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SUMMARY As technology further scales semiconductor devices,
aging-induced device degradation has become one of the major threats to
device reliability. Hence, taking aging-induced degradation into account
during the design phase can greatly improve the reliability of the manu-
factured devices. However, accurately estimating the aging effect for ex-
tremely large circuits, like processors, is time-consuming. In this research,
we focus on the negative bias temperature instability (NBTI) as the aging-
induced degradation mechanism, and propose a fast and efficient way of
estimating NBTI-induced delay degradation by utilizing static-timing anal-
ysis (STA) and simulation-based lookup table (LUT). We modeled each
type of gates at different degradation levels, load capacitances and input
slews. Using these gate-delay models, path delays of arbitrary circuits can
be efficiently estimated. With a typical five-stage pipelined processor as
the design target, by comparing the calculated delay from LUT with the
reference delay calculated by a commercial circuit simulator, we achieved
4114 times speedup within 5.6% delay error.
key words: NBTI, reliability, static timing analysis, timing characteriza-
tion, aging-aware timing library

1. Introduction

In a time where semiconductor devices are scaling near the
limit of physical laws, they become more and more unpre-
dictable and uncontrollable. Nano-scale transistor devices
vary their characteristics greatly even within a single chip,
and one of the major variation factors is aging-induced de-
vice degradation. It is obvious that the variation due to ag-
ing exerts great impact on design decisions. Hence, without
knowing how the device ages, designers could potentially
waste time for optimizing paths that become non-critical in
less than a year.

Among various aging mechanisms, negative bias tem-
perature instability (NBTI) is considered to be one of the
most crucial factors that shorten the lifespan of VLSI cir-
cuits. NBTI causes a gradual increase in threshold voltage,
Vth, while a negative bias is applied to a pMOS transistor,
i.e., when a pMOS is ON. This state is defined as the stress
phase of NBTI. The increase in the threshold voltage (∆Vth)
reduces the drain current and consequently increases path
delays. Meanwhile, when the pMOS is OFF, the stress is
removed then, and its Vth gradually decreases to its orig-
inal value. This state is defined as the recovery phase of
NBTI. The Vth degradation due to NBTI gradually pro-
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gresses through circuit operations, while repeating the stress
and recovery phases. As a result of the pMOS degradation,
the delay of combinational paths becomes longer, eventually
violating the design timing constraint.

The state-of-art NBTI mitigation techniques include in-
ternal node control (INC) [1], input vector control (IVC) [2],
and simple design margin [3]. Obviously, these methods
require path delays in the circuit to be predicted correctly,
such that the NBTI-induced stresses along those paths can
be reduced. In order to be NBTI-aware in design phase,
tools like SPICE are adopted. Nonetheless, for large designs
like processors, this method becomes extremely or even pro-
hibitively time consuming. Especially in cases of apply-
ing heuristic or stochastic methods for design optimization,
such as genetic optimization [4], a large amount of path de-
lays have to be known in the matter of seconds while con-
sidering ∆Vth of each gate on the paths. Hence, a fast and
sufficiently accurate method to estimate the aging-induced
characteristic variations is preferred.

In this paper, we propose a lookup-table-based (LUT-
based) aging-aware delay estimation technique composed of
two main elements: signal probability propagation (SPP)
and LUT interpolation. The delay of each individual gate
is calculated based on various conditions of the particular
gate, and the path delays are the sum of these individual de-
lays. Although our method shares similarity with static tim-
ing analysis (STA), the essential difference is that STA, in
its current manner, cannot handle device degradation with
accuracy comparable to SPICE simulation. Thus, the key
contribution of this paper is offering the same level of accu-
racy and speed as STA, with aging-induced delay degrada-
tion considered through the signal probability calculations.
After conducting actual experiments on real-world proces-
sors, the accuracy of our aging-aware delay calculation is
obtained through comparison with SPICE simulation, and a
detailed error analysis is conducted.

