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We propose a new mechanism to solve the fine-tuning problem. We start from a
multi-local action S = ∑

i ci Si +∑
i, j ci, j Si S j +∑

i, j,k ci, j,k Si S j Sk + · · · , where the Si ’s are
ordinary local actions. Then, the partition function of this system is given by Z =∫

d
−→
λ f

(−→
λ
)〈 f |T exp

(
−i
∫ +∞

0 dt Ĥ(
−→
λ ; acl(t))

)
|i〉, where

−→
λ represents the parameters of the

system whose Hamiltonian is given by Ĥ(
−→
λ ; acl(t)), acl(t) is the radius of the universe deter-

mined by the Friedman equation, and f
(−→
λ
)
, which is determined by S, is a smooth function

of
−→
λ . If a value of

−→
λ ,

−→
λ 0, dominates in the integral, we can interpret that the parameters

are dynamically tuned to
−→
λ 0. We show that this indeed happens in some realistic systems. In

particular, we consider the strong CP problem, the multiple point criticality principle, and the
cosmological constant problem. It is interesting that these different phenomena can be explained
by one mechanism.
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1. Introduction and general idea

Since the discovery of the Higgs particle [1,2], it has become more and more important to consider
the fine-tuning problem [3–5]. The natural and conservative approach is to seek solutions in the
context of ordinary local field theory. However, even if such theory can solve an individual problem
such as the quadratic divergence of the Higgs mass, it seems difficult to answer all the problems
simultaneously. Therefore, it is necessary to consider a new framework or principle beyond ordinary
local field theory. There are many interesting proposals such as asymptotic safety [6], hidden duality
and symmetry [7–9], classical conformality [10–15], the multiple point criticality principle (MPP)
[16–33], and the maximum entropy principle [34–38].

Among them, Coleman’s theory on baby universes and the multiverse [39] seems promising.
Although Coleman’s first work explains the smallness of the cosmological constant (CC), its validity
is unclear because it is based on Euclidean gravity. Therefore, a Lorentzian version is inevitably
needed to give reliable predictions. In Refs. [34–37], such improvements are actually done. They
are essentially based on a multi-local action and the existence of the multiverse. The former is rel-
atively natural because it arises if we take the topology change into account [39–42]. On the other
hand, the idea of the multiverse is slightly uncommon because there is no evidence so far that we
live in the multiverse. Therefore, it is meaningful to consider whether we can solve the fine-tuning
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problem without relying on the existence of the multiverse. The purpose of this paper is to give a
new framework to solve the fine-tuning problem based on a multi-local action.

We consider the partition function of the multi-local action,

SM =
∑

i

ci Si +
∑
i, j

ci, j Si S j +
∑
i, j,k

ci, j,k Si S j Sk + · · · , (1)

where

Si =
∫ ∞

0
dt
∫

d3xOi (t, x) (2)

is an ordinary local action, and the ci ’s, ci, j ’s, . . . are constants. Here, we have assumed that the
universe is created at t = 0, and evolves to t = ∞. Then, Eq. (1) is obtained after summing up the
wormholes. See Fig. 1 for an example. Thus, by expressing exp (i SM) as a Fourier transform

exp (i SM) =
∫

d
−→
λ f

(−→
λ
)

exp

(
i
∑

i

λi Si

)
, (3)

we can write the partition function of the system as follows:

Z =
∫ t=∞

t=0
Dφ exp (i SM) ψ

∗
fψi

=
∫

d
−→
λ f

(−→
λ
) ∫ t=∞

t=0
Dφ exp

(
i
∑

i

λi Si

)
ψ∗

fψi

=
∫

d
−→
λ f

(−→
λ
)〈 f |T exp

(
−i
∫ +∞

0
dt Ĥ

(−→
λ ; acl(t)

))
|i〉, (4)

where acl(t) is the radius of the universe determined by the Friedman equation, ψi and ψ f represent

initial and final states which are independent of
−→
λ , and we have assumed that the universe eternally

expands like our universe.1 If there is a point
−→
λ0 that strongly dominates in the integral of Eq. (4), the

observer in the universe finds that the parameters are fixed at
−→
λ 0. In particular, Eq. (4) is equivalent to

Z ∼ f
(−→
λ0
)〈 f |T exp

(
−i
∫ +∞

0
dt Ĥ

(−→
λ0 ; acl(t)

)) |i〉. (5)

At first glance, it seems difficult to evaluate Z because it involves the total history of the universe.
However, in almost all the time, the universe is sufficiently expanded, and its energy density is very
close to that of the vacuum. More concretely, we have

