ひずみ空間多重せん断モデルによる粘性土の力学挙動の表現

Modeling of Clay through Strain Space Multiple Mechanism Model

井合 進・上田恭平

Susumu IAI and Kyohei UEDA

Synopsis

The strain space multiple mechanism model, originally developed for cyclic behavior of granular materials such as sand, is adapted for idealizing stress strain behavior of clay under monotonic and cyclic loads. The proposed model has advantages over the conventional elasto-plastic models of Cam-clay type in the facts that (1) arbitrary initial K0 state can be analyzed by static gravity analysis, (2) stress induced anisotropy (i.e. effect of initial shear) in the steady (critical) state can be analyzed based on Shibata's dilatancy model (1963), (3) over-consolidated clay can be analyzed by defining the dilatancy at the steady state based on over-consolidation ratio, (4) strain rate effects for monotonic and cyclic shear can be analyzed based on Isotach model proposed by Tatsuoka et al (2002) in the strain rate ranging from zero to infinity in addition to the conventional strain rate effects of secondary consolidation (creep) type. Performance of the proposed model is demonstrated through simulation of drained/undrained behavior of clay under monotonic and cyclic loading.

キーワード: 粘性土, 異方性, ひずみ速度効果, 圧密沈下, 地震応答 Keywords: clay, anisotropy, strain rate effect, consolidation, earthquake response

1. はじめに

ひずみ空間多重せん断モデル(Iai et al., 2011)は,地 震時の液状化を含む地盤・構造物系の動的解析に広 く利用されている.本研究では,このモデルの粘土 地盤の圧密解析とこれに引き続く地震応答解析への 適用性について,検討することとした.

ひずみ空間多重せん断モデルの構成式の観点から 砂と粘土との相違点を眺めると、両者間で本質的な 相違はなく、モデルパラメタ(もしくは、モデルパ ラメタを状態変数とする一般化の方法)の相違に帰 着する.具体的には、砂と異なり、粘性土では、以 下のとおりとなる.

(1) 接線体積剛性の拘束圧依存性を規定する指数が1.0となる.

(2) 限界状態(砂の場合の Steady state)が初期応力 誘導異方性を持つ. (3) 過圧密からのせん断において,粘着力がゼロの 場合の Mohr-Coulomb の破壊基準に対応するせん断 破壊線を越える(上回る)応力経路を辿り,限界状 態に至る.

(4) ひずみ速度依存性(二次圧密および地震時の粘 性減衰)の影響が著しい.

また,既往の弾塑性モデルを組み込んだ数値解析 法では,初期応力を入力パラメタとして(静止土圧 係数 K0 により)指定するものが多い.このような数 値解析法は,水平成層地盤上に建設される盛土によ る圧密沈下解析のように,初期応力が静止土圧係数 と鉛直有効応力分布で規定される場合には適用性が あると考えられる.しかし,一般的な地盤・構造物 系を対象とする解析では,初期応力分布が静止土圧 係数と鉛直有効応力分布のみでは規定できない.一 般には,地盤・構造物系を対象とした静的自重解析 (重力に伴って発生する地盤・構造物内の応力分布 の解析)を行って初期応力分布を決定する必要がある.その際に、パラメタを任意に与えるのではなく、 水平成層地盤で想定される静止土圧係数が同じ静的 自重解析で実現できるという制約条件を満たす地盤 パラメタの組合せを与えることが必要となる.

なお,本報告は,前報(Iai, 2012)における検討結果 を吟味し,モデルの汎用性,安定性を拡張したもの である.

2. 粘性土の圧密沈下・地震応答解析における モデル化での基礎的事項

粘性土の力学挙動は,正規圧密からの挙動と過圧 密からの挙動とが著しく異なることが知られている. これを,弾塑性モデルでは,降伏曲面や塑性ポテン シャルを導入することにより,表現する.しかし, ひずみ空間多重せん断モデルでは,降伏曲面や塑性 ポテンシャルを導入せずに,ひずみ空間における現 在のひずみおよびその履歴に応じて粘性土の状態を 規定していくこととなる.この点が,ひずみ空間多 重せん断モデルによるモデル化の特徴であり,弾塑 性モデルと共通する事項とともに,弾塑性モデルと は異なる事項も多い.

そこで,ひずみ空間多重せん断モデルによる粘性 土の力学挙動のモデルの具体的な定式化に先立って, 本章では,モデル化における基礎的事項を示す.

2.1 間隙比,体積ひずみ,平均有効応力の基礎的関係

粘性土の圧縮伸張成分の定式化で基本となる体積 ひずみ *ε* は,間隙比 *e* と以下の関係がある.

$$\dot{\varepsilon} = \frac{\dot{e}}{1+e} \tag{1}$$

これを、体積ひずみ $\mathcal{E} = \mathcal{E}_{a}$,間隙比 $\mathcal{e} = \mathcal{e}_{a}$ の点を 参照点として積分して、

$$\mathcal{E} - \mathcal{E}_{a} = \ln\left(\frac{1+e}{1+e_{a}}\right) \tag{2}$$

他方,粘性土においては,間隙比と平均有効応力の 関係として与えられる圧密曲線の接線勾配を以下で 与える. 正規圧密:

$$\dot{e} = -\frac{\lambda}{p}\dot{p}$$
(3)

過圧密:

$$\dot{e} = -\frac{\kappa}{p}\dot{p} \tag{4}$$

これらを、体積ひずみに関する圧密曲線の接線勾配 に書き換えると、以下となる. 正規圧密:

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon} = -\frac{1+e}{\lambda}p\tag{5}$$

過圧密 :

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon} = -\frac{1+e}{\kappa}p\tag{6}$$

ここで, 圧密曲線の接線勾配は圧力 *p* に比例する と仮定(近似)し,参照する拘束圧力 *p*_a における 間隙比を *e*_a を接線勾配を規定する際の参照間隙比 とすると, 正規圧密:

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon} = -\frac{1+e_{\mathrm{a}}}{\lambda}p\tag{7}$$

過圧密 :

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon} = -\frac{1+e_{\mathrm{a}}}{\kappa}p \tag{8}$$

通常,式(5),(6)は、ダイレイタンシーが発生しない 場合に適用されるので、これらの式において、体積 ひずみ *E* を有効体積ひずみ

$$\mathcal{E}' = \mathcal{E} - \mathcal{E}_d \tag{9}$$

(ここに, \mathcal{E}_{d} はダイレイタンシーによる体積ひず み)に置き換え,以下を得る. 正規圧密:

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon'} = -\frac{1+e_{\mathrm{a}}}{\lambda} p \tag{10}$$

過圧密 :

$$\frac{\mathrm{d}p}{\mathrm{d}\varepsilon'} = -\frac{1+e_{\mathrm{a}}}{\kappa}p \tag{11}$$

よって,粘性土の接線体積剛性(以下,体積弾性係 数とよぶ)は,以下のとおり与えられる. 正規圧密:

$$K_{\rm L/U} = \frac{1 + e_{\rm a}}{\lambda} p \tag{12}$$

過圧密 :

$$K_{\rm L/U} = \frac{1 + e_{\rm a}}{\kappa} p \tag{13}$$

ここに,

$$K_{\rm L/U} = -\frac{\mathrm{d}p}{\mathrm{d}\varepsilon'} \tag{14}$$

式(10)(11)を初期条件 $\varepsilon' = \varepsilon'_0$ の時, $p = p_0$ で 積分すると, 正規圧密:

$$\ln \frac{p}{p_0} = -\frac{\mathcal{E}' - \mathcal{E}'_0}{\mathcal{E}_{m0}}$$
(15)

過圧密:

$$\ln \frac{p}{p_0} = -\frac{\mathcal{E}' - \mathcal{E}'_0}{\mathcal{E}_{\rm me}} \tag{16}$$

$$\varepsilon_{\rm m0} = \frac{\lambda}{1 + e_{\rm a}} \tag{17}$$

$$\mathcal{E}_{\rm me} = \frac{\kappa}{1 + e_a} \tag{18}$$

2.2 過圧密域

圧密沈下解析における正規圧密および過圧密での 接線体積剛性(以下においては,正規圧密,過圧密 によらず,体積弾性係数とよぶ)の相違を考慮する ため,過圧密域(過圧密での体積弾性係数を与える 領域)を,ひずみ空間内に設定する.過圧密域外の 領域(正規圧密での体積弾性係数を与える領域)は, 以下において,塑性域とよぶ.

この設定にあたり、過圧密状態からの解析におけ る初期の有効体積ひずみが \mathcal{E}'_0 ,また、これに対応 する正規圧密曲線上の降伏圧密応力での有効体積ひ ずみが \mathcal{E}'_{r0} (Fig.1)、で与えられるものとする.ま た、初期の有効体積ひずみ \mathcal{E}'_0 における正規圧密曲 線上の圧力 p_{n0} は、初期の圧力 p_0 から、以下によ り与えられるものとする.

$$p_{n0} = r_{p_{n0}} p_0 \tag{19}$$

これらの条件において,過圧密域を,ひずみ空間 において, $\varepsilon'_0 \ge \varepsilon' \ge \varepsilon'_{r_0}$ の範囲,すなわち,初期 有効体積ひずみ ε'_0 の圧縮側に相当する $0 \le -(\varepsilon' - \varepsilon'_0) \le -(\varepsilon'_{r_0} - \varepsilon'_0)$ の範囲,で与える.

他方,過圧密状態から,有効体積ひずみが一定の 条件でせん断する場合には,土は塑性的な挙動を示 し、その際の体積弾性係数は、正規圧密での体積弾 性係数に準じたものとなるとすると、既往の室内試 験における過圧密粘土の非排水せん断挙動と整合す るものと考えられる.

これらの体積圧縮およびせん断挙動を表現するため、初期有効体積ひずみ \mathcal{E}'_0 および初期偏差ひずみ $\overline{\mathcal{E}}_0$ を原点とし、その体積圧縮側を中心とする方向 に広がる過圧密域を、過圧密域の圧縮側の限界に相 当する $\mathcal{E'}_r^*$ を用いて、以下のとおり設定する (Fig.2).

$$0 \le \theta \le \theta_{e} \quad \forall^{3} \frown 0 \le -(\varepsilon' - \varepsilon'_{0}) \le -(\varepsilon'_{r} - \varepsilon'_{0}) : \text{ elastic} \qquad (20)$$

$$z \ge z_{c},$$

$$\theta = \tan^{-1} \left(\frac{\gamma^*}{-(\varepsilon' - \varepsilon'_0)} \right)$$
(21)

$$\gamma^* = \sqrt{\left(\left(\varepsilon_x - \varepsilon_y\right) - \left(\varepsilon_{x0} - \varepsilon_{y0}\right)\right)^2 + \left(\gamma_{xy} - \gamma_{xy0}\right)^2}$$
(22)

過圧密域内外では、体積弾性係数およびダイレイ タンシー挙動は異なる(体積弾性係数は、過圧密域 では式(11)、また、塑性域では式(10)で与えられる) ものとし、ダイレイタンシーを除くせん断挙動は、 過圧密域内外で同じとする.

2.3 限界状態におけるダイレイタンシー

粘性土における限界状態(砂の Steady state)を 表現するため、まず、初期自重解析後の初期有効体 積ひずみ $\mathcal{E}'_0 = \mathcal{E}_0$ (初期自重解析では、後述のとお り、ダイレイタンシーを考慮しないため)に対応す る正規圧密曲線上の初期有効拘束圧力 p_{n0} (Fig.1) を、入力パラメタを用いて、式(19)で与える.この パラメタは粘性土の室内試験結果から直接求めるか、 または、粘性土の過圧密比 OCR と λ, κ から以下で 求める.

$$r_{n} = \text{OCR}^{(1-\kappa/\lambda)} \tag{23}$$

上の式より,自重解析における応力経路とは独立して,自重解析後の過圧密の状態を,以下のように与 えることができる.

 $r_{p_{n0}} = 1$:正規圧密状態からの圧密沈下・地震応 答解析

 $r_{p_{n0}} > 1$:過圧密状態からの圧密沈下・地震応答 解析 Fig.3 のように、粘性土の挙動を、体積ひずみ-有 効拘束圧力の関係で表示すると、正規圧密状態から の解析では、同図において、正規圧密曲線が収縮的 ダイレイタンシー \mathcal{E}_{d}^{c} に応じて、次第に限界状態線 に近づいていき、最終的に収縮的ダイレイタンシー が限界状態の値 $\mathcal{E}_{d}^{c} = \mathcal{E}_{dus}^{c}$ に達した時に、限界状態 線に到達すると考える.

