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Width of resonances created by homoclinic orbits
- isotropic fixed point case -
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Abstract

We give a resonance free domain near an energy trapped by homoclinic orbits associated
with a hyperbolic fixed point. We study the case where the fixed point is isotropic and the
outgoing manifold and the incoming one intersect tangentially, and show that, under some
geometrical assumption, the resonance width is larger than a multiple of h/|log h|.

§1. Introduction

We consider semiclassical Schrodinger operators —h2A + V(z) with a smooth po-
tential V(x) decaying at infinity. We suppose that there is a positive energy Ey such
that the trapped trajectories of the corresponding classical dynamics on its energy sur-
face consist of a hyperbolic fixed point and some associated homoclinic trajectories. We
will give a semiclassical estimate from below for the imaginary part of resonances near
this energy. This note is a brief summary of the forthcoming paper [3].

A typical example is two bumps potential, one of which has a non-degenerate
maximum of value Ej, the other one being of higher height. Depending on the shape
of the potential, the set of homoclinic trajectories has different geometrical properties,
and the resonances have different imaginary parts.

In [2], we have considered the case where the fixed point is anisotropic. For the
above example, it means that the eigenvalues of the Hessian of the potential at the
lowest maximum are not equal. Under some generic conditions, there exists a constant
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0 > 0 such that, for any positive constant C' > 0, there is no resonance in the box
|Eo — Ch, Eg + Ch|—i[0,6h] for sufficiently small A > 0. This estimate remains true
even in the isotropic case if the dimension of the set of homoclinic trajectories is smaller
than the space dimension.

In this report, we restrict ourselves to the complementary case, i.e. the isotropic
fixed point case with homoclinic trajectories of maximal dimension. Compared with the
former case, the trapping is stronger and the resonances are expected to have smaller
imaginary parts. We will show that there is no resonance in the box |Ey — dh, Ey +
dh|—i[0,0h/|log h|[ for some 6 > 0 and sufficiently small h, under the condition that
the “measure” of the set of homoclinic trajectories at the fixed point (see (2.4)) is small
enough (Theorem 2.3). As a matter of fact, we will obtain a more precise result in
larger intervals for the real part of size Ch (Theorem 2.7). In particular, we can observe
a transition for the imaginary part of the resonances from the trapping energy F < FEj
to the non-trapping one £ > FEj.

The proof is essentially based on the connection formula of microlocal solutions at
a hyperbolic fixed point established in [1]. In this formula, the solution, microlocally
on the outgoing stable manifold, is given by the action of a Fourier integral operator
on the solution microlocalized on the incoming stable manifold. We make use of the
explicit expression of the first term of the symbol.

After stating the results in the next section, we review the connection formula in
Section 3 restricting ourselves to the isotropic case, and give the outline of the proof in
Section 4.

§2. Results

We consider the semiclassical Schrodinger operator

(2.1) P:=—-PA+V(z)=-hr"> —+V(z),
— O
j=1 7
where © = (z1,...,2,) € R™, h is a small positive parameter and V(x) is a potential

satisfying
(A1) V(x) € C°(R™;R) and extends holomorphically in a sector
S={ze€C" |Imz| < (tanby)(Rez) and |Rez| > C},

for some positive constants 6y and C. Moreover V(x) tends to 0 as = tends to oo
in S.

To the self-adjoint operator P on L?(R™) with oes(P) = R, we associate a distorted
operator P, = U,PU_,, where (U, f)(x) := (det(Id + udF))}/2 f(x + pF(x)) for small
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||, and F € C°(R™;R™) with FF=0on |z| < R, F =z on |z| > R+ 1 for large R.
The complex eigenvalues of Py := Py for 0 < 0 < 0y in {FE € C\{0}; —20 < argE <0}
are independent of § and called the resonances of P, see [8].

(A2) The origin is a non-degenerate isotropic maximal point with maximal value Eg > 0:

2
(2.2) V(z)=Ey— )\ZxQ +0O(2*) asz —0,

for a positive constant A > 0, where 22 = 23 + -+ - + 22.

Let £ = (&1,...,&,) € R™ denote the momentum and p(z, &) = &2 + V(x) be the
classical Hamiltonian corresponding to P. The assumption (A2) means that the origin
(0,0) in the phase space T*R™ = R} X R is a hyperbolic fixed point for the Hamiltonian
vector field Hy, = O¢p- 0y — Oyp- O = 2§ -0, — 0,V (x) - O¢. The stable manifold theorem
shows that the outgoing stable manifold Ay and the incoming stable manifold A_

Ay = {(aj,ﬁ) cp HEy); exp(tH,)(x,&) — (0,0) as t — :Foo},
are Lagrangian manifolds with generating functions ¢4 (x) = :I:%gc2 + O(23), i.e.
Ay ={(2,€); £ =0wo+(2)}.
Let K(Ep) be the set of trapped trajectories on the energy surface p—1(Ep):
K(Eo) = {(z,&) € p~"(Ev); t+ exp(tHp)(z, ) is bounded}.