T exp

(
−i
∫ +∞

0
dt Ĥ

(−→
λ ; acl(t)

)) |i〉 ∼ exp

(
−iε

(−→
λ
) ∫ +∞

t∗
dtV3(acl(t))

) ∣∣ψ(t∗; −→
λ
)〉
, (6)

where

|ψ(t; −→
λ )〉 = T exp

(
−i
∫ t

0
dt ′ Ĥ

(−→
λ ; acl(t

′)
)) |i〉, (7)

V3(acl(t)) is the space volume, ε
(−→
λ
)

is the vacuum energy density, and t∗ is a time such that the

energy density of the state |ψ(t; −→
λ )〉 is sufficiently close to ε

(−→
λ
)
. By substituting Eq. (6) in Eq. (4),

1 Here, for simplicity, we have assumed that acl(t) is already given. See Sect. 5 for a more concrete argument.
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Fig. 1. Universe and baby universes. Here, we show wormholes having two legs. The left and right figures
represent the partition function and Hamiltonian points of view respectively.

we obtain

Z ∼
∫

d
−→
λ f

(−→
λ
)

exp

(
−iε

(−→
λ
) ∫ +∞

t∗
dtV3(acl(t))

) 〈
f |ψ(t∗; −→

λ
)〉
. (8)

As we will see in the following discussion, we can find
−→
λ0 from Eq. (8) in some phenomenologically

interesting systems.
We can also repeat the above argument from the point of view of Coleman’s baby universes as

follows. As discussed in [39,40], instead of using the multi-local action, the wormhole effect can be
expressed by introducing operators âi and â†

i that describe the creation and annihilation of a baby
universe. Namely, the action of the universe with baby universes is given by

SC =
∑

i

(
âi + â†

i

)
Si . (9)

See the right figure in Fig. 1 for an example. Because the âi + â†
i ’s are conserved quantities, for each

set of their eigenvalues, Eq. (9) is an ordinary local action for the universe. Therefore, we can develop
the quantum theory for the total system consisting of the universe and baby universes:

Ĥtot =
∫

d
−→
λ |−→λ 〉〈−→λ | ⊗ Ĥ

(−→
λ ; acl(t)

)
. (10)

Here, {|−→λ 〉} is the complete set of the Fock space of the baby universes:

1 =
∫

d
−→
λ |−→λ 〉〈−→λ |,

(
âi + â†

i

)
|−→λ 〉 = λi |−→λ 〉, (11)

and Ĥ(
−→
λ ; acl(t)) is the Hamiltonian for the universe that corresponds to the action

∑
i λi Si . Then,

for the initial state |i〉 = |i〉baby ⊗ |i〉universe, the wave function at t is given by

e−i Ĥtott |i〉 =
∫

d
−→
λ |−→λ 〉〈−→λ |i〉baby ⊗ T exp

(
−i
∫ t

0
dt ′ Ĥ

(−→
λ ; acl(t

′)
)) |i〉universe. (12)

Thus, by considering the t → +∞ limit, and multiplying a final state 〈 f | := baby〈 f | ⊗ universe〈 f |
by Eq. (12), we actually obtain Eq. (4) where

f
(−→
λ
) = baby〈 f |−→λ 〉〈−→λ |i〉baby. (13)
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This is the derivation of Eq. (4) from the point of view of Coleman’s baby universes. Note that the
weight function f

(−→
λ
)

is not important in the following discussion because we will consider the

general consequences which do not depend on the detail of f
(−→
λ
)

as long as it is a smooth function.

In the following, we do not consider such a special case that |i〉baby or | f 〉baby is |−→λ ′〉.
Because the above point of view is rather uncommon, let us see a simple example here:

S =
∫ +∞

−∞
dt

(
m

2
ẋ2 − mω2

0

2
x2

)
+ m2κ

42

∫ +∞

−∞
dt x2

∫ +∞

−∞
dt x2

:= S0 + κS2
H , (14)

where

S0 =
∫ +∞

−∞
dt

(
m

2
ẋ2 − mω2

0

2
x2

)
, SH = m

4

∫ +∞

−∞
dt x2. (15)

This is a harmonic oscillator having an additional bi-local action S2
H . By using a Lagrangian

multiplier λ1, the path integral of this system can be rewritten as follows:

Z =
∫

Dx exp
(

i S0 + iκS2
H

)

=
√

−iκ

π

∫
dλ1e−iκλ2

1

∫
Dx exp (i S0 + 2iκλ1SH )

:=
∫

dλ f (λ)
∫

Dxei S̃(λ), (16)

where

S̃(λ) =
∫ +∞

−∞
dt

(
m

2
ẋ2 − mλ

2
x2
)
, f (λ) :=

√
−i

κπ
× e−i

(
ω2

0−λ
)2

κ . (17)