2. Related Works

2.1 NBTI Model

To predict NBTI-induced Vth degradation, NBTI measure-
ments and mathematical models are studied in [5], [6]. Our
degradation calculation is based on an analytical model
in [5]. This model is based on the reaction-diffusion mech-
anism, and the long-term degradation is defined as the func-
tion of the stress probability α. The Vth degradation at a
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given time t is defined as

|∆Vth(t)| =
 √

K2
v Tclkα

1 − β(t)1/2n

n

, (1)

where, Kv is a function of gate-source voltage Vgs, thresh-
old voltage Vth, and temperature. n is the time exponent
which holds the value 1/6. Tclk is a clock period, and α ex-
presses the stress probability of a pMOS transistor. β(t) is
a function of time, which is dependent on temperature. The
stress probability α captures the effects of stress and recov-
ery phases. In [5], [7], it is reported that |∆Vth| is hardly
dependent on Tclk when t > 1, 000 s. In this case, |∆Vth| at
time t can be written as

|∆Vth(t)| ≈
(

0.001n2K2
v αCt

0.81t2
ox(1 − α)

)n

, (2)

where, tox is the oxide thickness, and C is a function of tem-
perature. When α = 100%, |∆Vth| becomes infinite and the
model becomes incorrect. In a similar manner to what has
been shown in [7], we define an upper limit by

|∆Vth(t)| = (K2
v t)

n. (3)

Figure 1 shows the Vth degradation as a function of the
stress probability α, which is calculated by using Eqs. (2)
and (3). In this figure, we use Nangate 45 nm Open Cell
Library [8] and assume 400 K and 10 years operation. Sig-
nificant Vth degradation can be observed when α is close to
100%. To estimate the impact of this Vth shift, a general cir-
cuit simulator like SPICE can be adopted. The amount of
voltage displacement, ∆Vth, is given to the circuit simulator,
and through simulation, the delay can be obtained. Based
on this α-∆Vth relation, along with the ∆Vth-∆d delay rela-
tion obtained from circuit simulators, the degradation delay
∆d can be actually calculated directly from the stress proba-
bility α. Utilizing this fact, an aging-aware delay prediction
method is realized in this paper.

2.2 NBTI Mitigation Techniques

As mentioned in Sect. 1, many NBTI mitigation techniques

Fig. 1 Vth degradation of pMOS with stress probability in Nangate 45 nm
Open Cell Library [8], 1.1 V, 400 K, and 10 years operation.

have been proposed. Along with all the techniques intro-
duced, a dynamic NBTI mitigation method was proposed
in [9]. The method tries to mitigate the NBTI degradation by
replacing gates in the design circuit with special gates that
reduce the NBTI stress at their fanouts. As suggested in [9],
the gates were replaced in the order of fanouts, without re-
alizing the actual impact on the worst-path delay. Hence,
the paper [9] reported that a replacement, which intends to
reduce the worst-path delay, in fact increases it. It would be
viable to solve the problem by recalculating all path delays
every time a gate is replaced in the target design. Never-
theless, fast calculation of the path delays considering the
changes of Vth is non-trivial since it requires a large amount
of delay libraries at different aging conditions of the gates.
In case it were possible, it still takes excessive time, and
stochastic optimization methods (e.g., genetic optimization)
were unable to be applied due to this fact. This becomes the
motivation for this paper to propose a much faster aging-
aware path delay estimator.

2.3 Reliability-Aware Timing Analysis

The traditional STA library is generally a two-dimensional
LUT whose inputs are the input slew to the gate, and the out-
put capacitance of the gate. The LUT returns the delay of the
gate, and the output slew that will be fed into the next gate.
In this subseciton, some existing LUT-based approaches are
discussed.

2.3.1 Naı̈ve Degradation Library Approach for NBTI Pre-
diction

Due to the inaccurate nature of STA, a trivial approach can
be taken to estimate the NBTI degradation by assuming all
gates degrade at a fixed rate, and create a traditional STA li-
brary biased by the presumed amount of NBTI degradation.
This approach does not work, for that the amount of NBTI
degradation is extremely sensitive to average workload. Fig-
ure 2 is a preliminary research we conducted by creating an
STA library that assumes all signal probabilities to be the
value of 0.5. From the figure, it is clear that this STA library
is far from usable. Indeed, the correlation found between

Fig. 2 The aged delay distribution of SPICE-based simulation and naı̈ve-
library-based STA.



1402
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

the two delay vectors is as low as 0.439, which is even not a
strong correlation statistically. Hence, it was thus concluded
that a new LUT approach is inevitable in accurately predict-
ing the NBTI-induced delay degradation.