We assume that K (Ey) consists of the fixed point (0,0) and of homoclinic trajectories
associated with this point. More precisely,

(A3) K(Ep) =ArNA_and H:=ArNA_\{(0,0)}.
The results below are of interest only in the case H # ), otherwise see [5] and [10].

Lemma 2.1.  Foranya € S"™ 1, there exists a unique Hamiltonian curve py (t, o) =
(x4 (t,a), &4 (t,)) on Ay such that, for any ¢ > 0,

o (t,a) = eMa+ (’)(6(2)‘_5)'5) ast — —oo.
Then, we define
Hiang = {p € H; ToAy =T,A_},
the set of the points at which A, and A_ are tangent, and
H>® = {acS" 1 p(-,a) € H},
Hime =@ €S p(-,a) € Hiang},

the asymptotic directions of the Hamiltonian curves in ‘H and Hiang. Note that these
two sets are compact. We assume
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H>® =0 H>® ={-1} H® ={-1,1}

Figure 1. The three possible cases in 1D.

(A4) a- B #0 for any «, f € H™®.

Let a € Hey,,- For any sufficiently small €, there exist unique times t5 («) satisfying
|4 (t5% (), )| = € and t3 (o) — Foo as € — 0. Then, it is well known that the quantity

D(ts
Me(Oé)ZM with  D(t, ) \/’dta$+ta

represents the evolution of the amplitude of WKB solutions along the curve x4 (t, @)
from the time ¢S () to the time ¢° (a), see for example [6]. This function M. () has a
positive limit Mg(«) as € tends to 0

(2.3) Mo(a) = lim M (),

e—0

which is continuous with respect to a € H° . and hence bounded. We also define a

tang
constant associated with the quantum propagation through the fixed point:

(2.4) To(a) = (2m) 71 (2) / o e,

tang

The amplification around the trapped set is then controlled by the quantity

(2.5) Ao = max Mo(a)Jo(a) € [0, +o0].

oo
aEHtang

Remark 2.2.  In the one-dimensional case, H> = H,,, C {—1,1} and, for each
a € ‘H®, one has
0 ifH™ =0,
(2.6) Mola) =1, Tola) =< 1/vV2 if H® = {1} or {1},
V2 R ={-1,1}.
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We state our main result in two steps: in Theorem 2.3, we consider the case where
the real part of the energy lies in a small interval around Fy. Then, the width of
resonances is estimated from below uniformly with respect to the real part. In Theorem
2.7, the real part is extended to a wider interval of O(h), and we can observe the
transition of the width from the trapping energy E < Fj to the non-trapping energy
E > FEj, under suitable assumptions.

Theorem 2.3.  Assume (A1), (A2), (A3), (A4) and
(2.7) Ag < 1.

Then, for all § > 0, there exists v > 0 such that P has no resonance in the box

h

(2.8) [Eo — vh, Eg + vh] +1i | (Mog(Ao) + 5) T h|

for sufficiently small h. Moreover, for all x € C5°(R™), there exists a positive constant
N such that, for any E in this domain, one has

(2.9) |x(P—EBE) x| <h ¥,
for sufficiently small h.

When Ay = 0, we use the convention that log(A) appearing in (2.8) can be taken
as any arbitrary large negative constant.

Ezample 2.4.  Consider the case n = 1. Due to Remark 2.2, the condition (2.7)
is satisfied if card(H*°) < 1 but not satisfied if H>* = {—1,1}. When H>* = {1} or
H>° = {—1}, the precise location of the resonances was studied in [7], and this result
implies that our estimate (2.8) from below of the imaginary part of the resonances is
optimal. When H> = {—1,1}, on the contrary, we are in the well in an island situation,
and the resonances are exponentially close to the real axis.

