i^* a_j)] \rangle \]

従って \(f \geq 0 \) と \(R(f) \) が CP-map であることは同値である。最後に \(T : A \rightarrow B^* \) が CP-contraction とすれば

\[\langle \sum a_i \otimes b_i, f \rangle = \sum_i \langle b_i, T(a_i) \rangle \]

タイプ \(A \otimes B \) 上の positive linear functional を定義する。

3. 以上すべてのことをから

\[\| f \|_A = \| f \|_T \leq 1 \quad \text{i.e.} \quad f \in S^0(A \otimes B) \]

に対応する線形機能は定義から明らかである。

2.7
C*環上の有界なlinear functionalはpositive linear functionalのlinear combinationでつけることができる定理は \((A \otimes B)^*\)の
\([A, B^*]\)（または \((B, A^*)\)の全への表現定理を示している）とし
る。ここで注目するものは \((A \otimes B)^*\)のorderが
\([A, B^*]\)ではpositive mapのorderでなくcomple-
tely positive mapのorder（\(T \geq 0 \iff T - 6\)が
CP-map）に写されることである。写像周りのこのorderを
CP-orderということがある。

上と反対の結果にくるalgebraの表現定理とvon Neumann
アレキサンドルの場合はきれいである。\(R, S\)を実数と
および\(K\)上のvon Neumann環とする。\(X \in R \otimes S\)に対して写像
\(Y(x) : y \in R^* \rightarrow \mathbb{R}_0^+ (x) \in S\)
を考えると

定理2.3 \(x \geq 0 \iff Y(x)\) がCP-map

で上のように

\[(R \otimes S)^* = \{ x \in R \otimes S \mid 0 \leq x \leq 1 \}\]

と \(R^*\)より \(S\)へのCP-mapの集合

\[\{ T : R^* \rightarrow S \mid \text{CP-orderで} \quad 0 \leq T \leq Y(1 \otimes 1) \}\]

としたorder isomorphismである。

これから \(R \otimes S\)は上のようCP-mapでspanされた写像
の空間として表現されることになる。
(証明) $R, S \in H, K$ 上に standard に表現されているものとす
る ([30] 参照，又 [20; chap IV, §1 定理 4]) と $M_n(R), M_n(S)$
は H^n, S^n 上で standard に与えられる

\[\forall \varphi \in M_n(R)^+ = M_n(R)^+, \forall \psi \in M_n(S)^+ = M_n(S)^+ \]

すなわち

\[\exists 3 = (3_i) \in H^n, \eta = (\eta_i) \in K^n; \varphi = \omega_3, \psi = \omega_\eta \]

とかける (ω_3 は $L(H)$ に於 normal な vector state であるから正
確は $\varphi = \omega_3|_R$ とかるべきであるが特に違いももつ必要の
ある時を考慮の上からとるとこれを $3, \psi$ と為ま。Shirai map
についても同様で R_{ω_3} は正確には $L(H) \otimes L(K) \not= L(H \otimes K)$ に
作用してエリザリReuters に於

\[\varphi = [\varphi_{i,j}]; \psi = [\psi_{i,j}]; \varphi_{i,j}(a) = (a, \varphi_{i,j}) = \omega_{3_j, \varphi_i}(a) \]

\[\psi = [\psi_{i,j}]; \psi_{i,j}(b) = (b, \varphi_{i,j}) = \omega_{\psi_{i,j}}(b) \]

これとき

\[\langle \gamma(x), \psi \rangle = \langle [\gamma(x)(\varphi_{i,j})], \psi_{i,j} \rangle \]

\[= \sum_{i,j} \langle R_{\varphi_{i,j}}(x), \psi_{i,j} \rangle = \sum_{i,j} \langle x, \varphi_{i,j} \otimes \psi_{i,j} \rangle \]

\[= \sum_{i,j} (x, \varphi_{i,j} \otimes \varphi_i, \varphi_{i,j} \otimes \varphi_i) = (x, \sum_{i,j} \varphi_{i,j} \otimes \varphi_i, \sum_{i,j} \varphi_{i,j} \otimes \varphi_i) \]

よって

\[x \geq 0 \iff \gamma(x) \text{ は CP-map } \]

又 \[\gamma(1 \otimes 1 - x) = \gamma(1 \otimes 1) - \gamma(x) \quad \text{ かつ} \]

2.9
0 ≤ x ≤ 1₀₁ \iff 0 ≤ \gamma(x) ≤ \gamma(1₀₁) \quad (CP - order)

次に \(T : R_x \rightarrow S \in 0 \leq T \leq \gamma(1₀₁) \) とし

\(H \otimes K \) は product form です

\[
[\sum z_i \otimes \gamma_i, \sum z_i' \otimes \gamma_i'] = \sum_{i,j} <T(\omega_{3i,3j}), \omega_{t_i,t_j}>
\]

と定めると, \(z \) は well-defined かつ定数かつ

\[
0 \leq \sum_{i,j} <\gamma(1₀₁)(\omega_{3i,3j}), \omega_{t_i,t_j}> = \sum_{i,j} (z_i, z_j) (\gamma_i, \gamma_j)
\]

\[
= \| \sum z \otimes \gamma_i \|^2
\]

\(T \) は semi-inner product は元の内積 \(\langle , \rangle \) から ""...

で連続である. そこで \(H \otimes K \) 上に拡大すると

\[
\exists x_\ell \in \mathcal{L}(H \otimes K); 0 \leq x_\ell \leq 1, [3, k]_\ell = (x_\ell 3, k)
\]

\[\forall \ell, k \in H \otimes K. \]

これから \(\forall \ell \in H, \gamma \in K \ suff \) で

\[
[3 \otimes \gamma, 3 \otimes \gamma]_\ell = <T(\omega_3), \omega_\gamma> = (T(\omega_3) \gamma, \gamma) = (x_\ell (3 \otimes \gamma), (3 \otimes \gamma)) = (R_{\omega_3}(x_\ell) \gamma, \gamma)
\]

従って \((\omega_3 \in \mathcal{L}(H)_x \ と \ x と 2) \ R_{\omega_3}(x_\ell) = T(\omega_3 1 K) \in S \ と \)

する. これから

\[\forall \gamma \in \mathcal{L}(H)_x \ と \ 2 \ R_\gamma(x_\ell) \in S. \]

次に \(\forall \gamma \in \mathcal{L}(K)_x \ と \ 2 \ L_\gamma(x_\ell) \in R \)

を示すため, 以上を加く変形ときと示す. \(\gamma \in R_x \ と \ 2 \)

2.10
\[\varphi = |\varphi| e^{i\varphi} \text{のpolay decompositionとし} \quad |\varphi| = \omega_3 |R \text{と} \]

\[\varphi = \omega_3, u^* \quad |R \quad \text{で} \quad \|\varphi\| = \|\omega_3\| = \|\omega_3\|^2 = \|\omega_3 u^*\| \]

である。

\[\therefore \quad \|\varphi\| = \|\varphi\| \quad = \|\varphi\| \quad \|\omega_3, u^* (x_\tau)\| \quad \leq \|\|\omega_3 u^*\| \| \quad = \|\omega_3\| \quad \therefore \quad \|\varphi\| \leq 1 \]

これから \((R_\ast)^* = R \) を使って

\[\forall \varphi \in S_\ast \quad \exists \varphi' \in R \quad <\varphi', \varphi > = <\varphi', \varphi > \quad \forall \varphi \in R_\ast \]

とし vector state \(\omega_3 \in L(K)_\ast \) について

\[(L\omega_3(x_\tau), z, z) = (x_\tau (z \otimes z), z \otimes z) \]

\[= <\varphi (\omega_3 |R), \omega_3 |S > = <\varphi (\omega_3 |S), \omega_3 |R > \]

\[= (\varphi (\omega_3 |S), z) \]

従って

\[L\omega_3(x_\tau) = \varphi (\omega_3 |S) \in R \quad \forall \varphi \in K. \]

\[\therefore \quad \forall \varphi \in L(K)_\ast \quad \exists \varphi \in R. \]

従って [46 定理2.1] から \(x_\tau \in R \) である。

この \(x_\tau \) は \(\varphi(x_\tau) = 0 \) となることはすぐにより明かである。

定理2.2, 2.3 にふれることは後に algae mapについての表現
定理もあろうこととは勿論である。ことで上記定理の \(\varphi(x_\tau) \) は

2.11
generalized slice map 12 \rightarrow R^* から S への写像に拡大出来
3 が定義から \varphi \in R^* \rightarrow R^*(x) \in S という対応は Proposition
2.1 で述べた仮言的関係をもと、M_n(R)^* は M_n(R)^* 上で
弱* 極限であるから、上の拡大を \varphi \geq 0 のとき CP-map に与
える。

Enveloping von Neumann 環と核とは定理から道了に又が
取るづつ。

2.2.3 Spatial 与 C-代数の極 A \otimes B の元 \varphi について、対応
\gamma(x): \varphi \in A^* \rightarrow R^*(x) \in B (\varphi \in l(e(x); \gamma \in \mathcal{B}^* \rightarrow L_\mathcal{B}(eA))
は \varphi \geq 0 のときに CP-map である。逆も成り立つ

上の対応は \varphi の単位球上では弱*一一相に連続と写像になる
が、これ以下の連続性をもつ CP-map では必ずしも
て = \gamma(x) (\varphi \in A \otimes B) とはかけ合いことも知られている
([54],[56]) C*-代数の極についての CP-map の集合
\{ \gamma(x) | x \in A \otimes B, \varphi \geq 0 \} で定める適当な characterizat-
ion は得られている ([49],[58] 参照)。
\[\Theta : \pi_p(A)' \rightarrow [\psi] \] と次の式に定義する。
\[\Theta(r)(a) = (\pi_p(a)^3, 3_p) \quad (a \in A) \]

Proposition 2.4 上の \(\Theta \) は \(\pi_p(A)' \) と [\(\psi \)] の間に complete
order isomorphism（任意の \(n \geq 2 \) で \(M_n(\pi_p(A)') \) と
\(M_n([\psi]) \) とが \(\Theta _n \) により order isomorphism とすることを 3 割
する）

（証明）[20, Lemma 1 p.48] より \(\Theta \) は \(\pi_p(A)' \) の positive
part 127 12 は \(C_p \) への onto map である。従って
\(\pi_p(A)' \) は [\(\psi \)] への onto 123 で
\[0 = \Theta(r)(b^*a) = (\pi_p(a)^3, \pi_p(b)^3_p) \quad (a, b \in A) \]
であるから \(r = 0 \).

