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ABSTRACT:  The growth of hole-transporting nanostructures of regioregular 

poly(3-hexylthiophene) (P3HT) films with thermal annealing were examined by conductive 

atomic force microscopy (C-AFM).  The C-AFM current images visualized spatially 

inhomogeneous hole transport in the film on a nanometer scale, with relatively low 

conductive regions and high conductive domains.  The high conductive domains were 

attributed to the relatively high density regions of P3HT nanocrystallites in the film, which 

were determined during spin-coating.  The current images obtained from the same area of 

the P3HT film showed that thermal annealing improved the hole-transporting property of the 

film on average, but both the size and spatial distributions of the relatively high conductive 

domains in the as-spun film remained almost the same even after annealing.  Furthermore, 

we found that the increase in current flow proceeded mostly in the relatively high conductive 

domains.  In these domains, the electrical connectivity among the crystalline phases was 

effectively improved by the growth of individual nanocrystallites, leading to the formation of 

preferred hole-transporting pathways in the direction of film thickness. 
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1. INTRODUCTION 

Regioregular poly(3-hexylthiophene) (P3HT) is one of the most widely used semiconducting 

polymers as a key material for electronic applications such as organic field-effect transistors 

(OFETs) and solar cells owing to the excellent hole-transporting property of the film in both 

lateral and vertical directions.1–3  The efficient hole transport of P3HT is due to the material’s 

strong self-organizing tendency to form crystallites by – interchain stacking.  On the other 

hand, such semicrystalline structures of P3HT films lead to performance variations, as is 

observed when preparing films under different film-processing conditions (e.g., spin-coating 

solvents, spin speed)4–9 and post-deposition treatments such as thermal annealing,10–13 as well 

as the molecular weights and regioregularity of polymer chains.5,10,14–17  For example, 

morphology-dependent hole transport parallel to the layer plane has been reported for many 

OFETs.4–8, 10–12  The vertical hole transport throughout the layer thickness, which is directly 

related to the device performance of polymer-based solar cells, is also influenced by the 

semicrystalline structures.16,17  In particular, the growth of crystalline nanodomains by 

thermal annealing is believed to play a critical role in the increase in vertical hole transport in 

a film. 

  The size and orientation distribution of the P3HT nanocrystallites and the compositions of 

ordered and disordered phases in the film have been studied using characterization techniques 

such as X-ray diffraction (XRD), transmission electron microscopy, and atomic force 

microscopy (AFM).  However, the interplay between the nanostructures and the macroscopic 

hole transport in the film is still far from being clearly understood.  This is partly because 

even though these characterization techniques provide detailed structural information on the 

film, they do not provide direct information on the electronic properties of the individual 

nanostructures and their mutual electrical connectivity. 

  Conductive AFM (C-AFM) allows one to observe the electrical characteristics related to 
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microstructures of materials with nanometer-scale resolution.18–26  We have previously 

demonstrated that the C-AFM approach visualizes the conductive nanodomains in the P3HT 

films, and we showed that the conductive domains are essential for obtaining sufficient 

macroscopic hole transport in the film.  In this study, we track the formation of characteristic 

nanostructures resulting from thermal annealing for sufficient hole transport to investigate the 

role of the growth of P3HT nanocrystallites in the vertical hole transport in the films.  To this 

end, we employed a conductive atomic force microscope equipped with a heating unit at the 

sample stage, which enabled us to obtain current images at the same location of the film 

before and after thermal annealing.  In addition, the crystalline structure of P3HT in the film 

was characterized using grazing-incidence wide-angle X-ray scattering (GIWAXS). 

 

2. EXPERIMENTAL 

2.1. Materials. Regioregular P3HT was purchased from Aldrich (Figure 1).  The head-to-tail 

regioregularity (RR), weight-average molecular weight (Mw), and polydispersity index (PDI, 

given by Mw/Mn, where Mn is the number-average molecular weight) provided by the 

Certificate of Analysis were 90%, 43,200 g mol–1, and 1.9, respectively.  

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was purchased 

from H.C. Stark (PH500). 

 

Figure 1.  (a) Chemical structure of P3HT.  Illustration of sample structures for (b) 

UV-visible absorption, (c) macroscopic JV and C-AFM, and (d) GIWAXS measurements. 
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2.2. Sample Preparation. An indiumtin-oxide substrate (ITO) (flat ITO, GEOMATEC, 

Japan), an Si(100) wafer (Yamanaka Hutech, Japan), and a quartz substrate were sequentially 

washed for 15 min by ultrasonication with toluene, acetone, and ethanol, and then dried with 

an N2 flow.  The cleaned substrates were further treated with a UV–O3 cleaner (NL-UV2535, 

Nippon Laser & Electronics Lab., Japan) for 30 min.  An 80-nm-thick PEDOT:PSS layer 

was spin-coated at 400 rpm for 10 s and 3000 rpm for 99 s onto the ITO substrate and the Si 

wafer, and dried at 140 °C for 30 min in air.  P3HT films were prepared by spin-coating a 10 

mg mL−1 solution in chloroform at a spinning rate of 3000 rpm for 60 s onto the 

PEDOT:PSS/ITO (for macroscopic J–V and C-AFM measurements), PEDOT:PSS/Si (for 

GIWAXS measurements), and quartz (for absorption measurements) substrates (Figure 1).  

