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Derivation of the Lamb Shift from an Effective
Hamiltonian in Non-relativistic Quantum
Electrodynamics
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Abstract

Some aspects of spectral analysis of an effective Hamiltonian in non-relativistic quantum
electrodynamics are reviewed. The Lamb shift of a hydrogen-like atom is derived as the lowest
order approximation (in the fine structure constant) of an energy level shift of the effective
Hamiltonian.

§1. Introduction

This paper is a review of some results obtained in [7], in which spectral analysis is
made on an effective Hamiltonian in non-relativistic quantum electrodynamics (QED),
a quantum theory of non-relativistic charged particles interacting with the quantum
radiation field (a quantum field theoretical version of a vector potential in classical
electrodynamics). In this introduction, we explain some physical backgrounds behind
the work [7].

A hydrogen-like atom is an atom consisting of one electron, whose electric charge is
—e < 0, and a nucleus with electric charge Ze > 0, where Z is a natural number (the case
Z = 1is the usual hydrogen atom). As is well known, if the nucleus is fixed at the origin
of the 3-dimensional Euclidean vector space R® = {x = (z1, 22, 23)|z; € R,j =1,2,3}
and, as the potential acting on the electron at the position x € R3, one takes into
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account only the electric Coulomb potentiall —Ze?/4x|x| from the nucleus, then a
quantum mechanical Hamiltonian describing the hydrogen-like atom is given by the
Schrodinger operator
h? 5
(1.1) Hpya = —2—meA T
acting on L2(IR3), the Hilbert space of equivalence classes of complex-valued functions
square integrable on R? with respect to the 3-dimensional Lebesgue measure, where
h:= h/2m (h is the Planck constant), m. > 0 is the electron mass, A is the generalized
Laplacian on L?(R?), and
o Ze?
V=
Indeed, Hypyq is self-adjoint with domain D(Hyyq) = D(A)—for a linear operator A on
a Hilbert space, D(A) denotes the domain of A—and the spectrum of Hyyq, denoted
0(Huya), is found to be

(1.2) 0(Hnya) = {En}nzy U [0, 00)
with

1 mey? 1
(1.3) En:_§?§’ n=1,23---,

where each eigenvalue E,, is dedgenerate with multiplicity n?(e.g., [6, §2.3.5a] and [6,
Lemma 5.22, footnote 12]). These eigenvalues explain very well the so-called principal
energy levels of the hydrogen-like atom (Fig.1(a)), but do not show the finer structures
of the energy spectrum (Fig.1(b)), which may be regarded as splittings of the degeneracy
of B,’s .
It turns out that the finer structures of the hydrogen-like atom can be explained
by the Dirac operator
3
Dyyq = —ithaka + mGCQB — ﬁ,
k=1

acting on @*L%(R3) (the four direct sum of L?(IR3)), where ¢ > 0 is the speed of light in
the vacuum, Dy is the generalized partial differential operator in the variable zg, and
ag, 8 are 4 X 4 Hermitian matrices satisfying the following anti-commutation relations
(01 denotes the Kronecker delta):

apay + agag =20k,  apB+ Bog =0, B*=1 (k1=1,23).

IThe electromagnetic system of units which we use in the present paper is the rationalized CGS
Gauss unit system with the dielectric constant in the vacuum equal to 1.
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Figure 1. Energy spectrum of a hydrogen-like atom

The operator Dyyq is a relativistic version of Hyyq [15].
It is shown [15, §7.4] that the discrete spectrum ogisc(Dnyd) 0f Dhyq is given by

Udlsc(Dhyd) = {Enaj}nvj

with

En =

1 Y
1+h262 1 1 2 72
Ve

where j (1/2 < j < n — 1/2) is the total angular momentum of the electron, being
related to the orbital angular momentum ¢ = 0,1,--- by j = £+ 1/2 (£1/2 are the
possible values of the spin of the electron), and the condition v/hic < 1 is assumed.