Here, in the last line in Eq. (16), we have changed the variable:

λ := ω2
0 − κλ1. (18)

One can see that Eq. (16) actually has the form of Eq. (4). However, λ is not fixed to any special
value because the integrand in Eq. (16) is a regular function of λ in this case. On the other hand, as
we will see, if we consider systems with infinite degrees of freedom,

−→
λ is indeed fixed to a special

value in several cases.
In the following sections, we study a few examples which show that the above argument is not an

armchair theory. In particular, we consider the strong CP problem, the MPP, and the cosmological
constant problem (CCP). The MPP is a proposal to solve the fine-tuning problem, which claims that,
when a field theory has two vacua, the parameters are fixed so that they become degenerate. In regard
to the CCP, we will see that the CC is nearly fixed to zero by generalizing Eq. (4) to the Wheeler–
DeWitt wave function. In order to explain the positive small CC, we will give an argument based on
the existence of the multiverse.

This paper is organized as follows. In Sect. 2, we give a few important mathematical preliminaries.
In Sect. 3, we discuss the strong CP problem. In Sect. 4, we derive the MPP from Eq. (4). In Sect. 5,
we consider the CCP by generalizing Eq. (4) to the Wheeler–DeWitt wave function. In Sect. 6, we
give a summary and discussion.
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2. Mathematical preliminaries

In this section, we consider the singular behavior of eikg(λ) in the k → ∞ limit, which plays a crucial
role in the following discussion.

If g(λ) is smooth, and has a stationary point λ0, we obtain

eig(λ)k ∼
k→∞

√
2π

ikg′′(λ)
eikg(λ0)δ(λ− λ0), (19)

by using the saddle point approximation. Note that the right-hand side is suppressed by the factor
√

k.
If g(λ) is smooth and monotonic in the λ > 0 region, and g′(0) �= 0, we have

eikg(λ)θ(λ) ∼
k→∞

i

k

(
dg

dλ

)−1

eikg(0)δ(λ), (20)

where θ(λ) is a step function. The proof is as follows. By multiplying a test function F(λ)with finite
support to eikg(λ), and integrating from 0 to ∞, we obtain∫ ∞

0
dλeig(λ)k F(λ) =

∫ ∞

g(0)
dg

(
dg

dλ

)−1

eikg F(λ = λ(g))

=
[

eikg

ik

(
dg

dλ

)−1

F(λ(g))

]∞

g(0)

+ O
(

1

k2

)

= i

k

(
dg

dλ

)−1

eikg(0)F(λ)

∣∣∣∣∣
λ=0

+ O
(

1

k2

)
. (21)

Thus, one can see that Eq. (20) holds in the k → ∞ limit. Note that the right-hand side is proportional
to 1/k, which is small compared with Eq. (19).

Similarly, we can obtain the following equation for g(λ) that is smooth and monotonic in each of
the regions, λ > λ0 and λ < λ0:

eikg(λ) ∼
k→∞

i

k

[
eikg(λ)

(
dg

dλ

)−1
∣∣∣∣∣
λ0+

− eikg(λ)
(

dg

dλ

)−1
∣∣∣∣∣
λ0−

]
δ(λ− λ0). (22)

Note that the right-hand side is non-zero only when g(λ) is not smooth at λ0. We will call such a
point a λ0 non-analytic point.

3. Strong CP problem

In the QCD Lagrangian, there exists a CP-violating topological term

Sθ := θ

16π2

∫
d4x Fa

μν F̃aμν. (23)

Experimentally, there is a strong upper bound on θ [5,43],

θ < 10−9, (24)

which is unnaturally small. This is the so-called “strong CP problem.” We can naturally solve this
problem as follows.
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From the general argument of Sect. 1, the partition function is given by

Z ∼
∫ 2π

0
dθ f (θ) exp

(
−iε(θ)

∫ +∞

t∗
dtV3(acl(t))

) 〈
f |ψ(t∗; θ)〉

=
∫ 2π

0
dθ f (θ) exp (−iε(θ)V4)

〈
f |ψ(t∗; θ)〉, (25)

where

ε(θ) ∼ �4
QCD cos θ (26)

is the energy density of the θ vacuum (see [44] for an example), and V4 is the volume of the space
time. If we consider such a final state with a finite winding number,2 using Eq. (19), we obtain3

exp (−iε(θ)V4) ∼
√

2π

i V4�
4
QCD

(
e−iε(0)V4δ(θ)+ e−iε(π)V4δ(θ − π)

)
. (27)

By substituting this into Eq. (25), the partition function becomes

Z ∼
√

1

V4�
4
QCD

[
f (0)e−iε(0)V4〈 f |ψ(t∗; 0)〉 + f (π)e−iε(π)V4〈 f |ψ(t∗;π)〉

]
. (28)

This shows that the partition function is strongly dominated by θ = 0 and θ = π worlds, as in the
many-world interpretation.