Ezample 2.5.  In dimension n = 2, let (r,#) be the polar coordinates. We consider

V(z) = qo(r) + q1(r — a)ip(0),

where the ¢o(7)’s are even functions in C§°(R) with rg,(r) < 0 for r # 0 and Ey =
70(0) < ¢1(0), a is a sufficiently large constant such that supp qo(r) Nsuppqi(r —a) =0
and ¥(0) € C3°([—61 —¢,01 +¢]) is equal to 1 for |#| < 6, and 0y (0) < 0 for 6; < |0] <
01+¢ for 6, < m/4 and small enough € > 0. It can be checked that the conditions (A1) to
(A4) are all satisfied, and moreover H>® = Hey,, = [—01,01] and Mo(a) = 1. Jp(a) can
also be computed explicitly, and the condition (2.7) is satisfied if sin(26;) < tanh(27).
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{V(z) = Eo}

0 pS 291 H

Figure 2. The geometrical setting of Example 2.5.

The resolvent estimate (2.9), together with the estimate || x(P—FE) x| < |[Im E|~!
in the upper half plane with Im E = O(h/|log h|?), leads us to the following resolvent
estimate on the real axis by the maximum principle for holomorphic functions:

Corollary 2.6.  Under the assumptions of the previous theorem, we have
Ix(P = E)~'x|| < h™Hlogh[?,
for E in the real interval |Ey — vh, Ey + vh].

For a more precise version of Theorem 2.3, we need to define a function Jy(c, s)
which depends on the real variable s = (Re E — Ey)/(Ah).

To(a, 8) 1= (2W)_n/2’F(g _ i8> ‘ / e—§SSigna.W|a ) w|_n/2dw,

tang

where sign stands for the sign of a real number. As in (2.5), we set

(2.10) Ao(s) = max Mop(a)To(a, s).

oo
aGHtang

Theorem 2.7.  Assume (Al), (A2), (A3) and (A4). Then, for any large C > 0
and for any small § > 0, P has no resonance in the domain

Ey— Ch<ReE < Ey+ Ch,

(2.11) (31og (Ao(#)) +5)|10%h| <ImE <0,

for sufficiently small h. Moreover, for x € C5°(R™), there exists a positive constant N
such that, for any F in this domain, one has

|x(P—E) x| <nY,

for sufficiently small h.
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ImFE

Ey—Ch FEo Eo + Ch ReE

h
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,/—“\\//r\\\~—*‘\\\\\\\IHLE::Almg<A0<ReE_EO)>

Figure 3. The resonance free zone given by Theorem 2.7.

Remark 2.8.  Note that in the region where Ao((Re E— Ey)/(Ah)) > 1, the above
theorem is empty.

When |Re E — Ey| < 0h, we have Jy(a, (Re E — Ey)/(Ah)) = To(a) + O(0) where
Jo(+) is given by (2.4). Thus, we can recover Theorem 2.3.
Let us now look at the behavior of —log.Ag(s) when s — £oo. To make the

discussion clearer, we assume that signa -w =1 for all a,w € H Note that this is

[e%s)
tang*

the case in Example 2.4 and Example 2.5. We have, as s — +o0,

(QW)—n/Q‘F(E _ is) ’6_”5/2 B e—%S(l—i-sign s)(l _ e—27r|s|/2) ifn=1,
2 "] o 3s(l+sign s)|8|(n—1)/2 itn>o.

Hence, as s — +o0, —log Ag(s) is linearly growing for any n > 1. This means that
the resonance free domain has larger and larger imaginary part as the energy grows to
the non trapping region. As s — —oo, on the contrary, —log . Ag(s) is exponentially
decaying with respect to s for n = 1. This reflect the fact that we are in the well in
an island situation for energies below Ey. However for n > 2, it becomes negative for
sufficiently large negative s and this theorem says nothing for such energies.

§3. Microlocal connection formula at a hyperbolic fixed point

The proofs of our theorems are essentially based on the microlocal connection for-
mula (3.2) at the fixed point (0,0), which was obtained in [1]. Here we give a short
survey of the results there under the isotropic condition (2.2).

We say that u is microlocally 0 in an open set w C T*R" if

I Opy, (¢)ull = O(R),

for some ¢ € CJ°(T*R™) with ¢ = 1 in w, where Opy,(¢) is the h-pseudodifferential
operator with symbol v given by

Omn(0)u = g [ [ <€)ty s

[log k|
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Let Q@ C T*R"™ be a small neighborhood of (0,0) and € > 0 be small enough. We
consider the microlocal Cauchy problem, with £ = Fy + hz,

Py = FEu microlocally in €,
(3.1)

u = up(z) microlocally on C:=A_N{|z| =¢}.

Remark that the initial surface C is transversal to the Hamiltonian vector field for
sufficiently small ¢.

Theorem 3.1.  There exists a constant p > 0 such that if ug = 0 and if z(h) is in
] — C,C[—i[0, u for any constant C' > 0, then any solution u € L?(R™) of (3.1) with
|lu|| <1, is microlocally 0 in a neighborhood €' of the origin.