It is easy to see that F, ; is monotone increasing in n and that, for each n,

En,j < En,j—l—l-
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Note also that the non-relativistic limit? ¢ — oo of E, ;— mec? gives E,:

lim (B, ; —mec®) = E,, n=12,--

c— 00

Foreachn =1,2,---, the state with energy eigenvalue F,, ; and angular momentum
¢=0,1,2,3,4,--- is respectively labeled as nx; with z = s,p,d, f,g,---:

princplal number state

n=1 Is1/2

n =2 (281/2,2p1/2),  2p3/2

n=3 (381/2,3p172),  (3p3y2,3dss2), 3ds/o

Here the states in each round bracket are degenerate. For example, the states 2s; /o
and 2p; /o are degenerate with energy Es 1/5. The energy levels Fj /o and FE, 3/ are

very near with Fy 1,5 < Es3/5. Hence these energy levels subtracted by Mec?

may be
regarded as a splitting of the second principal energy level Fy in the non-relativistic
theory. It is known that the energy levels {E,, j —mec?}, ; gives a good agreement with
experimental data (Fig.1(b)).

In 1947, however, Lamb and Retherford [12] experimentally observed that there
is a very small difference between the energies of the states 2s;/o and 2p; /5 with the
former being higher than the latter (Fig.2). This difference is called the Lamb shift.

Thus the Dirac theory breaks down in this respect.

281

AFE
T 2p1y0

281/2, 21?1/2

Figure 2. AE =Lamb shift

It was Bethe [8] who first explained the Lamb shift using non-relativistic QED. He
considered the Lamb shift as an energy shift caused by the iteraction of the electron with
the quantum radiation field. In his calculation, which is based on the standard heuristic
perturbation theory, the mass renormalization of the electron is one of the essential pre-
scriptions. On the other hand, Welton [16] gave another method to explain the Lamb

2In a non-relativistic theory, the kinetic energy of a rest particle is zero. Hence, in taking the non-
relativistic limit of an energy in a relativistic theory, one must subtract the rest energy mec? from
it.
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shift using non-relativistic QED: He infers that the interaction of the electron with the
quantum radiation field may give rise to fluctuations of the position of the electron and
these fluctuations may change the Coulomb potential so that the energy level shift such
as the Lamb shift may occur. With this physical intuition, he derived the Lamb shift
heuristically and perturbatively. After the work of Bethe and Welton, perturbative cal-
culations of the Lamb shift using relativistic QED with prescription of renormalizations
have been made, giving amazingly good agreements with the experimental result (see,
e.g., [11]). However a mathematically rigorous construction of relativistic QED (exis-
tence of full relativistic QED) is still open as one of most important and challenging
problems in modern mathematical physics. On the other hand, non-relativistic QED
allows one to analyze it in a mathematically rigorous way [1, 2, 3](for a review of recent
developments of non-relativistic QED, see, e.g., [10])

Motivated by finding a mathematically general theory behind Welton’s heuristic
arguments made in [16], the present author developed in the paper [4] an abstract
theory of scaling limit for self-adjoint operators on a Hilbert space and applied it to
one-particle non-relativistic QED (a quantum mechanical model of a non-relativistic
charged particle interacting with the quantum radiation field; a variant of the Pauli-
Fierz model [13]) to obtain an effective Hamiltonian of the whole quantum system. This
result is the starting point of the present review. Thus we next explain it in some detail.

8§2. A Model in Non-relativistic QED and its Scaling Limit

For mathematical generality, the non-relativistic charged particle is assumed to
appear in the d-dimensional Euclidean vector space R? with d > 2, so that the Hilbert
space of state vectors for the charged particle is taken to be L?(R?). We consider
the situation where the charged particle is under the influence of a scalar potential
V :R? — R (Borel measurable). Then the non-relativistic Hamiltonian of the charged
particle with mass m > 0 is given by the Schrodinger operator

h2

(2.1) H(m) = — A+ V.

