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Spectral properties of massless Dirac operators with

real‐valued potentials

By

Karl Michael Schmidt * and Tomio Umeda**

Abstract

We prove that a Schnol�‐type theorem holds for massless Dirac operators under minimal

assumptions on the potential, and apply this result to conclude that the spectrum of a certain

class of such operators covers the whole real line. We also discuss embedded eigenvalues of

massless Dirac operators with suitable scalar potentials.

§1. Introduction

This paper is an announcement of results on spectral properties of Dirac operators with

real‐valued potentials and will be followed by a complete treatment in which all proofs
are given.

The Dirac operators to be considered in this paper are

(1.1) H_{2}=-i $\sigma$\cdot\nabla+q(x) in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2})

and

(1.2) H_{3}=-i $\alpha$\cdot\nabla+q(x) in L^{2}(\mathbb{R}^{3};\mathbb{C}^{4}) .

Here  $\sigma$= (; $\sigma$_{2}) and  $\alpha$= (; $\alpha$_{2}, $\alpha$_{3}) are given as follows:

$\sigma$_{1}=\left(\begin{array}{l}
01\\
10
\end{array}\right), $\sigma$_{2}=\left(\begin{array}{l}
0-i\\
0i
\end{array}\right)
and

with $\sigma$_{3}=\left(\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right).
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The dot products are to be read as

 $\sigma$\displaystyle \cdot\nabla=$\sigma$_{1}\frac{\partial}{\partial x_{1}}+$\sigma$_{2}\frac{\partial}{\partial x_{2}}
in (1.1) and

 $\alpha$\displaystyle \cdot\nabla=$\alpha$_{1}\frac{\partial}{\partial x_{1}}+$\alpha$_{2}\frac{\partial}{\partial x_{2}}+$\alpha$_{3}\frac{\partial}{\partial x_{3}}
in (1.2). The potential q is a real‐valued function on \mathbb{R}^{d}

,
where d=2 or d=3,

respectively. The operators H_{2}, H_{3} differ from the standard Dirac operator in that they
lack a mass term, usually represented by an additional anti‐commuting matrix: $\sigma$_{3} for

the two‐dimensional case and

 $\beta$=\left(\begin{array}{ll}
I & 0\\
0-I & 
\end{array}\right)
for the three‐dimensional case, where I is a 2\times 2 identity matrix.

The purpose of the present paper is to show that  $\sigma$(H_{d})=\mathbb{R} under minimal as‐

sumptions on q . In particular, we shall not require any restriction on the growth or

decay of the potential q at innity.

We have two motivations. First, the spectrum of the one‐dimensional massless

Dirac operator

H_{1}=-i$\sigma$_{2}\displaystyle \frac{d}{dx}+q(x) in L^{2}(\mathbb{R};\mathbb{C}^{2})

covers the whole real axis and is purely absolutely continuous whenever q\in L_{loc}^{1}(\mathbb{R}, \mathbb{R}) .

This surprising fact was first pointed out by one of the authors in [8]. By separation in

spherical polar coordinates, this result also implies that  $\sigma$(H_{d})=\mathbb{R} if q is rotationally

symmetric; see [9]. Second, it is believed that the energy spectrum of graphene, in

which electron transport is governed by Dirac equations in two dimensions without a

mass term, has no bandgap (zero bandgap); see [2], [4], [7]. For these reasons, it is

natural to make an attempt to show that  $\sigma$(H_{d})=\mathbb{R} under minimal assumptions on q.

§2. Embedded eigenvalues

It is difficult to imagine that the spectra of H_{2} and H_{3} are always purely absolutely
continuous regardless of q . Actually, in the three‐dimensional case, we have an example
of q which gives rise to a zero mode of H_{3} ,

i.e. an example of q for which H_{3} has the

embedded eigenvalue 0.