4. The multiple point criticality principle

In this section, we derive the MPP by assuming that the potential V (φ, λ) of a scalar field φ has two
minima at φ1(λ) and φ2(λ), where we take φ1(λ) < φ2(λ). Here, λ is one of the coupling constants
of the theory. We assume that two minima become degenerate when λ is equal to zero, and that the
signature of λ is chosen as

V (φ1(λ), λ) < V (φ2(λ), λ) for λ > 0,

V (φ1(λ), λ) > V (φ2(λ), λ) for λ < 0. (29)

See Fig. 2 for an example. Then, the true vacuum expectation value φvac(λ) and the vacuum energy
density ε(λ) are given by

φvac(λ) =
{
φ2(λ) for λ < 0

φ1(λ) for λ > 0
, ε(λ) =

{
V (φ2(λ)) for λ < 0

V (φ1(λ)) for λ > 0.
(30)

According to Eq. (4), the partition function is given by

Z =
∫

dλ f (λ) exp (−iε(λ)V4) 〈 f |ψ(t∗; λ)〉. (31)

We assume that V (φ1(λ)) and V (φ2(λ)) are monotonic functions of λ in λ > 0 and λ < 0 respec-
tively, and that their derivatives are not equal at λ = 0. Because, for generic | f 〉, 〈 f |ψ(t∗; λ)〉 has no

2 If | f 〉 is the n vacuum |n〉 with a large value of n ∼ �4
QCDV4, the exponent of the integrand in Eq. (25)

becomes stationary at the point where sin θ ∼ n/
(
�4

QCDV4

)
.

3 If k is finite in Eq. (19), we have a function of width 1/
√

kg′′(λ) instead of the delta function. Then, the

width 
θ is given by
√

1/
(
V4�

4
QC D

) ∼ 10−80/

(√
V4 H 4

0

)
, where H0 the present Hubble constant.
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Fig. 2. Schematic behavior of V (φ, λ). The blue line corresponds to λ = 0, and the green (red) line corresponds
to λ > 0 (<0).

singularity at λ = 0, we can use Eq. (22):

e−iε(λ)V4 ∼ − ie−iε(0)V4

V4
×
[(

V (φ1(λ))

dλ

)−1 ∣∣∣∣
0+

−
(

V (φ2(λ))

dλ

)−1 ∣∣∣∣
0−

]
δ(λ). (32)

By substituting this into Eq. (31), we obtain

Z ∼ f (0)

V4
× e−iε(0)V4〈 f |ψ(t∗); 0〉. (33)

Thus we have derived the MPP in the context of the multi-local action.

5. Generalization to Wheeler–DeWitt wave function

In this section, we consider the generalization of Eq. (4) to the Wheeler–DeWitt wave function and the
fine-tuning of the physical CC�. Unfortunately, it is not easy to consider the negative region� < 0
because we do not know what happens after the Big Crunch. On the other hand, in the positive region
� > 0, we can consider the Wheeler–DeWitt wave function for the entire region of the radius of the
universe, and examine which value of

−→
λ dominates. Therefore, in the following, we take only the

region � > 0 into account in the path integral.
Then the generalization of Eq. (4) to the Wheeler–DeWitt wave function is given by

ZW D =
∫

d�B

∫
d
−→
λ f (�B,

−→
λ ) θ(�)

×
∫ ∞

0
dT

〈
fa

∣∣∣∣⊗
〈

fM R

∣∣∣∣e−i
(

ĤG(�B)+ĤM R(
−→
λ ;â)

)
T
∣∣∣∣ε
〉
⊗
∣∣∣∣iM R

〉
, (34)

where ĤG(�B) := − p̂2
a/
(

2âM2
pl

)
+�B is the Hamiltonian for the radius of the universe a with the

bare CC �B [36], ĤM R(
−→
λ ; â) represents the other degrees of freedom, that is, the matter and radi-

ation including gravitons, and |ε〉 ⊗ |iM R〉 (| fa〉 ⊗ | fM R〉) is an initial (a final) state of the universe.
(We have assumed that the initial universe has the radius a = ε.) The integration over T comes from
the path integral for the lapse function. In the following discussion, we assume | fa〉 = |a∞〉 where
a∞ represents the large radius of the universe. Before considering the CCP, we first re-derive the
results of the previous sections from Eq. (34).