2.3.2 LUT Approach for HCI Prediction

Similar LUT-based approach does exist for other reliability
issues, as the one used in [10] for calculating the degrada-
tion induced by hot-carrier injection (HCI). In the article, the
authors describe a way to calculate the HCI-induced degra-
dation by applying the following two formulae.

AG =
∫

tran
Rit(t)dt (4)

age =
∑

all transistions

AG (5)

In Eqs. (4) and (5), Rit represents the rate of aging over
time (i.e., rate of interface trap generation), AG is the HCI-
induced degradation from a single transition, and age de-
notes the cumulative degradation over a certain period of
time. The integration over time in Eq. (4) basically means
the cumulative amount of degradation during a specific time
period, which is a single transition in this case. The authors
use a circuit simulator like SPICE to characterize the library
and predict the degradation of the circuit over a specific pe-
riod of time.

This LUT approach designed for HCI degradation pre-
diction looks similar to our proposed method, with several
subtle yet fundamental differences. First, being as the most
important difference, HCI degrades the circuit in a com-
pletely different manner from NBTI. The HCI does not
have a recovery phase as NBTI, and the degradation per se
only happens during a signal transition. These two impor-
tant degradation characteristics enabled the authors in [10]
to accurately calculate the cumulative HCI-induced delay
degradation analytically based on information provided by
a two-dimensional LUT that is virtually equivalent to a con-
ventional one.

While this efficient approach works for HCI, it is not
the case for NBTI. The amount of degradation induced by
NBTI over a certain period of time is not a simple sum over a
number of transitions, and the probability-∆Vth relationship
is non-linear. This is the reason why we proposed a new
LUT approach to the NBTI problem: the amount of degra-
dation induced on a particular pMOS transistor cannot be
solved easily without significantly slowing down the calcu-
lation process, to an extent that will eventually become un-
acceptable as the circuit scales. Second, transition probabil-
ity is different from NBTI stress probability described in 2.1.
While the former focuses on the probability of the transition
time being at a particular value at each pin, the later re-
quires the knowledge of the average workload at each pin.
Over a clock period, the transition time of a gate tends to
occupy only a tiny portion of the period as all gates along
the combinational path need to finish their transition in or-
der to meet the timing constraint. The authors of [10] did

not systematically examine the impact of their data binning
method that approximates the transition probability calcu-
lation by reducing the number of transition time values to
consider. In contrast, NBTI forces the pMOS to be biased
over the entire clock period in the worst-case scenario. Fur-
thermore, as Fig. 1 indicates, the number of ∆Vth values (the
∆Vth value here is similar to the transition time in the HCI
case) to consider needs to be rigorously tested. Otherwise,
the error grows unacceptable due to the non-linear relation-
ship between probability and ∆Vth. In short, the intrinsic
nature of NBTI requires a different LUT approach from the
one used in the article [10], and while the new approach
could potentially also be used to predict HCI-induced degra-
dation, it is not the case for the other way around.

3. LUT-Based Aging-Aware Delay Calculation

In this section, the basic elements required for performing
the proposed aging-aware timing analysis is discussed in de-
tail. As illustrated in Fig. 3, first, the target design is synthe-
sized into a gate-level netlist. Second, a directed acyclic
graph (DAG) is formulated from the designed netlist, and
SPP is performed on the DAG. After performing the SPP,
each node in the DAG will be annotated with its correspond-
ing probability value, and this probability is used by the
LUT to lookup for delays. The LUT is constructed in a sep-
arate process utilizing the gate design library. Gates in the
design library will be characterized using circuit simulators
like SPICE, and their propagation delay is recorded into the
LUT. As the LUT database and probability-annotated DAG
become available, the aging-aware delay calculation is per-
formed. Each gate will have its delay calculated from the
LUT, and the path delays are calculated as a simple sum of
these gate delays.

In this section, the SPP, specifically two types of SPP,
will first be discussed in Sect. 3.1. Second, the aging-aware

Fig. 3 Overview of the proposed LUT-based delay calculation technique.
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Table 1 AND gate under all possible input combinations.