次に \(\forall r_1, \ldots, r_n \in \pi_p(A)' \), \(\forall a_1, a_2, \ldots, a_n \in A \) 127 12
\[\left< [a_1^r a_j], \left[\Theta(r^1 r_j) \right] \right> = \sum_{i,j} (r_i^1 r_j \pi_p(a_i^* a_j)^3_p, 3_p) \]
\[= \left\| \sum_{i} r_i \pi_p(a_i)^3_p \right\|^2 \geq 0 \]

\[\therefore \quad \text{Lemma 1.1 すなわち} \quad \Theta \text{は } C_P \text{- map.} \]

逆に \(M_n([\psi]) \) の positive は \(f = [f_{ij}] \) と \(3
\[\exists = (\pi_p(a_i)^3_p, \ldots, \pi_p(a_n)^3_p) \in \mathbb{H}^n_p \] 127 12
\[\left((\Theta^*)_n(f), 3 \right) = \sum_{i,j} \left(\Theta^*(f_{ij}) \pi_p(a_i)^3_p, \pi_p(a_i)^3_p \right) \]
\[= \sum_{i,j} \left(\Theta^*(f_{ij}) \pi_p(a_i^r a_j)^3_p, 3_p \right) = \sum_{i,j} f_{ij} (a_i^r a_j) \]

2.13
\[\langle [\alpha_{ij}], [\beta_{ij}] \rangle \geq 0 \]
従って \((\theta^*)_n(t) \geq 0\) i.e. \(\theta^*\) は CP-map である。以上から \(\theta\) は complete order isomorphism である。

〈注〉上の \(\theta\) は定義から有界を仮定であるか \(\theta^*\) は一般に有界にとらえながり。

この節の最後として \(C^*\) 環は \(\sigma\) で dual (subspace) と \(M_m\) との間の CP-map で決定している。\(C^*\) 環 \(M_n\) の dual で \(M_n^*\) とすると \(M_m\) と \(M_m^*\) は

\[\phi \in M_n^* \iff [\phi(e_{ij})] \in M_m \ (e_{ij} \text{ is matrix unit}) \]
とし
linear isomorphism で \(\sigma : M_n \to M_m \) を成立せんとすると。\(\alpha = [\alpha_{ij}], \beta = [\beta_{ij}] \) に \(2\)

\[\langle \alpha, \sigma(m)(\beta) \rangle = \sum_{i,j} \alpha_{ij} \beta_{ij} \]

Lemma 2.5 上の \(\sigma(m)\) は complete order isomorphism である。

（証明） \(\sigma(m)_n : M_n(M_m) \to M_n(M_m^*)\)
をとると、\(M_n(M_m)\) は \(C^*\) 環として \(M_{nm}\) と同一視出来、又 \(M_n(M_m^*)\) の order はこれに \(C^*\) 環 \(M_n(M_m)\) の dual と仮定しての order であるから結び必要こそとは任意の \(m\) に \(\sigma(m)\) で

2.14
\(\text{ordern homomorphism} \) であることがになると, \(\exists \in M_m \) の元 \(\alpha \) と \(\beta \) と \(\beta = [\beta_i\beta_j] \) に対して

\[
\langle \beta, \sigma(m) (\alpha) \rangle = \sum_i \sum_j \alpha_i \alpha_j \beta_i \beta_j = \sum_i \alpha_i \beta_i \geq 0
\]

\(\sigma(m)(\alpha) \geq 0 \) と, さらに \(\sigma(m)(\alpha) \geq 0 \) と \(\lambda_1, \ldots, \lambda_m \) について

\[
0 \leq \langle [\lambda_1\lambda_j], \sigma(m)(\alpha) \rangle = \sum_i \alpha_i \lambda_i
\]

と \(\alpha = [\alpha_{ij}] = M_m(\alpha) \) である.

\(E \) を \(\mathbb{C} \) 環とし, \(E^* \) とも \(\text{dual (or subspace)} \) とし, \(E^* \) と \(E \) と \(\text{duality} \) をつくる相関関数空間（後述の時には \(\mathbb{C} \) 環）とる. ここで

と \(\theta : M_m(E) \to \mathcal{L}(M_m, E) \) を

\[
\theta = [\psi_{ij}] \to \theta(\psi)(\alpha) = \sum_i \alpha_i \psi_{ij}, (\alpha = [\alpha_{ij}])
\]

と \(\Delta : M_m(E) \to \mathcal{L}(E^*, M_m) \) を

\[
\Delta = [\psi_{ij}] \to \Delta(\psi)(\varphi) = [\varphi(\psi_{ij})]
\]

と定義する. 次の結果は定理 2.2, 2.3 の有限次元の場合に対するものである.

定理 2.6 上の \(\theta, \Delta \) は \(M_m(E) \) と \(\text{CP-map} \) の \text{ordern homomorphism} をつけたとき \(\mathcal{L}(M_m, E), \mathcal{L}(E^*, M_m) \) と \(\text{ordern homomorphism} \)
同形である。
(証明) $v \in M_m(E)$ について、E が C^* 環のときには $M_m(E) = M_m \otimes E$ とおくと

$$
\Theta(v)(\delta) = R_{\delta(m)}(v) = \gamma(v)(\delta(m)) \quad \text{i.e.} \quad \Theta(v) = \gamma(v) \cdot \delta(m)
$$

又 E が C^* 環の dual と呼ばれる subspace のときには M_m は nuclear C^* 環であるから $M_m(E)$ は $M_m \otimes E^\ast = M_m \otimes E^\ast$ の dual の subspace ととらえる。よって dual slice map は

$$
\Theta(v) = \gamma_d(v) = R(v)(\delta) \quad \text{i.e.} \quad \Theta(v) = R(v)
$$

従って定理 2.2, 3.2.3 と Lemma 2.5 が

$$
V \geq 0 \iff \Theta(v) \text{は CP-map}
$$

と

$$
\langle \Theta(v)(\delta), \psi \rangle = \sum_{i,j} \delta_{ij} \langle \psi, \psi \rangle = \langle \delta(m), [\psi(v)] \rangle = \langle \delta, \Delta(v)(\psi) \rangle
$$

とおける ($\delta(m)$ を省略してかかれている)

$$
\Delta(v) = \delta(m)^{-1} \cdot \Theta(v)
$$

である。よって Lemma 2.5 か

$$
\Delta(v) \text{が CP-map} \iff \Theta(v) \text{が CP-map}
$$

表現が onto であり明らかである。

Q.E.D.

以上により証明では slice map の使用により埋め込みてしまうが elementary で証明を行うとばれなくなる次のような

2.16
はじ環とする dual の性質を(特にその order) 理解するために上での
考え方もあるである。

\[\text{Proposition 2.7} \]

\[A は \odot \text{環とし} \lambda = (a_{ij} \in M_{m}(A) \]

\[\psi = (\psi_{ij} \in M_{m}(A^*) \quad \text{又} \beta = (\beta_{ij} \in (m,n) \quad \text{型の数行列}) \]

とすると。

今 \(\lambda \geq 0, \quad \psi \geq 0 \) とすると

\[\beta^{T} \lambda \beta \geq 0 \quad \text{in} \quad M_{n}(A), \quad \beta^{T} \psi \beta \geq 0 \quad \text{in} \quad M_{n}(A^*) \]

(証明) \(A \) と \(H \) 上に作用しているとすると \(\beta \) に打つ \(H \) の \(H \) の作

\(\text{て} \) て \(\text{を} \) て \(\text{と} \) と \(\text{と} \) と

\[\beta^{T} \lambda \beta \geq 0 \quad \text{と} \quad \beta^{T} \psi \beta \geq 0. \]

次に \(b = (b_{pq}) \in M_{m}(A) \) とこれと \(b \geq 0 \) のときけ

\[\langle b, \beta^{T} \psi \beta \rangle = \langle (b_{pq}), \left[\sum_{i,j} \overline{\beta}_{ij} \beta_{ip} \psi_{pj} \right] \rangle \]

\[= \sum_{i,j,p,q} \overline{\beta}_{i,p} \beta_{q,j} \langle b_{pq}, \psi_{ij} \rangle = \langle \left[\sum_{p,q} \overline{\beta}_{ip} \beta_{pj} b_{pq} \right], [\psi_{ij}] \rangle \]

\[= \langle \beta^{T} b \beta^{t}, \psi \rangle \geq 0 \quad \therefore \beta^{T} \psi \beta \geq 0. \]

(但し \(\beta^{t} \) は \(\beta \) の transpose で31）

主な文献

[14], [21], [35], [47], [50], [54]
3.3. Completely positive map による approximation property. von Neumann 環の例
この節では CP-map の主場から最寄の {	ext{nm}} \text{discrete von Neumann 環と injective von Neumann 環に} \text{関する結果} \text{を} \text{紹介} \text{する}。 \text{この結果} \text{については} \text{この} \text{節} \text{の} \text{global} \text{な} \text{同値性} \text{を} \text{説明} \text{する}。 \text{この} \text{結果} \text{については} \text{この} \text{節} \text{の} \text{global} \text{な} \text{同値性} \text{を} \text{説明} \text{する}。

von Neumann 環の injectivity は作用素環としては Connes によりときめかされておりに緊密な amenability と密接に関連をもつているがそれらの背景として Banach 空間での議論があるのでその少し説明してみる。 Banach 空間 E が unit を含む Banach 空間 F に injection \text{としての projection} をもつとき E を injective と Banach 空間と \text{する}。このとき Banach 空間は \text{最初 Goodenough} \text{により} \text{研究} \text{され} \text{real Banach 空間} \text{についての characterization (Stonean 定理上上の} \text{連続} \text{関数環} \text{を} \text{同型} \text{に} \text{導く} \text{として} \text{同型} \text{が} \text{得} \text{られている} \text{。同じ}
Nachbin [34] によればこの空間は extension property をもつ空間（∀ G が F と H γ E への bounded linear operator T に対して T が H への対応する T かつして ||T|| = ||T|| と出る）とし、のような同様な結果が明らかにされている。それ以後この結果は real Banach space については簡単な証明（[33]）が得られたが、この現象が complex Banach space に関する characterization は Hasumori [28] によって初めて解決された。一方これとは別に Grothendieck [28] によってはじめられた approximation property をもつ Banach space の議論はその後も進められた。approximation ともなら Banach space の存在を大問題と呼んでいるが Enflo [57] によりその存在が示されて、Grothendieck の結果の一つとして次のことである。

E approximation property とも
\[\forall F : E \otimes F \rightarrow E \otimes F \] と\(\gamma \) canonical map が
1 あたり（但し入力空間 \(\gamma \) は）injective で Banach space に荷見の characterization もと Simon space におけるコオペラ空間と同様になるからの論 approximation property ともいう。ここで E が approximation property ともつつということは E の任意のコンピュット集合上での単位作用素が有限次作用素であると似たことである。この有限次作用素をすべて \(||T|| \leq 1 \) とするととき、metrical approximation

3.2
property を考えよう。

これらの例数の作用関係のため formulation は Goodnow type の injectivity は羽毛田 - 高山 [25]、高山 [18] よりもさらに広く
Nachbin type の extension property は考えられる従って CP-map と 2 つに 1 つに定理 6 が導かれることが判明して
以来、Lance, Choi, Effros と Connes と議論が後席して
いった。Connes [12] の injective factor の characterization は cough 重味では荷重の結果の非可換版である。一方 Banach 空間のフカル
ソルル模での 2, χ-1 ルーニについて C* アルギリル模でも最大最小
関数、η-1 ルーニが存在するところで C* アルギリル模に 2 つで
は 2 で 2 のベテル [13] に canonical map A ⊗ B → A ⊗ B が
正 1 と 3 ととき η-1 ルーニ = χ-1 ルーニ という 2 とが
同値であることを考えれば、C* アルギリル模の approximation property
と nuclearity が同値になるからと正 3 とすることを考えられ、すな
わち injectivity と関係する 2 とが推測される。次節で述べ
る結果が上記の部分にあたりることにすると Von Neumann
環によるとも、C* アルギリル模の圧縮と等しくなる nuclearity と Von Neumann
環としての作用とを Van approximation property の同構である問題として提起するに 2 と正 3 とで
と考えられたのが有限次 C* map の近似という Launch-

normal で
Proposition 3.1 次の同値である
1) R は H 上の injective von Neumann 環である
2) A が R 上の projection であるとき R は injective かつ von Neumann 環と
3) A が R 上の projection であるとき R は injective かつ von Neumann 環と

Proposition 3.2. R_1, R_2 と h は H 上の von Neumann 環、S_1, S_2 と h は von Neumann部分環とする。 3.