Example 1. Let q(x)=-3/\langle x\rangle^{2} ,
where \langle x\rangle=\sqrt{1+|x|^{2}} . Then there exists a

unique self‐adjoint realization of H_{3} in L^{2}(\mathbb{R}^{3};\mathbb{C}^{4}) with Dom(H) =H^{1}(\mathbb{R}^{3};\mathbb{C}^{4}) ,
the
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Sobolev space of order 1. If one puts

f(x)=\langle x\rangle^{-3}(I_{4}+i $\alpha$\cdot x)$\phi$_{0}

with $\phi$_{0} a unit vector in \mathbb{C}^{4} ,
then a direct calculation shows that H_{3}f=0 . This implies

that 0\in$\sigma$_{\mathrm{p}}(H_{3}) ,
because f\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathrm{H}) . Thus H_{3} has a zero mode. Since  $\sigma$(H_{3})=\mathbb{R},

the energy 0 is an embedded eigenvalue of H_{3}.

The potential q and the zero mode f in Example 1 were motivated by [6].
Example 2 below indicates that there is a difference in spectral property between

H_{3} and H_{2} . In fact, quite a similar construction in Example 2 below gives a zero

resonance of H_{2} ,
not a zero mode of H_{2} . On the other hand, we do not know if the

potential q in Example 2 gives rise to a zero mode of H_{2}.

Example 2. Let q(x)=-2/\langle x\rangle^{2} . Then there exists a unique self‐adjoint realiza‐

tion of H_{2} in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) with Dom(H) =H^{1}(\mathbb{R}^{2};\mathbb{C}^{2}) ,
and  $\sigma$(H_{2})=\mathbb{R} . If

 $\psi$(x)=\langle x\rangle^{-2}(I_{2}+i $\sigma$\cdot x)$\phi$_{0},

$\phi$_{0} a unit vector in \mathbb{C}^{2} ,
then one sees that H_{2} $\psi$=0 . However, it is clear that  $\psi$\not\in

 L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) . Therefore,  $\psi$ is not a zero mode of  H_{2} . On the other hand, one finds that

 $\psi$\in L^{2,-s}(\mathbb{R}^{2};\mathbb{C}^{2}) for \forall s>0 ,
where

L^{2,-s}(\mathbb{R}^{2};\mathbb{C}^{2})=\{ $\varphi$|\Vert\langle x\rangle^{-s} $\varphi$\Vert_{L^{2}}<\infty\}.

This means that  $\psi$ is a zero resonance of  H_{2}.

It is not an easy task to clarify whether H_{d} has embedded eigenvalues for general

potentials. However, we have a good control of the embedded eigenvalues of H_{d} if q(x)
is rotationally symmetric. To formulate a result, we need to introduce the denition of

the limit range \mathcal{R}_{\infty}(q) of q :

\displaystyle \mathcal{R}_{\infty}(q)=\bigcap_{r>0}\overline{\{q(x)||x|\geq r\}},
where \overline{A} denotes the closure of a subset A\subset \mathbb{R}.

Theorem 2.1 (Schmidt[9]). Let q(x)= $\eta$(x) and let  $\eta$\in L_{loc}^{1}(0, \infty) . Suppose
that there exists a real number E\in \mathbb{R}\backslash \mathcal{R}_{\infty}(q) such that

\displaystyle \frac{1}{r(E- $\eta$(r))-1}\in BV(r_{0}, \infty)
for some r_{0}>0 ,

where BV(r_{0}, \infty) denotes the set of functions of bounded variations

on the interval (r_{0}, \infty) . Then $\sigma$_{p}(H_{d})\subset \mathcal{R}_{\infty}(q) for d\in\{2 , 3 \}.



28 K. M. Schmidt and T. Umeda

Theorem 2.1 is a direct consequence of [9, Corollary 1]. If q is not rotationally

symmetric, we can prove the following.