他方,過圧密状態からの解析で,非排水せん断の 挙動が支配的な場合には,Fig.2を参照すると,ひず み空間に与えた過圧密域の外側の領域の挙動となる. この場合には,体積弾性係数は,過圧密での式(13)で はなく,正規圧密でのものと同様に,式(12)で与える. よって,過圧密域からの非排水せん断により限界状 態に到達する過程では,Fig.3に示すように,正規圧 密曲線に準じた接線剛性を持つ圧密曲線が,収縮的 ダイレイタンシー \mathcal{E}_{d}^{c} と膨張的ダイレイタンシー \mathcal{E}_{d}^{d} との和で与えられるダイレイタンシーに応じて, 限界状態線に近づいていき,最終的にこれらのダイ レイタンシーが限界状態の値 $\mathcal{E}_{d}^{c} = \mathcal{E}_{dus}^{c}$, $\mathcal{E}_{d}^{d} = \mathcal{E}_{dus}^{d}$ となったときに,限界状態線に到達すると考える.

なお、過圧密状態からの解析で、体積圧縮が支配 的な場合など過圧密域を通過するひずみ経路での解 析では、体積弾性係数は、過圧密でのものとなり、 式(13)で与える.

限界状態でのダイレイタンシーは、収縮的成分お よび膨張的成分の和として、以下で与えられるとす る (Fig.3).

$$\mathcal{E}_{\rm dus} = \mathcal{E}_{\rm dus}^{\rm c} + \mathcal{E}_{\rm dus}^{\rm d} \tag{24}$$

これらの成分は、それぞれ以下により与える.

(1)限界状態での膨張的ダイレイタンシー

体積ひずみ-平均圧力の関係で与えられる Fig.3 を参照し、有効体積ひずみ-平均圧力の関係として 式(15)で与えられる圧密曲線において、初期状態では $\mathcal{E}_{d} = 0$,正規圧密曲線上では $\mathcal{E}_{d} = \mathcal{E}_{dus}^{d}$ となるこ とから、正規圧密曲線は、以下で与えられる.

$$\ln \frac{p}{p_0} = -\frac{\mathcal{E} - \mathcal{E}_{d \, us}^d - \mathcal{E}_0}{\mathcal{E}_{m0}} \tag{25}$$

この曲線が, 点 $p = p_{n0}$, $\mathcal{E} = \mathcal{E}_0$ を通ることから,

$$\varepsilon_{d\,us}^{d} = \varepsilon_{m0} \ln \frac{p_{n0}}{p_{0}} \tag{26}$$

式(19)より,

Fig.1 Effective volumetric strain at yield confining pressure \mathcal{E}'_{r0}

Fig.2 Over-consolidation region in strain space

Fig.3 Normal and over consolidation curves and steady state line in volumetric strain – effective confining pressure diagram

$$\boldsymbol{\mathcal{E}}_{d\,\mathrm{us}}^{\mathrm{d}} = \left(\ln r_{p_{\mathrm{n0}}}\right) \boldsymbol{\mathcal{E}}_{\mathrm{m0}} \tag{27}$$

正規圧密からの解析は、過圧密からの解析において、 $r_{p_{n0}} = 1$ とおいた場合に相当し、上の式をそのまま適用すればよい.

(2)限界状態での収縮的ダイレイタンシー

限界状態での収縮的ダイレイタンシーは,柴田の ダイレイタンシー式(Shibata, 1963)に基づいて,以下 で与える.

$$\varepsilon_{\rm dus}^{\rm c} = -D\eta_{\rm us}^{*} \tag{28}$$

ここに,2次元解析では,Fig.4 において,初期応力 点がAから半径 M の円周に向かうベクトルの長さ に相当し,以下で与えられる (Sekiguchi and Ohta, 1977)

$$\eta^*_{us} = \sqrt{\left(\left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_{us} - \left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_0\right)^2 + \left(\left(\frac{\tau_{xy}}{p}\right)_{us} - \left(\frac{\tau_{xy}}{p}\right)_0\right)^2}$$
(29)

Fig.4 Shear stress ratio at steady state for a stress path from initial stress point A

柴田のダイレイタンシーパラメタDは、ダイレイ タンシーパラメタ Λ を用いて、以下のとおり書ける.

$$D = \frac{\Lambda}{M} \frac{\lambda}{1 + e_0} = \frac{\Lambda}{M} \varepsilon_{m0}$$
(30)

ここに,

$$M = \sqrt{\left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_{us}^2 + \left(\frac{\tau_{xy}}{p}\right)_{us}^2}$$
(31)

これを式(28)に代入して,

$$\varepsilon_{\rm dus}^{\rm c} = -\frac{\eta_{\rm us}^{*}}{M}\Lambda\varepsilon_{\rm m0} \tag{32}$$

なお、弾塑性モデルでは、降伏曲面に一致する塑性 ポテンシャル面の接線勾配が、限界状態においてゼ ロとなるという条件から、ダイレイタンシーパラメ タ Λ と λ , κ の間に、以下の関係が成り立つ.

$$\Lambda = 1 - \frac{\kappa}{\lambda} \tag{33}$$

しかし、ひずみ空間多重せん断モデルでは、降伏 曲面や塑性ポテンシャルを必要としないので、式(33) の関係は満たす必要がなく、ダイレイタンシーパラ メタ Λ は、 λ 、 κ の値とは独立して、非排水せん 断試験結果に基づいて得られる限界状態を適切に表 現するように設定することができる.

また、上の定式化においては、限界状態に与える 初期応力誘導異方性を式(29)により考慮しているが、 Cam Clay 型モデルのように限界状態が等方性を持 つと考える場合には、終局状態でのせん断応力比が 式(31)で与えられることから、これを式(32)の分子に 代入することにより、

$$\varepsilon_{\rm dus}^{\rm c} = -\Lambda \varepsilon_{\rm m0} \tag{34}$$

また、Cam Clay 型モデルにおいて、初期有効体積 ひずみ \mathcal{E}'_0 での終局状態のせん断抵抗を、入力パラ メタとして q_{usa} で与える場合には、この限界状態で の有効拘束圧力は、以下で与えられる.

$$p_{\rm usa} = q_{\rm usa} \,/\,{\rm M} \tag{35}$$

これより,限界状態におけるダイレイタンシーを, 以下で与える.

$$\varepsilon_{\rm dus}^{\rm c} = \ln \left(\frac{p_{\rm usa}}{p_{\rm n0}} \right) \varepsilon_{\rm m0} \tag{36}$$

2.4 限界状態におけるせん断応力比の予測値

限界状態における収縮的ダイレイタンシーを与え る式(29)のせん断応力比を求めるためには、限界状 態における応力が必要となる.しかし、この応力は 予め与えられず、解析結果として与えられることと なる.よって、解析途中の現在の応力状態に基づい て、限界状態の応力を予測して、限界状態における せん断応力比を予測することとする.これを、以下 のとおり与える.

まず、初期応力ベクトルの方向と横軸

 $((\sigma_x' - \sigma_y')/2p)$ 方向とのなす角度を, Fig.5 のとおり,以下で定義する.

$$\cos \omega_0 = \left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_0 / \eta_0 \tag{37}$$

$$\sin \omega_0 = \left(\frac{\tau_{xy}}{p}\right)_0 / \eta_0 \tag{38}$$

$$\Xi \equiv \langle z, \rangle$$

$$\eta_0 = \sqrt{\left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_0^2 + \left(\frac{\tau_{xy}}{p}\right)_0^2} \tag{39}$$

次に,現在の応力ベクトルの方向(初期応力点 A を起点とする相対的な応力ベクトルの方向)を以下 で求める.

$$\cos \omega^* = \left[\left(\frac{\sigma_x' - \sigma_y'}{2p} \right) - \left(\frac{\sigma_x' - \sigma_y'}{2p} \right)_0 \right] / \eta^* \quad (40)$$

$$\cos \omega^* = \left[\left(\frac{\tau_{xy}}{p} \right) - \left(\frac{\tau_{xy}}{p} \right)_0 \right] / \eta^*$$
(41)

,

$$\eta^* = \sqrt{\left(\left(\frac{\sigma_x' - \sigma_y'}{2p}\right) - \left(\frac{\sigma_x' - \sigma_y'}{2p}\right)_0\right)^2 + \left(\left(\frac{\tau_{xy}}{p}\right) - \left(\frac{\tau_{xy}}{p}\right)_0\right)^2}$$
(42)

これを用いて,初期応力ベクトルの方向との相対 的な角度(Fig.5)を以下で求める.

$$\boldsymbol{\omega}^* = \boldsymbol{\omega}^* - \boldsymbol{\omega}_0 \tag{43}$$

これを,限界状態における応力ベクトルの方向の 当面の予測値とし,以下により,限界状態でのベク トルの方向(原点を起点とする初期応力ベクトルの 方向に対する相対的な方向)の予測値を求める.

$$M\cos\omega' = \eta_0 + \eta_{\mu s}^* \cos\omega^*$$
 (44)

$$M\sin\omega' = \eta^*_{\text{us}}\sin\omega^*$$
(45)

ここに、2次現解析においては、

$$M = \sin \phi_{\rm f} \tag{46}$$

これを用いて,限界状態 (B 点) での η^*_{us} の予測値 を以下で与える.

$$\mathbf{M}^{2} = \left(\eta_{0} + \eta_{us}^{*} \cos \omega^{*'}\right)^{2} + \left(\eta_{us}^{*} \sin \omega^{*'}\right)^{2}$$
(47)

これを η^*_{us} について解いて,

Fig.5 Prediction of shear stress ratio vector at steady state

$$\eta^{*}_{us} = -\eta_0 \cos \omega^{*} + \sqrt{(\eta_0 \cos \omega^{*})^2 + M^2 - \eta_0^2} \quad (48)$$

2.5 間隙比と体積ひずみの関係

以上において,間隙比との明示的な対応付けが必 要な場合には,以下の関係を準用する.

$$\mathcal{E} - \mathcal{E}_{a} = \ln\left(\frac{1+e}{1+e_{a}}\right) \tag{49}$$

この関係は、初期自重解析で算定される体積ひずみ が、液状化解析で算定される体積ひずみに引き継が れることを前提とした関係であるが、初期自重解析 で算定される体積ひずみ(すなわち、液状化解析で の初期体積ひずみ \mathcal{E}_0)は、明示的には使用せずに 解析を行う点で、修正が必要となる.この修正は、 Fig.6に示すとおり、間隙比を算定する際に用いる液 状化解析での初期体積ひずみを、液状化解析での正 規圧密曲線上の初期有効拘束圧力 p_{n0} に対応する 体積ひずみ \mathcal{E}_{n0} に置換することにより行う.すなわ ち、間隙比と体積ひずみの関係を以下で与える.

$$\left(\varepsilon - \varepsilon_0 + \varepsilon_{n0}\right) - \varepsilon_a = \ln\left(\frac{1+e}{1+e_a}\right)$$
 (50)

液状化解析用の正規圧密曲線が p_a , \mathcal{E}_a を通るという条件から,

$$\varepsilon_{\rm n0} - \varepsilon_{\rm a} = -\left(\ln\left(\frac{p_{\rm n0}}{p_{\rm a}}\right)\right)\varepsilon_{\rm ma} \tag{51}$$

$$\varepsilon_{\rm ma} = p_{\rm a} / \left(r_{\rm K} K_{\rm Ua} \right) = \lambda / \left(1 + e_{\rm a} \right) \tag{52}$$

Fig.6 Volumetric strain – confining pressure dependency for computing void ratio (modifying initial volumetric strain)

よって、次式により、間隙比を算定すればよい.
$$\ln\left(\frac{1+e}{1+e_{a}}\right) = \left(\varepsilon - \varepsilon_{0}\right) - \left(\ln\left(\frac{p_{n0}}{p_{a}}\right)\right)\varepsilon_{ma}$$
(53)

2.6 クリープによる体積ひずみ

粘性土地盤の2次圧密挙動を表現するため、ひず み空間多重せん断モデルにおいては、式(9)による有 効体積ひずみの定義を一般化し、クリープによる体 積ひずみ*E*。を用いて以下で与える.

$$\mathcal{E}' = \mathcal{E} - \mathcal{E}_{d} - \mathcal{E}_{c} \tag{54}$$

ここに、クリープによる体積ひずみ \mathcal{E}_{c} は、二次圧 密係数 α_{c} 、圧密解析開始時点(t=0)からの経 過時間tを用いて、以下の漸化式(時間積分におい て、pステップから、現(p+1)ステップの値を 求める式)により求める.(なお、現ステップは、上 添字のステップ数を省略して表す)

$$\mathcal{E}_{\rm c} = \mathcal{E}_{\rm c}^{\ p} + \Delta \mathcal{E}_{\rm c} \tag{55}$$

$$\Delta \varepsilon_{\rm c} = -\alpha_{\rm c} \left(\ln \left(t + t_{\rm c} \right) - \ln \left(t^p + t_{\rm c} \right) \right) \tag{56}$$

ここに、積分時間間隔を Δt とすると、

$$t = t^{p} + \Delta t \tag{57}$$

また,式(55)における時間パラメタ $t_{\rm c}$ は,クリープの初期体積(圧縮)ひずみ速度 $\dot{v}_0 \left(=-\dot{\mathcal{E}}_{\rm c0}\right)$ から,

以下により与える.

$$t_{\rm c} = \alpha_{\rm c} / \dot{v}_0 \tag{58}$$

漸化式型のアルゴリズムの導入により,過圧密域で の二次圧密係数の変化など,粘性土の状態に応じた 二次圧密係数の変化への対応が可能となる.

