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We present a novel pathway analysis of super-exchange electronic couplings in electron transfer reactions using localized molec-
ular orbitals from multi-configuration self-consistent field (MCSCF) calculations. In our analysis, the electronic coupling and
the tunneling pathways can be calculated in terms of the configuration interaction (CI) Hamiltonian matrix obtained from the
localized MCSCF wave function. Making use of the occupation restricted multiple active spaces (ORMAS) method can ef-
fectively produce the donor, acceptor, and intermediate configuration state functions (CSFs) and CIs among these CSFs. In
order to express the electronic coupling as a sum of individual tunneling pathways contributions, we employed two perturbative
methods: Löwdin projection-iteration method and higher-order super-exchange method. We applied them to anion couplings of
butane-1,4-diyl and pentane-1,5-diyl. The results were (1) the electronic couplings calculated from the two perturbative methods
were in reasonable agreement with those from a non-perturbative method (one-half value of the energy difference between the
ground and first excited states), (2) the main tunneling pathways consisted of a small number of lower-order super-exchange
pathways where bonding, anti-bonding, or extra-valence-shell orbitals were used once or twice, and (3) the interference among
a huge number of higher-order super-exchange pathways significantly contributed to the overall electronic coupling, whereas
each of them contributed only fractionally. Our method can adequately take into account both effects of non-dynamical electron
correlation and orbital relaxation. Comparing with analyses based on the Koopmans’ theorem (ignoring both effects) and the
ORMAS-CIs from frozen localized reference orbitals (ignoring the effect of orbital relaxation), we discuss these effects.

1 Introduction

The electron transfer (ET) reaction is one of the most funda-
mental phenomena in chemical, physical, and biological sys-
tems and thus has received considerable attention from var-
ious scientific fields1–4. Among them, the ET reactions be-
tween local donor (D) and acceptor (A) groups linked by or-
ganic spacer molecules (bridge, B) have been thoroughly in-
vestigated experimentally.5–10 Such ET reactions occur in the
non-adiabatic limit and the rate of reaction is given by the fol-
lowing formula:1–4

kDA =
2π
h̄
|TDA|2 (FCWD) , (1)

where (FCWD) is the Franck-Condon weighted density of
states and TDA is the electronic coupling between localized
donor and acceptor states. In such an ET system linked by
spacer molecules, TDA is usually discussed by the following
two terms: (1) through-space coupling arising from the di-
rect mixing of the localized donor and acceptor orbitals and
(2) through-bond coupling arising from the super-exchange
mechanism where the electron tunnels via the virtual states
of the spacer molecules.11,12. The amplitude of TDA is deter-
mined by the sum of the two terms. For long-range ET re-
actions, the through-space coupling is often negligible since
the overlap between the donor and acceptor orbitals at a dis-
tance greater than several angstroms is extremely small. For
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this reason, the through-bond coupling mostly contributes to
the TDA and as a result, regulates the long-range ET rate.

The theoretical estimation of TDA from the electronic struc-
ture of the ET system, especially focusing on the chemical
and structural features of the spacer molecules, is a challeng-
ing and attractive subject. Many methods based on empiri-
cal, semi-empirical and ab initio electronic structure calcula-
tions have been developed to obtain TDA for various ET sys-
tems.11–19 For long-range ET reactions in DBA systems, only
the two effective diabatic states (i.e. the charge-localized ini-
tial and final diabatic states with exponentially small charge
density in the B region) are involved in the electronic cou-
pling, and the electron tunneling occurs when the two dia-
batic states are brought into resonance by the thermal fluc-
tuation of molecular environment. Under this situation, var-
ious ab initio-based methods have been applied to calcu-
late the TDA-value in terms of the off-diagonal matrix ele-
ment between the two diabatic states17–37 and the half en-
ergy difference (energy splitting) between the corresponding
two adiabatic states.17–19,38–46 Furthermore, the Hartree-Fock
(HF) Koopmans’ theorem (KT) scheme is used to approxi-
mate the TDA-value from the half energy splitting between
the two corresponding HF molecular orbitals (MOs).17–19 The
ab initio-based HF-KT scheme has been widely used for or-
ganic17–19,27,38–40 and biological47,48 ET systems because of
its simplicity and computational efficiency.

In addition to calculating the TDA-values, determining and
visualizing the electron tunneling pathways has been a signif-
icant subject to understand the role of spacer molecules. Such
pathway studies enable us to elucidate the nature of through-
bond coupling and have great potential to design effective
long-range ET systems for molecular devices. So far, many
theoretical pathway analysis methods have also been devel-
oped and used11,16–18,36,37,49–75. For ab initio-MO based path-
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way analysis, the HF-KT scheme with natural bond orbitals
(NBOs)76,77 has been most commonly used.12,17,18,50–57 In
these studies, the TDA-values are approximated as the sum of
the couplings from individual tunneling pathways obtained by
perturbative approaches such as the super-exchange method49

with the NBO Fock matrix. However, the HF-KT scheme in-
trinsically ignores the effects of non-dynamical electron corre-
lation and orbital relaxation. Moreover, the quality of the anti-
bonding and Rydberg NBOs are not necessarily much higher
than the HF virtual orbitals.

A few of ab initio-MO based pathway studies beyond
the HF-KT level have been conducted.36,37,58 Hayashi and
Kato58 have analyzed the super-exchange tunneling pathways
for porphyrin-benzoquinone D/A groups linked by organic
spacer molecules using a singly excited configuration inter-
action (CIS) Hamiltonian matrix with localized orbitals. They
thus used the HF virtual orbitals and ignored most of the non-
dynamical correlations. Stuchebrukhov36,37 have developed
the tunneling currents method that yields the tunneling path-
ways as spatial distributions of quantum mechanical flux of
probability density. Their method does not need virtual or-
bitals and partially includes the non-dynamical correlations
with use of the superposition of two charge-localized dia-
batic states obtained from the symmetry-broken unrestricted
HF (UHF) solutions biorthogonalized by the corresponding
orbital transformation.

In this paper, we present a novel pathway analysis us-
ing multi-configuration self-consistent field (MCSCF) cal-
culations with orbital localization schemes. The electronic
coupling is obtained from the CI Hamiltonian matrix where
the configuration state functions (CSFs) are constructed from
the optimized and localized active orbitals of the MCSCF
wave functions. In particular, we made use of the occu-
pation restricted multiple active spaces (ORMAS) method78

implemented in the GAMESS program79 to effectively gen-
erate the CI Hamiltonian matrix. For orbital localiza-
tion, three different orbital-localization schemes, Edmiston-
Ruedenberg80, Foster-Boys81, Pipek-Mezey82, implemented
in the GAMESS program were used. For the pathway anal-
yses, we employed two perturbative methods: the Löwdin
projection-iteration83,84 method and the higher-order super-
exchange method49. The tunneling pathways from our
method include both the effects of non-dynamical electron
correlation and orbital relaxation in contrast to the previous
studies. We have applied our method to anion couplings of
butane-1,4-diyl and pentane-1,5-diyl where the excess elec-
tron is exchanged between the terminal CH2 π DA groups
through alkyl chains. These model ET systems have been
studied in many theoretical works owing to their relavance
to the ET kinetics in alkane-thiols self-assembled monolay-
ers attached to gold electrodes85–87. To clarify the effects of
non-dynamical correlation and orbital relaxation, we have also
carried out calculations using the NBO Fock matrix (ignoring
both effects) and using the ORMAS-CI Hamiltonian matrix
constructed with the frozen NBOs (ignoring the orbital relax-
ation).

The influence of structural fluctuations on the ET electronic
couplings are becoming recognized to be of great importance
for making quantitative predictions in systems with multiple
interfering pathways.88,89 For biological ET systems, a few of

theoretical methods to determine and visualize the tunneling
pathways that take into account both the effects of structure
fluctuations and quantum-interference among the multiple-
tunneling pathways have been developed.71,72 However, we
will leave this interesting issue for future investigations.

The constitution of this paper is as follows: In section 2, we
describe the computational method to construct the CI Hamil-
tonian matrix used for the pathway analyses. We first show
the structures of butane-1,4-diyl and pentane-1,5-diyl and then
present the method of the ORMAS-MCSCF calculations with
the orbital localization schemes for producing CIs. In section
3, we briefly review the Löwdin projection-iteration method
and the higher-order super-exchange method for the pathway
analyses. In section 4, we present the numerical results of the
electronic couplings and the pathway analyses. In section 5,
we present the pathway analyses from the NBO Fock matrix
and from the ORMAS-CI Hamiltonian matrix with the NBO.
In section 6 we conclude.

2 Computational Method

2.1 Structures

The structures of butane-1,4-diyl and pentane-1,5-diyl used
in this study are shown in Fig. 1. The coordinates of
both molecules were determined by geometrical optimiza-
tions in their neutral triplet states with restricted open-shell
HF(ROHF)-B3LYP/6-311+G(d).90 In the geometrical opti-
mizations, the structures of butane-1,4-diyl and pentane-1,5-
diyl were constrained to have C2h and C2v symmetries, re-
spectively. To examine the π couplings between the termi-
nal carbon lone-pairs, in the geometrical optimizations, the
hydrogen atoms of the terminal CH2 were also constrained
to be perpendicular to the σh plane and the σv plane, respec-
tively. In adopting these procedures, we followed the previous
works19,46,53 to make comparisons. The use of neutral triplet
state is a convenient way to obtain symmetric structures that
mimic the transition state of the ET. The uncertainty involved
in this approximation is again an interesting issue in relation
to the coupling to the structural fluctuation, but we shall leave
it out of the scope of this paper. As shown in Fig. 1, we
have numbered the carbon atoms of hydrocarbon chain, start-
ing from one terminal carbon atom to the other.