Input Output Input 1 Input 2 Output
Combination Logic Probability Probability Probability

(0, 0) 0 P(in1) P(in2) P(in1)P(in2)
(0, 1) 0 P(in1) 1 − P(in2) P(in1) ∗ (1 − P(in2))
(1, 0) 0 1 − P(in1) P(in2) (1 − P(in1)) ∗ P(in2)
(1, 1) 1 1 − P(in1) 1 − P(in2) (1 − P(in1)) ∗ (1 − P(in2))

gate modeling process is presented in Sect. 3.2. Third, on
top of completing previous two steps, it is shown in Sect. 3.3
that by doing simple interpolation and an STA-like delay
calculation, path delays in large designs can be calculated in
seconds. Finally, in Sect. 3.4, the delay adjustment, a subtle
calculation that is specific for aging-aware delay prediction,
is discussed, and a fast approximation method for the delay
adjustment is proposed.

3.1 Signal Probability Propagation

As mentioned above, a systematical approach to probability
calculation is critical in predicting the aging-induced delay
degradation. In this paper, intra-cell and inter-cell SPP are
considered to be two separate problems, although they could
potentially be solved together. Intra-cell signal SPP denotes
each pMOS within a logical cell (gate) with the NBTI-stress
probability, where the NBTI-stress probability is defined as
the probability of the pMOS having its gate and source volt-
ages negatively biased. Whereas, inter-cell SPP focuses on
how signal propagates through the combinational logics in a
processor.

For intra-cell SPP, we annotate cells for their actual
degradation on the pMOS devices. Each input is considered
separately in terms of their probability, such that each pMOS
has its input annotated relatively to the input signal(s). The
NBTI-induced Vth degradation is then calculated based on
the stress probability on its gate.

Inter-cell SPP is based on the DAG constructed from
the gate-level netlist of the target design. To estimate the
stress probability for each gate in the design, all the primary
inputs applied to the circuit is fixed to follow a certain prob-
ability distribution. By constructing a topologically sorted
list from the primary inputs, the probability propagates from
primary inputs to each and every piece of logic in the cir-
cuit, reaching the primary outputs eventually. To make sure
that probabilities propagate correctly, not only the probabil-
ity mapping of a single cell has to be considered, loops in
the processor circuit (e.g., forwarding logics) have as well
to be handled.

To calculate the SPP along a path, an approach shown
in Fig. 4 is taken. Each gate is viewed as a function ( f , g)
that maps all its input probabilities (α) to its output probabil-
ity ( f (α)). Depending on the type of the gate, this function
changes. The procedure to generate this probability map-
ping function is as follows. First, a table for a particular
gate, AND gate in this example, is constructed as shown in
Table 1. Second, from Table 1, it can be observed that the
probability of outputting a logic 0 from an AND gate is the

Fig. 4 DFF-to-DFF probability propagation through combinational
logics.

Fig. 5 Inconsistent D-flipflop with oscillating probability propagation.

sum of the first three entries in the table. To simplify the
formula, this sum can also be thought of 1 subtracting the
probability of the AND gate outputting a logic 1, which be-
comes Eq. (6). Hence, lastly, Eq. (6) becomes the function
that maps its input probabilities to the output probability.

P(out) = 1 − (1 − P(in1)) ∗ (1 − P(in2)) (6)

By repeating the above process for each gate, a prob-
ability will start to propagate from the Q output of a D-
flipflop (DFF), going through each and every gate on the
path, reaching the D input of another DFF, as shown in
Fig. 4. For combinational logics, this marks the end of the
process. However, due to the existence of sequential logics,
i.e., DFFs, combinational logics loop in the circuit. These
logics loop in two ways: non-oscillating and oscillating.
An oscillating path example is denoted in Fig. 5. It can
be observed that when the DFF’s output probability is 0.3,
the inverter inverts it to 0.7 and feeds it back to the DFF.
When the output probability of the DFF goes to 0.7, the in-
verter returns 0.3 to the input of the DFF, which never ends.
Whereas, a non-oscillating loop converges to a stable value
after looping through the path several times.