$E_0 = E_1 \otimes E_2 : R_1 \otimes R_2 \rightarrow S_1 \otimes S_2$ product projection

このとき E_0 は $R_1 \otimes R_2$ 上の $S_1 \otimes S_2$ への projection に

拡大出来る

(証明) \{ e_i, $i \in I$ \} は $S(K)$ の直交orthogonal minimal projection で $\sum e_i = 1$ と 3. $e_i = 1 \otimes e_i$

J: finite subset $C I$ において
\(\mathcal{E}_J = 1 \otimes \sum_{i \in J} e_i = 1 \otimes e_J \quad \text{and} \quad j \neq k \)

\(\mathcal{E}_J \left(R_1 \otimes \mathcal{L}(K) \right) \mathcal{E}_J = R_1 \otimes \mathfrak{e}_J \mathcal{L}(K) e_J = R_1 \otimes \mathfrak{e}_J \mathcal{L}(K) \)

\(\mathcal{E}_J : R_1 \otimes \mathcal{L}(e_J K) \rightarrow S_1 \otimes \mathcal{L}(e_J K) \quad \text{and} \quad j \neq k \)

\(\mathcal{E}_J^2(x) = \mathcal{E}_J \left(\mathcal{E}_J^* x \mathcal{E}_J \right) \quad (x \in R_1 \otimes \mathcal{L}(K)) \)

\(\mathcal{E}_J^2 \left(x \mathcal{E}_J \right) \) is bounded in \(J \subset I \)

\(\mathcal{E}_J^2(x) \equiv \lim_{j \to \infty} \mathcal{E}_J^2(x) \) (operator Banach limit)

\(\mathcal{E}_J^2(x) \in S_1 \otimes \mathcal{L}(K) \quad \text{and} \quad \| \mathcal{E}_J^2(x) \| \leq \| x \| \)

\(\mathcal{E}_J^2(x) \) is the \(\sigma \)-weak limit of \(\mathcal{E}_J^* x \mathcal{E}_J \)

\(\mathcal{E}_J' = \lim_{J \to J} \mathcal{E}_J^2(x) = \mathcal{E}_J \mathcal{E}_J^* x \mathcal{E}_J = x \)

\(\mathcal{E}_J' \) is a projection in \(S_1 \otimes \mathcal{L}(K) \)

\(\mathcal{E}_J'(a \otimes b) = \mathcal{E}_J(a) \otimes b \quad a \in R_1, \ b \in \mathcal{L}(K) \)

\(\mathcal{E}_J' \) is a projection in \(R_1 \otimes \mathcal{L}(K) \)

\(\mathcal{E}_J' = \mathcal{E}_J \mathcal{E}_J^2(x) \quad (x \in R_1 \otimes \mathcal{L}(K)) \)

\(\mathcal{E}_J' \) is a projection in \(S_1 \otimes \mathcal{L}(K) \)
projection と module property から
\[1 \otimes \alpha \varepsilon(x) = \varepsilon^2(1 \otimes \alpha \varepsilon(x)) = \varepsilon'(\varepsilon^2(x) \otimes \alpha) = \varepsilon(x) \otimes \alpha \]
\[\varepsilon(x) \in S_1 \otimes \mathcal{Z}(K) \cap \mathcal{Z}(H) \otimes S_2 = S_1 \otimes S_2 \]
と \[\varepsilon(x) \perp S_1 \otimes S_2 \cap \mathcal{H} \] の projection であるから
\[\varepsilon(a \otimes b) = \varepsilon_1(a) \otimes \varepsilon_2(b) \hspace{1em} (a \in K_1, \ b \in K_2) \]

(注) 上の結果は一般の CP-map まで拡張することが出来る。

定理 3.3 Injectivity は algebraic invariant である。又 R が injective ならと R' が injective することとは同値である。

(証明) von Neumann 理論 R (on H) と S (on K) とが同型ならときには同型な二つの分解理[20 第理 3. p. 55]から適当なレベル空間 K_0 をとれて R 0 1 on H 0 K_0 と S 0 1 on K 0 K_0 とが special に同型にすぎないので出来ず。そこで定理の前半を示すには ampliation について

R injective \implies R 0 1 が injective (on H 0 K)

を示せば十分である。

\[\varepsilon_0 : \mathcal{L}(H) \to R \] が \[\varepsilon_0 \] projection

\[\Psi : \] normal state on \[\mathcal{L}(K) \]

とし

3.6
$E_1 : \mathcal{I}(H \otimes K) \xrightarrow{\rho} \mathcal{I}(H) \xrightarrow{\varepsilon_0} R \xrightarrow{\varepsilon_1} R \otimes 1$

は ρ による projection。又 ε_1 による projection $E_1 : \mathcal{I}(H \otimes K)$

$\xrightarrow{\varepsilon_1} R \otimes 1$ が ε_2 をとると

$E_0 : \mathcal{I}(H) \xrightarrow{\varepsilon_1} \mathcal{I}(H) \otimes 1 \xrightarrow{\varepsilon_1} R \otimes 1 \xrightarrow{\varepsilon_1} R$

は ρ による projection。

次に今 R' が injective であるとすると。Proposition 3.2 から

$(R \otimes 1)' = R' \otimes \mathcal{I}(K)$ と R injective である。又 ε_0 が成り立つとすると

$\exists E_1 : \mathcal{I}(H \otimes K) \xrightarrow{\varepsilon_1} R' \otimes \mathcal{I}(K)$ は injective projection

ここから

$E_0 : \mathcal{I}(H) \xrightarrow{\varepsilon_1} \mathcal{I}(H) \otimes 1 \xrightarrow{\varepsilon_1} R' \otimes \mathcal{I}(K) \xrightarrow{\rho} R'$

は ρ による projection。

以上から $\mathcal{I}(H \otimes K)$ が injective であるところ、$3. R'$ は $\mathcal{I}(K) \times \mathcal{I}(K)$ として algebraic invariant である。$\pi \in \mathcal{I}(R)$ が standard 表現

とし πK を表現空間 K と $\mathcal{I}(K)$ を canonical involution とすると

i.e. $T^2 = 1$ で $\pi \pi (K) T = \pi (R)'$

今 $E \in \mathcal{I}(K)$ と $\pi (R)$ による projection とすると

$E'(x) = T E (T \times T) T \quad x \in \mathcal{I}(K)$

は $\pi (R)' \otimes 1$ による projection である。従って前記議論

と合せて

R injective $\iff \pi (R)$ が injective

3.7
\[\iff \pi(R) \text{ が injective} \iff R' \text{ が injective} \]

3.3. I型のvon Neumann環は injectiveである。

(証明) I型のvon Neumann環は commutative かつ可換である環と同型となり可換と von Neumann環は若者等の結果 (Banach空間としても) injectiveである。

Proposition 3.4 \(\{R_a\} \text{ injective かつ von Neumann環 の増加系列とると} \quad R = (R_a) \text{ は injectiveである} \)

(証明) \[R' = \bigwedge R' \quad \{R_a\} \text{は減少列} \quad \text{と} \quad \exists x \in R \quad \text{の投影として} \]

\[E(x) \equiv \lim inf \varepsilon_a(x) \quad (\text{operator Banach limit}) \]

とおくと,

\[\exists x_0 \quad \varepsilon_a(x) \in R_a \quad \Rightarrow \quad E(x) \in R_a \]

\[\Rightarrow \quad E(x) \in R' \quad \text{又は先に関か離1に41の投影。} \]

以上から hyperfinite factor は injectiveであることがわかる。
この逆が Connes(12) の主要結果である。

その他以下の議論で容易にわかるような結局結果(例)とならば

\[\{R_a\} \text{ injective } \iff \sum R_a \text{ injective} \quad \text{など} \quad \text{は証明し} \]

3.8
von Neumann 環 R について R の単位作用系が有限次ツユに σ-weakly continuous と CP-map で点 σ-weak convergence topology で近似出来たら R は semidiscrete といえます。

Lemma 3.5 可換と von Neumann 環 $L(H)$ は semidiscrete（証明）$R = C(\Omega)$ とする。

$\Delta : \Omega \to \text{disjoint closed set} \to \text{分解} \{S_j\}$

$X_i : S_i$ の特徴関数

$M_i : \text{supp} \mu_i = S_i$ となる normal probability measure

とおくと Δ は R から有限次元の部分環への normal な射影スブルックをから

$\Pi \Delta \to 1$ (point σ-weak conv. topology)

従って R は semidiscrete．

次に $L(H)$ とそれら

$\{e_i \mid i \in I\}$ はorthogonal minimal projection $\sum e_i = 1$

$e_j = \sum_{i \in J} e_i$; 有限集合 subset J

$e_j e_j \to x$ σ-weakly ($\forall x \in L(H)$)

$x \in L$ normal state (σ で τ と)
\[T_j(x) = e_j \otimes e_j + \varphi(x)(1 - e_j) \]
とおれば \(T_j \) は \(\mathcal{U} \) に対する有限次 normal \(CP \)-map で \(\sigma \)-weakly 方かな

\[T_j(x) \rightarrow x \quad \sigma \text{-weakly} \]

実質的性質 2 で \(\psi \) が algebraic invariant となると、\(R \) と \(S \) が semi-discrete なとき \(R \otimes S \) が semi-discrete なこととは Proposition 1.8 から容易にわかるから上の Lemma と合わせて I 型の von Neumann 環は semi-discrete かとすることがわかる。又定理 3.3 と同様にして \(R \) が semi-discrete なとき \(R' \) が semi-discrete なことが同値であることを示すとし、\(R \) について更に次の定理（A）を与える。

(A) \[\iota: R \otimes R' \rightarrow \mathcal{L}(H) \]

\[\iota(\alpha \otimes b) = \alpha b \quad \text{と定めると} \]

\(\iota \) は \(\mathcal{U} \) に連続である。i.e. \(\iota \) は \(R \otimes R' \) から \(\mathcal{L}(H) \)への \(\iota \) - homomorphism に拡大出来る。

ここでこの節の目的とするのは次の結果である。

定理 任意の von Neumann 環 \(R \) について次のこととは同値である。

3.10
(1) R は injective である
(2) R は τ_1 (A) を し
(3) R は semidiscrete である。

この結果は Effros-Lance [24] に $\Rightarrow (2) \Leftrightarrow (3)$ が示され、
又 (2) $\Rightarrow (1)$ は容易に証明出来る。さらに一貫困難に (1) $\Rightarrow (2)$
(従って injectivity と semidiscrete との同値) についでは可分
なヒルベルト空間上の factor については Connes [12] もとに
正義する factor は他に彼の結果と合けて implication が示されて
いた。その後 Choi-Effros [16] は reduction theory と用いて可分
な空間上の global な von Neumann 環にようその拡張が更にう
ちを用いることにより一般的 von Neumann 環でも両者の同値
性が成立立つことを示している [17]。ここでは元の Connes
の証明を改良した Wassermann [55] により、一般的場合の直接的
証明をとる。定理の証明は初期に長かったので各段階の
Lemma をつみ重ねた形で述べていく。ここで R が factor の
時にはよく知られているようになり R と R' で生成された環
$c^*(R, R')$ はアノソル種と方々考えられるから、従来 (A) はこっく
ソル種が special なアノソル種と一致するという一種の
(commutant に対する) R の nuclearity であると示しているこ
とを注意しておく。又 (2)と関連して次々と確認してお
3. C^*環 A, B について $T \in S(A \otimes B)$ の π で分離する family, $T \perp A \otimes B \Rightarrow \| x \|_p \leq \| x \|$ としよう。

Lemma 3.6 τ は π で分離する $S(A \otimes B)$ を含むとしよう。

これと同 $\| x \|_p \geq \| x \|_d$ と一致するための条件は，$\forall f \in \Gamma$ について $R(f) : A \rightarrow B^*$ と $L(f) : B \rightarrow A^*$ が 1 に 1 有

限次 CP-map で point-弱 * 収束位相で近似出来ることがである．($S(A \otimes B)$ の族の時は 1 に 1 でなく contraction）

(証明) $R(f)$ が 1 に 1 有有限次 CP-map であるとし，$\gamma \in \Gamma$ と

と $f \in S(A \otimes B) \cap A^* \otimes B^*$ が同値であることは容易に確かから実理 2.2 とその条件から上手にが canonical map

$A \otimes B \rightarrow A \otimes B$

が 1 付くことのための必要十分条件である。

Lemma 3.7 π で分離する $\Rightarrow (A)$

(証明) $\Gamma = \{ f \in S(R \otimes R') \mid \lambda(t) \in R^* \forall b \in \pi(R') \}$