2.2 Electronic Structure Calculations

In the two-state approximation, the |TDA|-value is obtained
from the half energy difference, ∆/2, between the ground and
first excited states17–19:

|TDA|= ∆/2 = (E1 −E0)/2, (2)

where E0 and E1 represent the energies of the ground and first
excited states, respectively.

To take into account both the effects of non-dynamical elec-
tron correlation and orbital relaxation, the MCSCF calcula-
tions with orbital localizations schemes were conducted. The
procedure of our calculations are as follows: (1) The state-
averaged MCSCF (SA-MCSCF) calculations with the occupa-
tion restricted multiple active spaces (ORMAS)78 were con-
ducted for the anion radical ground and first excited states.
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Fig. 1 Structures of (a) butane-1,4-diyl and (b) pentane-1,5-diyl
optimized at the neutral triplet state by using
ROHF-B3LYP/6-311+G(d). The green and white balls indicate
carbon atoms and hydrogen atoms, respectively. We have numbered
the carbon atoms of the hydrocarbon chain, starting from one
terminal carbon atom to the other. The atomic view is produced with
use of Winmostar108

The detail of the ORMAS setup will be described later in this
subsection. The values of ∆/2 were calculated using eqn 2. (2)
After convergence of the ORMAS-MCSCF calculations, the
active orbitals were localized with the conventional schemes
described later. (3) The ORMAS-CI calculations were redone
in the same manner as in step (1) with the localized active or-
bitals. The CI Hamiltonian matrix elements among the elec-
tronic configurations constructed in this step were stored for
the pathway analyses. We checked that the value of ∆/2 ob-
tained in this step was identical to that obtained in step (1).

The ORMAS-setup used for steps (1) and (3) is as follows:
The active MOs were divided into two groups, (a) ORMAS
active orbital group 1 consisting of the doubly and singly oc-
cupied MOs in the reference determinant, excluding the frozen
core MOs and (b) ORMAS active orbital group 2 consisting of
unoccupied MOs up to the number of anti-bonding orbitals in
the reference determinant. All excitations within the group 1,
and zero or one electron excitations from group 1 to group 2
are taken into account. Schematic representation of this OR-
MAS setup is shown in Fig. 2(a). The four lowest initial MOs
of the ORMAS-MCSCF calculations in step (1) were treated
as the frozen core orbitals for butane-1,4-diyl. Similarly, the
five lowest initial MOs of the ORMAS-MCSCF calculations
in step (1) were frozen for pentane-1,5-diyl. For butane-1,4-
diyl, 25 electrons are distributed in 24 active orbitals, giving
rise to a total of 2730 determinants. For pentane-1,5-diyl, 31
electrons are distributed in 30 active orbitals, giving rise to a
total of 5280 determinants. The assignment of different or-
bitals in these ORMAS-MCSCF calculations are also illus-
trated in Fig. 2(a).

In step (2), three different orbital localization schemes were
employed, Edmiston-Ruedenberg (Ruedenberg)80, Foster-
Boys (Boys)81, and Pipek-Mezey (Pop)82. To keep the to-
tal wave function invariant, these localizations were restricted

such that the multiple active spaces were not mixed. The aims
of using these localization schemes are to transform the origi-
nally delocalized MOs of groups 1 and 2 into localized bond-
ing, lone-pair, and anti-bonding orbitals.

Fig. 2(b) and 2(c) shows the schematic illustrations of the
electronic configurations reconstructed in step (3). They in-
clude the donor electronic state |ΦD⟩, the acceptor electronic
state |ΦA⟩, and the six types of intermediate electronic states
adopted in the pathway analyses. In these electronic configu-
rations, the electrons are distributed into the localized MOs
from ORMAS-MCSCF calculations. The CI Hamiltonian
matrix elements among these configurations were calculated
from the Slater-Condon rules91 in step (3).

In ORMAS-MCSCF calculations, a determinant-based CI
method is employed.78 The Slater determinants correspond-
ing to |ΦD⟩, |ΦA⟩, and types I, V, and VI of intermediate elec-
tronic states are purely doublets. On the other hand, the Slater
determinants corresponding to the types II, III, and IV are not
purely doublets owing to spin-contaminations of quartets. To
use the CI Hamiltonian matrix elements for the pathway anal-
yses with the higher-order super-exchange method, we should
construct the doublet configuration state functions (CSFs) by
properly taking linear combinations of the Slater determinants
for types II, III, and IV92. Note that the Slater determi-
nants are expressed in terms of alpha and beta strings in the
determinant-based CI methods.78,92 Therefore, we should be
cautious about the order of such alpha and beta strings when
taking the linear combinations to construct the corresponding
CSFs. These procedures produce 1872 CSFs for butane-1,4-
diyl anion and 3600 CSFs for pentane-1,5-diyl anion, respec-
tively. We confirmed that the ∆/2 values calculated from eqn
2 are invariant using the CSFs.

All electronic structure calculations, including geometrical
optimization for the two molecules, were performed using the
GAMESS program79.

3 Theoretical Methods for Pathways Analysis

In this study, two different types of perturbative methods, (1)
Löwdin projection-iteration method83,84 and (2) higher order
super-exchange method18,49, were used to calculate the TDA-
value and the tunneling pathways in terms of the CI Hamilto-
nian matrix obtained from the localized MCSCF wave func-
tion. First, we briefly review the theoretical formula of the
Löwdin projection-iteration method. This method has been
widely used to approximate ∆ of the long-range ET in the
context of the one-electron models, such as the extended-
Hückel level13,14,93 and the HF-KT level with semi-empirical
and ab initio MO theories94–96, except for Ref.97 in which
a Hubbard-like Hamiltonian was used. In contrast, we have
used this method in the context of many-electron models based
on the CI Hamiltonian matrix.

The system Hamiltonian Ĥ is written as

Ĥ = ∑
J

∑
K
|ΦJ⟩HJ,K⟨ΦK |, (3)

where |ΦJ⟩ represents the CSFs of the donor, acceptor, and the
six types illustrated in Fig. 2(b) and 2(c). The diagonal and
off-diagonal matrix elements, HJ,K , are the energies of these
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Fig. 2 (a) Schematic representation of the partition of different orbitals used in our ORMAS-MCSCF and ORMAS-CI calculations. (b)
Schematic illustrations of the donor and acceptor electronic configurations. The electrons are distributed into the localized MOs from the
ORMAS-MCSCF calculation. In an ideal situation, all CC and CH bonding orbitals are occupied doubly, one terminal carbon lone-pair is
occupied doubly, and the other terminal carbon lone-pair is occupied singly. (c) Schematic illustrations of the intermediate electronic states
used for the super-exchange electronic coupling. The asterisk symbols ∗’s appearing in types of II , III, and IV represent that two up-spin
electrons and one down-spin electron occupy each of three MOs singly.
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CSFs and the CIs among the corresponding CSFs, respec-
tively. The frozen core energy and nuclear repulsion energy
were eliminated in the Hamiltonian matrix elements. Here, we
divide the considered CI space into the two subspaces P and Q
using the projection operators P̂ = |ΦD⟩⟨ΦD|+ |ΦA⟩⟨ΦA| and
Q̂ = ∑J |BJ⟩⟨BJ |, where the state |BJ⟩ belongs to the interme-
diate CSFs as shown in Fig. 2(c). The Löwdin partition of the
time-independent Schrödinger equation Ĥ|Ψ⟩=E|Ψ⟩ into the
subspace P gives the following effective two state Hamiltonian
matrix elements13,15,93,94,96,97

Heff
pp(Etun) =

(
Heff

D,D(Etun) Heff
D,A(Etun)

Heff
A,D(Etun) Heff

A,A(Etun)

)
,

Heff
P1,P2

(Etun) = E0δP1,P2 +∑
J

∑
K

VP1,JGB
J,K(Etun)VK,P2 , (4)

where P1 and P2 stand for D or A. The matrix GB
J,K(Etun) is

the isolated bridge (i.e. intermediate CSF) Green function and
E0 is the average value between the donor and acceptor con-
figuration energies defined as follows:

GB
J,K(Etun) = ⟨BJ |[EtunIB −HB]−1|BK⟩, (5)

E0 = (⟨ΦD|H|ΦD⟩+ ⟨ΦA|H|ΦA⟩)/2. (6)

Here, Etun is the parameter that represents the energy of the
resonance diabatic states during the electron tunneling transi-
tion and is determined by the following iteration procedure. In
the first step, the energy E0 is employed as the initial value of
Etun. Then, the effective two-state Hamiltonian is calculated
using eqn 4 in which Etun is replaced with E0. The average
value of the diagonal elements of the obtained Heff

pp(E0) is used
as the value of Etun in the next step. Therefore, the variable En
representing the parameter Etun obtained after the n steps of
the iteration procedure is written as

En = (Heff
D,D(En−1)+Heff

A,A(En−1))/2. (7)

The iteration cycle is continued until the value of En con-
verges. After the convergence, the approximate electronic
coupling and energy gap are obtained as follows:

TDA = Heff
D,A(En−1) = ∑

J
∑
K

VD,JGB
J,K(En−1)VK,A, (8)

∆(2s)(n)/2

=

√
[Heff

D,D(En−1)−Heff
A,A(En−1)]2

4
+Heff

D,A(En−1)Heff
A,D(En−1)

= |Heff
D,A(En−1)|. (9)

Next, we briefly review the theoretical formula of the
higher-order super-exchange method18,49. This method has
been widely used with the NBO method in the context of the
one electron models.12,17,18,50–55 In contrast, we have used this
method in the context of the many electron models based on
the CI Hamiltonian matrix, similarly to the work by Hayashi
and Kato58. The system Hamiltonian given by eqn 3 is rewrit-
ten as

Ĥ = Ĥ0+V̂ =∑
J
|ΦJ⟩EJ⟨ΦJ |+∑

J
∑

K(̸=J)
|ΦJ⟩VJ,K⟨ΦK |, (10)

where EJ and VJ,K are the diagonal and off-diagonal elements
of the CI Hamiltonian matrix. The off-diagonal elements,
VJ,K , are regarded as the perturbative terms. In the two state
approximation, the approximate electronic coupling is evalu-
ated by using the transition operator formalism of scattering
theory18,49

TDA = ∑
J,K /∈D,A

⟨ΦD|V̂ |ΦJ⟩⟨ΦJ |ĜB(Etun)|ΦK⟩⟨ΦK |V̂ |ΦA⟩,

(11)
where ĜB is the bridge (or intermediated-state) isolated elec-
tronic Green function and Etun is the tunneling energy parame-
ter. Employing the Dyson equation, the operator ĜB is written
as follows18,49:

ĜB(Etun) = Ĝ0
B(Etun)+ Ĝ0

B(Etun)V̂ ĜB(Etun), (12)
Ĝ0

B(Etun) = (Etun − Ĥ0 + iη)−1, (13)

where η is a positive infinitesimal constant. The Green func-
tion matrix element is therefore written as

⟨ΦJ |ĜB(Etun)|ΦK⟩ =
δJ,K

Etun −EJ

+ ∑
L(̸=J)

1
Etun −EJ

VJ,L⟨ΦL|ĜB(Etun)|ΦK⟩.

(14)

Substituting eqn 14 into eqn 11 provides the approximate elec-
tronic coupling as follows:

TDA =VDA+∑
J

VD,JVJ,A

Etun −EJ
+∑

J
∑

K(̸=J)

VD,JVJ,KVK,A

(Etun −EJ)(Etun −EK)
+· · · .

(15)
Equation 15 is rewritten as follows:

TDA = ∑
p

T pth
DA = T 1st

DA +T 2nd
DA +T 3rd

DA +T 4th
DA + · · ·

= ∑
N

βN = β1st +∑
N2

β2nd
N2

+∑
N3

β3rd
N3

+∑
N4

β4th
N4

+ · · · ,

(16)

where βN represents the electronic coupling propagated by
one pathway numbered N. The term βpth represents the elec-
tronic coupling provided by the pth-order pathways, where the
(p−1) intermediate CSFs are involved. The term T pth

DA repre-
sents the contributions from all of the pth-order pathways to
the overall electronic coupling. In eqn 15 and 16, the follow-
ing equalities are obviously satisfied,

VDA = T 1st
DA = β1st = ⟨ΦD|Ĥ|ΦA⟩. (17)

When using eqn 15 and 16 in our study, we took into ac-
count the pathways providing the coupling whose absolute
value was greater than a energy threshold of 10−x hartree,
where x was taken from 4 to 10. In addition, when using
eqn 15 and 16, we took into account the contributions from
up to the 6th-order pathways. The sign of TDA obtained from
the higher-order super-exchange method is arbitrary. In the
present study, we always took the sign of TDA positively and
determined the signs of βN’s and T pth

DA appearing in eqn 16
consistently.
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4 Results and Discussion

4.1 Calculated values of ∆/2 employing various basis sets

By using eqn 2 with the ORMAS-MCSCF calculations, we
first calculated the ∆/2-values for the anion couplings of
butane-1,4-diyl and pentane-1,5-diyl. To compare with the
HF-KT scheme17,39, we also calculated ∆/2 from the half en-
ergy splitting between the two highest occupied molecular or-
bitals (HOMOs) of the ROHF wave function for the neutral
triplet and from the half energy splitting between two lowest
unoccupied molecular orbitals (LUMOs) for down-spin elec-
trons of the UHF wave function for the neutral triplet. In these
calculations, we used several basis sets, including the mini-
mal basis set STO-3G98, Pople basis sets99–102 3-21G, 6-31G,
6-31G(d), 6-311G(d,p), and Dunning ’correlation-consistent’
basis sets cc-pVDZ, cc-pVTZ103. For the anion coupling
of butane-1,4-diyl, the basis sets including diffuse functions,
3-21++G, 6-31+G(d), 6-31++G(d)104, and aug-cc-pVDZ103

were also used.

Table 1 Calculated values of the half energy splitting, ∆/2 (in units
of millihartree), for anion coupling of butane-1,4-diyl in various
basis sets

Basis Set ORMAS-MCSCF ROHF-KT UHF-KT
STO-3G 23.77 19.74 25.06
3-21G 16.45 17.01 14.22

3-21++G 9.714 15.32 3.924
6-31G 14.50 15.78 11.07

6-31G(d) 13.96 15.26 10.60
6-31+G(d) 8.764 13.99 4.599

6-31++G(d) 8.388 14.01 4.472
6-311G(d,p) 12.19 14.53 5.310

cc-pVDZ 12.87 14.80 7.934
aug-cc-pVDZ 8.346 13.92 3.689

cc-pVTZ 11.10 14.20 2.979

In Table 1, we list the results for the anion coupling of
butane-1,4-diyl. As shown, the ∆/2-values from the ORMAS-
MCSCF calculations were smaller than those from the ROHF-
KT calculations and larger than those from the UHF-KT cal-
culations except when the STO-3G basis set was employed.
There were more than one millihartree (mh) differences be-
tween ∆/2 from the ORMAS-MCSCF calculations and that
from the ROHF-KT calculations except when the 3-21G basis
set was employed. The value of ∆/2 from any calculations
without diffuse functions decreased as we employed larger
basis sets. The ORMAS-MCSCF and UHF-KT calculations
with the basis sets including diffuse functions decreased the
∆/2-values drastically. Miller et al.39,42 have reported that
the HF-KT, ∆SCF, and ∆MP2 calculations with the diffuse-
function basis sets produce erratic and unrealistic ∆/2-values
for butane-1,4-diyl anion. The reason of these problematic re-
sults will be described later in this subsection.

In Table 2, we list the results for the anion coupling of
pentane-1,5-diyl. Comparing Table 2 with Table 1 shows that
the dependence of the ∆/2-values on the size of the basis set
was similar between the two molecules. In contrast to the
case for butane-1,4-diyl, the ∆/2-values from the ORMAS-
MCSCF calculations were larger than those from the ROHF-
KT calculations and smaller than those from the UHF-KT cal-

Table 2 Calculated values of the half energy splitting, ∆/2 (in units
of millihartree), for anion coupling of pentane-1,5-diyl in various
basis sets

Basis Set ORMAS-MCSCF ROHF-KT UHF-KT
STO-3G 15.21 12.10 17.27
3-21G 18.38 15.18 21.13
6-31G 17.40 14.54 20.17

6-31G(d) 16.82 14.31 19.67
6-311G(d,p) 16.80 14.19 21.72

cc-pVDZ 16.76 14.28 20.68
cc-pVTZ 15.94 14.04 18.31

culations.
To verify the validity of our ORMAS-MCSCF calculations,

we recalculated ∆/2 for anion coupling of butane-1,4-diyl
adding the ten lowest (previously frozen) virtual orbitals to
ORMAS active group 2 and allowing up to two electron exci-
tations from ORMAS active group 1 to group 2. These proce-
dures increased the number of Slater determinants from 2730
to 2440152, and yielded the ∆/2-values of 17.06 mh at 3-21G
level, 15.18 mh at 6-31G(d) level, 14.18 mh at cc-pVDZ level,
and 10.34 mh at 6-31+G(d) level, respectively. Their agree-
ment with the results in Table 1 except for 6-31+G(d) level in-
dicates that our ORMAS-MCSCF setting described in Section
2 is sufficient for the present analysis without using diffuse-
function basis sets.

The choice of the proper size of basis set is of signifi-
cance for the study on the electronic coupling of ET. Em-
ploying larger basis sets does not necessarily produce better
results, not only for electronic coupling38,39,42, but also for
response properties105 and transmission functions106. This
is explained as follows: (1) HF calculations for anion sys-
tems with the diffuse-function basis sets produce the lowest ly-
ing virtual orbitals corresponding to the ”discrete” continuum
states.38,39,42 They describe unbound electronic states, rather
than the chemically relevant virtual MOs, and may lead to er-
roneous ∆/2-values. (2) Employing improper atom-centered
basis sets leads to artifacts due to the ”ghost” functions;39,106

when triple-zeta or bigger basis sets are used, the ”ghost”
functions may also produce the ”discrete” continuum states
and cause an artificailly high electronic transmission through
the alkane molecular junctions.106 These problems are still
open to further investigations. We therefore focus our anal-
ysis hereafter on the calculations with the double-zeta basis
sets without diffuse functions.