To resolve this looping of combinational logics,
whether oscillating or non-oscillating, an algorithm as in
Alg. 1 is used. The algorithm requires only the DAG of the
target design, and will first gather a complete list of DFFs in
the design. Here, a DFF with its input probability not equal
to its output probability is called an inconsistent DFF. Fur-
thermore, note that although the circuit DAG contains DFFs,
it is not cyclic, for that each node in the graph is a pin of a
particular gate (or DFF), and that the D input pin (D) of the
DFF is not connected to the Q output of the DFF. Hence,
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Algorithm 1 Algorithm for solving looping combinational
probability propagations.
Require: G = Directed Acyclic Graph of target design
1: all DFFs = get all DFFs from G
2: do
3: for each DFF ∈ all DFFs do
4: if P(DFFout)! = P(DFFin) &
5: DFF is not marked as consistent then
6: check DFF oscillation
7: if DFF is oscillating then
8: Choose the worst NBTI scheme
9: Mark DFF as consistent

10: else
11: incons dff list.append(DFF)
12: end if
13: end if
14: end for
15: for each DFF ∈ incons dff list do
16: DFF.output probability = DFF.input probability
17: end for
18: top list = make topological list(incons dff list)
19: for all gate in top list do
20: gate output probability=gate function(
21: gate input probabilities)
22: end for
23: while (incons dff list not empty)

there is no cycle in the graph. The algorithm keeps loop
until the list of the inconsistent DFF converges, i.e., when
the list becomes empty, as indicated by line 2∼16 in Alg. 1.
Within the loop, at first, every DFF has its input-output prob-
ability consistency checked (line 4∼14). An additional con-
sistent flag is added to the DFF node, such that oscillating
DFFs can be marked to avoid infinite loops. The oscillation
will be checked based on a history of the absolute value of
the difference between the input and output probabilities. If
oscillating DFFs are found, they are marked as consistent
DFFs to ensure loop termination, and the output probability
of the DFF is fixed to a particular value that maximizes the
amount of NBTI degradation on the gate immediately fol-
lowing the DFF (i.e., the highest probability value). Next,
for other DFFs with inconsistent input-output probabilities,
the input probabilities will be applied to their outputs, and
another round of probability propagation starts (line 15∼22).
This procedure is repeated until the probability converges
for all non-oscillating loops, as mentioned before.

3.2 Aging-Aware Gate Modeling

Gates are modeled under three conditions that vary from
case to case: temperature, years of aging and input vector
probability distribution. Different input pins as well as rise/-
fall transitions are also considered differently. In addition,
since the input/output slew also propagates through combi-
national paths, two collections of LUTs have to be made:
one for delay, another for slew.

Each collection of LUTs consists of many LUTs,
where a LUT is specially designed for a particular input pin
at rise, or fall, for a particular gate. For each LUT in this
case, it will have three input variables: input slew, capaci-

Fig. 6 Example of general simulation circuit setup for LUT construction.

Fig. 7 Example propagation delay LUT simulated with inverter x1
falling input where probability = 0.

Fig. 8 Example propagation slew LUT simulated with inverter x1 falling
input where probability = 0.

tive load, and NBTI stress probability. The gate delay and
output slew are first measured after being simulated under
different conditions by varying the three variables defined
above. The gate delay will then be gathered into one collec-
tion of LUTs, while the output slews are put into another.
Finally, two three-dimensional LUTs of the simulated de-
lays and output slews are constructed.

The basic circuit schematic for measuring of a gate de-
lay of the A1 input (rising) of an AND gate is shown in
Fig. 6. As mentioned, the input slew, capacitive load, and
NBTI stress probability are the three variables given to the
circuit, and two target values are measured: the propagation
delay and the output slew. From the measured values, two
tables are constructed: the delay LUT and the slew LUT as
shown in Figs. 7 and 8.

One important factor to consider in the process of sim-
ulation is the interval into which each variable (slew, capac-
itive load, and NBTI stress probability) is divided. Con-
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Fig. 9 Inverse of the probability-Vth function divided into 20 intervals.

ventional STA library models slew and load in a simple ex-
ponential manner, while such scheme cannot be applied to
probability. As previously described in Fig. 1, the Vth degra-
dation is a strongly nonlinear function of the stress proba-
bility. Thus, in this paper, we propose to use an inverse-
function-based step size in determining the interval in the
probability dimension. In this approach, we use the ap-
proximated inverse function derived from Eqs. (1) and (3)
to calculate the probability values, and use these probability
values as LUT intervals. To be clear, we did not develop
a closed-form analytical equation for this inverse function.
Instead, an itervative numerical method is taken towards ap-
proximating the inverse function. At each ∆Vth step |∆Vth|i,
a funciton f (x) is established as Eqs. (7) and (8) indicate.