On the other hand, the Hilbert space of state vectors of a photon is given by
Hpn = 01 LA(RY),

the (d—1)-direct sum of L?(R?), where the number (d—1) in the present context means
the freedom of polarization of a photon and R? here denotes the space of wave number
vectors of a photon. Then the Hilbert space of state vectors for the quantum radiation
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field is given by the boson Fock space

Frad 1= Dp=o ®F Hph

o
= {\p = {2 |0 € @I Hpnn > 0,> [ TM? < oo}
n=0
over Hpn, where @ H 1, denotes the n-fold symmetric tensor product of Hpp Wi’ch@);J Hon =
C (the set of complex numbers) and [|¥(™| denotes the norm of W(™),

As is easily shown, ®IH,y is identified with the Hilbert space of square inte-
grable functions (™ ((ky,s1), (ka,82), -+, (Kn, sn)) on (R? x {1,---,d — 1})" (k; €
R% s, € {1,---,d — 1}) which are totally symmetric in the variables (ki,s1), (ka, s2),
-+, (kp, 8n), where the isomorphism comes from the correspondence

1
Sn(®f195) = — > Voy&iss1) Yoy (Knssn), 5 = (05(,9))92] € Hpn

ceS,
with S, being the symmetrization operator on ®"H,, and &,, denotes the symmetry
group of n-th order. We use this identification.

In the physical case d = 3, the energy of a photon with wave number vector k € R3
is given by hclk| (by Planck-Einstein-de Broglie relation, hk is the momentum of the
photon with wave number vector k). Thus, in the case of general dimensions d, we
assume that the energy of a photon with wave number vector k € R? is given by hew(k)
with a function w : R — [0, 00) such that 0 < w(k) < oo for a.e. (almost everywhere)
k € R? with respect to the Lebesgue measure on R%. Then the free Hamiltonian of the
quantum radiation field is defined by

H,oq = @f;ozohcw(”),

where w(® := 0 and w™ is the multiplication operator by the function
n
W (ky, - k) = w(ky)
j=1

on (R? x {1,---,d—1})".

For each f € Hpn, there exists a densely defined closed linear operator a(f) on
Frad, called the photon annihilation operator with test vector f, such that its adjoint
a(f)* takes the form

(a(f) B =0, (a(f) )" =S (f Y)W = (W}, € Da(f)),n =1

(for more details, see [5, Chapter 10]). The operators a(f) and a(g)* (f,g € Hpn) satisty
the commutation relations—canonical commutation relations (CCR)—

[a(f),a(9)"] = (f,9),
[a(f),a(g)] =0, [a(f)*,a(g)*]=0



DERIVATION OF THE LAMB SHIFT FROM AN EFFECTIVE HAMILTONIAN IN NON-RELATIVISTIC QED 7

on the subspace
Frad0 = {0 = {TM}> e F.q|3ng such that U™ =0,¥Yn > ng},

where [A, B] := AB— BA and (-, -) denotes inner product. Thus the set {a(f),a(f)*|f €
Hpn} gives a representation of the CCR indexed by Hpp.

For a.e. k € R?, there exists an orthonormal system {e(*) (k) ;’;i of R? such that
each vector e(®) (k) = (egs)(k), e ,e((f)(k)) is orthogonal to k.

Let p be a real distribution on R? such that its Fourier transform p is a function
satisfying

A

L e @\ o}, o=3,

wa

L
5
Then the quantum radiation field A(p) := (A1(p), - -, Aa(p)) smeared with p is defined

b

where e; : RY — R47L e;(k) = (eg.l)(k), e ,egd_l)(k)),a.e.k € R4, We remark that,
for the definition of A;(p) itself, condition p/y/w € L?(R?) is sufficient. The additional
condition p/w?/? € L?(R%) is needed in the development below.
The Hilbert space $) of state vectors of the quantum system under consiseration is
given by
9 = L*(RY) ® Fraq.

The Hamiltonian of our model is of the following form:
Hxgr = H(mo) ® I + 1 ® Hyaa + Hi(p,mo)
with

d
q
Hi(p,mo) := T moc ij ® A;(p),
=1

where mg > 0 is the “bare” mass of the particle (the mass of the particle before going
into the interaction with the quantum radiation field), ¢ € R and p; := —ihD; de-
note respectively the electric charge and the momentum operator of the particle. The
operator Hiy(p,mg) describes an interaction of the charged particle with the quantum
radiation field. In this context, the function p plays a role of momentum cutoff for
photons interacting with the particle.