In this study we ignored the dynamical electron correla-
tion because it has been shown to be minor, both qualita-
tively20 and by spin-flip (SF) coupled-cluster single and dou-
ble (CCSD) calculations.46

4.2 Active orbital localizations

We localized the active orbitals of the ORMAS-MCSCF wave
functions using three different localization schemes, Rueden-
berg80, Boys81, and Pop82 with the 3-21G, 6-31G(d), and cc-
pVDZ basis sets. In Fig. 3, we show the orbitals localized
by the Ruedenberg scheme with the 3-21G basis set for the
anion coupling of butane-1,4-diyl. In Fig. 3(a), the localized
orbitals in ORMAS active group 2 are drawn. In Fig. 3(b)
and 3(c), the localized orbitals in ORMAS active group 1 are
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drawn. We have numbered these orbitals as φi (i = 1, · · · ,24),
as indicated in Fig. 3. The manner to divide these orbitals cor-
responds to those in Fig. 2(b) and 2(c). The orbitals drawn in
Fig. 3(c) formed the desired bonding orbitals, representing the
Lewis-like structure for butane-1,4-diyl. The orbitals drawn in
Fig. 3(b) formed the lone-pair orbitals at C1 and C4 and were
regarded as the donor φD and acceptor φA orbitals. Fig. 3(a)
shows that most of the orbitals in ORMAS group 2 formed de-
sired anti-bonding ones. Note that the orbitals φ17 and φ19 in
Fig. 3(a) formed extra-valence-shell ones. We hereafter call
such orbitals Rydberg orbitals, referring to previous studies54.
In addition, the orbitals φ20 and φ22 formed somewhat delo-
calized three or four center anti-bonding orbitals. In Fig. 3, the
symbols ’σ’ and ’σ∗’ represent bonding and anti-bonding or-
bitals, respectively. We have named the covalent bonds where
the bonding orbitals were located, as written in parentheses in
Fig. 3.

(b)

φD   ̟(C1) φA   ̟(C4)

(c)

φ1   σ(C2-H) φ2   σ(C3-H) φ3   σ(C1-H) φ4   σ(C4-H)

φ5   σ(C2-H) φ6   σ(C4-H) φ7   σ(C3-C4) φ8   σ(C1-H)

φ9   σ(C2-C3) φ10   σ(C1-C2) φ11   σ(C3-H)

(a)

φ14   σ*(C4-H) φ15   σ*(C1-H) φ16   σ*(C1-H) φ17  C4ryd

φ18   σ*(C4-H) φ19  C1ryd φ20  φ21   σ*(C2-C3)

φ22  φ23   σ*(C3-C4) φ24   σ*(C1-C2)

Fig. 3 Localized ORMAS-MCSCF active orbitals obtained with the
Ruedenberg localization scheme and the 3-21G basis set for anion
coupling of butane-1,4-diyl. (a) The localized active orbitals
belonging to the ORMAS active orbital group 2. (b) The localized
active orbitals that belong to the ORMAS active orbital group 1
which are regarded as the donor and acceptor orbitals in the
pathways analyses. (c) The localized active orbitals belonging to the
ORMAS active orbital group 1. These active orbitals were
visualized using Winmostar. 108

When employing the Ruedenberg scheme with the 3-21G
basis set for the anion coupling of pentane-1,5-diyl, we found
that the localized active orbitals have similar features to those
for butane-1,4-diyl. The obtained orbitals in the ORMAS ac-
tive group 1 formed desired bonding and lone-pair orbitals.
The obtained orbitals in the ORMAS active group 2 formed
desired anti-bonding orbitals except for the C-H anti-bonding
ones located at the spacer alkane −(CH2)3− and two Ryd-

berg ones at the terminal carbon atoms. For details, see Fig.
S1, ESI.†

For both molecules, the active orbitals obtained with the 6-
31G(d) or cc-pVDZ basis set were somewhat less localized
than those obtained with 3-21G basis set, not depending on
the localization schemes. We also found that the shapes of the
localized orbitals from the Boys scheme were closer to those
from the Ruedenberg scheme than those from the Pop scheme.
For details, see Fig. S2 and S3, ESI.†

These localized MOs constructing the ORMAS-MCSCF
wave function were used for the pathway analyses described
hereafter in this section.

4.3 Löwdin projection-iteration method

Using the CI Hamiltonian matrix obtained from the localized
ORMAS-MCSCF wave functions, we applied the Löwdin
projection-iteration method. The initial value for the tunneling
energy, E0, used for this method was the average one between
the donor and acceptor CSFs, given by eqn 6.

In Tables 3 and 4, we listed the converged values of |Heff
D,A|

from eqn 8, the ratio 2|Heff
D,A|/∆, and Etun when using the 3-

21G, 6-31G(d), and cc-pVDZ basis sets with the Ruedenberg,
Boys, and Pop localization schemes. Tables 3 and 4 show the
results for anion couplings of butane-1,4-diyl and pentane-1,5-
diyl, respectively. In Tables 3 and 4, we also listed the average
value of the configuration energies between the ground and
first excited states, (E0 +E1)/2, obtained from the ORMAS-
MCSCF calculations. These configuration energies do not in-
clude the frozen core energies and the nuclear repulsion ener-
gies to ensure the consistency with the CI Hamiltonian matrix
elements used in the Löwdin interaction-projection method.
We found that the off-diagonal elements of effective two-state
Hamiltonian at the first iteration step (i.e. |Heff

D,A(E0)|) pro-
vide poor approximation of ∆/2 in all cases. For example,
when employing the 3-21G basis set and the Ruedenberg lo-
calization scheme, we obtained E0 =−91.627337 hartree and
|Heff

D,A(E0)| = 324.0 mh for the anion coupling of butane-1,4-
diyl. In this case, the |Heff

D,A(E0)|-value is thus 19.7 times
larger than the ∆/2-value. However, all of these calculations
converged quite smoothly within thirty iterative steps, and the
converged values of |Heff

D,A| provided a reasonable approxima-
tion of ∆/2, as shown in Tables 3 and 4. The converged values
of |Heff

D,A| obtained from the Boys localization scheme were
similar to those obtained from the Ruedenberg localization
scheme. As shown in Table 3, the converged values of |Heff

DA|
from the Boys and the Ruedenberg schemes were ca. 1.5 times
larger than the values of ∆/2 with any of the three basis sets
for butane-1,4-diyl. As shown in Table 4, on the other hand,
the converged values of |Heff

DA| from these localization schemes
are approximately equal to the values of ∆/2 with any of the
three basis sets fro pentane-1,5-diyl. In contrast, in the case
of the Pop localization scheme, the converged values of |Heff

DA|
for anion coupling of butane-1,4-diyl were almost equal to the
values of ∆/2, but those for anion coupling of pentane-1,5-diyl
were ca. one-third of the values of ∆/2 with any of the three
basis sets.

The Löwdin projection-iteration method can take into ac-
count the (effectively infinite) higher-order perturbative con-
tributions. Therefore, ideally the results from this method
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Table 3 Converged values of the various quantities obtained from the Löwdin projection-iteration method for anion coupling of
butane-1,4-diyl

Basis set Orbital |Heff
D,A(Etun)| 2|Heff

D,A(Etun)|/∆ Etun (E1 +E0)/2
Localization (mh) (ratio) (hartree) (hartree)

3-21G Boys 24.5 1.49 −91.9372892 −91.9361747
Ruedenberg 24.8 1.51 −91.9373250

Pop 15.7 0.956 −91.9368545
6-31G(d) Boys 21.8 1.56 −92.1271099 −92.1262441

Ruedenberg 21.3 1.53 −92.1270986
Pop 14.2 1.02 −92.1267658

cc-pVDZ Boys 20.5 1.60 −92.1440432 −92.1432995
Ruedenberg 20.5 1.59 −92.1440607

Pop 13.6 1.06 −92.1437878

Table 4 Converged values of the various quantities obtained from the Löwdin projection-iteration method for anion coupling of
pentane-1,5-diyl

Basis set Orbital |Heff
D,A(Etun)| 2|Heff

D,A(Etun)|/∆ Etun (E1 +E0)/2
Localization (mh) (ratio) (hartree) (hartree)

3-21G Boys 18.6 1.01 −128.1690344 −128.1680606
Ruedenberg 18.3 0.996 −128.1690378

Pop 12.0 0.652 −128.1687087
6-31G(d) Boys 15.6 0.930 −129.9102720 −129.9094783

Ruedenberg 15.0 0.889 −129.9102556
Pop 10.9 0.648 −129.9100171

cc-pVDZ Boys 15.6 0.930 −129.6160627 −129.6152863
Ruedenberg 15.1 0.902 −129.6160680

Pop 10.9 0.652 −129.6158465

should not depend on the localization schemes in principle.
In all cases, the converged values of Etun were highly con-
sistent with the values of (E0 +E1)/2 within ca. 1 mh. On
the other hand, |Heff

DA| depended on the localization schemes,
as described above. We were unable to resolve satisfactorily
clear reason for this, and shall leave it open for future investi-
gations.

4.4 Higher-order super-exchange calculations

Next, we applied the higher-order super-exchange method us-
ing the CI Hamiltonian matrix obtained from the localized
ORMAS-MCSCF wave function. We employed the three ba-
sis sets, 3-21G, 6-31G(d), and cc-pVDZ for this method. We
took the Etun-value from the corresponding converged value
of Etun from the Löwdin projection-interaction method, listed
in Tables 3 and 4.