g(α) =
(

0.001n2K2
v αCt

0.81t2
ox(1 − α)

)n

(7)

f (x) = g(x) − |∆Vth|i (8)

The function of using the probability α to obtain the |∆Vth|
shift is renamed as g(α) which is virtually equivalent to
Eq. (1). By setting f (x) = 0 and finding the root, temporar-
ily referred to as xroot, we can obtain the following equation.

g(xroot) = |∆Vth|i (9)

In Eq. (9), it is easy to see that xroot is the value that could
help us obtain the particular |∆Vth|i value we want to know.
An example of utilizing this numerical method is illustrated
in Fig. 9. We divide ∆Vth evenly from 0 mV to the max-
imum possible degradation into 20 |∆Vth| intervals. Then,
the corresponding probability at each |∆Vth|i step is calcu-
lated using the numerical approximation. It can be observed
that the majority of the points (14 of them) locate in the
range where the probability is greater than 0.8. The ultimate
goal, however, is not to interpolate |∆Vth|, rather the delay
of the gate. Using a linear interpolation method, the number
of points will be minimized if the delay increases linearly
at each step. If we take a look at the Vth-delay relation, we
find Eq. (10) as a well-known equation that describes the re-
lationship between delay and Vth [11].

Delay ∝ CVDD

(VDD − Vth)α
, (10)

where C is the load capacitance, and VDD is the supply volt-
age, which are constants that do not depend on Vth. It is also

mentioned that α holds a value of 1.3 for short channel de-
vice [11]. Although this equation exhibits non-linearity, it
can be well approximated by the following equation if the
|∆Vth| shift from the real Vth value, Vth0, is small.

Delay = D0 +
∂

∂Vth

CVDD

(VDD − Vth)α

∣∣∣∣∣
Vth=Vth0

· |∆Vth| (11)

= D0 +
CVDDα

(VDD − Vth0)α−1 · |∆Vth|, (12)

where D0 is the delay calculated using zero-biased Vth0
value. Thus, despite the fact that evenly dividing |∆Vth| may
not result in an optimal delay-division grid, we can say that
within certain range, delay is roughly linearly dependent on
|∆Vth|. Thus, by dividing |∆Vth| into a linear grid, we ensure
that the number of grid points for the third dimension of the
LUT is as minimized as we can possibly achieve. More-
over, note that the generation of the aging-aware LUT is
only a one-time operation for a specific logic-gate library
of a particular process. Hence the aging-aware LUT can be
provided as a pre-characterized library just like an existing
delay library in general physical design kits.

3.3 LUT-Based Delay Calculation

After calculating the SPP, gate delays along paths are calcu-
lated by interpolating the aging-aware LUTs, and path de-
lays are obtained.

Interpolation is an important part of the technique. For
a conventional two-dimensional STA library, a simplified
linear delay model is developed and generally accepted [12].

D = D0 + D1S + D2C, (13)

where D denotes the delay of the gate of interest, and
D0,D1,D2 are constants. S in the equation means input
slew time, and C marks the load capacitance at the out-
put of the gate. As noted in [12], this linear model is al-
ready inaccurate for some range of slew time and capac-
itance for submicron technology processes. Thus, to per-
fectly model the relationship, it may require a more com-
plex multidimensional interpolation (more than three) with
consideration on the physical relationships between voltages
and currents. Delay models for slew time and capactiance
are well-established [12], [13]. However, for the third di-
mension of our proposed LUT (the aging dimension), ow-
ing to the fact that aging-aware LUT utilizes an inverse-
function-based step size, we can simply use a linear interpo-
lation method. Along with gate delays, as mentioned, output
slew of a gate also propagates with respect to the input slew
of the gate and the capacitive load of the gate. Thus, the
output slew table created in the previous step is also inter-
polated.

After deciding the interpolation scheme for LUTs, path
delay calculation is conducted in the target circuit. First of
all, capacitances are extracted from the target design. Next,
the slew LUT is used to calculate the slews for each gate
along the paths depending on their load capacitances. At this
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point, the three elements needed for a delay-LUT interpola-
tion are all known, and a LUT interpolation is conducted,
returning the propagation delay of the gate of interest. Fi-
nally, by summing up the gate delays along each path, the
delay can be estimated efficiently along paths.