To draw from the Hamiltonian Hng observable effects that the quantum field may
give rise to the quantum particle, we consider a scaling limit of Hyg. Thus we introduce
the following scaled Hamiltonian:

Hyr(k) = Hm(k)) @ I + kI ® Hyaqa + kHi(p,m), k>0,
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where m > 0 is the observed mass of the particle and

B m
14+ 4kAgm

N AN / P
q = — | 72
4d me) h? Jpa w(k)3
Under the assumption that V is infinitesimally small with respect to —A, the operator
Hyxgr(k) is self-adjoint and bounded below [4, Lemma 3.1].

m(k) :

with

Remark 2.1.  The scaled Hamiltonian Hxg (k) is obtained by the scaling ¢ — ke
and ¢ — £%/2q in Hygr with H(mg) and Hy(p, mg) replaced by H(m(1)) and Hi(p,m)
respectively. Replacing mg with m(k) is called a mass renormalization®. We want to
emphasize that the mass renormalization makes the Hamiltonian bounded below (under
the condition that H(m) is bounded below) [4, Lemma 3.1].

A scaling limit of the original Pauli-Fierz model with dippole approximation is
discussed in [9] (see also [10]).

The vector
Qo :={1,0,0,- -} € Fraa (0 =1,0M =0,n>1)
is called the Fock vacuum in F,,q. We denote by P, the orthogonal projection onto the

1-dimensional subspace {af2g|a € C} spanned by Q.
It is shown that the operator

. d ~ * ~

oo e (@) (@)
T:=— i ® a ej|] —a €,

mcj;pj QhC{ (wg/g J <'()3/2 J

is essentially self-adjoint. We denote its closure by T.

The following theorem is proved [4, Theorem 3.4]:

Theorem 2.2.  Suppose that V satisfies the following two conditions:

(V.1) D(A) € D(V) and, for all a > 0, V(—A + a) ™! is bounded with
limg o0 [V(—A +a)7 || =0.

3Strictly speaking, one should replace mq in Hi(p, mg) with m(k) too. But, since

4kgAg

d
ij ® Aj(p).

j=1

Hi(p, m(x)) = Hi(p,m) —

and the second term on the right hand side is of the third order in g, one may take into account
only the first term on the right hand side as a primary approximation in a perturbative sense.
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(V.2) For all t > 0, [, e W[V (y)|dy < 0.

Then, for all z € C\ R,

s- lim (Hyr(k) —2) ' =e¢ " (Heg — 2) ' ® Py) e’

K— 00

where s- lim means strong limit and

h2
with
1 x|
(2.3) Vet (x) := W/Rde YAy (y)dy, xeR?.
q

Remark 2.3.  Under condition (V.1), V is infinitesimally small with respect to
—A and hence H(my) is self-adjoint and bounded below for all mqg > 0. Moreover,
under conditions (V.1) and (V.2), Vg is infinitesimally small with respect to —A and
hence H,g is self-adjoint and bounded below (see [4, §III, B]).

Theorem 2.2 may be physically interpreted as follows: the limiting system as K — oo
restricted to the subspace L? (R3)®{a6_ﬁﬂo |a € C} is equivalent to the particle system
whose Hamiltonian is Heg. Therefore Hog may include observable effects of the original
inteacting system through V.g. In this sense, we call Vog an effective potential for the
particle system and, correspondingly to this, we call Hqg an effective Hamiltonian of
the particle interacting with the quantum radiation field.

To see if the effective Hamiltonian Heg really explains some observable effects, one
has to investigate the spectral properties of it. This was the main motivation of the
paper [7]. In what follows, we concentrate our attention on this aspect.

§ 3. Elementary Properties of the Effective Hamiltonian

It is obvious that ¢ — 0 if and only if A, — 0. Hence we replace A, by a parameter
A > 0 and regard A\ as a perturbation parameter, where the limit A | 0 corresponds to
the unperturbed case. Thus we consider the effective Hamiltonian in the form

h2
(3.1) Hyi= —2=A+ Vs, A>0,
with
1 2
3.2 V()= ———— ~Ix=yIT /Ay (y)dy .
( ) )\(X) (47-‘-)\)d/2 /Rde (y) y
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As for V, we assume only that
(3.3) /R ) e |V (y)|dy < 0o, Wt > 0.
We have
(3.4) Heg = Hy,.
Remark 3.1. If V € LP(R?) for some 1 < p < oo, then (3.3) is satisfied.

Note that V) is the convolution of V' and the Gaussian function

1 e
(35) G)\(X) = We /4)\, X e ]Rd,
ie.,
(3.6) Vi =Gy # V.