First, we examined the dependencies of each perturbation
term in eqn 16 on the energy threshold. In Fig. 4, we plot
the calculated values of T pth

DA and TDA as functions of the en-
ergy threshold for butane-1,4-diyl (a) and pentane-1,5-diyl (b).
The results in Fig. 4 were obtained using the Ruedenberg
localization scheme with the 3-21G basis set. As shown in
Fig. 4(a), we obtained a good convergence for all of the per-
turbative terms T pth

DA (p = 1, · · · , 6) and TDA with the energy
thresholds less than 10−8 hartree. Fig. 4(b) shows that a good
convergence for up to the 4th-order term was obtained when
the energy threshold was less than 10−8 hartree. On the other
hand, the T 5th

DA , T 6th
DA , and TDA still slightly varied as the en-

ergy threshold is decreased below 10−8 hartree. When using
the other basis sets and the other localization schemes, we ob-

served similar good convergence behaviors of T pth
DA ’s and TDA

for butane-1,4-diyl. For pentane-1,5-diyl, we obtained better
convergence behaviors from the Pop localization scheme than
those from the Ruedenberg or Boys localization scheme. For
details, see Fig. S4 and S5, ESI.†
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Fig. 4 Dependence of calculated values of perturbative terms T pth
DA

in eqn 16 and TDA on the energy threshold for anion couplings of (a)
butane-1,4-diyl and (b) pentane-1,5-diyl. The Ruedenberg
localization scheme with the 3-21G basis set was used.

In Fig. 5, we plot the total number of pathways as func-
tions of the energy threshold for butane-1,4-diyl (solid) and
pentane-1,5-diyl (dashed). The results in Fig. 5 were obtained
by using the 3-21G basis set and the Ruedenberg localization
scheme, corresponding to the results in Fig. 4. Fig. 5 shows
that the total number of pathways followed approximately an
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exponential growth with increasing x in the energy threshold
10−x hartree.
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Fig. 5 Dependence of the total number of pathways taken into
account in eqn 16 on the energy threshold for anion couplings of (a)
butane-1,4-diyl and (b) pentane-1,5-diyl. The Ruedenberg
localization scheme with the 3-21G basis set was used. Up to
6th-order pathways providing the coupling whose absolute value
was greater than the energy threshold were counted.

Table 5 summarizes the calculated results of T pth
DA ’s, TDA,

and the ratio 2|TDA|/∆ for butane-1,4-diyl with the energy
threshold of 10−9 hartree. The obtained ratios of 2|TDA|/∆’s
were nearly 1 for all the basis sets and orbital localization
schemes. These results indicate the validity of the perturba-
tive approach using the higher-order super-exchange method.
Table 5 shows that the second-order terms, |T 2nd

DA |’s provided
the largest values among the perturbative terms but the higher-
order terms were not so small that they can be ignored. In all
cases, the terms T 2nd

DA ’s, T 4th
DA ’s, and T 6th

DA ’s provided the positive
values and the terms T 3rd

DA ’s and T 5th
DA ’s provided the negative

values. Since the sign of the value of TDA was always taken
to be positive, the terms T 2nd

DA ’s, T 4th
DA ’s, and T 6th

DA ’s contributed
constructively and the terms T 3rd

DA ’s and T 5th
DA ’s contributed de-

structively to the overall electronic couplings TDA’s.
Table 6 summarizes the calculated results of T pth

DA ’s, TDA,
and the ratio 2|TDA|/∆ for pentane-1,5-diyl with the energy
threshold of 10−9 hartree. We did not obtain the obvious pat-
terns about the signs of the terms T pth

DA for pentane-1,5-diyl like
the results for butane-1,4-diyl. The ratios of 2|TDA|/∆’s calcu-
lated with the Ruedenberg or Boys localization scheme were
not as close to unity as those for butane-1,4-diyl because the
higher-order perturbative terms did not converge thoroughly
in the range of the energy threshold we used (See Fig. 4(b)
and S5, ESI†). On the other hand, 2|TDA|/∆’s calculated with
the Pop localization scheme were very close to unity for all
the basis sets, owing to the good convergence of the higher
perturbative terms (See Fig. S5, ESI†). The differences in the
convergence properties are explained as follows: The local-

ized donor and acceptor orbitals, φD and φA, obtained from
the Pop scheme were less localized than those from the other
schemes, leading to an increase in the dominance of the direct
term T 1st

DA relative to the contributions from the perturbative
terms, as seen in Table 6.

In the super-exchange method we took into account up to
6th order pathways, owing mainly to the present computa-
tional limitation. To check the convergence, we plotted the
TDA from eqn 15 with respect to the number of perturbative
terms in Fig. S6, ESI.† Although strict convergence has not
been observed, it will be demonstrated in section 4.6 that the
pathway decomposition analysis, taking into account up to the
T 6th

DA terms always produced reasonable results.
It is also an interesting issue to verify how close the en-

ergy can be to Etun in the denominator, for instance in eqn
15, for the perturbative methods to fail. In general, when
VJK/(Etun −EJ) ≪ 1, the super-exchange calculation shows
the good convergence and produces a reasonable TDA-value.
On the other hand, when VJK/(Etun −EJ) approaches to 1, the
super-exchange calculation shows poor convergence and pro-
duces an unrealistic TDA-value. To demonstrate this issue in
our calculations, we studied the dependence of the Heff

D,A-value
from eqn 8 and the TDA-value from eqn 15 on the Etun for
butane-1,4-diyl with the Reudenberg scheme and the 3-21G
basis set. The obtained results are shown in Fig. S7, ESI.† We
can see that the TDA-value from eqn 15 diverges exponentially
from the ∆/2-value as Etun deviates linearly from E1+E0

2 .
The results in Fig. 4 and 5 indicate that the contribu-

tions from a huge number of pathways (23581215 for butane-
1,4-diyl and 16851785 for pentane-1,5-diyl with the energy
threshold of 10−9 hartree) determined the converged values of
TDA. This demonstrates that complicated interferences among
a large number of tunneling pathways are in effect. Since
the total number of pathways increased exponentially with in-
creasing x in the energy threshold, 10−x hartree, the good con-
vergences of TDA’s were due to the fact that the contributions
from a huge number of pathways providing the coupling |β|,
less than 10−8 hartree cancel out.

4.5 Main electron tunneling pathways

In the framework of the super-exchange method based on eqn
16, the pathways providing the large |β|-values can be re-
garded as the main ones. As shown in Table 5, the agree-
ment between the perturbative TDA values from eqn 16 with
the non-perturbative ∆/2 values from eqn 2 was pretty good
for the anion coupling of butane-1,4-diyl. Thus, we focused
on its main tunneling pathways.

Fig. 6 schematically illustrates the main pathways obtained
using the Ruedenberg localization scheme with the 3-21G ba-
sis set. The calculated values of |β|, VJ,K , and (Etun − EJ)
(underlined numbers) are also given in Fig. 6. Fig. 6(a)
shows the main second-order tunneling pathways involving
one intermediate state in CSF type I, where only a ”hole”
moves through a bonding orbital from φA to φD as shown in
the left side of the figure. These pathways are regarded as
the pure ”hole” transfer (h-transfer) pathways.18,55,58 In the
right side of Fig. 6(a), we schematically visualize the main
second-order h-transfer pathways by the diagrams similar to
those used previously.50–53 We found that the second-order h-
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Table 5 Higher-order super-exchange calculations for anion coupling of butane-1,4-diyl with the energy threshold of 10−9 hartree

Basis Set Orbital T 1st
DA T 2nd

DA T 3rd
DA T 4th

DA T 5th
DA T 6th

DA TDA 2|TDA|/∆
Localization (mh) (mh) (mh) (mh) (mh) (mh) (mh) (ratio)

3-21G Boys −2.65 13.6 −8.20 12.0 −2.90 4.85 16.7 1.02
Ruedenberg −2.58 12.9 −7.00 10.3 −0.894 3.17 16.0 0.972

Pop 5.08 11.2 −8.59 10.2 −4.06 4.85 18.6 1.13
6-31G(d) Boys −3.26 11.5 −6.54 9.74 −1.61 3.51 13.3 0.954

Ruedenberg −2.72 11.1 −6.22 9.13 −0.759 2.55 13.1 0.938
Pop 3.59 9.69 −7.30 8.60 −3.08 4.00 15.5 1.11

cc-pVDZ Boys −3.35 10.8 −6.05 9.19 −1.53 3.25 12.3 0.957
Ruedenberg −3.19 10.4 −5.62 8.39 −0.285 2.02 11.7 0.912

Pop 2.90 8.56 −6.20 7.07 −1.58 2.62 13.4 1.04

Table 6 Higher-order super-exchange calculations for anion coupling of pentane-1,5-diyl with the energy threshold of 10−9 hartree

Basis Set Orbital T 1st
DA T 2nd

DA T 3rd
DA T 4th

DA T 5th
DA T 6th

DA TDA 2|TDA|/∆
Localization (mh) (mh) (mh) (mh) (mh) (mh) (mh) (ratio)

3-21G Boys 5.78 5.15 −1.54 9.44 −5.20 9.12 22.8 1.24
Ruedenberg 6.43 4.78 −0.549 7.63 −3.30 7.01 22.0 1.20