7/16
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5.1. Fixing other parameters than the cosmological constant

Equation (34) differs from Eq. (4) in that it contains the integration over the time T . However, the
results in the previous sections can also be obtained from Eq. (34) because, for a fixed value of a,
the T integral is dominated by Ta at which the radius of the universe becomes a. More concretely,
we have ∫ ∞

0
dT

〈
a

∣∣∣∣⊗
〈

fM R

∣∣∣∣e−i
(

ĤG(�B)+ĤM R(
−→
λ ;â)

)
T
∣∣∣∣ ε
〉
⊗
∣∣∣∣ iM R

〉

∼
〈

fM R

∣∣∣∣T exp

(
−i
∫ Ta

0
dt ĤM R(

−→
λ ; acl(t))

)∣∣∣∣ iM R

〉
:= 〈 fM R|ψM R(Ta)〉, (35)

where we have omitted the integrations over �B and
−→
λ for simplicity. Here, acl(t) satisfies the

following Friedman equation and boundary condition:

H2 :=
(

ȧcl

acl

)2

= 1

3M2
pl

(
�B + 〈ψM R(t)|ĤM R(

−→
λ ; acl(t))|ψM R(t)〉

V3(acl(t))

)
, acl(0) = ε, (36)

where V3(acl(t)) is the volume of the space. We can understand Eq. (35) within the Born–
Oppenheimer approximation [45] by assuming that the expansion rate H is very small compared
with the energy scale of the other degrees of freedom. See Appendix A for the details.

Using Eq. (35), we can re-derive the results of the previous sections. For a sufficiently large value
of a, we can replace the Hamiltonian ĤM R(

−→
λ ; acl(Ta)) by the vacuum energy E0(

−→
λ ; acl(Ta)) =

ε
(−→
λ
)
V3(acl(Ta)), as in Eq. (8). Therefore, the right-hand side of Eq. (35) becomes

exp

(
−i
∫ Ta

0
dt ĤM R(

−→
λ , acl(t))

)
|iM R〉 ∼ exp

(
−iε

(−→
λ
) ∫ Ta

t∗
dtV3(acl(t))

)
|ψM R(t

∗)〉, (37)

where t∗ is a time such that the energy density of the state |ψM R(t∗)〉 is sufficiently closed to that of
the vacuum. Then, Eq. (34) can be written as∫

d�B

∫
d
−→
λ f (�B,

−→
λ ) θ(�) exp

(
−iε

(−→
λ
) ∫ Ta

t∗
dtV3(acl(t))

)
〈 fM R|ψM R(t

∗)〉. (38)

Thus, by repeating the same argument, we can re-derive the results of the previous sections.

5.2. Solving the cosmological constant problem

In order to fix �, it is sufficient to consider the effective action for the radius a because only the
vacuum energy is relevant:

Z =
∫ ∞

0
dT

∫ ∞

0
d� f (�)

〈
a∞

∣∣∣e−i Ĥ(�)T
∣∣∣ ε〉 , (39)

where the effective Hamiltonian Ĥ(�) is

Ĥ(�) = − p̂2
a

2âM2
pl

+ â3ρ(â)

6
, ρ(â) = �+ ρM R(â). (40)

Here, ρM R(â) stands for the energy density of the matter and radiation including gravitons. One
can see that −â4ρ(â) plays the role of a potential of the radius of the universe. By inserting the
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complete set

1 =
∫ +∞

−∞
d E |E;�〉〈E;�|, Ĥ(�)|E;�〉 = E |E;�〉 (41)

into Eq. (39), we obtain

Z =
∫ ∞

0
d� f (�)

∫ ∞

0
dt
∫ +∞

−∞
d Ee−i Et 〈a∞|E;�〉〈E;�|ε〉

=
∫ ∞

0
d� f (�)

(
π〈a∞|0;�〉〈0;�|ε〉 + PV

∫ +∞

−∞
d E

E
〈a∞|E;�〉〈E;�|ε〉

)
, (42)

where |0;�〉 is the zero-energy eigenstate, and PV represents the principal value. Here, we have
used the following identity:4

lim
t→+∞

e−i Et − 1

−i E
= πδ(E)+ PV

1

E
. (43)

The second term in Eq. (42) comes from the fact that we have chosen t = 0 as the beginning of the
universe. However, because the universe is well described classically by the Friedman equation, we
expect that only the small region around E = 0 is relevant in this integral. In Appendix B, we actually
check this by using the WKB (Wentzel–Kramers–Brillouin) approximation. As a result, Eq. (42) can
be approximated by