Theorem 2.2. Let q\in C^{1}(\mathbb{R}^{d};\mathbb{R}) , d\in\{2 , 3 \} ,
and suppose that both q and

(x\cdot\nabla)q are bounded functions. Then $\sigma$_{p}(H_{d})\subset[m_{q}, M_{q}] ,
where

m_{q}=\displaystyle \inf_{x}\{q(x)+(x\cdot\nabla)q(x)\}, M_{q}=\sup_{x}\{q(x)+(x\cdot\nabla)q(x)\}.
The proof of Theorem 2.2 is based on a virial theorem in an abstract setting; see

[1, Lemma 2.1].

§3. Schnol�s theorem for Dirac operators

We now prepare a Schnol� theorem for Dirac operators. As for Schnol�s theorem,
we refer the reader [3, p.21, Theorem 2.9] which is a characterization of the spectra of

Schrödinger operators in terms of polynomially bounded eigensolutions. In the three‐

dimensional Dirac operators, the theorem can be stated as follows:

Theorem 3.1. Let q\in L_{loc}^{2}(\mathbb{R}^{3};\mathbb{R}) ,
and let E be a real number. Suppose f is

a polynomially bounded measurable function on \mathbb{R}^{3}
,

not identically 0 ,
and satises the

equation

(3.1) (-i $\alpha$\cdot\nabla+q)f=Ef

in the distribution sense. Then E\in $\sigma$(H_{3}) for any self‐ adjoint realization H_{3} such that

Dom(H) \supset H^{1}(\mathbb{R}^{3};\mathbb{C}^{4})\cap \mathrm{D}\mathrm{o}\mathrm{m}(q) .

Outline of the proof of Theorem 3.1. We follow the line of the proof of [3, p. 21,
Theorem 2.9].

We may suppose f\not\in L^{2}(\mathbb{R}^{3};\mathbb{C}^{4}) without loss of generality. Let  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{3}) such

that  $\varphi$(x)=1 (|x|\leq 1) and  $\varphi$(x)=0(|x|\geq 2) ,
and put $\varphi$_{n}(x)= $\varphi$(x/n) for n\in \mathbb{N}.

Then introducing a monotonically increasing sequence (M(n))_{n\in \mathbb{N}} by

M(n)=\displaystyle \int_{|x|\leq n}|f(x)|^{2}dx,
and dening f_{n}:=$\varphi$_{n}f/\Vert$\varphi$_{n}f\Vert_{L^{2}} ,

we can show that there exists a positive constant C

such that

(3.2) \displaystyle \Vert(H_{3}-E)f_{n}\Vert_{L^{2}}^{2}\leq C\frac{M(2n)-M(n)}{n^{2}M(n)}.
for all n.
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On the other hand, we can deduce that

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\frac{M(2n)-M(n)}{n^{2}M(n)}=0,
which implies that there exists a subsequence (M(n_{k}))_{k\in \mathbb{N}} such that

(3.3) \displaystyle \lim_{k\rightarrow\infty}\frac{M(2n_{k})-M(n_{k})}{n_{k}^{2}M(n_{k})}=0.
Combining (3.2) with (3.3), we can conclude that E\in $\sigma$(H_{3}) . ■

We give an application of the Schnol� theorem, and show that the spectra of massless

Dirac operators with real‐valued potentials always coincide with the whole real axis,

provided that the potentials are of the form specied in Theorem 3.2 below.

Theorem 3.2. Let  $\eta$\in C^{1}(\mathbb{R};\mathbb{R}) and dene q(x) := $\eta$(x\cdot k) on \mathbb{R}^{d}, d\in\{2 , 3 \},
where k\in \mathbb{R}^{d} is a unit vector. Then  $\sigma$(H_{d})=\mathbb{R}.