In other words, V) is the Gauss transform of V with the Gaussian function G. This
structure may be suggestive, because the function G(x —y) of x and y is the integral
kernel of the heat semi-group {e**}y5¢ on L?(R?) (the heat kernel).

The effective potential V) is a perturbation of V' in the following senses:

i) If V is continuous and sup, g« |V (x)|e ¢*I" < 0o for some ¢ > 0 and « € [0,2),
x€ER

then
: _ d
lgrolv,\(x) =V(x), xeR%

(ii) If V € L3(R?), then
Vi = MV € L2(RY).

and hence limy o ||Vx = V[ z2ra) = 0 holds®.
(iii) If V € LP(R?) for some p € [1,00), then V) € LP(R?) and

lim VA = VLo @ray = 0.

(iv) If V € L°®(R?) and V is uniformly continuous on R?, then V3 € L°°(R?) and

lim [Vy = V][ gy = 0.

4For p € [1,00], || - | Lp (ra) denotes the norm of LP(R?).
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Thus, from a perturbation theoretical point of view, it is natural to write

(3-7) Hy=Hy+ W,
with
h2
(38) Ho = H(m) = —5 A+,
(3.9) Wy =V, —V.

However, we want to emphasize that Hy is not necessarily a regular perturbation of H
in the sense of [14, §XII.2]. Even in that case, the order of the perturbation may be
infinite.

One can analyze general aspects of spectra of Hy [7]. But, here, we restrict ourselves
to the case where V is a spherically symmetric function on R3.

§4. Spectral Properties of H), with a Spherically Symmetric Potential V'
on R3

We consider the case where d = 3 and V is given by the following form:

(4.1) V(x) = “(E‘D x € R?\ {0}

with u : [0,00) — R being bounded and continuously differentiable on [0,00) with the
derivative u’ bounded on [0,00). Note that V' has singularity at x = 0 if u(0) # 0. It is
easy to see that this V satisfies condition (3.3). By direct computations, one sees that
the effective potential V) in the present case takes the form

_T2/4’\u(r) sinh —|X|r dr.

V7T/\|X| 0 2A

In particular, V) also is spherically symmetric®.

(4.2) VA(x) =

A basic result on the spectra of H) is stated in the next theorem:

Theorem 4.1. Let V be given by (4.1). Then, for all A > 0, H) is self-adjoint
with D(H)y) = D(A) and bounded below. Moreover

Oess(HA) - [07 OO),

where oegs(+) denotes essential spectrum, and, if there exists an 7o > 0 such that
sup,.>,, u(r) < 0, then the discrete spectrum oqisc(Hy) is infinite.

51t is an easy exercise to show that, if V is spherically symmetric on R?, then so is V.
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Suppose that Hp has an isolated eigenvalue Fy € R with finite multiplicity m(Ey)
(1 <m(Ep) < o0). Let r be a constant satisfying

0<r< min |E — Ep|.
EGO’(H())\{E()}
Then
CT(Eo) = {Z € CHZ — E0| = 7"} C p(Ho),
Let
ny:=r sup |[(Ho— z)_1||, rx:= sup |[Wix(Hy— z)_1||.
z€C(Eo) 2€C(Ep)

Theorem 4.2. Let ry < 1/(1 + n,). Then, Hy has exactly m(Ey) eigenvalues
in the interval (Ey — r, Eg + 1), counting multiplicities, and o(Hy) N (Ey — r, Eg + 1)
consists of only these eigenvalues.

In the case where Ej is a simple eigenvalue of H, one can obtain more detailed

results:

Corollary 4.3. Let ry < 1/(1 + n,). Suppose that m(Ep) = 1 and §p is a
normalized eigenvector of H with eigenvalue Ey. Then, H) has exactly one simple
eigenvalue F) in the interval (Ey — r, Ey 4+ r) with formula

(Qo, WaQ0) + 2021 Sn(N)

E\=FEy+ 50 ,
A 0 1+Zn=1Tn()‘)
where
._ (_1)n+1 / —17n+1

Su(N) 1= = CT(EO)dz <QO,[WA(H 2] QO>,

—1)n 1 Qo, [Wa(H —2)71]" Q
T, = E / 2490 Wl = 5)71] Qo)

27TZ Cr(Eo) Eo—Z

and o(Hx) N (Eyg —r, By + 1) = {Ex}. Moreover, a normalized eigenvector of Hy with

eigenvalue F, is given by
Q0 + Zzo:l Q)\,n

BARRV/ES St mev)

(-

QM::—,/ dz(H — 2) " [Wy(H — 2)7 !
2mi Jo,(By) ( LA )

where
n

Q.