Z ∼
∫ ∞

0
d� f (�)〈a∞|0;�〉〈0;�|ε〉. (44)

Let us now evaluate 〈a|0;�〉 by using the WKB approximation. The Wheeler–DeWitt wave function
is given by [36]

〈a|0;�〉 = Mpl

√
a

pcl
exp

(
i
∫ a

da′ pcl(a
′)
)
, pcl(a) := Mpla

2

√
ρ(a)

3
, (45)

where pcl(a) is the classical momentum. For simplicity, we consider a matter-dominated universe,

ρ(a) = �+ M

a3 := �+ ρM(a), (46)

where M is the total energy of the matter. Then, we can evaluate the exponent in Eq. (45):

∫ a

aM

da′ pcl(a
′) = Mpl

3
3
2

⎛
⎝a3

√
ρ(a)− a3

M

√
ρ(aM)+ M√

�
log

⎡
⎣ a

3
2 (�+ √

�ρ(a))

a
3
2
M(�+ √

�ρ(aM))

⎤
⎦
⎞
⎠

:= Mpla3

3
3
2

g(�, a), (47)

4 The derivation is as follows: We can neglect e−i Et by introducing the adiabatic factor E → E − iε. Thus,
by multiplying a smooth test function F(E) with finite support to the left-hand side, and integrating over E ,
we have ∫ ∞

−∞
d E

−1

−i (E − iε)
F(E) = πF(iε)− PV

∫ ∞

−∞
d E

F(E)

E − iε
.

Therefore, in the ε → 0 limit, we obtain Eq. (43). Here, note that, if we also include the negative region in the
time integral, we obtain the delta function 2πδ(E) instead of Eq. (43). This leads to the ordinary Wheeler–
DeWitt state |0;�〉.
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where aM is the radius of the universe at the time when the matter-dominated era starts. g(�, a) is a
smooth and monotonic function of �, which satisfies

g(0, a) = 2

(√
ρM(a)−

(aM

a

)3√
ρM(aM)

)
, lim

a→∞ g(�, a) =
√
�,

dg(�, a)

d�

∣∣∣∣
�=0

= 1

3

(
1√
ρM(a)

−
(aM

a

)3 1√
ρM(aM)

)
. (48)

Thus, by substituting Eq. (47) into Eq. (45), and using Eq. (20), we obtain

〈a|0;�〉 ∼
a→∞

3
3
2 i

Mpla3

(
dg(�, a)

d�

)−1 ∣∣∣∣
�=0

Mpl

√
a

pcl(a)
exp

(
i

Mpla3

3
3
2

g(0, a)

)
δ(�)

= 3
3
2 i

Mpla3

(
dg(�, a)

d�

)−1 ∣∣∣∣
�=0

δ(�)〈a|0; 0〉, (49)

where |0; 0〉 is the zero-energy eigenstate with � = 0. By substituting this into Eq. (44), we have

Z ∼ 1

a3∞

(
dg(�, a∞)

d�

)−1 ∣∣∣∣
�=0

〈a∞|0; 0〉〈0; 0|ε〉

∼ 1

a3∞

(
dg(�, a∞)

d�

)−1 ∣∣∣∣
�=0

∫ ∞

0
dt〈a∞|e−i Ĥ(0)t |ε〉. (50)

This indicates that the whole universe is described by the Wheeler–DeWitt wave function with� = 0.
However, this result is inconsistent with cosmological observation [46], which supports a small but
non-zero �. In the next section, we discuss a possibility to explain the discrepancy by assuming the
multiverse.

6. Summary and discussion

We have proposed a new mechanism to solve the fine-tuning problem of the universe: Assuming
a multi-local action, we have obtained the partition function Eq. (4) or its generalization to the
Wheeler–DeWitt wave function Eq. (34). We have found that, in some phenomenologically inter-
esting cases, there is a special point

−→
λ 0 that strongly dominates in the partition function. This fact

can be understood as the dynamical fine-tuning of the parameters. In particular, we have solved the
strong CP problem and the CCP, and also derived the MPP. To obtain these results, we have assumed
that the final state of the universe | f 〉universe is fixed to a generic state. Although the justification of this
assumption remains an open problem, it is interesting and remarkable that the different phenomena
of field theory are explained by a unique mechanism.