Pop 11.1 2.55 1.76 1.98 1.78 0.132 19.3 1.05
6-31G(d) Boys 6.41 0.661 5.76 −1.85 8.79 −8.90 10.9 0.646

Ruedenberg 7.21 −0.223 6.48 −2.29 8.69 −8.62 11.3 0.669
Pop 10.3 0.481 3.92 0.0242 2.90 −0.394 17.2 1.03

cc-pVDZ Boys 6.56 0.183 6.22 −0.962 6.98 −5.82 13.2 0.786
Ruedenberg 7.17 −0.605 6.79 −1.42 7.16 −5.88 13.2 0.789

Pop 10.4 −1.01 5.80 −0.895 3.63 −0.788 17.1 1.02
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Fig. 6 Main tunneling pathways obtained from the super-exchange method based on the ORMAS-MCSCF calculation for anion coupling of
butane-1,4-diyl. The Ruedenberg orbital localization scheme with the 3-21G basis set was used. (a) The h-transfer pathways where a hole
moves through the intermediate state in CSF type I once. (b) The e-transfer pathways where an electron moves through the intermediate state
in CSF type II once. (c) The third order pathways. The value of coupling β propagated by the corresponding pathway is given in millihartree
(mh). The sign convention for the β-values is written in text. Matrix element VJ,K and denominators EJ (underlined) appeared in eqn 15 are
also given in mh.
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transfer pathway through the σ(C2-C3) orbital provided the
largest |β|-value (4.18 mh). Owing to the C2h symmetry of
butane-1,4-diyl, the second-order h-transfer pathway through
the σ(C3-C4) orbital provided the β-value identical with the
β2nd

σ(C1−C2). The number of such equivalent pathways due to
the symmetry of molecule are given in square brackets in Fig.
6.

In Fig. 6(b), we illustrate the main second-order pathways
involving one intermediate state in the CSF type II, where
only an ”electron” moves through an anti-bonding or Rydberg
orbital from φD to φA. These pathways are regarded as the
pure ”electron” transfer (e-transfer) pathways.18,55,58 It should
be noticed that for the intermediate states classified into CSF
type II there are two CSFs in which the same active orbital
in ORMAS active group 2 is occupied by one electron as de-
scribed in section 3.2. Therefore, there are two second-order
e-transfer pathways where an ”electron” tunnels through the
same anti-bonding or Rydberg orbital. One diagram in Fig.
6(b) represents the two second-order e-transfer pathways in-
volving an ”electron” tunneling through the σ∗(C2-C3) or-
bital once; One of the two e-transfer pathways provided 3.28
mh and the other provided −1.19 mh ( the values of VJ,K and
(Etun −EJ) are given in parenthesis). In this study, we treated
the two e-transfer pathways together and regarded 2.09 mh
as the β-value. The other diagram in Fig. 6(b) represents
the main second-order e-transfer pathways involving a long-
distance ”electron” tunneling through the Rydberg orbital at
C1 or C4 atom once.

As shown in Fig. 6, the obtained main third-order path-
ways were only the h-transfer and e-transfer pathways. The β-
values provided by each of the main h-transfer pathways were
almost comparable with those by each of the main e-transfer
pathways. In these pathways, the ”hole/electron” skips the ad-
jacent covalent bond/anti-bond, in contrast with simple Mc-
Connell’s picture11 that predicts the ”hole/electron” moves
along a sequence of the nearest-neighbor covalent link. For
example, the two third-order h-transfer pathways in Fig. 6(c)
exhibited that a ”hole” first transfers from φA to the non-
adjacent C-C bonding orbital, then goes backward, passes
through the C-C bonding orbital distant from φD, and lastly
reaches φD. These pathways are attributed to the small VJ,K-
values arising from small overlap between φD/φA and the ad-
jacent σ(C-C) orbital ( see Fig. 6(a) ).

In the case of the other localization schemes or the other
basis sets, we obtained similar main tunneling pathways. For
details, see Fig. S8 - S10, ESI.†

4.6 Decomposition of TDA into sum of contributions from
intermediate CSF types

As shown in section 4.5, we found that the main tunneling
pathways for the anion coupling of butane-1,4-diyl were com-
posed of a small number of pure h-transfer and pure e-transfer
pathways. However, the sum of the couplings from these main
tunneling pathways do not determine the entire TDA-value. As
shown in Fig. 4, when employing the Ruedenberg localization
scheme with the 3-21G basis set for butane-1,4-diyl, the TDA-
value from eqn 16 with an energy threshold of 10−4 hartree
was 9.239 mh, which was smaller than TDA = 16.0 mh cal-
culated with an energy threshold of 10−9 hartree and from

∆/2 = 16.45 mh calculated using eqn 2. Fig. 4 and 5 indicate
that complicated interference effects among a large number of
the minor tunneling pathways significantly contribute and as a
result, the TDA-value calculated with an energy threshold less
than 10−7 hartree was in good agreement with ∆/2. To ex-
amine the origin of a huge number of minor pathways and the
interference effects among them, we have calculated the sum
of the contributions from the intermediate states in CSF type
X ( X = I − VI, see Fig. 2(c) ) to the TDA-value, as follows:

TDA(X) = VDA + ∑
J∈X

VD,JVJ,A

Etun −EJ

+ ∑
J∈X

∑
K(̸=J)∈X

VD,JVJ,KVK,A

(Etun −EJ)(Etun −EK)
+ · · · .

(18)

Obviously, the above equation can be rewritten as eqn 16.
Note that we took the sign of TDA(All) positively and then de-
termined the signs of the terms T pth

DA (X) in eqn 18 consistently.
In Table 7, we listed the results of T pth

DA (X)’s, TDA(X)’s, and
the total number of pathways for the anion coupling of butane-
1,4-diyl with the energy threshold of 10−9 hartree. In these
calculations, the Ruedenberg localization scheme and the 3-
21G basis set were used. The energy threshold and Etun in
eqn 18 were set to 10−9 and −91.9361747 (listed in Table 3)
hartrees, respectively. We also listed the non-perturbative val-
ues ∆(X)/2’s from eqn 2 where the CIs among |ΦD⟩, |ΦA⟩,
and the intermediate states belonging to X were taken into ac-
count.

Table 7 shows that the TDA(X)’s from eqn 18 were in reason-
able agreement with the non-perturbative ∆(X)/2’s from eqn
2, supporting the validity of the decomposition analyses using
eqn 18 where up to 6th-order pathways contributions are taken
into account. For X = I and II, TDA(X)’s were determined
by T 2nd

DA (X)+T 3rd
DA (X). These values can be explained by the

contributions from the main tunneling pathways illustrated in
Fig. 6. The T 2nd

DA (I+ II) was in reasonable agreement with
the T 2nd

DA (All), but the values of the other-order terms from
T 3rd

DA (I+ II) to T 6th
DA (I+ II) were different from those of the cor-

responding terms for X = All. The total number of pathways
for X = I+ II was an order of magnitude smaller than that for
X = All. Since the main tunneling pathways were composed
of pure h-transfer and pure e-transfer pathways involving the
intermediate states in CSF types I and II, these differences in-
dicate that the TDA-value cannot be determined only by the
contributions from the main tunneling pathways.

For X = I+ II+ III, the T 2nd
DA (I+ II+ III) was almost iden-

tical with the T 2nd
DA (All). The T 3rd

DA (I+ II+ III) was in bet-
ter agreement with the T 3rd

DA (All) than the T 3rd
DA (I+ II). The

additivity rule for the p-th order term, T pth
DA (I+ II+ III) =

T pth
DA (I+ II) + T pth

DA (III), was clearly not valid except for the
second-order term. The additivity rules, T pth

DA (I+ III) =

T pth
DA (I) + T pth

DA (III) and T pth
DA (II+ III) = T pth

DA (II) + T pth
DA (III),

were also not valid except for the second-order terms. The
total number of pathways for X = I+ II+ III was much larger
than the sum of the total pathways for X = I+ II and X = III.
These results indicate that the intermediate states in CSF type
III produce a large number of the minor tunneling pathways
involving the hybrid ”electron/hole”-transfer via the interme-
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Table 7 Decomposition of anion coupling of butane-1,4-diyl calculated at 3-21G level. For higher-order super-exchange calculations, the
energy threshold of 10−9 hartree and Ruedenberg localization scheme were employed. The ∆(X)/2 values were obtained from direct
diagonalization of CIs

X T 2nd
DA (X) T 3rd

DA (X) T 4th
DA (X) T 5th

DA (X) T 6th
DA (X) Number of TDA(X) ∆(X)/2

(mh) (mh) (mh) (mh) (mh) pathways (mh) (mh)
I 5.30 3.68 0.0476 0.138 0.107 44073 6.69 13.3
II 6.51 −5.29 0.146 −0.212 0.0067 73511 −1.66 2.42

I+II 11.8 −2.08 0.225 −0.104 0.120 159472 7.40 8.96
III 1.02 −0.580 0.266 −0.110 0.0345 55692 1.96 1.67

I+III 6.32 2.72 7.46 1.19 0.00904 3133553 8.40 9.10
II+III 7.53 −9.17 5.64 −3.66 2.02 5593085 −0.231 0.862

I+II+III 12.8 −6.10 7.02 −2.82 2.51 9928058 10.9 9.02
I+II+III+VII 12.8 −6.67 9.94 −0.668 3.01 21134547 15.9 16.4

All 12.9 −7.00 10.3 −0.894 3.17 23581215 16.0 16.4

diate states in CSF types I and II together with those in CSF
types III. Table 7 also shows that the intermediate states in
CSF types IV significantly contribute to the the higher-order
terms from T 4th

DA to T 6th
DA and increase the total number of path-

ways. These results suggest that the origin of a huge number
of minor pathways is the hybrid e/h-transfer via the interme-
diate states in CSF types III and IV.