他方,漸化式を用いない場合には、クリープによる体積ひずみ \mathcal{E}_{c} は、二次圧密係数 α_{c} 、初期体積ひずみ速度 $\dot{\mathcal{E}}_{c0}$ より、

$$\mathcal{E}_{c} = -\alpha_{c} \left(\ln \left(t + t_{c} \right) - \ln t_{c} \right) = -\alpha_{c} \ln \left(\frac{t + t_{c}}{t_{c}} \right)$$
(59)

$$\dot{\varepsilon}_{\rm c0} = -\frac{\alpha_{\rm c}}{t_{\rm c}} \tag{60}$$

$$\dot{\varepsilon}_{\rm c} = -\frac{\alpha_{\rm c}}{t+t_{\rm c}} \tag{61}$$

$$\mathcal{E}_{\rm c} = -\alpha_{\rm c} \ln \left(\frac{\dot{\mathcal{E}}_{\rm c0}}{\dot{\mathcal{E}}_{\rm c}} \right) \tag{62}$$

これを書き換え、クリープに関する以下の微分方程 式を得る.

$$\dot{\varepsilon}_{c} = \dot{\varepsilon}_{c0} \exp\left(\frac{\varepsilon_{c}}{\alpha_{c}}\right)$$
(63)

よって、二次圧密解析では、上を時間積分してい けば、解析中に二次圧密係数が状態に応じて可変と なっても対応できることとなり、式(55)による漸化式 型のアルゴリズムと等価な解析が可能となる.

なお、クリープは、過圧密域においても発生可能 とし、過圧密域に適用するパラメタは、塑性域のパ ラメタとは異なるパラメタ α_{ce} 、 \dot{v}_{0e} を用いること ができる.

構成式の基本形

3.1 積分形の構成式

2次元解析の場合,応力,ひずみベクトルを以下 で与える.

$$\boldsymbol{\sigma}^{\mathsf{T}} = \left\{ \boldsymbol{\sigma}_{x} \,' \quad \boldsymbol{\sigma}_{y} \,' \quad \boldsymbol{\tau}_{xy} \right\} \tag{64}$$

$$\boldsymbol{\varepsilon}^{\mathrm{T}} = \left\{ \boldsymbol{\varepsilon}_{x} \quad \boldsymbol{\varepsilon}_{y} \quad \boldsymbol{\gamma}_{xy} \right\}$$
(65)

多重せん断モデルの積分形の基本形を,以下で与 える.

$$\boldsymbol{\sigma}' = -p\boldsymbol{n}^{(0)} + \sum_{i=1}^{I} q^{(i)} \boldsymbol{n}^{(i)} \Delta \boldsymbol{\omega}$$
(66)

ここに,

$$\mathbf{n}^{(0)\mathrm{T}} = \left\{ 1 \quad 1 \quad 0 \right\} \tag{67}$$

$$\mathbf{n}^{(i)\mathrm{T}} = \left\{ \cos \omega_i - \cos \omega_i \quad \sin \omega_i \right\}$$
(for $i = 1, ..., I$) (68)

$$\omega_i = (i-1)\Delta\omega \tag{69}$$

$$\Delta \omega = \pi / I \tag{70}$$

式(66)の等方成分 p および仮想単純せん断応力 $q^{(i)}$ は、有効体積ひずみ ε 'および仮想単純せん断 ひずみ ε "の関数として、以下で与える.

$$p = p(\varepsilon') \tag{71}$$

$$q^{(i)} = q^{(i)}(\gamma^{(i)}, \varepsilon', \varepsilon'')$$
 (72)

なお,式(72)において,仮想単純せん断ひずみ $\gamma^{(i)}$ のみの関数とせず,有効体積ひずみ ε' ,仮想有効体積ひずみ ε' ,仮想有効体積ひずみ ε' 。を含む関数としている理由は,「3.積分形の構成式(液状化解析)」で記述するとおり,仮想単純せん断機構の拘束圧力依存性および液状化状態依存性を考慮するためである.

上の関係より,応力の等方成分 *p* よび体積ひず み*E* は,以下で与えられる.

$$p = -\frac{1}{2}\mathbf{n}^{(0)\mathrm{T}}\boldsymbol{\sigma}' = -\frac{1}{2}\left(\boldsymbol{\sigma}'_{x} + \boldsymbol{\sigma}'_{y}\right)$$
(73)

$$\boldsymbol{\varepsilon} = \mathbf{n}^{(0)\mathrm{T}} \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_x + \boldsymbol{\varepsilon}_y \tag{74}$$

さて,式(71)(72)における有効体積ひずみ \mathcal{E}' は, 体積ひずみからダイレイタンシーによる体積ひずみ 成分 \mathcal{E}_d およびクリープによる体積ひずみ成分(二 次圧密の表現用) \mathcal{E}_c を除去したものであり,以下 で与える.

$$\boldsymbol{\varepsilon}' = \mathbf{n}^{(0)\mathrm{T}} \boldsymbol{\varepsilon}'$$

= $\mathbf{n}^{(0)\mathrm{T}} \left(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{d}} - \boldsymbol{\varepsilon}_{\mathrm{c}} \right) = \boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{d}} - \boldsymbol{\varepsilon}_{\mathrm{c}}$ (75)

$$\boldsymbol{\varepsilon}_{\mathrm{d}} = \frac{\boldsymbol{\varepsilon}_{\mathrm{d}}}{2} \, \mathbf{n}^{(0)} \tag{76}$$

$$\boldsymbol{\varepsilon}_{c} = \frac{\boldsymbol{\varepsilon}_{c}}{2} \, \mathbf{n}^{(0)} \tag{77}$$

式(76)におけるダイレイタンシー成分は,以下のように収縮的成分 \mathcal{E}_d^c および膨張的成分 \mathcal{E}_d^d よりなる.

$$\mathcal{E}_{d} = \mathcal{E}_{d}^{c} + \mathcal{E}_{d}^{d} \tag{78}$$

すなわち,

$$\boldsymbol{\varepsilon}_{d} = \boldsymbol{\varepsilon}_{d}^{c} + \boldsymbol{\varepsilon}_{d}^{d}$$
(79)

ここに,

$$\boldsymbol{\varepsilon}_{d}^{c} = \frac{\boldsymbol{\varepsilon}_{d}^{c}}{2} \mathbf{n}^{(0)}$$
(80)

$$\boldsymbol{\varepsilon}_{d}^{d} = \frac{\boldsymbol{\varepsilon}_{d}^{d}}{2} \mathbf{n}^{(0)}$$
(81)

また,収縮的ダイレイタンシ増分の液状化状態依存性を表現するため,仮想有効体積ひずみ ε "を導入する.これは,有効体積ひずみから膨張的ダイレイタンシー成分を除去したものに相当するが,Cookie Modelでは,これをさらに一般化し,収縮的ダイレイタンシー成分に準じた仮想収縮的ダイレイタンシー ε_d^c "を用いて,マルチスプリングモデル(Iai et al., 1992a)の液状化フロントパラメタ S_0 に対応する有効体積ひずみを以下で与える.

$$\boldsymbol{\varepsilon}^{\,\prime\prime} = \mathbf{n}^{(0)T} \boldsymbol{\varepsilon}^{\,\prime\prime} = \mathbf{n}^{(0)T} \left(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{d}^{\,\prime} \, " - \boldsymbol{\varepsilon}_{c} \right) = \boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{d}^{\,\prime} \, " - \boldsymbol{\varepsilon}_{d}^{\,\prime}$$
(82)

仮想単純せん断ひずみ $\gamma^{(i)}$ は、以下で与える.

$$\gamma^{(i)} = \mathbf{n}^{(i)\mathrm{T}} (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{d}}) = \mathbf{n}^{(i)\mathrm{T}} \boldsymbol{\varepsilon}$$
(83)

ダイレイタンシー成分の増分は、ひずみ増分の線 形変換で与えられるものと仮定し、これを以下のと おり書く.

$$\mathbf{d}\boldsymbol{\varepsilon}_{\mathrm{d}} = \mathbf{n}_{\mathrm{d}}^{\mathrm{T}} \mathbf{d}\boldsymbol{\varepsilon}$$
(84)

$$\mathbf{d}\mathcal{E}_{\mathbf{d}}^{\mathbf{c}} = \mathbf{n}_{\mathbf{d}}^{\mathbf{c}\mathrm{T}} \mathbf{d}\mathbf{\varepsilon}$$
(85)

$$\mathbf{d}\boldsymbol{\varepsilon}_{\mathrm{d}}^{\mathrm{d}} = \mathbf{n}_{\mathrm{d}}^{\mathrm{dT}} \mathbf{d}\boldsymbol{\varepsilon}$$
(86)

$$\mathbf{d}\boldsymbol{\varepsilon}_{\mathrm{d}}^{\mathrm{c}}\,^{\mathrm{u}} = \mathbf{n}_{\mathrm{d}}^{\mathrm{c}}\,^{\mathrm{u}\mathrm{T}}\,\mathbf{d}\boldsymbol{\varepsilon} \tag{87}$$

よって,式(78)より,

$$\mathbf{n}_{\mathrm{d}} = \mathbf{n}_{\mathrm{d}}^{\mathrm{c}} + \mathbf{n}_{\mathrm{d}}^{\mathrm{d}} \tag{88}$$

上における基本形においては、地震時における粘 性減衰を考慮していない.これについては、後述す るとおり(3.5参照)、粘性減衰項を運動方程式に組 み込む形で考慮する.

3.2 増分形の構成式

増分形の構成式は,式(3)の両辺の微分をとれば,以下で与えられる.

$$d\boldsymbol{\sigma}' = -dp\boldsymbol{n}^{(0)} + \sum_{i=1}^{I} dq^{(i)} \boldsymbol{n}^{(i)} \Delta \boldsymbol{\omega}$$
(89)

$$dp = \frac{dp}{d\varepsilon'} d\varepsilon'$$
⁽⁹⁰⁾

$$\mathrm{d}q^{(i)} = \frac{\partial q^{(i)}}{\partial \gamma^{(i)}} \mathrm{d}\gamma^{(i)} + \frac{\partial q^{(i)}}{\partial \varepsilon} \mathrm{d}\varepsilon' + \frac{\partial q^{(i)}}{\partial \varepsilon''} \mathrm{d}\varepsilon'' \quad (91)$$

式(90)(91)に、式(75)(82)(83)を代入すると、

$$dp = \frac{dp}{d\varepsilon'} \mathbf{n}^{(0)T} d\left(\mathbf{\varepsilon} - \mathbf{\varepsilon}_{d} - \mathbf{\varepsilon}_{c}\right)$$
(92)

$$dq^{(i)} = \frac{\partial q^{(i)}}{\partial \gamma^{(i)}} \mathbf{n}^{(i)T} d\boldsymbol{\varepsilon} + \frac{\partial q^{(i)}}{\partial \varepsilon} \mathbf{n}^{(0)T} d(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{d} - \boldsymbol{\varepsilon}_{c}) + \frac{\partial q^{(i)}}{\partial \varepsilon} \mathbf{n}^{(0)T} d(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{d}^{c} - \boldsymbol{\varepsilon}_{c})$$
(93)

式(92)(93)および式(84)~(86)を式(89)に代入すれば, 増分形の構成式が以下のとおり与えられる.