Finally, let us discuss the possibility of obtaining a small but nonzero CC. As we will see in the
following, we can obtain a fluctuation of the CC that is consistent with the observed value if we
assume (i) the existence of the multiverse, and (ii) that only the region within the horizon is relevant
to examine the partition function. Taking wormhole effects into consideration [34–37], we obtain the
generalized partition function Z M of the multiverse instead of Eq. (4):

Z M :=
∞∑

N=0

∫
dg

f (g)

N !
ZU (g)

N =
∫

dg f (g) exp (ZU (g)) , (51)

where g is a coupling constant, and ZU (g) is the partition function of a single universe. We have
assumed that all the universes are copies of our universe. Equation (51) indicates a new possibility
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to fix the parameter g: it is fixed to the saddle point g∗ of ZU (g) even if ZU (g) itself does not have
a strong peak as δ(g − g∗). ZU (g) can be expanded as

ZU (g) = ZU (g
∗)+ 1

2

d2 ZU

dg2

∣∣∣∣
g=g∗

(g − g∗)2 + O
(
(g − g∗)3

)
. (52)

From the path integral expression,

ZU (g) =
∫

DφeigSg+··· × ψ∗
fψi , (53)

d2 ZU/dg2|g=g∗ can be expressed as the expectation value of the local action Sg:

d2 ZU

dg2

∣∣∣∣
g=g∗

= −
∫

Dφeig∗Sg∗+···S2
g∗ × ψ∗

fψi

:= −〈Ŝ2
g∗〉ZU (g

∗). (54)

Therefore, the fluctuation of g around g∗ is given by


g ∼
(

d2 ZU

dg2

)− 1
2
∣∣∣∣
g=g∗

= 1√
〈Ŝ2

g∗〉ZU (g∗)
. (55)

Typically, 〈Ŝ2
g∗〉 ∝ T V3 because

〈Ŝ2
g∗〉 =

∫
d4x

∫
d4y〈Ôg∗(x)Ôg∗(y)︸ ︷︷ ︸

contract

〉

=
∫

d4x
∫

d4yW (x − y)

= V4

∫
d4xW (x) ∼ V4 M4

pl , (56)

where we have assumed that the cut-off scale is Mpl , and that
∫

d4xW (x) ∼ M4
pl by dimensional

analysis. Thus, one can see that 
g is of order (V4 M4
pl ZU (g∗))−

1
2 . This leads to the fluctuation of

the vacuum energy density 
ρ0, which is typically


ρ0 ∼ M4
pl
g ∼

M4
pl√

V4 M4
pl ZU (g∗)

∼
M2

pl H2
0√

ZU (g∗)
, (57)

where we have replaced V4 with H−4
0 . Thus, if ZU (g∗) is O(1), this fluctuation is consistent with the

observed value. Although this conclusion is based on a few nontrivial assumptions, it is interesting
that such a small CC can be obtained by maximizing the partition function as a function of the
parameter.

In conclusion, the theory of the multi-local action is attractive and promising in solving the fine-
tuning problem of the universe.
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Appendix A. The Born–Oppenheimer approximation

In this appendix, we give a justification of Eq. (35) based on the Born–Oppenheimer approximation.
Because the time scale of a is much longer than that of the matter and radiation, the total wave
function can be obtained as follows.

Step1: We first solve the Schrödinger equation for the matter and radiation assuming that acl(t) is a
slowly changing c-number function of t :

− i
∂

∂t
|ψM R(t)〉 = ĤM R(acl(t))|ψM R(t)〉. (A1)

Then, the expectation value of the energy as a function of a is given:

EM R(a, t) := 〈ψM R(t)|ĤM R(a)|ψM R(t)〉. (A2)

Step2: By using EM R(a, t), we solve the Schrödinger equation for a:

− i
∂

∂t
|ψr (t)〉 =

(
ĤG + EM R(â)

)
|ψr (t)〉. (A3)

Then, we identify acl(t) with the expectation value of the radius,

acl(t) = 〈ψr (t)|â|ψr (t)〉. (A4)

By solving Eqs. (63)–(66) in a self-consistent manner, we obtain

〈a| ⊗ 〈 fM R|e−i
(

ĤG(�B)+ĤM R(
−→
λ ;â)

)
t |ε〉 ⊗ |iM R〉

∼ 〈a|ψr (t)〉〈 fM R|T
{

exp

(
−i
∫ t

0
dt ′ ĤM R(acl(t

′))
)}

|iM R〉. (A5)

Then, within the Born–Oppenheimer approximation, the Wheeler–DeWitt wave function is given by

〈a| ⊗ 〈 fM R||ψ〉 =
∫ ∞

0
dt〈a|ψr (t)〉

���������
〈 fM R|T

{
exp

(
−i
∫ t

0
dt ′ ĤM R(acl(t

′))
)}

|iM R〉. (A6)

Here, because 〈a|ψr (t)〉 has a peak at acl(t) as a function of a, the t integral of Eq. (A6) is dominated
by Ta such that

acl(Ta) ∼ a. (A7)

Thus, we obtain Eq. (35).