5 Comparison with NBO-based pathway anal-
yses

5.1 Pathway analyses using the NBO Fock matrix

In many of the ab initio-MO based pathways-studies, the HF-
KT scheme with NBOs76,77 has been used.12,17,18,50–57 How-
ever, the HF-KT scheme ignores the effects of non-dynamical
electron correlation and orbital relaxation. While the errors
arising from electron correlation and orbital relaxation in the
TDA-value tend to cancel each other for some ET systems42,
the errors arising in the tunneling pathways have been re-
mained unclear. In contrast, our pathway analyses using the
CI Hamiltonian matrix obtained from the localized MCSCF
wave functions include both of the effects. Here, to clearly
the significance of these effects, we compare the results from
the ORMAS-MCSCF calculations with those from the HF-KT
calculations with NBOs.

Curtiss et al.39,50 have already conducted the pathway anal-
yses for both the molecules in detail using the HF-KT scheme
with NBOs. However, the structures used by Curtiss et al.
were different from ours, which are shown in Fig. 1. We
therefore reexamined the tunneling pathways with the NBO
Fock matrix using our structures.

Employing the higher-order super-exchange method with
the NBO Fock matrix, FNBO, TDA can be written by18

TDA = FNBO
DA +∑

j

FNBO
D, j FNBO

j,A

εtun − εNBO
j

+ ∑
j

∑
k(̸= j)

FNBO
D, j FNBO

j,k FNBO
j,k

(εtun − εNBO
j )(εtun − εNBO

k )
+ · · · , (19)

where εNBO
j and FNBO

j,k are the diagonal and off-diagonal ele-
ments of the Fock matrix between the NBOs φNBO

j and φNBO
k

and εtun is the tunneling energy used as a parameter. The

donor and acceptor orbitals φNBO
D and φNBO

A are the NBOs
corresponding to the lone-pair orbitals located on the termi-
nal carbon atoms. Obviously, eqn 19 can be rewritten as eqn
16.

The NBOs were obtained by transforming the canon-
ical β-spin (down-spin) UHF MOs solved for neutral
triplets39,52,54,55. The tunneling energy was set to the self-
energies of donor/acceptor NBOs (i.e., εtun = εNBO

D = εNBO
A ).

We used the 3-21G and 6-31G(d) basis sets and took into ac-
count the contributions from up to 6th-order pathways to the
TDA values in eqn 19. We also calculated TDA in the case that
multiple visits to the bridge NBOs are prohibited in eqn 19.
We always took the sign of TDA obtained from eqn 19 posi-
tively and determined the signs of all of the β’s and T pth

DA con-
sistently. Note that our sign convention used for TDA is differ-
ent from the previous studies.50–55

Table 8 summarizes the calculated results from eqn 19 with
the energy threshold of 10−9 hartree. The ∆UHF−KT/2 rep-
resents the half energy splitting between the two LUMOs for
down-spin electron, listed in Tables 1 and 2. Table 8 shows
that the T 2nd

DA was remarkably larger than the other terms. The
TDA’s were in poor agreement with the ∆UHF−KT/2 when mul-
tiple visits to the bridge NBOs were allowed. On the other
hand, they were in reasonable agreement when multiple visits
to the bridge NBOs were prohibited. Comparing Tables 5 and
6 with Table 8, the higher-order super-exchange calculations
based on the localized MCSCF wave function can approxi-
mate the ∆/2-values more effectively than those based on the
HF-KT scheme with NBOs with only one exception (anion
coupling of pentane-1,5-diyl at the 6-31G(d) level).

Fig. 7 illustrates the main tunneling pathways for anion
coupling of butane-1,4-diyl using eqn 19 at the 3-21G level.
As shown in Fig. 7, the main tunneling pathways consisted
of a few number of pathways. Fig. 7(a) shows the second-
order h-transfer pathway passing through the σ(C2-C3) NBO.
Fig. 7(b) shows the second-order e-transfer pathway pass-
ing through the σ∗(C2-C3) NBO. The couplings provided by
these two pathways were remarkably large and almost repro-
duced the T 2nd

DA -value. Fig. 7(c) shows the main third-order
tunneling pathway involving the Rydberg orbital at C1 or C4
atom. These main pathways have been already determined
by Curtiss et al.39, but the β-values provided by each of the
pathways are different owing to the difference of the structure
of the molecule. These main pathways partly correspond to
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Table 8 Higher-order super-exchange calculations for anion couplings of butane-1,4-diyl and pentane-1,5-diyl using the NBO Fock matrix.
The energy threshold of 10−9 hartree was employed

Molecule Multiple Basis Set T 1st
DA T 2nd

DA T 3rd
DA T 4th

DA T 5th
DA T 6th

DA TDA
2|TDA|

∆UHF−KT

visit (mh) (mh) (mh) (mh) (mh) (mh) (mh) (ratio)
butane allowed 3-21G −0.745 28.8 −1.43 −1.26 −0.599 −1.36 23.4 1.65

-1,4-diyl 6-31G(d) −1.10 28.3 0.177 2.31 −6.97 3.05 25.8 2.43
prohibited 3-21G −0.745 28.8 −1.43 −7.51 −2.31 1.70 18.5 1.30

6-31G(d) −1.10 28.3 0.177 −8.83 −7.43 4.18 15.3 1.44

pentane allowed 3-21G 0.0214 22.4 2.22 4.58 3.03 1.31 33.6 1.60
1,5-diyl 6-31G(d) 0.180 21.1 3.81 7.62 2.28 5.36 40.4 2.05

prohibited 3-21G 0.0214 22.4 2.22 −10.8 −0.827 −0.506 22.3 1.05
6-31G(d) 0.180 21.1 3.81 −0.417 −2.62 −1.05 21.0 1.07

φ
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        =  24.51 mh
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298.8

–85.5785.57
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β
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81.781.7
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φ
D

φ
A
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β
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               = –1.63 mh [2]
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φ
A
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Fig. 7 Main tunneling pathways obtained from the super-exchange method with the NBO Fock matrix for anion coupling of butane-1,4-diyl.
The 3-21G basis set was used. (a) The h-transfer pathway, (b) the e-transfer pathways, and (c) the third order pathways. The value of coupling
β propagated by the corresponding pathway is given in millihartree (mh). The sign convention for the β-values is written in text. Matrix
element FNBO

j,k and denominators εNBO
j (underlined) appeared in eqn 19 are also given in mh.
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those obtained from the ORMAS-MCSCF calculations with
the Ruedenberg scheme, illustrated in Fig. 6. However, the
β-values provided by each of the main tunneling pathways in
Fig. 6 are quite different from those in Fig. 7. The com-
bined effect of non-dynamical correlation with orbital relax-
ation causes these differences.

5.2 Pathway analyses using CIs constructed from NBOs

Since the active orbitals are optimized in MCSCF calcula-
tions, our pathway analyses include the effect of orbital re-
laxation. To clarify this effect on the tunneling pathways, we
now compare with the pathway analyses using the CI Hamil-
tonian matrix obtained from the frozen NBOs produced by HF
calculation. Such pathway analyses are related to the work by
Hayashi and Kato58. The anion coupling of butane-1,4-diyl
was again dealt with at the 3-21G level.

Two sets of NBOs were used: one set obtained by trans-
forming the canonical ROHF MOs solved for the neutral
triplet diradical, and the other obtained by transforming the
canonical ROHF MOs for the anion doublet radical. The ob-
tained NBOs were divided into groups corresponding to those
illustrated in Fig. 2 as follows: one group includes 4 carbon
core NBOs, ORMAS group 1 includes eleven bonding and
two lone pair NBOs, ORMAS group 2 includes eleven anti-
bonding NBOs, and the other group includes the 24 Rydberg
(extra-valence-shell) orbitals. The CIs were produced by the
ORMAS setting described in section 3.2. From the ORMAS-
CI calculation, we obtained 1872 CSFs corresponding to |ΦD⟩
and |ΦA⟩, and the six types CSFs illustrated in Fig. 2(b) and
(c).

In the ORMAS-MCSCF calculations with orbital localiza-
tion schemes described in Section 4, we always obtained the
two Rydberg orbitals at C1 and C4 in ORMAS active group
2 as shown in Fig. 3. They contributed to the main tunnel-
ing pathways as shown in Fig. 6(b) and 6(c). Moreover, from
the pathway analyses based on the NBO Fock matrix, the two
Rydberg NBOs at C1 and C4 also contributed to the main tun-
neling pathways as shown in Fig. 7(c). Therefore, we have
also conducted ORMAS-CI calculations by adding the Ryd-
berg NBOs at C1 and C4 to the ORMAS active group 2. When
using the 3-21G basis set, we obtained eight Rydberg NBOs
at C1 and C4 and as a result, took into account 3224 CSFs in
the ORMAS-CI calculations.