$$d\boldsymbol{\sigma}' = \mathbf{D}d\boldsymbol{\varepsilon} + \mathbf{D}_{c}d\boldsymbol{\varepsilon}_{c} \tag{94}$$

$$\mathbf{D} = K_{\mathrm{L}/\mathrm{U}} \mathbf{n}^{(0)} \mathbf{n}^{(0)\mathrm{T}} + \sum_{i=1}^{I} G_{\mathrm{L}/\mathrm{U}}^{(i)} \mathbf{n}^{(i)} \mathbf{n}^{(i)\mathrm{T}} \Delta \boldsymbol{\omega}$$
$$-K_{\mathrm{L}/\mathrm{U}} \mathbf{n}^{(0)} \mathbf{n}_{\mathrm{d}}^{\mathrm{T}} + \sum_{i=1}^{I} \left(H^{(i)} + L^{(i)} \right) \mathbf{n}^{(i)} \mathbf{n}^{(0)\mathrm{T}} \Delta \boldsymbol{\omega}$$
$$-\sum_{i=1}^{I} \left(H^{(i)} \mathbf{n}^{(i)} \mathbf{n}_{\mathrm{d}}^{\mathrm{T}} + L^{(i)} \mathbf{n}^{(i)} \mathbf{n}_{\mathrm{d}}^{\mathrm{c} \mathrm{"T}} \right) \Delta \boldsymbol{\omega}$$

(95)

$$\mathbf{D}_{c} = -K_{L/U} \mathbf{n}^{(0)} \mathbf{n}^{(0)T}$$
$$-\sum_{i=1}^{I} \left(H^{(i)} + L^{(i)} \right) \mathbf{n}^{(i)} \mathbf{n}^{(0)T} \Delta \boldsymbol{\omega}$$
$$\subset \subset \mathcal{I}_{\mathcal{C}}, \qquad (96)$$

$$K_{\rm L/U} = -\frac{\mathrm{d}p}{\mathrm{d}\varepsilon'} \tag{97}$$

$$G_{\rm LVU}^{(i)} = \frac{\partial q^{(i)}}{\partial \gamma^{(i)}} \tag{98}$$

$$H^{(i)} = \frac{\partial q^{(i)}}{\partial \varepsilon'} \tag{99}$$

$$L^{(i)} = \frac{\partial q^{(i)}}{\partial \varepsilon"}$$

(100)

式(95)の右辺の第1項,第2項は,それぞれ圧縮伸張 およびせん断に関する増分形を表し,対称マトリク スである.第3項は圧縮伸張へのダイレイタンシー の影響,第4項はせん断機構の拘束圧依存性および 液状化状態依存性,第5項はせん断機構に与えるダ イレイタンシーの影響を表すものである.これら第 3~5項は,いずれも圧縮伸張の機構とせん断に関 する機構のカップリングの3種類の機構を示すもの で,非対称マトリクスとなる.

簡単のため、以下においては、増分形における式 (94)のクリープによる応力増分 **D**_cd**E**_c の項を無視 し、積分形においてのみクリープによる体積ひずみ を考慮する形で数値解析を行う.

4. 積分形の構成式(圧密沈下・地震応答解析)

4.1 圧縮伸張成分 p の定式化

(1) 塑性域のみを考慮する解析

に,以下で与えられる.

正規圧密からの圧密沈下・地震応答解析や過圧密か らの地震応答解析のように,過圧密域を考慮しない 解析が適用できることが明らかな場合には,正規圧 密からの砂の液状化解析に準じて,体積弾性係数を 以下で与える.

$$K_{\rm L/U} = K_{\rm U01} \left(\frac{p}{p_0}\right)^{l_{\rm K}} \tag{101}$$

ここに、体積弾性係数の拘束圧依存性の指数は、式 (12)類に示す $l_{K} = 1$ の場合を拡張し、 $l_{K} \neq 1$ の場合も解析できるようにしている.また、式(101)における有効拘束圧力 p_{0} での体積弾性係数 K_{U01} は、既往のひずみ空間多重せん断モデルによる砂の液状化解析(カクテルグラスモデルによる)と同様に、参照拘束圧力 p_{a} における体積弾性係数 K_{Ua} を基

$$K_{\rm U01} = r_K K_{\rm Ua} \left(\frac{p_0}{p_{\rm a}}\right)^{l_K} \tag{102}$$

これを、初期有効体積ひずみを \mathcal{E}'_0 、初期拘束圧力 を p_0 として、 $p = p_0$ の時、 $\mathcal{E}' = \mathcal{E}'_0$ の条件で 積分して、

$$l_{K} \neq 1 \quad \bigcirc 時$$
$$p = p_{0} \left(\eta + 1 \right)^{\frac{1}{1 - l_{K}}} \tag{103}$$

$$\eta = -(1 - l_{\kappa})(\varepsilon' - \varepsilon'_{0}) / \varepsilon_{m0}$$
⁽¹⁰⁴⁾

 $l_{K} = 1 \quad \bigcirc 時$ $p = p_{0} \exp \eta \tag{105}$

$$\eta = -\left(\varepsilon' - \varepsilon'_{0}\right) / \varepsilon_{m0} \tag{106}$$

$$\Xi \subset \mathcal{I}\mathcal{I},$$

$$\varepsilon_{\mathrm{m0}} = p_0 \,/\, K_{\mathrm{U01}}$$

なお,式(101)(102)における係数は,同式において $l_{\kappa} = 1$ とおいて,式(12)と比較すると,粘性土の 解析で用いられる圧密曲線の勾配 λ と,以下のとお り,関連づけられる.

$$r_{K}K_{\rm Ua} = \frac{1+e}{\lambda} p_{\rm a} \tag{108}$$

Fig.7 に,上の定式化による圧縮伸張成分の関係を 示す.

Fig.7 Volumetric relation for non-overconsolidated region

(2) 過圧密域の定式化

過圧密域を考慮する場合,式(20)における \mathcal{E}'_{r}^{*} は, 正規圧密曲線上の降伏圧密応力での有効体積ひずみ およびパラメタ q_{e} を用いて,以下により与える.

$$\varepsilon_{r}^{*} = \varepsilon_{0}^{*} + \left(\varepsilon_{r0}^{*} - \varepsilon_{0}^{*}\right) \left[\cos\left(\frac{\pi}{2}\frac{\theta}{\theta_{e}}\right)\right]^{q_{e}}$$
(109)

過圧密域の範囲を規定するパラメタ $\theta_{
m e} = \pi/2$, $q_{
m e} = 2$ の時に, Fig.8のとおり過圧密域が半円で 表される. $\theta = \pi/4$ が K0 圧密に相当し, K0 圧密 ないしこれより体積圧縮が卓越するモードにおいて 過圧密時の体積弾性係数に対応する挙動が現れ,か つ,過圧密域では,圧密降伏応力に対応する ${\cal E'}_r^*$ は, ${\cal E'}_{r0}$ とほぼ同じ値をとるものと想定し,暫定的なデ フォルト値としては, Fig.8 の青色の過圧密域よりや や広い範囲に対応するパラメタ $\theta_e = 0.375\pi$,

$$q_{\rm e} = 0.2$$
 として,様子を見る

(107)

なお、入力データ(パラメタ)としては、 $r_{\theta e}$ を用いて以下で与える.

$$\theta_{\rm e} = r_{\theta \rm e} \, \frac{\pi}{2} \tag{110}$$

ここに、デフォルト値は、 $r_{\theta e} = 0.75$.

Fig.8 Overconsolidation region specified by parameters

(3) 過圧密状態を初期状態とする初期の過圧密域での解析

過圧密域では、塑性域での体積弾性係数に対する過 圧密域での体積弾性係数の比に相当するパラメタ r_{ke} を用いて、体積弾性係数を、以下で与える.

$$K_{\rm L/U} = r_{\rm Ke} K_{\rm U01} \left(\frac{p}{p_0}\right)^{l_{\rm K}}$$
(111)

これを, $p = p_0$ の時, $\varepsilon' = \varepsilon'_0$ の条件で積分して,

 $l_{\kappa} \neq 1$ の時

$$p = p_0 \left(\eta + 1\right)^{\frac{1}{1 - l_K}} \tag{112}$$

$$\eta = -(1 - l_K) \left(\mathcal{E}' - \mathcal{E}'_0 \right) / \mathcal{E}_{m0e}$$
⁽¹¹³⁾

$$l_{K} = 1$$
の時

$$p = p_0 \exp \eta \tag{114}$$

$$\eta = -\left(\varepsilon' - \varepsilon'_{0}\right) / \varepsilon_{m0e} \tag{115}$$

$$\varepsilon_{\rm m0e} = p_0 / K_{\rm U0e} \tag{116}$$

$$K_{\rm U0e} = r_{\rm Ke} K_{\rm U01} \left(\frac{p_0}{p_0}\right)^{l_{\rm K}} = r_{\rm Ke} K_{\rm U01}$$
(117)

なお、式(111)(102)(108)における係数は、これらの 式において $l_{\kappa} = 1$ とおいて、式(12)(13)と比較する と、粘性土の解析で用いられる圧密曲線の勾配 λ 、 *K* と、以下のとおり、関連づけられる.

$$r_{Ke} = \frac{\lambda}{\kappa} \tag{118}$$

次に,過圧密域から塑性域への脱出の有無の判定 を行う.

以下の3条件のうちのいずれか1つが満たされた場合,過圧密域内から塑性域に脱出した(Fig.2の点Rの外側)と判定する.

(a) 過圧密域が存在する範囲の角度の上限を超えた 場合

$$\theta > \theta_{a}$$
 (119)

(b) 圧縮ひずみが限界(降伏圧縮ひずみ)を超えた場合

$$0 \le \theta \le \theta_{e} \qquad \forall \gamma \ \neg \ -\left(\varepsilon' - \varepsilon'_{0}\right) > -\left(\varepsilon'_{r}^{*} - \varepsilon'_{0}\right)$$
(120)

(c) 偏差ひずみが限界偏差ひずみを超えた場合

$$0 \le \theta \le \theta_{\rm e} \quad \text{in } \gamma^* > \gamma_{\rm r}^* \tag{121}$$

これらの判定に必要となる限界値は、以下で求める. まず、式(109)で必要となる降伏圧密圧力 p_{r0} に対応 する \mathcal{E}'_{r0} を、式(112)~(117)を参照して以下のように 求める.

$l_{\kappa} \neq 1$ の時

過圧密域での圧密曲線と塑性域での圧密曲線の交 点が (p_{r0} , \mathcal{E}'_{r0}) となることから,

$$\varepsilon'_{r0} = -\frac{1}{1 - l_{\kappa}} \left[\left(\frac{p_{r0}}{p_0} \right)^{1 - l_{\kappa}} - 1 \right] \varepsilon_{m0e} + \varepsilon'_0 \quad (122)$$

$$\varepsilon'_{r0} = -\frac{1}{1 - l_{K}} \left[\left(\frac{p_{r0}}{p_{n0}} \right)^{1 - l_{K}} - 1 \right] \varepsilon_{m0} + \varepsilon'_{0} \qquad (123)$$

ここに,

$$p_{n0} = r_{p_{n0}} p_0 \tag{124}$$

$$\varepsilon_{\rm m0} = p_0 / K_{\rm U01} \tag{125}$$

式(111)(116)(125)より,

$$r_{Ke} = \mathcal{E}_{m0} / \mathcal{E}_{m0e}$$
(126)

これを用いて式(122)(123)より,降伏圧密圧力は,以下となる.

$$p_{\rm r0} = p_{\rm n0} \left[\frac{r_{Ke} - 1}{r_{Ke} - r_{p_{\rm n0}}^{1 - l_K}} \right]^{\frac{1}{1 - l_K}}$$
(127)

これを,式(122)に代入して, \mathcal{E}'_{r0} を求める.

$$l_{\kappa} = 1$$
の時

過圧密域での圧密曲線と塑性域での圧密曲線の交 点が($p_{r0}, \varepsilon'_{r0}$)となることから,

$$\varepsilon'_{\rm r0} = -\left(\ln\frac{p_{\rm r0}}{p_0}\right)\varepsilon_{\rm m0e} + \varepsilon'_0 \tag{128}$$

$$\varepsilon'_{r0} = -\left(\ln\frac{p_{r0}}{p_{n0}}\right)\varepsilon_{m0} + \varepsilon'_0 \tag{129}$$

式(128)(129)より、降伏圧密圧力は、

$$p_{\rm r0} = p_{\rm n0} r_{p_{\rm n0}}^{\frac{1}{r_{\rm Ke}-1}}$$
(130)

これを,式(128)に代入して, $\mathcal{E'}_{r0}$ を求める. 以上のように求めた $\mathcal{E'}_{r0}$ を用いて,式(109)より, 体積ひずみの限界値 $\mathcal{E'}_{r}^{*}$ を求める. また,式(21)で求めた偏差角 θ を使って,偏差ひず

また、式(21)で水のに偏差用 σ を使って、偏差のgみの限界値 γ_r^* を以下で求める.

$$\gamma^* = -\left(\varepsilon_{r}'^* - \varepsilon_{0}'\right) \tan\theta \tag{131}$$

過圧密域から脱出した時の有効体積ひずみを \mathcal{E}'_{r} , その時の拘束圧力を p_{r} として、記憶しておき、塑 性域での計算で用いる.