Appendix B. Evaluation of the principal value

In this appendix, we evaluate

PV
∫ +∞

−∞
d E

E
〈a|E;�〉〈E;�|ε〉 (B1)

by using the WKB approximation. he WKB solution of 〈a|E;�〉 is given by

〈a|E;�〉 = Mpl

√
a

pcl
exp

(
i
∫ a

da′ pcl(a
′)
)
, (B2)
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where

pcl(a) = Mpla
2

√
2

(
ρ(a)

6
− E

a3

)
:= Mpla

2

√
ρ̃(a)

3
. (B3)

Then, for a sufficiently large value of a, we have

∫ a

aM

dapcl(a) = Mpl

3
3
2

⎛
⎝a3

√
ρ̃(a)− a3

M

√
ρ̃(aM)+ M − E√

�
log

⎡
⎣ a

3
2 (�+√

�ρ̃(a))

a
3
2
M(�+√

�ρ̃(aM))

⎤
⎦
⎞
⎠

:= Mpla3

3
3
2

g(�, E, a) 

a�aM

Mpla3

3
3
2

√
ρ̃(a). (B4)

By substituting Eq. (B2) and Eq. (B4) into Eq. (B1), we obtain

PV
∫ ∞

−∞
d E

E
Mpl

√
a

pcl
exp

(
i

Mpla3

3
3
2

√
ρ̃(a)

)
〈E;�|ε〉. (B5)

By expanding the exponent around E = 0, we have

Mpl

√
a

pcl
exp

(
i

Mpla3

3
3
2

√
ρ(a)− i

Mpl E

3
3
2
√
ρ(a)

+ O(E2)

)

= 〈a|0;�〉 exp

(
−i

Mpl E

3
3
2
√
ρ(a)

+ O(E2)

)
. (B6)

Therefore, only the region

|E | �
√
ρ(a)

Mpl
∼

√
�

Mpl
(B7)

contributes to the integral.5 Therefore, it is self-consistent to show � = 0 by using only the zero-
energy eigenstate |0〉.

Appendix C. Symmetry enhancement

In this appendix, we study a mechanism by which symmetry is enhanced. In particular, we consider
a scalar field φ with the effective potential

V (φ) = a1φ + a2

2
φ2 + a3φ

3 + a4

4
φ4, (C1)

where a4 is fixed to a positive value so that the system is bounded below. We can eliminate a3φ
3 by

shifting the field, φ → φ + φ0, and the potential becomes

V (φ) = a1φ + a2

2
φ2 + a4

4
φ4. (C2)

In Fig. C1, we show the typical shapes of V (φ). In the following discussion, we fix a2 and vary a1.
We denote the negative (positive) vacuum expectation value by φ1(a1) (φ2(a1)). According to the

5 More concretely, by substituting Eq. (B6) into Eq. (B1), and neglecting the E dependence of 〈E;�|ε〉, we
obtain

〈a|0;�〉PV
∫ a3ρ(a)

−∞

d E

E
exp

(
−i

Mpl E

3
3
2
√
ρ(a)

)
= 〈a|0;�〉PV

∫ k

−∞

dx

x
e−i x →

k→+∞
−iπ〈a|0;�〉,

where k := Mpla3
√
ρ(a)/3

3
2 .
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Fig. C1. Typical shapes of V (φ). The left (right) panel shows the a2 > 0 (< 0) case.

Fig. C2. The minimum of the potential as a function of a1.

general argument in Sect. 1, the partition function is

Z =
∫

da1 f (a1) exp (−iε(a1)V4) 〈 f |ψ(t∗; a1
)〉, (C3)

where ε(a1) is the vacuum energy density of this system, which is given by

ε(a1) =
{

V (φ1(a1)) (for a1 > 0),

V (φ2(a1)) (for a1 < 0).
(C4)

As a result, a1 = 0 is apparently the non-analytic point of the vacuum energy ε(a1). See Fig. C2 for
an example. Thus, by using Eq. (22), we obtain

e−iε(a1)V4 ∼ − ie−iε(0)V4

V4
×
[(

V (φ1)

da1

)−1 ∣∣∣∣
a1=0+

−
(

V (φ2)

da1

)−1 ∣∣∣∣
a1=0−

]
δ(a1). (C5)

By substituting this into Eq. (C3), we have

Z ∼ 1

V4
e−iε(0)V4〈 f |ψ(t∗; 0

)〉. (C6)

This indicates that the symmetric effective potential is favored by the multi-local action.
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