3.4 Delay Adjustment for Multi-Input Gates

Errors coming from interpolation and slew waveform are in-
evitable in LUT-based delay calculation systems. However,
aging-aware delay calculation has a new and distinct source
of error. This type of error comes in the form of signifi-
cant underestimation observed in logic gates that contains
series connection of pMOS transistors. This is caused by
the fact that in SPICE simulation, a gate like NOR receives
multiple probability annotation on each of its inputs. One
of the pin will experience a transition, while the other pins
(the propagating pins) are supposed to have no effect on the
propagation delay in this scenario. Nevertheless, the NBTI
effect induces a Vth shift on the propagating pins, which es-
sentially increases the equivalent impedance of the pMOS
transistor associated with the pin. However, in creating the
LUT, the Vth degradation is only annotated on one of the
pMOS, leaving the other one “ideal”, in the sense that no
degradation occurs.

With this observation, it is desirable to use the proba-
bility combination of all input pins to index the LUT. How-
ever, this would greatly increase the size of the table. Thus,
instead, we propose to consider each switching input as a
table index at a time, and to compensate the effects of the
degradation on the other inputs, i.e., the delay increase due
to non-zero degradation of the propagating input, in the pro-
cess of path delay calculation.

In the above approach, while the effort in making a
LUT can be greatly reduced, a simple yet effective compen-
sation technique is required to keep the errors minimal. The
method we propose uses a linear approximation towards the
Vth degradation on the propagating pMOS, and adds a scaled
version of the delay of the gate to itself. The analytical equa-
tion can be found in Eq. (14), where k is a gate-dependent
scaling factor, and ∆Vth is the Vth degradation of the other
pMOS in series with the current pMOS of interest.

adjusted delay = LUT delay ∗ (1 + k ∗ ∆Vth) (14)

This simple analytical form of the equation allows fast cal-
culations, and by adjusting the k-factor, the technique pre-
vents overly optimistic underestimation at the cost of a small
amount of overestimation.

4. Numerical Experiment

4.1 Experiment Setup

Numerical experiments are conducted on a five-stage
pipelined processor from a commercial IP library [14]. In
the experiment, Nangate 45 nm Open Cell Library [8] is

used for circuit implementation. The processor is synthe-
sized using a logic-synthesis tool [15]. The paths with top
8% slack (a total of 25,446 paths) are extracted from the pro-
cessor by a commercial STA tool [16], whose delays (aged
as well as fresh) are calculated based on the proposed LUT
and a SPICE simulator [17]. This is the previously men-
tioned predetermined “critical paths” that are vulnerable to
NBTI degradation.

To generate the LUT, input slew and capacitive load
are modeled in the range of [0.003ns, 470ns] and [0.01fF,
60fF], respectively. Both input slew and capacitive load are
chopped into 11 evenly distributed intervals, and the delay
values at the endpoints are simulated. In terms of NBTI
stress probability, in this experiment, we divided ∆Vth into
100 evenly distributed intervals, and used the previously
mentioned inverse function to calculate the actual probabil-
ity intervals. As for the interpolation, a three-dimensional
interpolation library was used [18]. The experiment was
conducted on Intel(R) Xeon(R) E5-2630 using a single core.

4.2 Experiment Result

Figure 7 shown previously in Sect. 3.2 demonstrates the
evaluation over a dense mesh after the interpolation for a
X1 inverter without any NBTI stress. As a general trend, in-
creases in input slew and capacitive load cause the increase
in delay. However, for input slew, a log-like curve is de-
rived. This can be explained by the fact that the input slew
is becoming too large (> 200 ps) while inverter gates typi-
cally have a propagation delay in the range of 30–80 ps. As
a result, the transition happens as soon as the input volt-
age reaches the switching point, giving a saturating delay
increase. This is also indicated in Fig. 8 that the input slew
to the gate does not have strong effects on the output slew
of the gate, but is mainly dominated by the capacitive load
driven by the gate.