(4) 過圧密域から脱出した塑性域での解析

塑性域での解析では,正規圧密からの通常の圧密 沈下・地震応答解析に準じて,体積弾性係数を以下 で与える.

$$K_{\rm L/U} = K_{\rm U01} \left(\frac{p}{p_0}\right)^{l_{\rm K}}$$
(132)

これを、過圧密域を脱出した時の有効体積ひずみを $\boldsymbol{\varepsilon'_r}$,その時の拘束圧力を p_r として、 $p = p_r$ の時、 $\boldsymbol{\varepsilon'} = \boldsymbol{\varepsilon'_r}$ の条件で積分して、

 $l_{\kappa} \neq 1$ の時

$$p = p_{\rm r} \left(\eta + 1\right)^{\frac{1}{1 - l_{\kappa}}} \tag{133}$$

$$\eta = -(1 - l_K) \left(\varepsilon' - \varepsilon'_r \right) / \varepsilon_{\rm mr}$$
(134)

 $l_{K} = 1$ の時

$$p = p_{\rm r} \exp \eta \tag{135}$$

$$\eta = -\left(\varepsilon' - \varepsilon'_{\rm r}\right) / \varepsilon_{\rm mr} \tag{136}$$

ここに,

$$\varepsilon_{\rm mr} = p_{\rm r} / K_{\rm Ur} \tag{137}$$

$$K_{\rm Ur} = K_{\rm U01} \left(\frac{p_{\rm r}}{p_{\rm 0}}\right)^{l_{\rm K}} \tag{138}$$

次に, 塑性域から過圧密域への復帰の判定を行う. 以下の2条件のうちのいずれか1つが満たされた場 合, 塑性域から過圧密域に復帰したと判定する. (a) 圧縮ひずみが収縮から伸張に反転した場合 この判定は, 前ステップ(ステップp(上添字))で の有効体積ひずみとの比較により, 以下で行う.

 $0 \le \theta \le \theta_e$ かつ

$$-(\varepsilon' - \varepsilon'_{0}) < -(\varepsilon'' - \varepsilon'_{0}): elastic$$
(139)
(b) 偏差ひずみが限界偏差ひずみを下回った場合

$$0 \le \theta \le \theta_{\rm e} \quad \text{in } \gamma^* < \gamma_{\rm r}^* \tag{140}$$

復帰した時の有効体積ひずみを \mathcal{E}'_{r} ,拘束圧力を p_{r} として,記憶しておく.

また,復帰したときの偏差応力比の角度を $heta_{
m r}$ として,新たな過圧密域を,式(109)の ${\cal E'}_{
m r0}$ を更新し以下で与える.

$$\varepsilon'_{r}^{*} = \varepsilon'_{0} + \left(\varepsilon'_{nr} - \varepsilon'_{0}\right) \left[\cos\left(\frac{\pi}{2}\frac{\theta}{\theta_{e}}\right)\right]^{q_{e}}$$
(141)

ここに,

$$\varepsilon'_{\rm nr} = \frac{\varepsilon'_{\rm r} - \varepsilon'_{\rm 0}}{\left[\cos\left(\frac{\pi}{2}\frac{\theta_{\rm r}}{\theta_{\rm e}}\right)\right]^{q_{\rm e}}} + \varepsilon'_{\rm 0}$$
(142)

(5) 塑性域から復帰後の過圧密域での解析

復帰後の過圧密域での挙動は、以下の体積弾性係 数を用いて解析する.

$$K_{\rm L/U} = r_{\rm Ke} K_{\rm U01} \left(\frac{p}{p_0}\right)^{l_{\rm K}}$$
 (143)

これを,
$$p = p_r$$
の時, $\mathcal{E}' = \mathcal{E}'_r$ の条件で積分して,

 $l_{K} \neq 1$ の時

$$p = p_{\rm r} \left(\eta + 1\right)^{\frac{1}{1 - l_{\kappa}}} \tag{144}$$

$$\eta = -(1 - l_K) \left(\varepsilon' - \varepsilon'_r \right) / \varepsilon_{\rm mre}$$
(145)

 $l_{\kappa} = 1$ の時

$$p = p_{\rm r} \exp \eta \tag{146}$$

$$\eta = -\left(\varepsilon' - \varepsilon'_{\rm r}\right) / \varepsilon_{\rm mre} \tag{147}$$

ここに,

$$\varepsilon_{\rm mre} = p_{\rm r} / K_{\rm Ure} \tag{148}$$

$$K_{\rm Ure} = K_{\rm U0e} \left(\frac{p_{\rm r}}{p_0}\right)^{l_{\rm K}}$$
(149)

なお、簡単のため、復帰後の過圧密域は、過圧密域 への復帰した時点での領域のまま変化しないものと しておく(解析初期の有効体積ひずみの記憶が保持 され続けると考える).

塑性域からの過圧密域への復帰の解析の式(141)お よび(143)~(149)を、初期の過圧密域の解析における 式(109)および(111)~(117)と比較すると、初期の過圧 密域の解析における $\mathcal{E}'_0 \ge p_0 \ \epsilon$ 、それぞれ $\mathcal{E}'_r \ge p_r$ に置き換えればよいことがわかる。数値解析ア ルゴリズムとしては、この点を反映して、解析初期 の $\mathcal{E}'_r \ge p_r \ \epsilon \mathcal{E}'_0 \ge p_0$ に設定し、初期の過圧密 域の解析も式(141)および(143)~(149)を用いる.ただ し、判定基準に用いる \mathcal{E}'_{nr} は、初期の解析では式 (123)(128)により,また,復帰後の解析では,式(142) により求める.

4.2 せん断成分 *q*⁽ⁱ⁾ の定式化

多重せん断モデルの定式化に基づき,式(72)におけ る仮想単純せん断モデルを,骨格曲線上では,以下 のように双曲線型で与える.

$$q^{(i)} = \frac{\gamma^{(i)} / \gamma_{v}}{1 + \left| \gamma^{(i)} / \gamma_{v} \right|} q_{v}$$
(150)

ここに, q_v , γ_v は, 仮想単純せん断モデルのせん 断強度, (せん断) 規準ひずみであり, せん断強度 τ_m およびせん断弾性係数 G_m と, 以下のように関係づ けられる.

$$G_{\rm m} = \frac{q_{\rm v}}{\gamma_{\rm v}} \sum_{i=1}^{I} \sin^2 \omega_i \Delta \omega \tag{151}$$

$$\tau_{\rm m} = q_{\rm v} \sum_{i=1}^{I} \sin \omega_i \Delta \omega \tag{152}$$

逆に解けば,

$$\gamma_{v} = \left(\frac{\sum_{i=1}^{I} \sin^{2} \omega_{i} \Delta \omega}{\sum_{i=1}^{I} \sin \omega_{i} \Delta \omega}\right) \frac{\tau_{m}}{G_{m}} = \left(\frac{\sum_{i=1}^{I} \sin^{2} \omega_{i} \Delta \omega}{\sum_{i=1}^{I} \sin \omega_{i} \Delta \omega}\right) \gamma_{m}$$
(153)

$$q_{\rm v} = \frac{\tau_{\rm m}}{\sum_{i=1}^{I} \sin \omega_i \Delta \omega}$$
(154)

ここに, $\gamma_{\rm m}$ は, (せん断) 規準ひずみである. なお, $I \rightarrow \infty$ の時,

$$\gamma_{\rm v} = \frac{\pi}{4} \gamma_{\rm m} \tag{155}$$

$$q_{\rm v} = \tau_{\rm m} / 2 \tag{156}$$

仮想単純せん断機構が履歴ループに入った際には, 拡張 Masing 則を用いる. 履歴ループに入った際の仮 想せん断ひずみに応じて,妥当な履歴減衰を表現す るように定められるパラメタ*ξ*, ζ を用いて,あら かじめ,以下の正規化を行う.

$$\tilde{q}^{(i)} = \frac{q^{(i)} / q_{v}}{\zeta}$$
(157)

$$\tilde{\gamma}^{(i)} = \frac{\gamma^{(i)} / \gamma_{v}}{\xi} \tag{158}$$

これらを用いて,履歴ループ内での仮想せん断応力は,次のとおり与えられる((Iai et al., 1992b)).

$$\frac{\tilde{q}^{(i)} - \tilde{q}_{r}^{(i)}}{2\delta} = \frac{\frac{\tilde{\gamma}^{(i)} - \tilde{\gamma}_{r}^{(i)}}{2\delta}}{1 + \left|\frac{\tilde{\gamma}^{(i)} - \tilde{\gamma}_{r}^{(i)}}{2\delta}\right|}$$
(159)

q⁽ⁱ⁾ を規定する式(150)(153)(154)では、状態変数
 S および液状化フロントパラメタ *S*₀ を用いて、以
 下のような拘束圧力依存性および液状化状態依存性
 を与える。

$$\tau_{\rm m} = \tau_{\rm m0} S \tag{160}$$

$$G_{\rm m} = \tau_{\rm m} / \gamma_{\rm m} \tag{161}$$

$$\gamma_{\rm m} = \gamma_{\rm m0} \,/ \, (S_0 \,/\, S_{\rm 0bd})^{q_4} \tag{162}$$

ここに,

$$S_{0bd} = 1.0$$
 (163)

また、パラメタ q_4 のデフォルト値は $q_4 = 1$.た n だし、粘性土の解析では、 $q_4 \approx 0$ なるゼロに近い値をセットすることを推奨.

また,状態変数および液状化フロントパラメタは, 以下で与える.

$$S = p / p_0 \tag{164}$$

$$S_0 = \min\left(p \, "/ \, p_0\right) \tag{165}$$

式(165)における仮想圧力 p" は, 圧力を規定する 式(103)(105)(塑性域のみを考慮する場合),式(112) (114)(解析初期での過圧密域),式(133)(135)(塑性 域),ないし,式(144)(146)(塑性域からの復帰後の 過圧密域),に準じて,それぞれの式で,有効体積ひ ずみ \mathcal{E} '(式(75))を仮想有効体積ひずみ \mathcal{E} "(式 (82))に,また,体積弾性係数の低減パラメタ r_K を 仮想低減パラメタ r_K "に代えることにより算定す る(デフォルトでは, r_K "= r_K).

正規圧密からの解析では, せん断強度は, 以下で 与える.

$$\tau_{\rm m} = p \sin \phi_{\rm f} = m_{\rm l} p \tag{166}$$

他方,過圧密からの粘性土の非排水せん断では, 応力経路が,砂の場合のせん断破壊線よりも上側を 通ることから、この挙動を表現するため、粘着力*c*_a (規準拘束圧力*p*_a に対応する値)を入力パラメタ として用い、以下のようにせん断強度を与える.

$$\tau_{\rm m} = c^* \cos \phi_{\rm f} + p \sin \phi_{\rm f} \tag{167}$$

$$c^* = 4\varepsilon^* \left(1 - \varepsilon^*\right)c \tag{168}$$

$$c = \left(1 - \frac{1}{r_{p_{n0}}}\right) c_{a} \left(\frac{p_{n0}}{p_{a}}\right)$$
(169)

式(168)の ε^* は、限界状態における膨張的ダイレイ タンシーを ε_{dus}^d (式(27))として、以下で与える. $\varepsilon^* = \varepsilon_d^d / \varepsilon_{dus}^d$ (170)

4.3 ダイレイタンシの収縮的成分の定式化

式(78)におけるダイレイタンシの収縮的成分 \mathcal{E}_{d}^{c} は、収縮的ダイレイタンシおよび膨張的ダイレイタンシに共通してかかるパラメタ $r_{c_{d}}$ 、収縮的成分のみにかかるパラメタ $r_{c_{d}}$ 、を用いて、仮想塑性せん断ひずみ増分 $d\gamma_{p}^{(i)}$ に応じて、以下で与える.

$$\mathcal{E}_{d}^{c} = \int d\mathcal{E}_{d}^{c} \tag{171}$$

$$d\varepsilon_{d}^{c} = -r_{\varepsilon_{d}}r_{\varepsilon_{d}^{c}}r_{S_{0}}r_{tmp}\sum_{i=1}^{I}M_{v}\left|d\gamma_{p}^{(i)}\right|\Delta\omega \qquad (172)$$

仮想塑性せん断ひずみ増分 $\mathrm{d} \gamma_{\mathrm{p}}^{(i)}$ は、パラメタ c_{l} を用いて、以下で与える.

$$d\gamma_{\rm p}^{(i)} = d\gamma^{(i)} - c_1 d\gamma_{\rm e}^{(i)}$$
(173)

なお, $\left| d \gamma^{(i)} \right| \leq \left| c_{l} d \gamma_{e}^{(i)} \right|$ の場合には, $d \gamma_{p}^{(i)} = 0$ と する.