Outline of the proof of Theorem 3.2. We only give the proof for d=3 . Put

 $\xi$(t)=\displaystyle \int_{0}^{t} $\eta$( $\tau$)d $\tau$.
Choose a unit vector $\phi$_{0}\in \mathbb{C}^{4}, \neq 0 ,

so that ( $\alpha$\cdot k)$\phi$_{0}=$\phi$_{0} . For a given E\in \mathbb{R} ,
dene

f(x)=e^{-i( $\alpha$\cdot k) $\xi$(x\cdot k)}e^{iEx\cdot k}$\phi$_{0}.

Then f satises the equation (3.1). Moreover, f\in C^{1}(\mathbb{R}^{3};\mathbb{C}^{4}) ,
and |f(x)|_{\mathbb{C}^{4}}=1 for

all x\in \mathbb{R}^{3} . It follows from Theorem 3.1 that E\in $\sigma$(H_{3}) . Since E is an arbitrary real

number, we can conclude that  $\sigma$(H_{3})=\mathbb{R}. \blacksquare

§4. The main result

We now state the main theorem, which greatly generalizes Theorem 3.2.

Theorem 4.1. Let  q\in L_{loc}^{2}(\mathbb{R}^{3};\mathbb{R}) . Suppose that there is a sequence (k_{n})_{n\in \mathbb{N}}
of unit vectors in \mathbb{R}^{3}

,
a sequence (B_{r_{n}}(a))_{N} of balls with centre a_{n}\in \mathbb{R}^{3} and radius

r_{n}\rightarrow\infty(n\rightarrow\infty) ,
and a sequence of square‐integrable functions q_{n} : (-r_{n}, r_{n})\rightarrow \mathbb{R}

(n\in \mathbb{N}) such that

r_{n}^{-3}\displaystyle \int_{B(a_{n},r_{n})}|q(x)-q_{n}((x-a_{n})\cdot k_{n}))|^{2}dx\rightarrow 0
as  n\rightarrow\infty . Then  $\sigma$(H_{3})=\mathbb{R} for any self‐ adjoint extension H_{3} of

(-i $\alpha$\cdot\nabla+q)|_{C_{0}^{\infty}(\mathbb{R}^{3})^{4}}.
The two dimensional analogue of the statements above holds true.
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Outline of the proof of Theorem 4.1. For a given energy E\in \mathbb{R} ,
we shall construct

a singular sequence (h_{n})_{n\in \mathbb{N}} ,
thus showing that E\in $\sigma$(H_{3}) . To this end, we first choose

a function \overline{ $\eta$}_{n}\in C^{\infty}(-r_{n}, r_{n}) so that

\displaystyle \frac{1}{2r_{n}}\int_{-r_{n}}^{r_{n}}|q_{n}(t)-\overline{ $\eta$}_{n}(t)|^{2}dt\rightarrow 0
as  n\rightarrow\infty . Then following the idea in the proof of Theorem 3.2, we put

$\xi$_{n}(t)=\displaystyle \int_{0}^{t}\overline{ $\eta$}_{n}( $\tau$)d $\tau$,
and choose a sequence of unit vectors $\phi$_{n}\in \mathbb{C}^{4}, \neq 0 ,

so that ( $\alpha$\cdot k_{n})$\phi$_{n}=$\phi$_{n} ,
and dene

a sequence of functions (f_{n})_{n\in \mathbb{N}} by

f_{n}(x)=e^{-i( $\alpha$\cdot k_{n})$\xi$_{n}((x-a_{n})\cdot k_{n})}e^{iEx\cdot k_{n}}$\phi$_{n}:B_{r_{n}}(a_{n})\rightarrow \mathbb{C}^{4}

We now choose a function  $\chi$\in C_{0}^{\infty}(\mathbb{R}^{3}) such that \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} $\chi$\subset B(0) and that \Vert $\chi$\Vert_{L^{2}}=1.
Putting

h_{n}(x)=r_{n}^{-3/2} $\chi$(\displaystyle \frac{x-a_{n}}{r_{n}})f_{n}(x) ,

we can obtain the desired singular sequence. ■
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