In Table 9, we listed the calculated values of the half energy
splitting ∆ORMAS−CI/2 between the ground and first excited
states from the ORMAS-CI method with NBOs. Comparing
Table 9 with Table 1, the ∆ORMAS−CI/2-values involving the
Rydberg orbitals at C1 and C4 were in reasonable agreement
with the ∆/2-values from the ORMAS-MCSCF calculations.
These results indicate that the Rydberg orbitals at C1 and C4
are of great importance for the super-exchange anion coupling
of butane-1,4-diyl.

In Table 9, we also summarize the results of higher-order
super-exchange calculations using eqn 16. The Etun-value in
eqn 16 was taken from the converged values obtained from
Löwdin projection-iteration calculations. The energy thresh-
old of 10−9 hartree was used and up to 6th-order pathways
were taken into account.

As shown in Table 9, the TDA-values were in good agree-

ment with the ∆ORMAS−CI/2-values. We observed better
convergence of the super-exchange calculations using the
ORMAS-CIs with frozen NBOs against energy threshold than
those using the ORMAS-MCSCF calculations with the or-
bital localization schemes. For example, the total number of
pathways with the energy threshold of 10−9 hartree in the
ORMAS-CIs with the NBOs solved for neutral triplet was
14075434 even if the eight Rydberg NBOs at C1 and C4 were
included. This is much smaller than the total number of path-
ways in the ORMAS-MCSCF calculations with the Rueden-
berg localization scheme shown in Table 7. This is related to
the degree of localization of the reference orbitals construct-
ing the CI Hamiltonian matrix. As shown in Fig. 3, the refer-
ence orbitals constructing the MCSCF wave function almost
formed the desired localized orbitals, of which the shapes
were similar to those of the NBOs. See Fig. S11, ESI.† Nev-
ertheless, the orbitals in the localized MCSCF wave function
involve the effects of orbital relaxation and the other extra-
valence-shell orbitals that are not included in the ORMAS-CI
calculations with the frozen NBOs. Thus, the reference or-
bitals constructing the localized MCSCF wave function were
less localized than the frozen NBOs produced by the HF cal-
culations.

Using eqn 18 with the CI Hamiltonian matrix constructed
from the frozen NBOs, we decomposed the TDA into the sum
of contributions from the intermediate states in CSF type X . In
Table 10, we listed TDA(X) and the total number of pathways
calculated with the energy threshold of 10−9 hartree. We also
listed the results of non-perturbative values ∆ORMAS−CI(X)/2
where the CIs among |ΦD⟩, |ΦA⟩, and intermediate states in
CSF type X were taken into account. Table 10 shows that the
contributions from the pure e-transfer pathways were larger
than those from pure h-transfer pathways in the ORMAS-CI
calculations with the frozen NBOs, being opposite to the result
from the ORMAS-MCSCF calculations (See Table 7). Taking
into account the intermediate states in CSF type III in addi-
tion to those in CSF type I and II increased the total num-
ber of pathways by a factor of more than ten and brought the
TDA(I+ II+ III)-values closer to the TDA(All)-values. Simi-
larly to the result from the ORMAS-MCSCF calculations, the
TDA(I+ II+ III+ IV)-values almost reproduced the TDA(All)-
values. In the ORMAS-MCSCF calculations, the contribu-
tions from the CSF type III and IV intermediate states were
more prominent than those in the ORMAS-CI calculations
with NBOs. However, the results in Tables 7 and 10 indicate
that the intermediate states in CSF types III and IV produce
a huge number of the hybrid ”electron/hole”-transfer path-
ways and the interference effects among them significantly
contribute to the TDA-value, which does not depend much on
the reference orbitals constructing CIs used for the pathway
analyses.

6 Conclusion

In this paper, we have developed a method for the pathway
analyses of super-exchange electronic couplings using the CI
Hamiltonian matrix obtained from the localized ORMAS-
MCSCF wave functions. Notable features of our method are
as follows: (1) Both the effects of non-dynamical correlation
and orbital relaxation are adequately taken into account. (2)
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Table 9 Higher-order super-exchange calculations for anion coupling of butane-1,4-diyl using the CI Hamiltonian matrix constructed from
the frozen NBOs. The 3-21G basis set and the energy threshold of 10−9 hartree were used

Reference 8 Rydberg orbitals T 1st
DA T 2nd

DA T 3rd
DA T 4th

DA T 5th
DA T 6th

DA TDA ∆ORMAS−CI/2
orbitals at C1 and C4 (mh) (mh) (mh) (mh) (mh) (mh) (mh) (ratio)

neutral triplet none 0.449 18.4 2.18 3.24 1.45 1.16 26.8 22.59
inclueded 0.449 11.4 0.0660 2.76 0.836 1.35 16.8 15.21

anion none −0.775 12.7 2.41 2.32 1.39 1.31 19.1 17.70
inclueded −0.775 12.3 1.97 2.35 1.34 1.01 18.2 16.98

Table 10 Decomposition of anion coupling of butane-1,4-diyl calculated using the CI Hamiltonian matrix constructed from the frozen NBOs
including the Rydberg orbitals at C1 and C4 at the 3-21G level. For higher-order super-exchange calculations, the energy threshold of 10−9

hartree was employed. The ∆(X)/2 values were obtained from direct diagonalization of CIs

Reference X TDA(X) Number of ∆ORMAS−CI(X)/2
orbitals (mh) pathways (mh)

neutral triplet I 4.13 18821 7.57
II 8.48 456885 8.34
I+II 12.1 498870 11.5
I+II+III 14.3 9270451 12.6
I+II+III+VII 16.1 12852547 15.7
All 16.8 14075434 15.2

anion I 3.62 31411 5.73
II 8.85 178706 10.8
I+II 13.2 232960 15.6
I+II+III 15.5 6912156 14.0
I+II+III+VII 17.9 12009012 17.1
All 18.2 13275446 17.0

Making use of the ORMAS method can provide accurate re-
sults with less computational efforts107 and effectively pro-
duces the CSFs and the CI Hamiltonian matrix involving the
tunneling pathways.

We applied our method to the anion couplings of butane-
1,4-diyl and pentane-1,5-diyl. Using the Löwdin interaction-
projection method, the converged values of |Heff

DA| from eqn
8 were in reasonable agreement with the ∆/2-values from
eqn 2, not depending on the basis sets and orbital localiza-
tion schemes. Using the higher-order super-exchange method,
the TDA-values from eqn 15 were also in reasonable agree-
ment with the ∆/2-values. We found that the main tunnel-
ing pathways consist of a few number of lower-order pure h-
and e-transfer pathways where σ(C-C), σ∗(C-C), and extra-
valence-shell (at the terminal carbon atoms) orbitals are used
once or twice. Nevertheless, the TDA-values cannot be ex-
plained solely by the main tunneling pathway contributions
but the complicated interference effects among a huge number
of the higher-order minor pathways significantly contribute to
the TDA-values, as shown in Fig. 4 and 5. Decomposition
analyses using eqn 18 indicate that such a huge number of the
higher-order pathways are attributed to the hybrid e/h-transfer
pathways via the intermediate states in CSF types III and IV.

Comparing with the results from the HF-KT scheme with
NBOs and the ORMAS-CI calculations with frozen NBOs,
we have assessed the effects of non-dynamical correlation and
orbital relaxation. The results are summarized as follows: (1)
Both effects produce more than 1 mh differences in the ∆/2-
values except when the 3-21G basis set was employed (Ta-
bles 1 and 2). (2) Both effects produce remarkable differences
in the β-values from each corresponding main pathways (Fig.
6 and 7). (3) The effect of the non-dynamical correlations

produces a huge number of hybrid e/h-transfer pathways and
complicates interference among them via the CSF type III and
IV intermediate states (Fig. 4 and 5 and Tables 7 and 10).
The HF-KT scheme with NBOs cannot give this insight for the
pathway analysis. (4) The effect of orbital relaxation produces
the obvious differences in the sum of the contributions from
each intermediate CSF types (Tables 7 and 10). For instance,
the contributions from the pure h-transfer pathways TDA(I) are
larger than those from the pure e-transfer pathways TDA(II) in
the ORMAS-MCSCF calculation, being opposite to the result
from the ORMAS-CI calculation with frozen NBOs.

Since the feasibility of our MCSCF-based pathway analysis
method is restricted by the number of CSFs, it remains to be
improved for applications to large ET systems with respect to
the following points: in this study the CI matrix elements HIJ
were first stored on the hard desk or core memory and then
accessed for the subsequent pathway analysis. These demand
huge storage capacities and computational times. Thus, it is
desired to incorporate the pathway analysis algorithm directly
into the ORMAS code for on-the-fly generation of HIJ , and
to calculate the decomposed values ∆(X)/2 from eqn 2 with
the Davidson method (i.e. not by standard diagonalization) in
the manner of the direct CI. Moreover, the pathway analysis
based on the super-exchange method (eqn 16) demands much
computational cost to calculate and converge the higher-order
terms. Thus, for large ET systems, the Löwdin method (eqn 8)
and decompostion analyses ∆(X)/2 are more adequate except
for obtaining the main tunneling pathways.

For biological ET systems, the HF-KT analysis with NBOs
and the tunneling current method are useful because the size of
system is large and the relatively ”coarse-grained” pathways
are sufficient to determine the important parts of the protein
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(for instance, amino acids level, main chain or side chain’s
contribution, the contributions from aromatic side chains, hy-
drogen bonds’ importance, etc.) On the other hand, the DBA
systems for molecular devices are relatively small and require
highly accurate pathway analysis for molecular design. There-
fore, our method will show much potential for the applications
to these DBA systems.
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