とおくと，Γ は convex set でかつ，

$\forall f \in \Gamma \exists g \in \Gamma ; f(yx) = f(g^* y) g(x)$

従って g ははじめにべたよう

Γ は π で分離する $S(R \otimes R')$

Γ の定義から $\| x \|_p \leq \| x \| \ (x \in R \otimes R')$

312
ここで $f \in \mathcal{R}$ について $L(f) : R' \to R_x$ を与えると R は remidiscrète である。R_x の単位作用素は有限次 CP-map で各々 $\sigma (R_x, R)$ 位相で近似出来ているので、R と $\{ \sigma \}$ と $L(f)$ は有限次 CP-map で $\sigma (R_x, R)$ 位相で近似出来、従って Lemma から

\[\| x \|_p = \| x \|_h \] とる。

Lemma 3.8 位相 (A) \Rightarrow injective

（証明）π を $\mathcal{L}(\mathcal{A})$ で連続とする。$R \otimes R'$ は $\mathcal{L}(\mathcal{H})$ の C^*-部分環というから、表現をと拡大して

\[\exists \pi : R \otimes \mathcal{L}(\mathcal{H}) \to K (\mathcal{H} \mathcal{H}) \] 上への表現

\[\pi (x) | H = \eta | x \] $x \in R \otimes R'$

ここで projection $p : K \to H$ とすると $x \in \mathcal{L}(\mathcal{H})$ について

\[E (x) = p \pi (1 \otimes x) | H \] とおく。

ここで $E (x)$ は π つくりから $\forall a \in R$ について可換であるから

\[\pi (x) \in R' \] と明かに $E (b) = b (\forall b \in R')$ とすると R' は injective であり、定理 3.3 から R と injective になる。

Lemma 3.9 位相 (A) \Rightarrow remidiscrète

（証明）H の単位ベクトルを ζ とし、$f = \omega_2 \zeta$ とすると f は $R \otimes R'$ の state である。

3.13
\[T = L(t) : R' \longrightarrow R^* \quad \text{for } \text{a CP-state map} \]

\[\varphi = T(1) \text{ と仮く。} \quad \varphi(a) = W_3 \cdot \gamma(a \otimes 1) = (a, 3, 3) \]

\[e' = [R_3] \wedge \text{projection}; e' \text{ は } R' \text{ の projection で } T_\varphi(R') \text{ は } R' \text{ と } \text{spacial に同一視する。このことを proposition 2.4 より} \]

\[\exists \theta_\varphi^{-1} \cdot T : R' \longrightarrow e' R'e' \quad \text{CP-map.} \]

又 \(\forall b \in R' \text{ かつ} \)

\[T(b)(a) = f(a \otimes b) = (ab, 3, 3) = (a, e'b'e', 3, 3) \]

又 \(\pi_\varphi(R') \text{ と } e'R'e', \pi_\varphi(R) \text{ と } R' \text{ が同一視で} \)

\[Y = \theta_\varphi^{-1} \cdot T(b) \text{ と仮、} \quad \theta_\varphi(Y) = T(b) \text{ と仮} \]

\[T(b)(a) = (a, 3, 3) \quad (a \in R) \text{ であるから} \]

\[Y = \theta_\varphi^{-1} \cdot T(b) = e'b'e'. \]

さて \(T \) は Lemma 3.6 から有限次 CP-state map の \(\exists \{ T_\varphi \} \)

で近似出来たが \(S(R \otimes R') \text{ の中で } S(R \otimes R') \cap R_\varphi \otimes (R')^* \text{ が弱く}\)

dense なるから、\(T_\varphi(R') \subset R_\varphi \text{ を考えればよい} \)

と調整出来ることがここにある Lemma である。\(\varphi = \theta_\varphi^{-1} T_\varphi \)

と仮、\(\varphi \) が normal であるから、\(\theta_\varphi^{-1} \cdot T_\varphi \) は \(\sigma \)-weak

に近似させ -. \(\exists \{ b_n \} \text{ と } \| b_n \| \leq 1 \text{ と } R' \text{ の net で} \)

\[b_n \longrightarrow 0 \text{ (} \sigma \text{-weak) と仮とすると、} \forall a_1, a_2 \in R', \text{ かつ} \]

\(\exists T_\varphi \text{ で } S(R \otimes R') \cap R_\varphi \otimes (R')^* \text{ からつくつつかから} \)

\[(\varphi(b_n) \pi_\varphi(a_1) 3, \pi_\varphi(a_2) 3) = T_\varphi(b_n)(a_1, a_2) \longrightarrow 0 \]

3.13
48

3 は $\varepsilon \mapsto \text{cyclic}$ で $\|\rho(b)\| \leq 1$ であるから、以上から

$\varepsilon \mapsto \rho(b) \rightarrow 0 \quad (\sigma\text{-weak})$

次に $b \in B, \ a_1, a_2 \in B$ について

$((\rho(b) - b) \varpi(a_1) \varpi, \ varpi(a_2) \varpi) = \langle a_2, \varpi, T_\varpi(b) - T(b) \rangle$

は 0 に収束する。$\|\rho(b) - b\| \leq 2 \|b\|$ であるから、上記と同様に

$\rho(b) \mapsto \rho'(b)' = T_\rho(b) \in \sigma\text{-weak}$ に収束する $2 \subset E$ において、$2 \ni e' \in \rho'(b)'$ の normal state がえられる。

$\varrho_\varpi(s) = T_\varpi(s + \varphi(s)(1 - \varepsilon)') \quad (s \in \rho'(b)'$

とすれば、ϱ_ϖ は ϖ を有する次 normal (P-map で上のことがから)

$\varrho_\varpi(s) \rightarrow T(s + \varphi(s)(1 - \varepsilon)) = s \quad (\sigma\text{-weak})$

従って $e' \varrho'(b)'$ は semidiscrete である。よって $\varrho'(b)'$ は semidiscrete になる。一般に $\{R_x\}$ は semidiscrete と von Neumann 理の様子であるという direct sum $\sum R_x$ は semidiscrete であるから定義からはほとんど明るかであるから、上のこともつまり重ねて R は semidiscrete になる。

上の様に調整が可能であることを以下に示す。まず R と

R_x の dual と $\varphi \mapsto T_\varphi$ は T_x で各点で弱位相的に

で収束するから、それらの convex combination は各点でと

R_x で T_x にリリュエン収束する。T_φ の convex combination は又

3.5
仮次の σ-weak - weak * 逆接と CP-state map である。これと normal と CP-state map と ϵ とし δ とすると以下の

$$\forall \epsilon > 0 \quad \forall \delta = 1, 2, \ldots \quad \exists \delta \in R'$$

$\exists T : R' \to R_\ast$ 有限次 normal CP-state map

$\| T(b_i) - T(b) \| < \epsilon$

と仮定してよ chrono と呼ぶ。この仮定について

Lemma 3.10

$\exists T : R' \to R_\ast$ 有限次 normal CP-map

$\| T(b) \| < 1 + \epsilon \quad T'(1) \geq T(1)$

かつ $\| T'(b_i) - T(b) \| < \epsilon$

(証明) $\| b \| < 1$ としてよい。 個別から

$\exists T :$ normal と有限次 CP-state map と $\| T(b) - T(b) \| < \epsilon/2$

$T_1(1) - T(1) = \varphi^+ - \varphi^-$ (positive part へ分解)

とすると

$\| T_1(1) - T(1) \| = \| \varphi^+ \| + \| \varphi^- \| < \epsilon/2$

$\forall \varphi \in R'$ の normal state として $T_2 : R' \to R_\ast \exists$

$T_2(x)(\alpha) = \varphi^-(\alpha) \varphi(x)$

と定まる。 いま $T' = T_1 + T_2$ とすると

T' は有限次 normal CP-map で

$T'(1) = T_1(1) + T_2(1) = T(1) + \varphi^+ \geq T(1)$

途中より次から他の条件をみたしている。

3.16
Lemma 3.11 Lemma 3.8 の結論で、

\[T'(1) = T(1) = 0 \]

とする。

(証明) \(\delta > 0 \in \delta + \delta' \) とし、これを \(\delta' \) としてある。

Lemma 3.6 で示す。 境の定理 [41] と定理 [4.3] から

\[T'(1) = t \] とおくと

\[\exists t \in R : 0 < t < 1, \ y(\xi) = \int (\xi \xi t) (\xi \in R) \]

とおく。 \(\gamma = \pi' f (\xi) 3_f \in H_f \) とおくと

\[y(\xi) = (\pi' f (\xi) \gamma, \xi) \]

又 \((\gamma, 3_f) = (\pi' f (\xi) 3_f, \gamma) \) が \((\pi' f (\xi 1) 3_f, 3_f) \)

\[= \| \gamma \|^2 = y(1) = 1 \]

\[\| \gamma - 3_f \|^2 = \| 3_f \|^2 + \| \gamma \|^2 - 2 (\gamma, 3_f) \]

\[\leq f(1) + 1 - 2 < 1 + \delta - 1 = \delta \]

\(\xi \in R \rightarrow T : R' \rightarrow R \times E \)

\[\langle b, T(\xi) \rangle = \langle t \xi t, T'(\xi) \rangle \]

とおく。 \(t < \tau \) から \(T \) は有限次 normal cp-map.

\[T(1) = \langle t \cdot t, T'(1) \rangle = T(1) \]

\[b' = \theta' \circ T'(b) \in \pi' f (R) \] とおくと \(\| b' \| \leq 1 \).

\(\forall \xi \in R \| \xi \|^2 \leq 1 \) とおくと

\[\| b' \|^2 = | \langle \xi, T(b) - T'(b) \rangle | = | T'(b)(\xi t - x) | \]

\[= | (b', \pi' f (\xi t - x) 3_f, 3_f) | = | (b', \pi' f (x) \gamma, \gamma) - (b', \pi' f (x) 3_f, 3_f) | \]

3.18
ここでで、最も困難な部分の (1) \(\Rightarrow\) (2) の主張をつなぎことで証明が終ったことになる。 (1) \(\Rightarrow\) (2) については Connes [12] の factoring の場合の証明は II_1-case が本質的であった。Wassermann の証明の基本はこの場合の Connes の証明と注意深く見落としては factoring の "Singularity" と一緒に取り除いていくことと内全部を取り除かせて global な II_1-case の証明が完了するので、他の場合も構造変理からなり立つてところがわかりというものである。丸子準備として次の Lemma を示す ([13] 参照)

\[T_{\alpha} : \mathcal{L}(H) \to \mathcal{L}(H)^\alpha \text{ の逆導の trace} \]

\[f_{\alpha} : (a, \infty) \to \mathbb{R} \text{の漸近関数} \quad \alpha \geq 0 \]

Lemma 3.12 は、\(f, f' \in \mathcal{L}(H) \) の positive な Hilbert-Schmidt 作用素とすることで

\[
\int_0^{\infty} \| f_{\alpha} (h) - f'_{\alpha} (h) \|^2 \, da \leq \| h - f_{\alpha} \|_2 \| h + f_{\alpha} \|_2
\]

従って \(\| \cdot \|_2 \) は Hilbert-Schmidt に \(\| \cdot \| \)
(証明) $h = \sum_{i} \lambda_i e_i \quad p = \sum_{j} \mu_j f_j$ （固有値列）

T, G : \mathbb{R}^+ 上のポリェル関数で $F(0) = G(0) = 0$

かつ $\sum_i |F(\lambda_i)|^2 T(\lambda_i) < \infty \quad \sum_j |G(\mu_j)|^2 T(\mu_j) < \infty$

と仮定する。このとき

$F(h) = \sum_{i} F(\lambda_i) e_i \quad G(h) = \sum_{j} G(\mu_j) f_j$

\Rightarrow HS-作用素 L

$\text{Tr} \left(F(h) G(h) \right) = \sum_{i,j} F(\lambda_i) G(\mu_j) \text{Tr}(e_i f_j)$

に \mathbb{R}^2 上の diskrete measure μ を次のように仮定する。

$\mu \{ (\lambda_i, \mu_j) \} = \text{Tr}(e_i f_j) \quad \mu \{ (\lambda_i, 0) \} = \text{Tr}(e_i f_i) \quad f_i = 1 - \sum_j f_j$