仮想弾性せん断ひずみ増分 $d\gamma_e^{(i)}$ は、微小ひずみにおける式(150)の関係により、以下で与えられる.

$$d\gamma_{e}^{(i)} = \left(\frac{\gamma_{v}}{q_{v}}\right) dq^{(i)}$$
(174)

ここで、式(150)~(159)より、

$$dq^{(i)} = G_{L/U}^{(i)} d\gamma^{(i)}$$
(175)

また, 微小ひずみ時 ($d\gamma^{(i)} \approx 0$ の時)の仮想せん 断弾性係数 $G_{10}^{(i)}$ は,

$$G_{\rm L0}^{(i)} = G_{\rm L0} = \frac{q_{\rm v}}{\gamma_{\rm v}}$$
(176)

となるので、式(174)は、以下のとおりにかける.

$$d\gamma_{\rm e}^{(i)} = \left(\frac{G_{\rm LU}^{(i)}}{G_{\rm L0}}\right) d\gamma^{(i)}$$
(177)

ゆえに,式(173)に示す仮想塑性せん断ひずみ増分 $d\gamma_p^{(i)}$ は,全仮想せん断ひずみ増分 $d\gamma^{(i)}$ より,以 下のとおり与えられる.

$$d\gamma_{p}^{(i)} = \left(1 - c_{I}\left(\frac{G_{LU}^{(i)}}{G_{L0}}\right)\right) d\gamma^{(i)}$$
(178)

なお、
$$1 < c_1 \left(\frac{G_{LU}^{(i)}}{G_{L0}} \right)$$
の場合には、 $d\gamma_p^{(i)} = 0$ とす

る.

式(172)における r_{S_0} は、過剰間隙水圧上昇過程の立上がりの形状や後半の形状と、これに対応するひずみの伸びを制御することを目的としたもので、パラメタ q_1 、 q_2 を用いて、以下で与える.

$$S_{0}^{*} > S_{bi} (= 0.8) \quad \text{0 場合}$$

$$r_{S_{0}} = S_{0}^{*q_{2}} \left[\left(S_{0}^{*} - S_{bi} \right) q_{1} + (1 - S_{0}^{*}) \right] / \left(1 - S_{bi} \right)$$
(179)

$$S_0^* \le S_{bi} (= 0.8)$$
 の場合
 $r_{S_0} = S_0^{*q_2}$ (180)

$$S_0^* = p'' p_0 \tag{181}$$

また, **r**_{tmp} は,変相線を超えた領域における収縮的 ダイレイタンシの寄与度を制御するもので,小堤ら (2001)に従い,以下で与える.

$$r_{\rm tmp} = (m_{\rm tmp} - \tau^* / p) / (m_{\rm tmp} - m_3)$$
(182)

$$\tau^* = \frac{r_{\gamma} \frac{\gamma}{\gamma_{\rm m}}}{1 + r_{\gamma} \frac{\gamma}{\gamma_{\rm m}}} \tau_{\rm m0} \tag{183}$$

$$\gamma = \sqrt{\left(\varepsilon_x - \varepsilon_y\right)^2 + \gamma_{xy}^2}$$
(184)
 $\zeta \subset \zeta \zeta,$

$$m_{\rm tmp} = r_{m_{\rm tmp}} m_1 + \left(1 - r_{m_{\rm tmp}}\right) m_2 \tag{185}$$

$$m_3 = 0.67 m_2$$
 (186)

ここに、内部摩擦角、変相角をそれぞれ $\phi_{\rm p}$ 、 $\phi_{\rm f}$ とすると、 $m_{\rm l}=\sin\phi_{\rm f}$, $m_{\rm 2}=\sin\phi_{\rm p}$.粘性土の場合には、以下とする.

$$\phi_{\rm f} = \phi_{\rm p} \tag{187}$$

なお, $m_{\rm tmp} \le \tau^* / p$ の時は $r_{\rm tmp} = 0$ $\tau^* / p \le m_3$ の時は $r_{\rm tmp} = 1$ とする.

また,上のアルゴリズムでは,終局状態が過大評価となる傾向がある点を改善するため,収縮的ダイレイタンシーの低減係数の評価式で低減が開始されるせん断応力比を,式(186)に代え,以下で制御可能とするオプションを導入する.

$$m_3 = r_{m_{1}} m_1$$
 (188)

このオプションにおいて, $r_{m_{tmp3}} = 1$ の場合には, $r_{tmp} = 1$ とする.

式(172)において収縮的ダイレイタンシを規定する \mathbf{M}_{v} は、変相角を ϕ_{p} として、以下で与える値に基づいて与える.

$$\mathbf{M}_{v0} = \frac{\mathbf{M}_{p}}{\sum_{i=1}^{I} |\sin \omega_{i}| \Delta \omega}$$
(189)

$$\mathbf{M}_{\mathbf{p}} = \sin \phi_{\mathbf{p}} \tag{190}$$

式(189)に対して、さらに、収縮的体積ひずみの極限 値 \mathcal{E}_{d}^{cm} ,パラメタ q_{3} (=1.0)を用いて、以下のと おり与える.

$$\mathbf{M}_{v} = \left(1 - \frac{\left(-\varepsilon_{d}^{c}\right)}{\varepsilon_{d}^{cm}}\right)^{q_{3}} \mathbf{M}_{v0}$$
(191)

なお, $-\varepsilon_{d}^{c} > \varepsilon_{d}^{cm}$ の場合には, $M_{v}=0$ とする. ここに, 収縮的ダイレイタンシーの上限値は, パラ メタ $r_{\varepsilon_{dus}^{c}}$, 限界状態での収縮的ダイレイタンシー ε_{dus}^{c} より,以下で与える.

$$\mathcal{E}_{\rm d}^{\rm cm} = -r_{\mathcal{E}_{\rm dus}^{\rm c}}^{\rm c} \mathcal{E}_{\rm dus}^{\rm c} \tag{192}$$

パラメタ
$$r_{\varepsilon_{dus}}$$
 のデフォルトは, $r_{\varepsilon_{dus}} = 1$ とする.

式(82)における仮想収縮的ダイレイタンシ成分 \mathcal{E}_{d}^{c} "も、式(171)~(191)に準じた定式化を適用する が、式(172)(191)に代えて、仮想収縮的体積ひずみの 極限値 \mathcal{E}_{d}^{cm} "を用いて、以下のとおり与える.

$$\mathbf{d}\boldsymbol{\varepsilon}_{\mathrm{d}}^{\mathrm{c}} = -r_{\varepsilon_{\mathrm{d}}} r_{\varepsilon_{\mathrm{d}}^{\mathrm{c}}} r_{\varepsilon_{\mathrm{0}}} r_{\mathrm{mp}} \sum_{i=1}^{I} \mathbf{M}_{\mathrm{v}} \left\| \mathbf{d}\boldsymbol{\gamma}_{\mathrm{p}}^{(i)} \right\| \Delta\boldsymbol{\omega}$$
(193)

$$\mathbf{M}_{\mathbf{v}}^{"} = \left(1 - \frac{\left(-\mathcal{E}_{d}^{c}\right)}{\mathcal{E}_{d}^{cm}}\right)^{q_{3}} \mathbf{M}_{\mathbf{v}0}$$
(194)

ここに、仮想収縮的ダイレイタンシーの上限値は、 パラメタ \mathbf{r} "。を用いて、以下で与える.

$$\boldsymbol{\varepsilon}_{\mathrm{d}}^{\mathrm{cm}} = -\boldsymbol{r}^{*}_{\boldsymbol{\varepsilon}_{\mathrm{dus}}^{\mathrm{c}}} \boldsymbol{\varepsilon}_{\mathrm{dus}}^{\mathrm{c}}$$
(195)

パラメタ $r''_{\varepsilon_{\text{the}}}$ のデフォルトは, $r''_{\varepsilon_{\text{the}}} = 1$.

なお,式(192)(195)における限界状態での収縮的ダ イレイタンシー \mathcal{E}_{dus}^{c} は, $l_{K} = 1$ の場合には,式 (32)(ただし, Cam Clay 型の場合は式(34)または(36)) により与える.

 $l_{K} \neq 1$ の場合には、限界状態での有効拘束圧力 p_{us0} が、 $l_{K} = 1$ の場合と共通して、以下で与えら れると考える.

$$p_{\rm us0} = p_{\rm n0} \exp\left(-\Lambda \frac{\eta_{\rm us}^*}{M}\right) \tag{196}$$

他方, $l_{K} \neq 1$ の場合の正規圧密曲線の体積弾性係数 は、式(101)に準じて、以下で与えられる.

$$K_{\rm L/U} = K_{\rm Un0} \left(\frac{p}{p_{\rm n0}}\right)^{l_{\rm K}}$$
(197)

式(197)における有効拘束圧力 p_0 での体積弾性係数 K_{Un0} は、既往のひずみ空間多重せん断モデルによる砂の液状化解析 (カクテルグラスモデルによる)と同様に、参照拘束圧力 p_a における体積弾性係数 K_{Ua} を基に、以下で与えられる.

$$K_{\rm Un0} = r_K K_{\rm Ua} \left(\frac{p_{\rm n0}}{p_{\rm a}}\right)^{t_K}$$
(198)

なお, $-\mathcal{E}_{d}^{c} > \mathcal{E}_{d}^{cm}$ の場合には, $M_{v}=0$ とする. これを, $p = p_{n0}$ の時, $\mathcal{E}' = \mathcal{E}'_{0}$ の条件で積分しここに, 収縮的ダイレイタンシーの上限値は, パラ て,

$$p = p_{n0} \left(\eta + 1 \right)^{\frac{1}{1 - l_{\kappa}}}$$
(199)

$$\eta = -(1 - l_{\kappa})(\varepsilon' - \varepsilon'_{0}) / \varepsilon_{mn0}$$
⁽²⁰⁰⁾

$$\mathcal{E}_{\rm mn0} = p_{\rm n0} / K_{\rm Un0} \tag{201}$$

ここで、体積ひずみー平均圧力の関係で与えられる Fig.3 を参照し、有効体積ひずみー平均圧力の関係と して与えられる正規圧密曲線において、初期状態で は $\mathcal{E}_{d} = 0$,限界状態曲線上では $\mathcal{E}_{d} = \mathcal{E}_{dus}^{c}$ となる ことから、限界状態曲線は、以下で与えられる.

$$\frac{1}{1-l_{K}}\left[\left(\frac{p}{p_{n0}}\right)^{1-l_{K}}-1\right] = -\frac{\varepsilon - \varepsilon_{dus}^{c} - \varepsilon_{0}}{\varepsilon_{mn0}} \qquad (202)$$

この曲線が,式(196)で与えられる限界状態での有効 拘束圧力点 $p = p_{us0}$, $\mathcal{E} = \mathcal{E}_0$ を通ることから, $l_K \neq 1$ の場合の限界状態における収縮的ダイレイ タンシーが以下で与えられる.

$$\mathcal{E}_{dus}^{c} = \frac{1}{1 - l_{K}} \left[\left(\frac{p_{us0}}{p_{n0}} \right)^{1 - l_{K}} - 1 \right] \mathcal{E}_{mn0}$$
(203)

以上においては、初期応力誘導異方性を式(196)に より、考慮しているが、Can Clay型モデルのように 限界状態が等方性を持つと考える場合には、

$$p_{\rm us0} = p_{\rm n0} \exp(-\Lambda) \tag{204}$$

また、Cam Clay 型モデルにおいて、初期有効体積ひ ずみ \mathcal{E}'_0 での限界状態のせん断抵抗を入力パラメ

タとして q_{usa} で与える場合には,

 $p_{\rm us0} = p_{\rm usa} \tag{205}$

とおいて、これを式(203)に代入することにより、限 界状態における収縮的ダイレイタンシーが求まる.