The runtime and error information are summarized in
Table 2. Note that we used SPICE as a reference design,
so that the SPICE is considered to be 100% accurate in this
case. Compared to SPICE simulation that takes more than
960 minutes to calculate all the path delays, our technique
accomplishes the same task within 14 seconds, giving an
approximate speedup of 4114x. In addition, our method
was implemented in pure Python language without exten-
sive optimization. Hence, further speedup is expected if the
programs are written in C or Fortran. The maximum error is
found to be +10.5%, −4.5% (actually +9%, −12% without
error smoothing, which will be discussed in Sect. 4.3).

Fresh and aged path delay distributions are presented in
Fig. 10 and Fig. 12, respectively, with their error histogram
plotted in Fig. 11 and Fig. 13. Points are mostly distributed

Table 2 Result of proposed technique compared to SPICE.

Proposed SPICE
Calc. Time 14 sec. 960 min.

Abs. Max. Error (ns) 7% -
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Fig. 10 Fresh delay distribution of SPICE-based simulation and LUT-
based interpolation with ±4% error bar.

Fig. 11 Distribution error between SPICE-based path delays and LUT-
based path delays for fresh processor.

Fig. 12 Aged delay distribution of SPICE-based simulation and LUT-
based interpolation with +5.6% and −4% error.

over the diagonal line. However, especially in the aged path
delay calculations, a general trend of underestimation is ob-
served. This can be explained by the fact that log-like curve
will always suffer from underestimation when the interpola-
tion method is linear. Thus, certain compensation should be
added to the interpolation algorithm. The correlations be-
tween the LUT-based path delay estimation and SPICE sim-
ulation are 0.988 and 0.989 for fresh and aged, respectively.
The correlation is retained at the same level, indicating that

Fig. 13 Distribution error between SPICE-based path delays and LUT-
based path delays for aged processor.

Fig. 14 Distribution of SPICE-based ∆d prediction and that calculated
from the LUT-based method.

only neglectable errors are introduced in adding the NBTI-
stress dimension.

The accuracy of prediction on ∆d, the NBTI degrada-
tion, is also studied. In Fig. 14, it can be observed that the
prediction accuracy has a trend of being underestimated in
general. With some paths having extra-large overestima-
tions, as in the path delay prediction. This distribution re-
veals the fact that quite a huge amount of error was intro-
duced in the process of adding NBTI degradation into con-
sideration.

4.3 Experiment Result of Delay Adjustment

In analyzing the effect of our delay adjustment technique,
slew calculation and gate-delay prediction were considered
separately. To focus on the gate-delay calculation, the input
and output slews for each gate are taken directly from the
result of SPICE simulation. We thus obtained the result in-
dicated in Fig. 15, where the proposed delay adjustment was
not applied, and Fig. 16, where the proposed technique was
applied. As the two figures reveal, the underestimation is
greatly reduced, without noticeable increase in overestima-
tion. The maximum error of −3.5% (reduced from −10%),
with the small amount of overestimation degradation (from
+5% to +5.6%). It is noted that delay adjustment was ap-
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Fig. 15 Distribution of SPICE-based path delays and LUT-based path
delays for aged processor without slew error and error smoothing (anno-
tated with −10% and +5% error bar).

Fig. 16 Distribution of SPICE-based path delays and LUT-based path
delays for aged processor without slew error, with error smoothing (anno-
tated with −3.5% and +5.6% error bar).

Fig. 17 Error comparison for NOR gates with and without our error-
smoothing technique.

plied in obtaining the result in Sect. 4.2.
The errors in each and every NOR gates in the cir-

cuit is extracted before and after using the proposed error-
smoothing technique, and the comparison is demonstrated
in Fig. 17. It is clear that large underestimations are elim-
inated, with overestimation increased by a tiny amount. It
is believed that with a more sophisticated error-smoothing
technique, the result can be further improved.

5. Conclusion

In this paper, we proposed a fast and efficient method for
predicting the NBTI-induced delay degradation in large de-
signs like processors. The method utilizes signal probabil-
ity propagation, lookup tables, and static timing analysis to
calculate aging-aware path delays. The proposed technique
successfully established an systematical approach to accu-
rately calculate the NBTI-induced delay degradation from
signal probability. Moreover, through numerical experiment
on an example five-stage RISC processor, we demonstrated
that this calculation can be done within seconds for rela-
tively large designs. It is shown that using our method,
the calculation of delays of 25,446 paths achieved a 4114x
speedup when compared to SPICE, with a maximum error
of 5.6%.
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