$\mu \{ (0, \mu_j) \} = \text{Tr}(e_0 f_j) \quad e_i = 1 - \sum_i e_i$

この実数型を仮定するとμ

$\text{Tr} \left(F(h) G(h) \right) = \int F(x) G(y) d\mu(x, y)$

次に

$F', G' : \mathbb{R}^+$ 上のポリェル関数で $F'(0) = G'(0) = 0$ かつ

$\sum_i |F'(\lambda_i)| T(\lambda_i) < \infty \quad \sum_j |G'(\mu_j)| T(\mu_j) < \infty$

と仮定する。このとき

$F'(h) = \sum_{i} F'(\lambda_i) e_i \quad G'(h) = \sum_{j} G'(\mu_j) f_j$

はHS-作用素の作用素で

$\text{Tr} \left(F'(h) \right) = \int F'(x) d\mu(x, y)$
\[T_r(G'(h)) = \int G'(y) \, d\mu(x, y) \]

従って最初の関数 \(F, G \) はして

\[\| F(h) - G(h) \|^2 = \int (F(h)^* F(h) + G(h)^* G(h)) - 2 \text{Re} \int (G(h)^* F(h)) \]

\[= \int (|F(x)| + |G(x)|^2) \, d\mu(x, y) - 2 \text{Re} \int G(h)(x) F(h) \, d\mu(x, y) \]

\[= \int \int \mu(x, y) \]

\[\text{Re} \| F \|^2 \leq 2 \| F \| \| G \| \]

\[\| f_a(h) - f_a(k) \|^2 = \int |f_a(x) - f_a(y)|^2 \, d\mu(x, y) \]

\[= \int |f_a(x) - f_a(y)| \, d\mu(x, y) \]

\[\int_0^\infty \int_0^\infty \left(|f_{\sqrt{a}}(x) - f_{\sqrt{a}}(y)| \, da \right) \]

\[\leq \left(\int x^2 - y^2 \, d\mu(x, y) \right)^{1/2} \left(\int (x+y)^2 \, d\mu(x, y) \right)^{1/2} \]
\[\| h - \mathbf{h} \|_2 \leq \| \mathbf{h} + \mathbf{h} \|_2 \]

Lemma 3.13
\[\mathbf{h}_0, \mathbf{h}_1, \ldots, \mathbf{h}_n \text{ は作用素, } \varepsilon > 0 \]
今 \[\| \mathbf{h}_j - \mathbf{h}_0 \|_2 \leq \varepsilon \| \mathbf{h}_0 \|_2 \text{ とおくと} \]
\[\exists \alpha > 0; f_\alpha(h_0) \neq 0 \text{ かつ} \]
\[\sum_{j=1}^{n} \| f_\alpha(h_j) - f_\alpha(h_0) \|_2^2 \leq 3n \varepsilon \| f_\alpha(h_0) \|_2^2 \]
（証明） \[\| \mathbf{h}_j + \mathbf{h}_0 \|_2 \leq 3 \| \mathbf{h}_0 \|_2 \text{ とすることがLemma 3.13} \]
\[\int \sum_{j=1}^{n} \| f_\alpha(h_j) - f_\alpha(h_0) \|_2^2 \, d\alpha \leq 3n \varepsilon \| \mathbf{h}_0 \|_2^2 \]
\[\geq \varepsilon \]
\[\int \| f_\alpha(h_0) \|_2^2 \, d\alpha = \text{Tr} \left(\int f_\alpha(h_0^2) \, d\alpha \right) = \text{Tr}(h_0^2) = \| \mathbf{h}_0 \|_2^2 \]
\[\leq \varepsilon \]
\[\int \sum_{j=1}^{n} \| f_\alpha(h_j) - f_\alpha(h_0) \|_2^2 \, d\alpha \leq 3n \varepsilon \int \| f_\alpha(h_0) \|_2^2 \, d\alpha \]
\[\exists \alpha > 0; f_\alpha(h_0) \neq 0 \]
\[\sum_{j=1}^{n} \| f_\alpha(h_j) - f_\alpha(h_0) \|_2^2 \leq 3n \varepsilon \| f_\alpha(h_0) \|_2^2 \]

Lemma 3.17 (Powers - St"ormerの不等式)
positive HS - 作用素 \(h, f_\alpha \) に \(\varepsilon \) で
\[\| h - \rho \|_2^2 \leq \| h^2 - \rho^2 \|_{Tr} \quad \text{(Trace)} \]

\[(証明) \quad s = h - \rho \quad t = h + \rho \quad \text{とおく} \]

\[\{\lambda_i\} = s \text{の固有値} \]

\[\{\lambda_i\} = \{\lambda_i\} \text{に対する固有ベクトルと元の \(s \) の正規直交基底} (\| z_i \| = 1) \]

\[t \geq s, \quad \frac{1}{2} (s + ts) = h^2 - \rho^2 \quad \text{より} \]

\[\| h^2 - \rho^2 \|_{Tr} = Tr(\| h^2 - \rho^2 \|) = \sum_i \frac{1}{2} (s^2 + ts; z_i, z_i) \]

\[\geq \sum_i \left| \frac{1}{2} \left((s^2 + ts; z_i, z_i) \right) \right| = \sum_i \lambda_i \left(s^2 z_i, z_i \right) \]

\[\geq \sum_i \lambda_i^2 = \sum_i (s^2 z_i, z_i) \]

\[= Tr(h^2 - \rho^2) = \| h - \rho \|_2^2 \]

このことは von Neumann の不等式であるとき、\(\| \rho \| \)が \(\rho \)の hypertrace であるとは、\(\forall \lambda \in \mathbb{R}, \exists \epsilon \in \mathcal{L}(H) \) について

\[\phi(\lambda \epsilon) = \phi(\epsilon \lambda) \]

が成立つことを示す。

上の Lemma 12, 13 は countable な amenable な群に対応する Day の方法を用いた Namioka によるが P영만의处理の証明に応じて得たものであるが次のようにLemma はそれら結果の実質的な作用系環への拡張を示しており Day の方法はこれ
Lemma 3.15 H上のvon Neumann 環 Rにhypertrace φがあるとする。こことき∀x₁, x₂, ..., xₙ ∈ Rとε > 0 に " " で
∃ε: L(H)の有限次元projection: ||e, x_j||₂ ≤ ε ||e||₂
(証明) Rの任意の元はR上のユニタリ作用素のlinear combination でかけるが、ユニタリ作用素について上記ことを証
明すれば十分である。

u₁, u₂, ..., uₙ が Rのユニタリ作用素とする。L(H)のn-
fold copy L(H)ⁿ の product で

C = \{ (φ - φₐᵤ₁, φ - φₐᵤ₂, ..., φ - φₐᵤₙ) | φ normal state \}

となる。Cはconvex set であるが、Cの closure に 0 が入る " " とする。L(H)ⁿ = L(H)ⁿ 上の norm に依
するfunctional i.e. (x₁, x₂, ..., xₙ) ∈ L(H)ⁿ と ε > 0 が存在して
∀ normal state φ に " " で

Re \sum_{j=1}^{n} (φ(x_j) - φ(uₙ⁻¹x_juₙ)) ≥ ε

しかる hypertrace φはnormal state の弱*極限でかう
φ(x_j) = φ(uₙ⁻¹x_juₙ) であるから上式は上にあり、よ
って 0 ∈ C, 従って
∀ δ > 0 ∃φ; normal state on L(H)
\[u_j^* u_j^* - \varphi \leq \delta \quad (1 \leq i \leq n) \]

\[\varphi = Tr(p) \] とおる．こうとく \(p \) は Trace class の作用素

2 つ \(Tr(p) = 1 \) とすれば

\[u_j^* u_j^* (x) = \varphi (u_j^* x u_j) = Tr(p u_j^* x u_j) = Tr(u_j^* p u_j^* x) \]

から非可換禅多論から

\[\| p - u_j^* p u_j^* \|_{Tr} = \| \varphi - u_j^* \varphi u_j^* \| \leq \delta \]

\[\rho = \rho^{1/2}, \quad \rho_j = u_j^* \rho u_j^* \] とおく（positive HS-作用素）

Lemma 3.14 から

\[\| \rho_j - \rho \|_2 \leq \| \rho_j - \rho^2 \|_{Tr} = \| u_j^* p u_j^* - \rho \|_{Tr} \leq \delta \]

又 \(\| \rho \|_2 = 1 \) ならば Lemma 3.13 から

\[\exists a > 0 : f_a (\rho) = 0, \quad \| f_a (\rho_j) - f_a (\rho) \|_2 \leq \sqrt{3} n \delta^{1/2} \| f_a (\rho) \|_2 \]

ことで

\[f_a (\rho_j) = u_j^* f_a (\rho) u_j^* \] とおくと HS-作用素であるから

\(Tr(f_a (\rho)) \) は有限，i.e. \(e = f_a (\rho) \) は有限次元 projection であるから上の \(\delta \) を十分小さくとればこの e について

\[\| e, u_j^* e u_j^* - e \|_2 \leq \varepsilon \| e \|_2 \]

Lemma 3.16 \(R \) : finite injective von Neumann 環

\(Z : R \) の center

\(\varepsilon : \) center valued Trace とする．こうとく

\[\forall a_1, \ldots, a_n, b_1, \ldots, b_n \in R \quad \varepsilon > 0 \] で
∃ \varphi_0 \text{ normal state on } \mathbb{Z},
\| \varphi_0 (\pm (\sum_{i=0}^{n} a_i b_i^*) \| \leq \| \sum_{i=0}^{n} a_i \otimes b_i^* \|_a + \varepsilon

ここで \(b_i^* \) は次という意味である。\(H \to H \) は歯数をベクトル空間とし、二つの対応を \(\varphi \to \varphi^c \) とす、 \(\chi \in L(H) \) に対しで \(L(H) \) の作用系 \(\chi^c \) と \(\chi \varphi \varphi^c = (\varphi \varphi^c) \) で定義される。

(Lemma 3.15 の証明) \(\| a \| \leq 1 \text{ とおいて} \chi = \sum_{i=0}^{n} a_i b_i^* \) とおく。\(R \) の任意の state \(\varphi \) に対して
\[\exists 0 < \delta < 1, \ u_1, \ldots, u_k \in R = \text{ タテリ作用系} \]
\[\| u_i \varphi - \varphi u_i \| \leq \delta \quad \Rightarrow \quad | \varphi (c - \varphi (c)) | \leq \varepsilon \]

とおそう。上のことを放り立たずにとおそう。

\[\exists \alpha > 0; \forall \varphi = \text{ タテリ作用系の有限集合} \land \forall \alpha \leq \varphi \]
state \(\varphi_{F, n} \) が存在して \(\varphi \in F \) としで
\[\| u \varphi_{F, n} - \varphi_{F, n} u \| \leq \frac{\varepsilon}{n} \quad \text{かつ} \quad \varphi_{F, n} (c - \varphi (c)) \geq \alpha \]
\[\varphi \text{ と} \{ \varphi_{F, n} \} \text{ の形} \quad \text{極限} \quad \text{の一としてとおこうと。} \varphi \text{ は tracial state に立つから [20; 系 p.254] とおり} \varphi = \varphi \varphi^c \text{ とおいて矛盾に立つ。}

今 \(\varphi \in L(H) \) から \(R \to R \) の projection をおこうと、その module property から \(\varphi = \varphi \varphi^c \otimes \varphi \) は \(R \) の hypertrace である。そこで Lemma 3.15 の projection \(E \) を \(b_i, b_2, \ldots, b_n \) に対して \(\text{透過はかりでなく} \) \(u_i, u_2, \ldots, u_k \) に対して
\[\| [u_j, e] \|_2 \leq \frac{\delta}{3} \| e \|_2 \]

\(\gamma_0(x) = Tr(xe) / Tr(e) \) とする。

\(\gamma_0 \) は Hilbert-Schmidt の内積を使って

\[\gamma_0(x) = \langle xe, e \rangle_2 / \langle e, e \rangle_2 \]

\[u_j^* u_j(x) = \langle x u_j^* e, u_j^* e \rangle_2 / \langle e, e \rangle_2 \]

\[= \langle xe_j, e_j \rangle_2 / \langle e, e \rangle_2 \quad ここで e_j = u_j^* e u_j \]