なお、過圧密域においても、収縮的ダイレイタン シーは発生可能としておき、その際に用いるパラメ タの r_{ϵ_a} , r_{ϵ_a} は、過圧密域に適用される値として、 塑性域で用いるパラメタとは異なるパラメタ $r_{\epsilon_{de}}$, $r_{\epsilon_{de}}$ を用いることができるようにしておく.

4.4 ダイレイタンシの膨張的成分の定式化

式(78)におけるダイレイタンシの膨張的成分 \mathcal{E}_{d}^{d} は,砂の解で Steady State を考慮する場合の定式化に 順じて定式化を行う.その際,粘性土解析用に S_{0}^{*} の 減少に応じて,膨張的ダイレイタンシーを低減する ための係数 $r_{S_{0}}$ を導入して,以下で与える.

$$\mathcal{E}_{d}^{d} = r_{\mathcal{E}_{d}} r_{S_{0}} \sum_{i=1}^{I} \left[\left| \frac{\tilde{\gamma}^{(i)}}{\gamma_{v}} \right| - \ln \left(1 + \left| \frac{\tilde{\gamma}^{(i)}}{\gamma_{v}} \right| \right) \right] \gamma_{v} m_{1v} \Delta \omega$$
(206)

ここに,

$$\left|\frac{\tilde{\gamma}^{(i)}}{\gamma_{v}}\right| = \left(1 - \exp\left(-\frac{\left|\gamma^{(i)}\right|}{\gamma_{vus}}\right)\right)\frac{\gamma_{vus}}{\gamma_{v}}$$
(207)

$$m_{1v} = \frac{m_1}{\sum_{i=1}^{I} \sin \omega_i \Delta \omega}$$
(208)

$$r_{S_0} = \left(1 - r_{S_0}^{\dim n}\right) \left(S_0^*\right)^{q_5} + r_{S_0}^{\dim n}$$
(209)

デフォルト $r_{s_0}^{d \min} = 1$ の場合は,現在のカクテルグ ラスモデルの膨張的ダイレイタンシーの定式化に還 元される.

限界状態では、式(207)で $|\gamma^{(i)}| \approx \infty$ となるので、 これを式(206)に代入し、 $\mathcal{E}_{d}^{d} = \mathcal{E}_{dus}^{d*}$ とおいて、逆 算により、 γ_{vus} を算定する.その際、解析の安定 上の観点から、 \mathcal{E}_{dus}^{d*} を以下で与えて、逐次更新し ていく.

$$\mathcal{E}_{d\,us}^{d^{*}} = \mathcal{E}_{dus} - \mathcal{E}_{d}^{c}$$
(210)

ここに,限界状態のダイレイタンシー \mathcal{E}_{dus} は, $l_{K} = 1$ の場合には,式(24)(27)(32)(ただし,Cam Clay型の場合は式(34)または(36))により与える.

 $l_{K} ≠ 1$ の場合には、限界状態における膨張的ダイレイタンシーを以下のとおり求める.まず、体積 ひずみー平均圧力の関係で与えられる Fig.3 を参照 し、有効体積ひずみー平均圧力の関係として式(103) (104)で与えられる圧密曲線において、初期状態では $\mathcal{E}_{d} = 0$,正規圧密曲線上では $\mathcal{E}_{d} = \mathcal{E}_{d\,us}^{d}$ となるこ とから、正規圧密曲線は、以下で与えられる.

$$\frac{1}{1-l_{K}}\left[\left(\frac{p}{p_{0}}\right)^{1-l_{K}}-1\right] = -\frac{\varepsilon - \varepsilon_{d us}^{d} - \varepsilon_{0}}{\varepsilon_{m0}} \qquad (211)$$

この曲線が, 点 $p = p_{n0}$, $\mathcal{E} = \mathcal{E}_0$ を通ることから,

$$\varepsilon_{d\,us}^{d} = \frac{1}{1 - l_{K}} \left[\left(\frac{p_{n0}}{p_{0}} \right)^{1 - l_{K}} - 1 \right] \varepsilon_{m0}$$
(212)

式(19)より,

$$\mathcal{E}_{d\,us}^{d} = \frac{1}{1 - l_{K}} \left[r_{p_{n0}}^{1 - l_{K}} - 1 \right] \mathcal{E}_{m0}$$
(213)

正規圧密からの解析は、過圧密からの解析において、 $r_{p_{n0}} = 1$ とおいた場合に相当し、上の式をそのまま適用すればよい.

よって、 $l_{K} \neq 1$ の場合には、限界状態のダイレ イタンシー ε_{dus} は、式(24)(203)(213)により与える.

4.5 せん断ひずみ速度依存項

ひずみ空間多重せん断モデルの構成式は、せん断 ひずみ速度依存性を考慮しない場合には、2次元解 析でのベクトルマトリクス表示で、式(66)で与えられ る.この構成式に Tatsuoka et al(2002)の3要素モデル (Tatsuoka et al., 2002)を参考として、Isotach型の粘性 項(ひずみ速度依存項)を、ひずみ空間多重せん断 モデルに導入する.

まず, せん断ひずみ速度依存性を考慮しない式(66) に Isotach 型のせん断ひずみ速度依存項を追加して, 以下とする.

$$\boldsymbol{\sigma}' = -p\mathbf{n}^{(0)} + \sum_{i=1}^{I} q^{(i)} \mathbf{n}^{(i)} \Delta \boldsymbol{\omega} + \boldsymbol{\sigma}^*$$
(214)

ここに、せん断ひずみ速度依存項 σ^* は、以下のと おり与える。

$$\boldsymbol{\sigma}^* = \sum_{i=1}^{I} q^{*(i)} \mathbf{n}^{(i)} \Delta \boldsymbol{\omega}$$
(215)

多重せん断機構の各せん断機構におけるせん断ひず み速度依存項は、Isotach 特性を規定するパラメタ r., r., q., を用いて、以下で与える。

$$q^{*(i)} = r_{\text{Iso}} r_q \frac{\dot{\gamma}^{*(i)}}{\max \left| \dot{\gamma}^{*(i)} \right|} \left(q_v \frac{\max \left| \gamma^{(i)} / \gamma_v \right|}{1 + \max \left| \gamma^{(i)} / \gamma_v \right|} \right) \frac{\gamma_m}{\gamma_v}$$
(216)

ここに,

$$r_{q} = 1 - \exp\left(1 - \left(1 + \max\left|\dot{\gamma}^{*(i)}\right|\right)^{q_{\rm Iso}}\right)$$
(217)

また,正規化仮想せん断ひずみ速度 $\dot{\gamma}^{*(i)}$ は,以下 で与える.

$$\dot{\gamma}^{*(i)} = r_{\dot{\gamma}}\dot{\gamma}^{(i)}$$
 (218)

 $\max |\dot{\gamma}^{*(i)}|$ および $\max |\gamma^{(i)} / \gamma_v|$ の max は, 全 ての多重せん断機構および経過時間を通じての最大 値とする. せん断ひずみ速度は,数値解析で得られ る全体速度ベクトル $\dot{\mathbf{u}}$ を直接参照し,有限要素解析 における \mathbf{B} マトリクスを用いて,以下で計算する.

$$\dot{\gamma}^{(i)} = \mathbf{n}^{(i)\mathrm{T}} \mathbf{B} \dot{\mathbf{u}}$$
(219)

式(216)において,第1項と第2項の積 $r_{\rm Iso}r_q$ は, Isotach 型のひずみ速度依存項の上限値を規定する. また,第3項 $\dot{\gamma}^{*(i)} / \max^* \left| \dot{\gamma}^{*(i)} \right|$ は正規化した線形 減衰を表す.

また, 第4項 $q_{\nu} \max \left| \gamma^{(i)} / \gamma_{\nu} \right| / \left(1 + \max \left| \gamma^{(i)} / \gamma_{\nu} \right| \right)$

は、せん断応力への依存性を近似的に表現する. 式(215)(216)(218)より、

$$\boldsymbol{\sigma}^{*} = \left[\sum_{i=1}^{I} \boldsymbol{\beta}_{\text{Iso}}^{(i)} \mathbf{n}^{(i)\text{T}} \Delta \boldsymbol{\omega}\right] \mathbf{B} \dot{\mathbf{u}}$$
(220)

$$\beta_{\text{Iso}}^{(i)} = r_{\text{Iso}} r_q \frac{r_{\dot{\gamma}}}{\max \left| \dot{\gamma}^{*(i)} \right|} \left(q_v \frac{\max \left| \gamma^{(i)} / \gamma_v \right|}{1 + \max \left| \gamma^{(i)} / \gamma_v \right|} \right) \frac{\gamma_m}{\gamma_v}$$
(221)

他方,運動方程式における線形減衰としてのレー レー減衰のうち,接線せん断剛性に比例する粘性項 (レーレー減衰係数 β が掛かる項)は、以下で表 せる.

$$\left[\beta \int \mathbf{B}^{\mathrm{T}} \left(\sum_{i=1}^{I} G_{\mathrm{L}/\mathrm{U}}^{(i)} \mathbf{n}^{(i)\mathrm{T}} \Delta \omega\right) \mathbf{B} \mathrm{d} v \right] \dot{\mathbf{u}} \equiv \int \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}^{**} \mathrm{d} v$$
(222)

$$\boldsymbol{\sigma}^{**} = \left[\sum_{i=1}^{I} \beta G_{\mathrm{L}U}^{(i)} \mathbf{n}^{(i)} \mathbf{n}^{(i)\mathrm{T}} \Delta \boldsymbol{\omega}\right] \mathbf{B} \dot{\mathbf{u}}$$
(223)

式(220)と式(223)を比較すると、レーレー減衰項において、 $\beta G_{LU}^{(i)}$ の係数を、式(221)の $\beta_{lso}^{(i)}$ により置換することにより、Isotach型の減衰項が、近似的に表現されることとなる.

上に示す定式化において, (Tatsuoka et al., 2002)に おけるパラメタとの関係は, $r_{\rm Iso} = \alpha$, $r_{\dot{j}} = 1/\dot{\varepsilon}_{\rm r}^{\rm ir}$, $q_{\rm Iso} = m$ となる.

Fig.9 に, Kaolin の場合の Isotach 型レーレー減衰 のを示す. 同図に示すとおり, せん断ひずみ速度の レベルが 10^{-5} から 10^{+7} という 12 オーダーの範囲で, r_q が $0.1 \sim 0.9$ に変化する, という感度レベルであり, 線形減衰と比較して, 著しく感度が鈍いのが特徴で ある.

Fig.9 Strain rate dependency of Isotach Model

4.6 間隙比と体積ひずみの関係 ($l_{\kappa} \neq 1$ の場

合)

以上において,間隙比との明示的な対応付けが必要な場合には,2.5 に準じて行う.ただし,2.5 においては, $l_{\kappa} = 1$ の場合に限定していたが,ここでは, $l_{\kappa} \neq 1$ の場合を対象として,定式化を示す. Fig.6 に示すとおり,間隙比を算定する際に用いる液状化解析での初期体積ひずみを,液状化解析での正規圧密曲線上の初期有効拘束圧力 p_{n0} に対応する体積ひずみ \mathcal{E}_{n0} に置換することにより行う.すなわち,間隙比と体積ひずみの関係を,2.5 に準じて,式(50)で与える.

液状化解析用の正規圧密曲線が $p_{\rm a}$, $\mathcal{E}_{\rm a}$ を通るという条件から、 $l_{\rm K} \neq 1$ の場合には、

$$\varepsilon_{n0} - \varepsilon_{a} = -\frac{1}{1 - l_{K}} \left[\left(\frac{p_{n0}}{p_{a}} \right)^{1 - l_{K}} - 1 \right] \varepsilon_{ma}$$
(224)

ここに, $\mathcal{E}_{\mathrm{ma}}$ は,式(52)で与えられる.