Remark 3.2.  More precisely, Theorem 3.1 holds for z(h) outside any small neigh-
borhood of size h of some discrete set. On the other hand, Theorem 3.1 holds also in the
analytic category, changing of course the notion of C°°-microsupport to that of analytic
microsupport and in this case the exceptional discrete set is known to be —i&y where

50:{)\(04+g); aEN:{O,l,...}},

is the set of eigenvalues of the isotropic harmonic oscillator —A —|— 22. In particular,
p can be taken to be g\ — ¢, for any small 6 > 0.

Theorem 3.1 says that the data ug given on A_ N {|z| = ¢} uniquely determines
the solution u at any point pp = (z,£) on A, (if it exists). Next theorem enables us
to represent u near pg in terms of ug which, restricted to the initial surface C, has its
support in a small neighborhood of a point p; = (y,7n) € C.

We make an assumption on the initial point p; = (y,n) € C and the final point
pr = (x,€) € Ay. The integral curve of H, starting from p; and pr tends to (0,0) as ¢
tends to +00 and —oo respectively. More precisely, they have the following asymptotic
expansion

exp(tH,) Z'yk t,y,ne RA as t — o0,

0
exp(tHy) (pr) ~ 3¢ (2, )P as t = —o.
k=1

The coefficients v, (t,y,n) and 'y,j (t,z,€) are vector valued polynomials in ¢, and in
particular 7 is independent of ¢. In our Schrédinger case, the x-space projection of
v1 (y,m) and ~; (z,€) coincide if y = x, and we will denote it simply by g(z). We

assuimne
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(H) g(z) - g(y) # 0.
Remark 3.3.  Let ¢1(x) be the function defined from py by

{ 2V, - V1 — Mgy =0,
Ve1(0) = —Ag(y).
Then, (H) implies ¢1(x) # 0.

We assume, without loss of generality, that g(y) is parallel to xj-axis. Since p is
of real principal type near pr, we can modify the initial surface C so that it is given by
{z1 = e} NA_ near p;. Hence, denoting y = (¢, '), the initial data ug on C is a function

of 3/ localized in a small neighborhood of z7.
Let ¢(x) = 1s 4 (x) be the solution to the Cauchy problem for the eikonal equation

VY[? +V(2) = By,
99 (e,y')
oy
With the notations (x(t),£(t)) = exp(tHy)(x,&) and (y(t),n(t)) = exp(tHp)(y,n), the
integrals

VYlgy=e =10’ - 2’ where n’ =

= [ (svom - 252w

converge.

Theorem 3.4.  Assume (H) and z €] — C, C[—i[0, u[. Then, the microlocal Cauchy
problem (3.1) has a solution w which, microlocally near pp = (x,§), has the following
integral representation

h—iz/)\ ) B ,
(3.2) (@, h) = (%)W/R bV i Ryuo(e. ) d
Here, the symbol d € 5'2(1) has the asymptotic expansion
o
(3.3) d(w,y',h) ~ > di(x,y , log h)h¥,
k=0

where dy,(x,y’,log h) are polynomials in log h. In particular, dy is independent of log h
and given by

N _ o —imn(140) /4 yiz/A—(n—1)/2 (_ o ) n_ Z)
do(z,y') =e A exp ) © r 5 7 )

3.4 % T @-IZW) 1 det V2,6 (y 10—
34 VIae V6Ol ey e

where o = sign(g(x) - g(y)).
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Figure 4. The geometrical setting for the proof of Theorem 2.7.

§4. Sketch of the proof of Theorem 2.7

It is enough to prove that ||(Py — E) 71| < h=Y for E satisfying (2.11). Recall
that Py is the distorted operator of P defined in Section 2. For this, we proceed by
contradiction. If this estimate did not hold, then there would exist v = u(z, h) with
|lu|| = 1 and E satistying (2.11) such that

(4.1) (Py — BE)u= O(h™).

Let us look at u microlocally in the phase space.

By the ellipticity of P, u is microlocally 0 outside the energy surface p—1(Ejp).
Furthermore, using the ellipticity of the distorted operator Py at infinity, it is enough
to consider uw in a compact set in x. Moreover, (4.1) and |u| < 1 imply that u is

microlocally 0 in the incoming region

<__

x-€ 1
|z[[¢] 2}’

{(a:,&) € p Y(Ep); |z| > 1 and cos(z,§) :=
see [4, Theorem 2]. Then, with the standard propagation of singularities, it turns out
that u is microlocally 0 outside Ay, see for example [9]. In particular, u vanishes
microlocally in A_ \ H.