よって

\[\| e_j - e \|_2 \leq \frac{\delta}{3} \| e \|_2 \]

として

\[\| \gamma_0 - \gamma_0 \cdot \Ad u_j \| \leq 2\frac{\delta}{3} < \delta \]

\[| \gamma_0(c - \overline{\gamma}(c)) | \leq \epsilon \]

一方

\[\| a_j \|_2 \leq 1 \quad \text{かつ} \quad \| [b_i, e] \|_2 \leq \epsilon \| e \|_2 \]

\[\| a_i (e b_i^* - b_i^* e) e \|_2 \leq \epsilon \| e \|_2 \]

\[\| (e a_i e) e b_i e^* e, e \|_2 - \langle a_i b_i^* e, e \rangle_2 \leq \epsilon \| e \|_2 \]

従って,

\[a_i' = e a_i e, \quad b_i' = e b_i e \quad \text{と} \]

\[\| \sum_{i=1}^{n} a_i' b_i'^* e, e \|_2 - \langle ce, e \rangle_2 \| \leq n \epsilon \| e \|_2 \]

\[K = e H \quad \text{と} \quad e \mathcal{L}(H) e = \mathcal{L}(K) \] であるから

\[p(x) = \langle xe, e \rangle_2 / \langle e, e \rangle_2 \]

is canonical trace で、かつで計算から

\[| p \left(\sum_{i=1}^{n} a_i b_i^* \right) - \gamma_0 \cdot \overline{\gamma} \left(\sum_{i=1}^{n} a_i b_i^* \right) | \leq (n+1) \epsilon \]

3.26
$K \otimes K^c$ のリモートな作用

$J(3 \otimes 3^c) = 7 \otimes 3^c$

定義する。ここで

$J(x \otimes 1) J = 1 \otimes x^c \quad x \in L(K)$

$3_i, 3_j, \ldots, 3_m \in K$ の正規化基底とし

$3 = \frac{1}{\sqrt{m}} \sum_j 3_j \otimes 3_j^c$

とおく。このとき

$\|3\| = 1, \quad (x \otimes 1) 3 = 7(x)$

こう定義した作用は作用系の代数表現で計算すると

$J 3 = 3, \quad J(x \otimes 1) 3 = (x^c \otimes 1) 3$

とおいて

$\tau \left(\sum_{i=1}^{n} a_i^c b_i^c^* \right) = \left(\sum_{i=1}^{n} a_i^c b_i^c^* \otimes 1 \right) 3, \quad 3$

$= \left(\sum_{i=1}^{n} (a_i^c \otimes 1) J (b_i^c \otimes 1) J 3, \quad 3 \right)$

$= \left(\sum_{i=1}^{n} a_i^c \otimes b_i^c^c 3, \quad 3 \right)$

$\tau \in H \otimes H^c$ の元と x と x^c と $e \otimes e^c$ とから

$\sum_{i=1}^{n} a_i^c \otimes b_i^c^c 3, \quad 3$

$= \sum_{i=1}^{n} a_i^c \otimes b_i^c^c 3, \quad 3$

従って

$\tau \left(\sum_{i=1}^{n} a_i^c b_i^c^* \right) = \left(\sum_{i=1}^{n} a_i^c \otimes b_i^c^c 3, \quad 3 \right)$

$\therefore \quad |y_i \cdot \mu(c)| \leq \| \sum_{i=1}^{n} a_i^c \otimes b_i^c^c \|_{\alpha} + (n+1) \varepsilon$
3. はより depend しないから Lemma の結論を言えたことに立つ

次に Lemma が Connes [12] には全然わかる在するものである。

Lemma 3.17. 前の Lemma の条件の下で

\[\| \sum_i a_i b_i^* \| \leq \| \sum_i a_i \otimes b_i^* \| \]

（証明） 左辺の方が大きさしし、不必要 beta となくと

\[\exists E: central projection, 演算数入; |\lambda| > \beta \]

\[\| E \sum (c) - \lambda E \| < \frac{1}{2} (|\lambda| - \beta) \]

\[E = \frac{1}{2} (|\lambda| - \beta) \text{ として Lemma 3.16 に Rz はさてはめる} \]

\[\exists \Phi: normal state on Rz; |\Phi(\sum (c))| \leq \| \sum_i a_i \otimes b_i^* \| + \epsilon \]

このことより不等式の右辺は

\[\| (\sum_i a_i \otimes b_i^*) \| + \epsilon \]

\[\leq \| \sum_i a_i \otimes b_i^* \| + \epsilon = \frac{1}{2} (|\lambda| + \beta) \]

\[\Phi(\sum (c)) - \lambda \leq \| \sum (c) - \lambda \| < \frac{1}{2} (|\lambda| - \beta) \]

から

\[|\Phi(\sum (c))| > \frac{1}{2} (|\lambda| + \beta) \]

とつれてあり式に矛盾する。

Lemma 3.18. R が finite で injective von Neumann 理学で

3.28
ばた値 (A) をもつ。

(証明) R の各 direct summand が injective とし、二点と R が injective とし、二点とは同種だから R の center が faithful な normal state φ をつくることがで、φ は center valued trace で、φ の複収でかくことられる $(R \otimes \tilde{R}) \otimes \varphi$ が、φ は、φ の値を 0 に定めると

$$|\varphi\left(\sum_{i=0}^{n} a_i b_i^*\right)| \leq \left\| \sum_{i=0}^{n} a_i \otimes b_i^* \right\|_{\varphi}$$

$R \otimes \varphi(R)$ と同一視し、φ は $R \otimes \varphi(R)$ に対応する cyclic separating vector とする。J で C^*-algebra の canonical involution と J と、J は trace vector であるから

$$J \otimes J = \varphi(J)$$

又これと合わせて、$x \mapsto J \otimes J x$ と $J \otimes J$ の逆は $R \otimes \varphi(R)$ と同型にかってい。

$$\varphi(x) = (J \otimes J x, J \otimes J)$$

又そこで、$x_1, x_2, \ldots, x_n \in R$, $y_1, y_2, \ldots, y_n \in R'$ は $\|\sum_{i=0}^{n} x_i y_i \|_{\varphi}$

$$\|\sum_{i=0}^{n} x_i y_i \|_{\varphi}$$

従って functional $\varphi(x) = (J \otimes J x, J \otimes J)$ は $R \otimes R'$ 上で α-norm に関して連続である。よって φ は $R \otimes R'$ まで拡張したものを又 φ と呼ぶと (state はドーリーに存在する)
\[\forall x, y \in R \otimes R' \quad \exists t \quad \text{で} \]
\[\| \gamma(x) \gamma(y) \|^2 = \phi \left(\gamma^* x^* y \right) \leq \| x \|^2 \| y \|^2 \]
\[= \| x \|^2 \| \gamma(y) \|^2 \]
\[\| \gamma(R \otimes R') \| = H \quad \text{であるから} \quad \| \gamma(x) \| \leq \| x \| \]

以上のから finite な von Neumann 環については injective と semi-discrete が同値である。型の von Neumann 環は有限变化に因ることに injective 型かつ semi-discrete であるから、ランソール積の結果から semi-finite な von Neumann 環について injective と semi-discrete とは同値であることがわかる。ランソール積について、端子 S が injective らば R と S は semi-injective である——place map と名付ける。最後に III 型の von Neumann 環についての証明には子供[63]の duality を用いる。M は H 上の von Neumann 環とる。また R を実数 R の H 上への強連続ユニタリ表現とし、更に U(t)MU(t) ≤ M (t ∈ R) と呼ばれているとする。今 \(\gamma_t(x) = U(t)xU(-t) \) とすれば \(\gamma_t \) は M の one parameter * 同型群としての R の表現である。\(\gamma(K, R) \) は R 上の compact support をもつ H-valued な連続関数の空間で \(\gamma_t \) と

3.30
\[\| x \|_2 = \left\{ \int_R \| x(t) \|^2 \ dt \right\}^{1/2} \]

（ついてはつと乙で）

\(R \) 上の complex valued 連続関数で compact support をもつ全体を \(\mathcal{K}(R) \) とおく。\(\mathcal{K}(H, R) \) は自然な形で \(\mathcal{H} \otimes L^2(R) \) の dense な部分空間とえられることが出来る。 \(t \) で任意の \(\mathcal{K}(H, R) \) の関数 \(f \) に対して \(t \rightarrow U(-t) f(t) \) は又 \(\mathcal{K}(H, R) \) の関数でしか \(t \) は変うと言ぶから,

\[\exists U : \mathcal{H} \otimes L^2(R) \to \mathcal{H} \] 作用素； \((U f)(t) = U(-t) f(t) \)

\[3 \in \mathcal{K}(H, R) \]

\[\forall x \in M \quad \exists ! \pi_{\alpha}(x) = U(x \otimes l) U^* \quad \text{とみく。} \]

\[\forall 3 \in \mathcal{K}(H, R) \quad \exists \alpha(3) \quad \text{と} \]

\[\left(\pi_{\alpha}(x) 3 \right)(t) = U(-t) x U(t) 3(t) = \alpha_{-t}(x) 3(t) \]

次に \(\mathcal{H} \otimes L^2(R) \) で \(\lambda(t) \) を

\[(\lambda(t) 3)(s) = 3(s-t) \quad (3 \in \mathcal{K}(H, R)) \]

と定義する。これと \(\mathcal{H} \otimes L^2(R) \) は von Neumann 理想

\[R(M, \alpha) = \{ \pi_{\alpha}(M), \lambda(R) \} \]

が action \(\alpha \) は \(M \) の crossed product である。

\[y \in M' \quad \exists ! \pi_{\alpha}'(y) = \alpha_{y} \quad \text{とふく。} \]

\[\pi_{\alpha}'(M') \subseteq R(M, \alpha)' \quad \left((\pi_{\alpha}'(y) 3)(t) = y 3(t) \quad (3 \in \mathcal{K}(H, R)) \right) \]

である。 \(\forall x \in M \) 作用素 \(\alpha(t) \) と \(3 \in \mathcal{K}(H, R) \) で

\[(\alpha(t) 3)(s) = e^{-ist} \bar{3}(s) \]
と定義する。このとき $t \mapsto \mu(t)$ は強連続と $\mathbb{R} \rightarrow \mathbb{C}$ を考える。

$\mu(t) \pi_d(x) \mu(-t) = \pi_d(x), \quad \mu(t) \lambda(s) \mu(-t) = e^{-ist} \lambda(s)$

といて

$\mu(t) R(M, d) \mu(-t) = R(M, d)$

で $\hat{\pi}_d(x) = \mu(t) \pi_d(x) \mu(-t)$ は $R(M, d)$ の自同型対称である。

$\hat{\pi}_d$ を $R(M, d)$ への dual action という。以下に証明では π_d の duality $R(R(M, d), \hat{x}) \cong M \hat{\otimes} L^2(d)$ と

$R(M, d)$ から $\pi_d(M)$ への projection が常に存在するということは本質的である。このことは次節で R の amenability と $\pi_d(M)$ が dual action の fixed point algebra であることに起因している。

Lemma 3.19 $M \otimes H$ の正則 von Neumann 環とする。M

が injective ならば性徳 (A) も成

(証明) duality から $R(R(M, d), \hat{x}) \cong M \hat{\otimes} L^2(d) \cong M$

であるが、更に、このとき [53, 定理 8.2] から action と $R(M, d)$

が semifinite であると仮定すると $\pi_d(M)$ は injective である。従って

$\pi_d(R(M, d))$ が injective なら、$R(M, d)$ が injective であることがわかる。従って 2 がすでにとらえられるとから $R(M, d)$ は性
（A）とする。則で $a_i \in R(M, \alpha), b_i \in R(M, \alpha)$ で
$$\| \sum_i a_i \otimes b_i \| \leq \| \sum_i a_i \otimes b_i \|_{\alpha}$$

もし $x_i \in M, y_i \in M'$ で
$$\| \sum \pi_{\alpha}(x_i) \otimes \pi_{\alpha}'(y_i) \|_{\alpha}$$

すなわち $z \in H, f \in K(R)$ で
$$\| \sum \pi_{\alpha}(x_i) \otimes \pi_{\alpha}'(y_i)(3 \otimes 3) \|_{\alpha}$$

と
$$\| \sum \pi_{\alpha}(x_i) \otimes \pi_{\alpha}'(y_i)(3 \otimes 3) \|_{\alpha} \leq \| \sum \pi_{\alpha}(x_i) \otimes \pi_{\alpha}'(y_i)(3 \otimes 3) \|_{\alpha}$$

これらで $t \rightarrow \sum \pi_{\alpha}(x_i) y_i t$ は連続で H-valued 因数で
$$f \in K(R)$$ は任意であるから上記をとれば
$$\| \sum \pi_{\alpha}(x_i) y_i \|_{\alpha} \leq \| \sum \pi_{\alpha}(x_i) y_i \|_{\alpha}$$

と
$$t = 0$$ として 3 を動かせる
$$\| \sum a_i y_i \| \leq \| \sum a_i y_i \|_{\alpha}$$

各 M は相対的 (A) を満たす。

求めた因数は von Neumann 理論の各 direct summand におけるときは十分であるからここの証明が終ったことになる。
参考文献

[12], [13], [24], [46], [55]
§4. Completely positive map 12 と 3 approximation property.