よって、 $l_{\kappa} \neq 1$ の場合には、次式により、間隙比を 算定すればよい.

$$\ln\left(\frac{1+e}{1+e_{a}}\right) = \left(\varepsilon - \varepsilon_{0}\right) - \frac{1}{1-l_{K}} \left[\left(\frac{p_{n0}}{p_{a}}\right)^{1-l_{K}} - 1\right]\varepsilon_{ma}$$
(225)

5. 初期自重解析による水平成層地盤(1次元)での静止土圧係数 K0 について

はじめにで触れたとおり,地震応答解析に先立っ て,初期自重解析を行い,地盤・構造物系の初期応 力を的確に評価することが重要である.この際の解 析は,基本的には,第4章に示す圧密沈下・地震応 答解析に準じ,ダイレイタンシーを無視して行う. その際の水平成層地盤での静止土圧係数 K0 は,以下 のようにして制御し,所要の K0 を満たす自重解析が 可能となる.

まず,内部摩擦角 $\phi_{\rm f}$ の双曲線モデルにおいて,体積弾性係数,せん断弾性係数の拘束圧依存性を,同一の指数mを用いて以下で与える.

$$K = K_{La} \left(\frac{p}{p_{a}}\right)^{m}$$
(226)
$$G_{m} = G_{ma} \left(\frac{p}{p_{a}}\right)^{m}$$
(227)

1次元初期自重解析(1次元正規圧密)では、側

方へのひずみが拘束されているので,

$$\mathcal{E}_{x} = 0 \tag{228}$$

よって、体積ひずみ、軸差ひずみは、以下で与えられる.

$$\mathcal{E} = \mathcal{E}_x + \mathcal{E}_y = \mathcal{E}_y \tag{229}$$

$$\gamma = \mathcal{E}_x - \mathcal{E}_y = -\mathcal{E}_y \tag{230}$$

よって、1次元圧密においては、

$$\gamma = -\mathcal{E} \tag{231}$$

カクテルグラスモデルによる初期自重解析では, せん断応カーせん断ひずみの関係が以下の双曲線で 近似できる.

$$\frac{\tau}{\tau_{\rm m}} = \frac{Q}{1+Q} \tag{232}$$

ここに,

$$Q = \frac{\gamma}{\gamma_{\rm m}} \tag{233}$$

$$\tau = \frac{1}{2} \left(\sigma_x' - \sigma_y' \right) \tag{234}$$

$$\tau_{\rm m} = p \sin \phi_{\rm f} \tag{235}$$

$$\gamma_{\rm m} = \frac{\tau_{\rm m}}{G_{\rm m}} \tag{236}$$

静止土圧係数は,初期自重解析の結果として,以 下で与えられる.

$$K_0 = \frac{\sigma_x'}{\sigma_y'} \tag{237}$$

これを用いて,式(232)の左辺は,以下のとおり書ける.

$$\frac{\tau}{\tau_{\rm m}} = \frac{\frac{1}{2} (\sigma_x' - \sigma_y')}{-\frac{1}{2} (\sigma_x' + \sigma_y') \sin \phi_{\rm f}} = \frac{1 - K_0}{(1 + K_0) \sin \phi_{\rm f}}$$

(238)

式(232)(238)を静止土圧係数について解くと,

$$K_{0} = \frac{1 - \sin \phi_{\rm f} + (1/Q)}{1 + \sin \phi_{\rm f} + (1/Q)}$$
(239)

他方,式(226)を、初期条件を考慮して,式(103)に準 じて積分し、ダイレイタンシーが発生しない $(\varepsilon = \varepsilon')$ 条件で、体積ひずみについて解くと、

$$\varepsilon = -\frac{1}{1-m} \left(\frac{p}{p_{a}}\right)^{1-m} \frac{p_{a}}{K_{La}}$$
(240)

よって、式(227)(231)(233)(235)より、

$$Q = \frac{G_{\rm ma}}{\left(1 - m\right) K_{\rm La} \sin \phi_{\rm f}} \tag{241}$$

これを式(239)に代入し、さらに展開すると、

$$(1-m)K_{La} = \frac{(1+\sin\phi_{f})K_{0} - (1-\sin\phi_{f})}{(1-K_{0})\sin\phi_{f}}G_{ma}$$
(242)

よって、初期自重解析後の所用の K_0 状態を与えるには、式(242)を満たす初期自重解析用のmと K_{La} の組合せを与えればよい.

6. 適用例

6.1 非排水単調せん断挙動

以上に述べた定式化による提案モデルの基本的な 挙動を検討するため、過圧密比を OCR=1, 2, 6, 40, $K_0=0.6$ とし、 $\lambda=0.596$ 、 $\kappa=0.272$ の条件で、同一 の間隙比 e:=2.3の状態からの非排水単調せん断を行 った. 解析では、せん断ひずみ増分に比例して発生 する収縮的ダイレイタンシー増分の比例係数に相当 するパラメタr_eと,限界状態における収縮的ダイレ イタンシーを規定するパラメタΛ を変化させた.第 2章で述べたとおり、弾塑性モデルの場合には、塑 性ポテンシャル面を有するため, $0 \le \Lambda < 1$ などの制 約条件があるが、提案モデルの場合にはこのような 制約条件がなく,対象とする粘土の挙動に即して適 切な値に設定することができる.解析の結果は, Fig.10~13 に示すとおりとなり、提案モデルは、構 造を有する粘土での巻返し(Fig.11)やクイッククレ ーの挙動 (Fig.12,13)を含め,粘性土の非排水単調せ ん断挙動を,柔軟かつ精緻に表現することが確認さ れた.

また、比較のため、粘性土の弾塑性モデルとして 代表的な関ロ・太田モデル(Sekiguchi and Ohta, 1977) を適用し、提案モデルの Fig.10 に示す解析条件と同 様の $\Lambda = 0.544$, $\lambda = 0.596$, $\kappa = 0.272$, 初期 間 隙 比 を $e_i = 2.3$ と し て , 解 析 プ ロ グ ラ ム DACSAR(Iizuka and Ohta, 1987)を用いて解析した. 解 析の結果は、Fig.14 に示すとおりとなり、限界状態 は、Fig.10 に示す解析結果の限界状態と一致するこ とが確認された.また、提案モデルは、関ロ・太田 モデルと比較して,過圧密状態からの非排水せん断 であっても,その初期において収縮的ダイレイタン シーを示す特徴ある挙動を示すことが確認された.

(b) stress path

Fig.10 Computed results for undrained monotonic shear with $r_{e_{s}} = 0.85$, $\Lambda = 0.554$

(a)stress-strain relation

Fig.11 Computed results for undrained monotonic shear of structured clay with $r_{c_d^c} = 0.085$, $\Lambda = 0.554$

of quick clay with $r_{\varepsilon^{c}_{d}} = 0.85, \Lambda = 10$

(a) stress-strain relation

Fig.13 Computed results for undrained monotonic shear of structured quick clay with $r_{e_d^c} = 0.085$, $\Lambda = 10$

(a)stress-strain relation

(b)stress path

6.2 非排水繰返しせん断挙動 (Isotach/Rayleigh型減衰)

提案モデルの特徴である Isotach/Rayleigh 型減衰に ついての適用性を確認するため、等方圧密の後、ひ ずみ制御によりせん断ひずみ振幅 0.15、1 H z の正 弦波(ピークでのせん断ひずみ速度は 15%/s に相当) にて非排水せん断の解析を行った.用いた Isotach パラメタは、Kaolin のパラメタを参照して、 $n_{so}=0.5$ 、 $r_{j}=10^{6}$ s、 $q_{so}=0.04$ とした.解析において、体積ひ ずみクリープは無視した.その他のひずみ空間多重 せん断モデルのパラメタは、Table 1 に示すとおりで ある.解析の結果は、Fig.15 に示すとおりとなり、 提案モデルは、Isotach/Rayleigh 減衰型のせん断ひ ずみ速度依存性の特徴を適切に表現することが確認 された.

Table 1 Model parameters for analysis ($p_a = 135.5$ kPa).

$r_{K}K_{\mathrm{Ua}}$	G_{ma}	$\phi_{ m f}$	$h_{ m max}$	$r_{\varepsilon_{\mathrm{d}}^{\mathrm{c}}}$	q_2
750	352	33.3 °	0.24	0.085	2.0
kPa	kPa				

```
where \Lambda = 0.544
```


(a)stress-strain relation (without the viscous term)

(b)stress-strain relation with the viscous term

(c)stress path

(d)stress strain relation for viscous term (Isotach/Rayleigh type)

Fig.15 Computed results for undrained cyclic loading with viscous term of Isotach/Rayleigh type

6.3 圧密沈下·地震応答挙動

さらに,粘土地盤の圧密沈下解析とその後の地震 応答解析への適用性を検討した一例を Fig.16~19 に 示す. 解析対象は、Fig.16 に示すとおり、港湾・海 岸地域の堤防に準じた盛土断面で、地盤工学会主催 の関ロ・太田モデルを用いた一斉解析で用いられて いる(地盤工学会,2005).地震前の圧密沈下解析に よる盛土中央の沈下および過剰間隙水圧は, Fig.17, 18 で FLIP と表示した結果のとおりとなった. 同図 には、比較のため、コンピュータープログラム DACSAR(Iizuka and Ohta, 1987)を用い, 関ロ・太田モ デル(Sekiguchi and Ohta, 1977)より解析した結果も示 している. 圧密沈下終了後(約50年後)に地震が襲 来した場合の結果は Fig.19 に示すとおりとなり、地 震動の影響で, さらなる沈下が発生することが分か る.

Fig.16 Cross section of embankment model

Fig.17 Computed settlement due to consolidation before earthquake

過剰間隙水圧 E4(-15m地点)

Fig.18 Computed excess pore water pressures due to consolidation before earthquake

Fig.19 Settlement and excess pore water pressure increase due to earthquake

7. 結論

ひずみ空間多重せん断モデル(Iai et al., 2011)は,地 震時の液状化を含む地盤・構造物系の動的解析に広 く利用されている.本研究では,このモデルの粘土 地盤の圧密解析とこれに引き続く地震応答解析への 適用性について,検討した.

提案モデルは、砂と異なり、以下のような特徴を 有する粘性土の力学的特長を反映している.

(1) 接線体積剛性の拘束圧依存性を規定する指数が 1.0 となる.

(2) 限界状態(砂の場合の Steady state)が初期応力 誘導異方性を持つ.

(3) 過圧密からのせん断において,粘着力がゼロの 場合の Mohr-Coulomb の破壊基準に対応するせん断 破壊線を越える(上回る)応力経路を辿り,限界状 態に至る.

(4) ひずみ速度依存性(二次圧密および地震時の粘 性減衰)の影響が著しい.

また,初期応力の決定においては,一般には,地

盤・構造物系を対象とした静的自重解析(重力に伴 って発生する地盤・構造物内の応力分布の解析)を 行って初期応力分布を決定する必要がある.その際 に,パラメタを任意に与えるのではなく,水平成層 地盤で想定される静止土圧係数が同じ静的自重解析 で実現できるという制約条件を満たすものとなって いる.

提案モデルの基礎的な挙動を,いくつかの例題に 即して検討した結果,汎用性,安定性の面で,すぐ れたモデルとなっていることについて,一定の見通 しが得られた.

参考文献

- Iai, S., Matsunaga, Y., Kameoka, T. (1992a): Strain space plasticity model for cyclic mobility. Soils and Foundations. 32 (2), pp.1-15.
- Iai, S., Matsunaga, Y., Kameoka, T. (1992b): Analysis of undrained cyclic behavior of sand under anisotropic consolidation. Soils and Foundations. 32 (2), pp.16-20.
- Iai, S., Tobita, T., Ozutsumi, O., Ueda, K. (2011): Dilatancy of granular materials in a strain space multiple mechanism model. International Journal for Numerical and Analytical Methods in Geomechanics. 35 (3), pp.360-392.
- Iai, S. (2012): Consolidation analysis of clayey ground through strain space multiple mechanism model for granular materials. Disaster Prevention Research Institute, Kyoto University, Annuals, 55. pp.183-194 (in Japanese).
- Iizuka A and Ohta H. (1987): A determination procedure of input parameters in elasto-viscoplastic finite element analysis, Soils and Foundations, 27 (3), pp.71-87.
- Sekiguchi, H., Ohta, H. (1977): Induced anisotropy and time dependency in clays. 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, pp.306-315.
- Shibata, T. (1963): On the volume change of normally consolidated clays. Annuals, Disaster Prevention Research Institute, Kyoto University, Annuals, 6 pp.128-134 (in Japanese).
- Tatsuoka, F., Ishihara, M., Di Benedetto, H., Kuwano, R. (2002): Time-dependent shear deformation characteristics of geomaterials and their simulation. Soils and Foundations. 42 (2), pp.103-129.
- 地盤工学会(2005):地盤工学における FEM の設計へ の適用に関する研究委員会成果報告書.

(論文受理日: 2016年6月13日)