8§ 5. Reductions of H) to Closed Subspaces

The Hilbert space L?(R?) has the orthogonal decomposition

L*(R*) = @2, @i, H;
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with
Hy = I2([0, 00),1%dr) @ {a¥7la € C},

where Y, is the spherical harmonics with index (¥, s):

Yo( l—s) 2€+1 is
” 5 9)] \/ Pg (cos §)e™?,

0 € [0,7] ¢56[027r)3——€ —+1,---,0,---,£—1,¢

with P; being the associated Legendre function:
ds (=1)f [/ d\*
(1 a2ys/2 @ a 2\
Pj(z):=(1—2%)° T (da:) (I—2%)% |z < 1.
We have )
/ do / dosin 0Y5 (0, ) Yy (0, 6) = SpprSss-
0 0

As we have already seen, V) under consideration is spherically symmetric. Hence
H) is reduced by each Hj;. We denote the reduced part of Hy by Hf\’s:

W n?2d
(141 @) 000) = (g + 0 = 570 ) POV 6.0
o
+ ( ; 1)f(r)Yf(e,qﬁ), feC(0,00),

where Vi (r) := V (%) |r=|x| and C§°(0, 00) is the set of infinitely differentiable functions
on (0, 00) with bounded support in (0, c0).

Corollary 5.1.  For each pair (¢,s) (¢ € {0}UN,s = —¢,—¢+1,---  {), Theorem
4.2 and Corollary 4.3 with H) replaced by H f{’s hold.

§6. Energy Level Shifts in a Hydrogen-like Atom

Now we consider a hydrogen-like atom mentioned in Introduction. Thus we take
as an unperturbed Hamiltonian Hy the Schrodinger operator Hyyq defined by (1.1):

h? ~y
(6.1) Hyya = ~5 A+vO vy .= L

Me x|

The eigenvalue E,, of Hyyq (see (1.3) ) is a unique simple eigenvalue of the reduced part
Hﬁ;,sd of Hyya (0 < ¢ < n—1) to the closed subspace H; with a normalized eigenfunction

Un,t,5(x) 1= Cype 2272 (Bor) L2 (Br)YE (0, 0),
r=x,£=0,1,---,n—1,
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where
2mey

h2n ’
Lk (0 < k < n) is the Laguerre associated polynomial with order n — k, i.e.,

B =

k
LE(2) = jkL() r€eR

with L, (x) being the n-th Laguerre polynomial and

32— —1)!
[(n+0)P2n

C’n,g =

Applying (4.2) with w = —v (a constant function), the effective potential
Vi = Gy« V)
in the present case is of the form:
V(v) v 4 W(w)

with

w7 (x) = Erfe(|x|/2V/)),

\/_||

where Erfc : R — [0, 00) is the Gauss error function:

o0 2
Erfe(x) := / eV dy, z2>0.
xT

Hence the effective Hamiltonian

h2
HA(7) = —5 —A+ v Ao,
€

takes the form
Hy(7) = Hiya + WL
A(7) hyd T Wy '

The next theorem follows from a simple application of Theorem 4.1:

Theorem 6.1.  For all A > 0 and v > 0, Hy(v) is self-adjoint with D(Hx(v)) =
D(A) and bounded below. Moreover, oqisc(Hx (7)) is infinite and

Udisc(HA(’V)) C (_0070)7 Uess(HA('Y)) = [07 OO)
We take r,, > 0 such that r, < |E,,11 — FEy| and set

Cr (En) ={2€C|lz—E,| =ry}.
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Let

M, :=r, sup [HH) =27, Ran:= suwp [W(HH) -2
2€C,., (En) 2€C,., (Ep)

We denote by Hf\’s(’y) the reduced part of Hy(vy) to H;.
We have from Corollary 5.1 the following result:

Theorem 6.2. LetneN,/=0,1,--- ,n—1lands=—¢, —¢+1,--- L. Suppose
that A > 0 and Ry, < 1/(1 + M,). Then, Hﬁ’s(fy) has a unique simple eigenvalue
E, 0,s(A) near E, with
<¢n,£,sa W§7)¢n,£,s> + 302 B

En,ﬁ,s()\) == En +

Y

where
(p) (=prtt ") P+t
F’I’L,E,S()\) = 2 N ¢n’£757 |:W)\ (H(’V) - Z) i| wn’e’s dz,
T JC,, (Bn)
p
G (o CD7 (om0 G) =2 )
n,ﬁ,s( ) T 2—71'7, /C,,n(En) E, — 2 Z.

(N

Moreover, a normalized eigenvector of Hf\’s(’y) with eigenvalue E,, ¢ s(A) is given

n,l,s
by
o Ynes + 5501 ST V)
Unts = ) ’
\/1 + Zp:l Gn,[,s()\)
where
—1)pt1 B Cp
so.0 =S5 [ e -7 W06 - 297 v
Crp (En)

Let n € N, A >0 and Ry, < 1/(1+ M,). Then, by Theorem 6.2, one can define
(62) AEn(ga S5 Ela 3/) = En,ﬁ,s()\) - En,ﬁ/,s/(/\)

for £,0/ =0,1,--- ,n—1,8,8 = —l,—0+1,--- £ with ({,s) # (¢',s"). We call it an
energy level shift of H)(v) with respect to the n-th energy level.
The next theorem is an important result necessary for deriving the Lamb shift (see

the next section):
Theorem 6.3. Under the assumption of Theorem 6.2, the following holds:

(6.3) Epnos(\) = Ep + 477 [0n.0.5(0)PA +0(N) (A — 0).
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§ 7. Derivation of the Lamb Shift

In this section, we assume that, for each n € N; A > 0 is sufficiently small so that
the assumption of Theorem 6.2 holds. Then, by Theorem 6.3, we have

AB,(C,5:8,8") = 4y ([n0,5(0)* = [n,er,5 (0))A + 0(X) (A — 0).

Using
1
L, (0)=nn!, Yy =—,
n( ) nn 0 \/ZE
we obtain
1 V)2 1
(22) B0
(7.1) nesOP = ¢ "
0 A >1
Hence the following hold:
(i) If £,¢' > 1, then
(7.2) AE, (¢ s;0',s) =0 (A—0).
(ii) If £ > 1, then
(7.3) AE,(0,0; £, 8) = 41y A|¢0n.0.0(0)]* +0o(X) (A — 0).

Formula (7.3) shows that, for each n, the energy of the state with £ =0, s = 0 (the
s-state) is higher than that of the state with ¢ > 1 for all sufficiently small A\. This may
be a non-relativistic correspondence of the experimental fact that, for n = 2, the energy
of the state 2s; /o is higher than that of the state 2p; 5.

To compare the value of AE,(0,0;¢, s) with the experimental one, we take A = A,

with ¢ = —e, m = m, and

. 1
(.d(k) = |k|7 p(k) = Tﬂ_)gx[wmin/hcvwmax/hcl(|k|)’ ke R37

with constants wmin, > 0 and wmax > 0 satisfying wmin < Wmax. Then we have

h )2 1 Wmax
log

- 9
mec ) 37 Wmin

)\:)\_e:a<

where
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is the fine structure constant. We remark that wpin (resp. wmax) physically means an
infrared (resp. ultraviolet) cutoff of the one-photon energy. We have v = Ze? /4. Thus

we obtain
4 Z4 w
AFE, ; ~ad—mec? =1 X
(0,054,s) =« 3 MeC —3 1og o
8 Z4 Winax
(74) = 50431:{}7 F log . (Oﬁ — O),

where Ry := a?mqc?/2 is 1 rydberg (—Ry is the ground state energy of the hydro-
gen atom). If we take wmax = Mec? (the rest mass energy of the electron) and
Wmin = 17.8 Ry, then the right hand side of (7.4) completely coincides with Bethe’s
calculation [8] of the Lamb shift. Hence it is in a good agreement with the experimental
result.
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