前の定理 12 と 3 の核性と von Neumann 環の近似性値との関係が次のように不明確にならない。C*環 A は 12 で
その enveloping von Neumann 環を でとく。

定理 4.1 次は同値である

(1) A は nuclear

(2) A*の単位作用系は有限次の CP-map で各々で に 1 および の近似が出来

(3) A* が injective で (4) A* が semidiscrete

(証明) (4) (2) (A)* = A* であるから Lemma 3.10 の前でべて 12 3 にしで (4) が成りつづり

(2) (1) 仮定から任意の核 C*環 B について、B より A*をの CP-contraction map は有限次で CP-contraction map で 3 で

位相で近似出来る。そこで Lemma 3.6 から A は nuclear。

(1) (3) A の任意の state が で は injective なことをすでに分ぶ。そして は injective なことを示す

す。A C*環 B で B (部分環)

T : B → πφ(A) CP-map

4.1
ただし、B_i で CP-map として拡張出来ることを示す。ならば、
\[\theta_f \circ T : B \rightarrow \pi_f(A) \rightarrow [\mathfrak{m}] \subset A^* \]
は有限の CP-map である。そこで定理 2.2 から

\[\exists f, \text{ positive linear functional on } A \otimes B ; L(f) = \theta_f \circ T \]
この f は C^*-環 $A \otimes B$ 上の positive functional とみて f_k も、す

と定理から $A \otimes B = A \otimes B \subset A \otimes B_1$

と定理から f_k を $A \otimes B_1$ への positive extension とみとる

\[0 \leq b \leq 1, \quad b \in B_1 \rightarrow T \]

\[0 \leq L(f)(b) \leq L(f)(1) = L(f)(1) = \theta_f \circ T(1) \]

から $L(f)(b) \in [\mathfrak{m}]$ と定で $L(f)(B_i) \subset [\mathfrak{m}]$。

ここで

\[\overline{T} = \theta_f \circ L(f) : B \rightarrow \pi_f(A) \]

とおくと、つまり前者では T が B_i への CP-extension である。

系 4.1. nuclear C^*-環の quotient algebra は nuclear である

上と同様に nuclear C^*-環の ideal も系 3.から nuclear である

ことを先ず述べたが有分環についてもこれが成立していることが

次に approximation property の C^* 環における Lemma

4.2
3.6 で簡略化することから始めます。

Lemma 4.2 \(f \in S^*(A \otimes B) \)

\[\implies R(f) (L(f) \text{ についても}) \text{ が下の type の有限次 CP-contraction で近似出来ます。} \]

\[\begin{array}{c}
\sigma \\
\downarrow
\end{array} \quad \begin{array}{c}
M_n \\
\tau
\end{array} \quad \begin{array}{c}
A
\end{array} \quad \begin{array}{c}
R(f)
\end{array} \quad \begin{array}{c}
B^*
\end{array} \]

\[\| \tau \circ \sigma \| \leq 1 \]

（上の図の時上の diagram は pointwise \(W^* \)-topology で approximately commute となる）

（証明）\(A \otimes H \) 上に作用し、\(B \otimes K \) 上に作用していけるとすると

\[S^*(A \otimes B) \subseteq \text{ で } f = \sum \lambda_i \omega_{z_i} \quad z_i \in H \otimes K, \quad \| z_i \| = 1 \]

\[\lambda_i \geq 0, \quad \sum_i \lambda_i \leq 1 \]

の形の functional は \(W^* \)-dense なから上の形の \(f \) について \(R(f) \) の diagram の map に分解出来ることを示せばよい。そのには \(A \otimes H \) 分解出来 \(f \) に対する \(B \otimes K \) の集合に \(z \) を動かすと \((0, 1) \) で convex になることを示す。

\[\begin{array}{c}
A \\
\sigma_i
\end{array} \quad \begin{array}{c}
M_{n_i} \\
\tau_i
\end{array} \quad \begin{array}{c}
B^*
\end{array} \quad i = 1, 2, \ldots, \infty \]

\[\sigma : A \rightarrow M_{n_1 + n_2}, \quad \tau : M_{n_1 + n_2} \rightarrow B^* \]

43
\[\sigma(a) = \begin{bmatrix} \sigma_1(a) & 0 \\ 0 & \sigma_2(a) \end{bmatrix}, \quad \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \rightarrow \tau_1(\alpha) + \tau_2(\delta) \in B^* \]

定理2.6 に \n
\[\tau_i = \Theta(y_i) \quad y_i \in M_n(A)^{+} \]

として \n
\[y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \]

と \n
\[\langle \begin{bmatrix} a_1 & a_2 \\ b_3 & b_4 \end{bmatrix}, \ y \rangle = \langle a_1, y_1 \rangle + \langle a_2, y_2 \rangle \]

と \n
\[y = \begin{bmatrix} y_1 \\ 0 \\ 0 \end{bmatrix} \]

と \n
\[\langle \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}, \ y \rangle = \langle b_1, y_1 \rangle + \langle b_4, y_2 \rangle \]

を \n
\[\sigma = \Delta(y), \quad \tau = \Theta(y) \]

と記す。そして、\n
\[\tau \circ \sigma \leq \tau \circ \sigma \]

convexity に \n
\[\tau \circ \sigma \leq \tau \circ \sigma \]

このたう分解出来る map で \n
\[\| \tau \circ \sigma \| \leq 1 \]

とする全体
72

convexである。他に見は明らかにpositive cone で与
える。以上から結局 \(R(W_3) \) の分解が出来ればよいことになる。
そこで \(\mathcal{L} \) は \(H \otimes K \) の元としてよいから

\[
\mathcal{L} = \sum_{i=1}^{m} z_i \otimes \gamma_i \quad \mathcal{L} = \begin{pmatrix} z_1, z_2, \ldots, z_m \end{pmatrix}
\]

\[
\gamma = \begin{pmatrix} \gamma_1, \gamma_2, \ldots, \gamma_m \end{pmatrix}
\]

\[
W_3 = [w_{y_j, z_i}] \in M_n(A)^{\ast +}
\]

\[
W_\gamma = [w_{\gamma_j, \gamma_i}] \in M_n(B)^{\ast +}
\]

\[
\gamma \geq 0 \quad \gamma = \Delta (W_3), \quad \gamma = \Delta (W_\gamma)
\]

\[
\langle b, R(W_3)(a) \rangle = W_3(a \otimes b) = \sum_{i,j} (a z_i, z_j) (b \gamma_i, \gamma_j)
\]

\[
= \langle b, \sum_{i,j} \Delta(W_3)(a)_{i,j} W_\gamma, \gamma_i \rangle = \langle b, 0(W_\gamma) \Delta(W_3)(a) \rangle
\]

\[
= \tau \circ \sigma(a)(b) \quad \text{i.e. } R(W_3) = \tau \circ \sigma
\]

\[
\| \tau \circ \sigma \| = \| R(W_3) \| \leq \| z \| = 1
\]

定理 4.3 理想 \(A \) が nuclear であるための必要十分条件は、
\(A \) の単位作用素が有限次の CP-contraction map で各点 \(\sigma \) に対
して \(\| \sigma \| = 1 \) で近似出来ることである。

(証明) 足元は定理 2.2 - Lemma 3.6 で示されており、
必要係数を示すため。まず \(A \) がユニテルの時を証明する。

次の diagram が approximately commute (point-\(\sigma \)-weak

45
トポロジーのことをいう。\(\tilde{A}\) が \(H\) 上に作用しているとする。

\[
\begin{array}{c}
\sigma \\
\downarrow \quad \downarrow \quad \downarrow \\
M_n \\
\downarrow \quad \downarrow \quad \downarrow \\
A \\
\downarrow \quad \downarrow \quad \downarrow \\
\tilde{A}
\end{array}
\quad \|T \circ \sigma\| \leq 1, \quad \sigma(1) = 1
\]

\(\tilde{A}\) は normal state は理解 vector state であるから、\(H\) は

\(a_1, \ldots, a_5 \in A, \quad z_1, \ldots, z_5 \in H \quad \|z_i\| \leq 1 \quad \) に対し

\(\forall \varepsilon > 0 \exists \sigma, \tilde{e} : \tilde{e}\) は \(\sigma\) に \(C^*\text{-map}

\[\|((T \circ \sigma(a_i) - a_i)z_j, z_j)\| < \varepsilon\]

とふでよい。\(e_j = [\tilde{A}^*z_j] \) への projection \((\in \tilde{A})\) とし

\[e = \bigvee_{j=1}^n e_j \quad \text{とする。}\]

\(e\) は countably decomposable な projection である。ゆえに

[20: 定理 4.25, p. 223]から \(eH\) は separating vector である。

\(e \in eH \) であるからここで

\[b_1, b_2, \ldots, b_5 \in \tilde{A}^* \text{につきで}\]

\[\|((T \circ \sigma(a_i) - a_i)b_j z_j, b_j z_j)\| < \varepsilon\]

とおとづけることになる。\(R = \tilde{A}e\) とおくと上の \(b_j e\) と

\(b_j e\) は同一視して差し支えある。\(R = \omega_{3,5} \subseteq R\)

と定義すると \(\pi_{\phi}(R)\) は space に \(R\) と同じ視えてくるから

\[\Theta_{\phi} : R' \longrightarrow [\phi] \subseteq R_{**}\]

4.6
A is nuclear なので Lemma 4.2 から diagram は point -
weak topology で approximately commute.

\[
\begin{array}{ccc}
A & \xrightarrow{\sigma} & M_n \\
& \xrightarrow{\Theta \circ \eta} & [\mathcal{F}] \subseteq R^*_\mathfrak{A} \subseteq R^*
\end{array}
\]

又 Lemma 9 からわかることは 3 は \mathbb{F} 型の CP-map $\tau \circ \sigma$
を $\tau \circ \sigma(A) \subseteq R^*_\mathfrak{A}$ と arbitrary と呼ぶ。従って diagram は
point - norm topology で approximately commute であるから \mathcal{F} と呼ぶ。$\Theta \circ \eta(1) = \eta_0$ と呼ぶとき
Lemma 3.10, 3.11 から近似する CP-map に $\tau' \circ \sigma'$ で
$\tau \circ \sigma(1) = \eta_0$ と呼ぶと $\tau' \circ \sigma' = \tau \circ \sigma$
と $\tau'(M_n) \subseteq [\mathcal{F}]$。

従って $\Theta \circ \eta \circ \{ \sigma, \tau' \}$ と \mathcal{F} family が approximately

4.7
発行 2-3. 次に図 2 を示す

\[
\begin{array}{c}
A \\ \xymatrix{
& \sigma' \ar[dr] & \\
& M_n & \sigma_{\psi} \circ \tau' \\
& \tilde{\sigma} e \ar[ur] & \tilde{\sigma} \\
& \tilde{\sigma} e \ar[r]_{\text{injection}} & \tilde{\sigma}
}
\end{array}
\]