In what follows, we mean, by the notations A, their restriction to a small neigh-
borhood of (0, 0) such that exp(tH,)(z,§) € Ax for all 7t > 0if (x,&) € A4 respectively.
We denote by K+ the global evolution of A,.

Let u4 be the restriction of u on H N AL respectively. We express each of these two
microlocal solutions in term of the other one. First, we use the results of [1], recalled
briefly in the previous section, to compute w4 from u_ passing through the fixed point.
Then, we use the standard Maslov theory (see [6]) to compute u_ from u following
the homoclinic trajectories.

Now, we apply Theorem 3.1 and Theorem 3.4 in order to obtain u, from u_. It
is possible because the imaginary part of F, which is of order h/|logh|, is smaller than
ph. Moreover, the assumption (H) needed for Theorem 3.4 is guaranteed by (A4).
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By assumption, we have ||u_|| < 1. By a first use of those theorems, we see that
u. is a Lagrangian distribution of order h=¢ for some C,

(42) Ut € I(H A A+’ h_c)’ U_|_(33, h’) = h_ca-i-(xv h)€i¢+(m)/h7

for some symbol ai(x,h) € SY(1), the space of uniformly bounded functions together
with their derivatives.

Next, using the Maslov theory along #H, we see that u is everywhere on ‘H a La-
grangian distribution of constant order. In particular,

(4.3) u_ e T(A,h7 ), u_(y,h) =h Ca_(y,h)e+ W/
where the phase ¢~5+(y) is a generating function of K+ near H N A_ and satisfies

0yd+(y) = Oy (y) on H, 8§<;A5+(y) = 079+ (y) on Hyang.

Moreover, the symbol a_(y,h) € S)(1) is obtained by solving the transport equation
and satisfies, modulo lower order terms,

(4.4) a—(y,h) = Mc(e)ay(z,h),

ify=a4(t°(a),a) and x = v, (1% (a), a).
Now we use Theorem 3.4 for a second time. Here we suppose that the homoclinic

trajectories are transversal to the plane y; = € for small enough €. Then we get, on
HNOAL,

h—C—iz/A€i¢+ (x)/h
(27r)n/2

u(w,h) = [ e e,y ha_(y.h) dy

Yyi1=¢€
with z = (E— Ep)/h. In view of the stationary and non-stationary method, the integral
is of O(h™) outside H and of O(h'/?) outside Hyang. Hence the principal contribution
comes from Hiang N {y1 = €}. Then, modulo lower order terms, |a4(z, h)| satisfies

h—|Imz|/>\
lay(x,h)] < (2—n/2/ |do(z,y)|la—(y, h)| dy'.
ﬂ') HiangN{y1=c¢}

We estimate the right hand side modifying the domain of integration to Hgy,, N
{ly| = e}. We see that, when x = eq, y = ew and € — 0,

I (x) = O(e), I”(y) = n 5 ! log2 + O(e),

JatVEo @)= (3) 7 +06), o) =y +00),
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and hence, we have, since |Im z| = O(1/|loghl),

_n _n o n )
do(a )| = - w| 72! exp (= Zs)D(S —is) (1 + O()),

uniformly with respect to @ and w. Recall that ¢ = sign(a - w), s = (Re E — Ep)/(Ah).
It follows that
h— |Imz|/>\ o

(2 )n/2 ’ / _ =P ——8> |vw| ™™ (1+0(e))|a—(ew, h)| dw.

tang

|at(ea, h)| <
Combining with (4.4), we obtain

h | Im z| /A
la- (=B, )| < M.(a) Ir(5

27T n/2

)]

2
x/oo exp(——a )|a w| ™ ”/2 (1+0(e))|a—(ew, h)| dw,

tang

where § = () is the asymptotic direction of z (t, a) as t — +o00. Using the definition
(2.10), we get

la_(eB,h)| < h=1Tm=1/2 44 (s) (1+0:50(1)) max |a_(ew,h)|.

oo
wEHtang

Taking the maximum of the left hand side over 8 € Hey,,, it yields

max |a _(gw,h)|§h"ImZW‘AO(s)(l—|—0€_>0(1)) max |a_(ew, h)|.

wWEH? wWEHS?

tang tang

On the other hand, for E satisfying (2.11), we have
h—|Imz|/)\AO(s) < 6_6.
Thus, we eventually obtain

max |a _(6w,h)|§e_5(1—|—05_>0(1)) max |a_(ew, h)|.

wE”Htang

Taking £ > 0 small enough so that e=°(1 + 0. (1)) < 1, it implies that a_ = 0 and
then ||u| = O(h*°) which is a contradiction with the assumption |lu| = 1.
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