\(\tau'' = \tau'' \circ \sigma' \ldots \cdot \mathcal{G} \)

\(\langle \tau'' \circ (a_i), b_j, b_j \rangle \)

\(= \langle b_j^*, b_j \cdot (\sigma_{\psi} \circ \tau' \circ \sigma' \circ (a_i) - \gamma(a_i)), b_j \rangle \)

\(= \langle b_j^*, b_j, \tau' \circ \sigma' \circ (a_i) - \gamma(a) \rangle \rightarrow 0 \)

で

\[
\begin{array}{c}
A \\ \xymatrix{
& \sigma' \ar[dr] & \\
& M_n & \tau'' \\
& \tilde{\sigma} e & \\
& \tilde{\sigma} e \ar[r]_{\text{embedding}} & \tilde{\sigma}
}
\end{array}
\]

\(\text{図 2} \)

\(M_n(A) \to \tilde{\sigma} e \rightarrow A \sigma - \text{weakly} (a \in A) \)

と示される.定理 2.6 から

\(\exists \ U \in M_n(\tilde{\sigma} e)^* ; \ \theta(U) = \tau'' \)

\(\text{もし} M_n(A) \to M_n(\tilde{\sigma} e) \text{で} \sigma - \text{weakly dense かつ} \)

\(\exists \ U' \in M_n(A)^* ; \ U' \to U \sigma - \text{weakly} \)

\(\text{このより} \quad \tau_{\nu} = \theta(U'_{\nu}) ; \ M_n \to A \)
は各点で12 σ-weak topologyでτλ1を収束する。従って

\[\tau_{\nu_0} \circ \sigma_\nu : A \rightarrow A \]

は各点で12 σ-weakly 12単位作用系に収束する。しかし

A上ではσ-weak 位相は弱位相と同じだから上のCP-map

のconvex combination（同様型）をとることにより diagram

\[\delta_\lambda(1) = 1, \text{ approximately commute in point-norm topology} \]

このとき \(\tau_\lambda(1) = \tau_\lambda \cdot \delta_\lambda(1) \rightarrow 1 \) （ノルム収束）

であるから \(\| \tau_\lambda \| = \| \tau_\lambda(1) \| \rightarrow 1 \)

\[\delta_\lambda \in \tau_\lambda \] \[\tau_\lambda/\| \tau_\lambda \| \] でとりかからはポーラーCP-

contractionによると近似 diagramが考えられる。

Aがnon-unitalのときは、A+λI = A_1が又 nuclearにだし

から上の結果がポーラーでとられてA_1を核にすれば有限次CP-

contractionによると単位(恒等)作用系の近似が得られる。

上の証明から明らかに了に得られた近似は単に有限次CP-

contractionと呼ぶだけでなく上のようにも分解の出来るmap

\[\tau_\lambda \circ \delta_\lambda \circ 1 \] でという、ことで中身がより精密になってい

るわけである。上の結果の一つの大きな帰結として次のことが

ある。
系 4.3 Nuclear C^* 環は Grothendieck の metrical approximation property を持っている。

上の定が最近までは成立するのではなかろうかと思われていたが, Haagerup [31] が non-nuclear C^* 環の典型ともり上げべき Krakowsky 自由群からの (reduced) C^* 環が metrical approximation property をもつことを示したので, それと JAN もれの C^* 環の class がどんなもつにどうのか予想もつかない'ことも合っている。

主な文献

[15], [24], [46]
あとがき

CP-mapの話題で本稿からぬけてしまったものにliftingの話とFubini積の話がある。CP-mapに関する話題の集録として子供たちのことを追加させてみるがここは講義から完全にぬけていたのでlecture noteという型をもう少しご用うしくちん保持させていて、ここではその詳細は割愛することにした。興味も示われる方のための一応参考資料をつけてみる。A, B と C は環，I を B の ideal とする。A から

\[\begin{array}{c}
A \xrightarrow{\sigma} B \\
\tau \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
B/I \rightarrow C/I
\end{array} \]

とゆるやかな存在するかといつつか CP-map の lifting と同題である。これは元来は positive map の lifting と同題として考えられていたが作用系環として本質的ならばではない CP-map の lifting である。この講義では 3, 4 章を目標とした元気時間的な制約では子供たちが話としては省略に入らないべきである。

一般の環についてはこの問題は例えば B = \mathbb{Z}_p, I = \mathbb{Z}_p

A = B/I としてその恒等写像をととするとわかわかるように，可換の場合は lifting の存在は negative であるが，ある class の場合に可分る）の環についてもとが存在するかどうかは，それと

とが BDF 理論などで深い関係をついている。実際 Arveson
[4] (cf.[8]) では Ext(X) の場合について (BDF [17], A = C_α(X) \text{\{where\}} \Gamma = \mathcal{E}(H), \text{\{where\}} \Gamma = C(H), \text{\{where\}} \Gamma \text{\{is\} complete lattice space} の場合) CP-map の lifting の結果をもとに可換の場合を除いて positive map の lifting の結果を用いて Ext(X) の元が原元を含むことを示し、Ext(X) がある場合に可換な場合についての DP 共有関係を示している。その後 BDF 理論が更に発展し [6], [8] ほか、非可換の場面について Ext(A) の構造が問題にされてきたが Choe, Effros [18] はこの議論の Technique を用いて非可換 nuclear C^* algebra A において前述の diagram で CP-map の lifting が存在することを証明した。Ext(A) は Voiculescu [5] によって非可換核発展について一般に単位反応を含む (可換) 棟群群におけるもの上で上の結果を示し、A が非可換 nuclear 環のときは Ext(A) が非可換である。更に Anderson [1] は Ext(A) が一定もし非可換なら非可換核発展の例を示して非可換核発展についての lifting の問題が一般には negative であることを示した（前の例の例では L^∞/C は非可換核発展における）。又この結果で Arveson [5] が更に一般化しうる構成を示っている。一般的 Banach 空間での lifting の近似の結果としては殆ど問題を除いて metrical approximation property をもつ可換空間について contractive な lifting の存在が知られている ([19])。

5.2
Ca 理と Fubini 理の C*-map としての問題は実理 2.3（入
Proposition 2.1）の直接の逆結言上あるものである。A, B と C
環 C, D のそれぞれの C* 部分環としたとき

\[F_{\text{C SP}} \left(A, B \right) = \{ x \in C \| R_{\phi} \left(x \right) \in B, f(x) \in A \}
\]

で (C @ D により) A, B と Fubini 理と考える（高木, [48], [49]
[59]). F_{\text{C SP}} \left(A, B \right) はある場合には \(A \uparrow B \) に定
的に写されうるが, Wansermand [59], [60] によつて示されているように一般に \(A = C(H) \) と \(B = C(H) \) 十分簡単な C* 理でも \(C(H) \uparrow C(H) \) は \(C(H) \uparrow C(H) \) と定
的に写されうる。しかし \(x \in F_{\text{C SP}} \left(A, B \right) \) の元の時には \(R_{\phi} \left(x \right) \) の値は \(f(A) \) の A
への制限に \(x \in A \) するに \(\phi \) は \(\phi \) で定
う C* map

\[\phi(x) : x \in A^* \rightarrow R_{\phi}(x) \in B \] (\(\phi \) は \(\phi \) の拡大)

がもとめられる。 \(x \in C \) の時には \(\phi(x) \) は C*-map である。従って
Fubini 理の問題は \(A^* \) と \(B \) と \(A \) の有限次 C*-map
のある種の closure の問題を含むとよくは C* map の集合の大さ
さがその closure の空間 { \(\phi(x) | x \in F_{\text{C SP}} \left(A, B \right) \} \) と \(f(A) \) と
\(x \in A \uparrow B \) の性質の問題であるとも思える。\(\phi \) は \(\phi \)
の問題とも関係もしゅう. 実際上 \(C(H) \uparrow C(H) \) については
Wansermand の結果は Calvin algebra \(C(H) \uparrow C(H) \) の恒等写像

5.3
サム(H)までは持ち上げられなかった(知らされていない)結果の説明を含んでいる。更に又(回)でより後期の部分としてExt(A)の例を多く示したが(1)の前に述べた論文に負う所があまり。一方上記のようにCP-mapの空間のCharacterizationは直接関連として(定理2.2に見
みられる)von Neumann環としてグラニル環R頸と
(3)のリノル環R頸と比較の問題を含んでいた(30)。
R頸とR頸と(1)(2)の関係をweakly continuous で
map するFubini 積分はTrivial でありこれが定理2.3
の中身であるとも言える(定理2.3の注解を参照)
Fubini 積分をまたする特徴を示すにはnuclear と深い関
係がある(30; 定理4.4の(i))はかたりなくapproximation
property と関係が深く、実際 Banach 空間の入グラニル環
においてはEがapproximation property を持つことと
∀ E ∈ E, ∀ K ⊆ F に∀

\[F \otimes K (E, F) = E \otimes F \]
とすることとは同値である(30).
このほかは1つつでは(1)の初めばかりでなくそのsubspace上(又はその閉の)CP-mapに関した Arveson [2], [3]が研究を
ひっかくことは出来かっもつつある
最後にC環のinjective hull についての注目の部分にふ
ってみる。Injective な C 環は自動的に C 環に

S.4
なぜなら (43) ので一般の C* 環の Category の中では injectivity を有することが出来る。しかし Banach 空間での事例から推察しても C* 環 A のある意味での C* envelope として A を含む injective C* 環の存在が分かられたのが Romeo [59] によって証明したものである。また Banach 空間の例を調べてみたところでは、A がある injective C* 環 B の部分環に含まれている。A の C* -injective envelope は B の示に C* 部分環として成立立っている。理にかならぬからではない、しかし B の self-adjoint な subspace として考える理にかなると出る。これは injectivity の C* 環への関係についての事、は自らの面での色をも研究が期待される。A の例では self-adjoint part の Banach 空間としての injective hull と C* -injective hull との間関係などもいくつかある。
1. J. Anderson, A C^*-algebra A for which $\text{Ext}(A)$ is not a group, preprint
9. M. D. Choi, Positive linear maps on C^*-algebras,

11. ———, A simple C*-algebra generated by two finite order isometries, preprint

12. A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 73-115

17. ———, Nuclear C*-algebras and injectivity; The general case, preprint

18. ———, The completely positive lifting problem, Ann. of Math. 104 (1976), 585-609

19. ———, Lifting problem and the cohomology
of C^*-algebras, preprint.

22 ———, Injectives and tensor products for convex sets and C^*-algebras, Lecture Note at NATO Institute at the Univ. College of Swansea, Wales 1972.

29 M. Hasumi, The extension property of complex Banach
30. U. Haagerup, The standard form of von Neumann
algebras, Math. Scand. 37 (1975), 271–283
31. ———, An example of a non nuclear C*-algebra,
which has the metric approximation property, preprint
32. J. Hakeda and J. Tomiyama, On some extension property
33. J. L. Kelley, Banach spaces with the extension property,
34. L. Nachbin, A theorem of the Hahn–Banach type for linear
12 (1973), 157–176
36. ———, Tensor products of non-unital C*-algebras,
37. T. Okuyasu, Some cross norms which are not uniformly
38. ——— and M. Takesaki, Dual spaces of tensor
39. T. Okuyasu, On the tensor products of C*-algebras,
40 R. T. Powers and E. Størmer, Free states of the canonical
46 ———, Tensor products and projections of norm one in von Neumann algebras, Lecture note, Univ. of Copenhagen (1970)
47 ———, Applications of Fubini mappings to tensor products of Banach algebras, Seminar, Univ. of Copenhagen (1970)

52. Tomita's theory of modular Hilbert algebras and its applications, Lecture note in Math. 128, Springer

55. Injective W*-algebras, preprint.

56. A pathology in the ideal space of $L(H) \otimes L(H)$, preprint.

57. P. Enflo, A counterexample to the approximation

60. ———, Injective envelopes of operator systems, preprint