The thickness of the P3HT films was ~55 nm; it was determined by contact-mode AFM 

measurement (SPM-9600, Shimadzu, Japan) as follows: a part of the film was scratched with 

a sharp needle to expose the substrate, and the film thickness was evaluated from the 

difference between the heights of the film and substrate surface.  We note that the vibronic 

structures identified in the absorption spectrum of the P3HT film spin-coated onto the 

PEDOT:PSS-coated substrate were almost identical to those in the spectrum of a film 

spin-coated onto quartz (see supporting information, Fig. S1). 

2.3. Macroscopic JV Measurements. The hole-only current densityvoltage (JV) 

characteristics were measured for the P3HT films sandwiched by the PEDOT:PSS/ITO 

substrate and an Au electrode.  The P3HT layer was spin-coated onto the PEDOT:PSS/ITO 

substrate and then annealed at a different temperature (100, 140, or 180 °C) for 10 min in an 

N2 atmosphere.  Finally, the Au top electrode with a thickness of 70 nm and a surface area of 

0.07 cm2 was vacuum-deposited at 3 × 104 Pa on top of the P3HT film.  The JV 

characteristics were measured with a direct-current voltage and a current source/monitor 

(R6243, Advantest) in the dark at room temperature.  The conductivity σ was calculated 
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from the slope of the J–V curve at lower voltages given by Ohm’s law, JOHM = σV/L, where V 

is the applied voltage and L is the sample thickness.  The hole mobility μh was determined by 

fitting the space-charge-limited current (SCLC) that appeared at higher voltages with the 

MottGurney equation, JSCL = (9/8)0rμhV
2/L3, where 0 is the vacuum permittivity and r is 

the dielectric constant of the film (we assumed r = 3 for P3HT).27–29 

2.4. C-AFM Measurements. Figure 2a shows an illustration of the set-up for the conductive 

atomic force microscope employed in this study.  C-AFM measurements were performed 

using the microscope (SPM-9600, Shimadzu, Japan) in contact mode with an Au-coated 

silicon probe (PPP-CONTAu, NANOSENSORSTM, Switzerland; tip radius < 50 nm; spring 

constant = 0.2–0.25 N m−1).  Sample heating was performed using the sample heating unit 

(Shimadzu, Japan): a heating holder was sandwiched between the sample and the 

piezoelectric element of the C-AFM, and the sample was heated by the heater incorporated 

inside the heating holder.  A sample bias was applied to the ITO substrate and the probe was 

grounded.  The surface topography and corresponding current images were simultaneously 

obtained by C-AFM measurements operating at a constant sample bias of +1.0 V.  All 

C-AFM measurements were performed under an N2 atmosphere using a 

controlled-environment chamber (CH-III, Shimadzu, Japan). 
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Figure 2.  (a) Illustration of the conductive atomic force microscope employed in this study: a 

heating holder was sandwiched between the sample and the piezoelectronic element.  A 

sample bias was applied to the ITO substrate and the probe was grounded.  (b) Operating 

procedure of C-AFM fixed-point measurements.  The measurements were operated at room 

temperature RT, and the sample was annealed by the underlying hot plate after the probe was 

released from the sample surface. 

 

  Figure 2b shows the operating procedure of our C-AFM measurements.  First, the 

unannealed (as-spun) film was measured.  Then, after releasing the probe from the surface, 

the film was thermally annealed at 100 °C for 10 min by the heating holder under the sample.  

After natural cooling of the film to room temperature, the probe was placed on the film 

surface in the same region as that for the measurement before annealing, and the surface 

topology and a current image were obtained.  After the measurement, the film was annealed 

at 140 and then 180 °C for 10 min at each temperature, and the images were obtained in the 

same manner after each round of annealing.  These annealing and measurement cycles were 

carried out under an N2 atmosphere.  The effect of stage drift during the annealing was 

corrected by using the coordinate data of grains in the topographical image as fiducial 

markers (see supporting information, Fig. S2), which enabled us to acquire C-AFM images at 

the same location of a film before and after annealing.  The tip-sample contact force was 

kept to a minimum to prevent damages to the sample surface during the continuous scan (see 

supporting information, Fig. S3).  We also noted that the average value of the C-AFM 

current showed very weak dependence on the number of the imaging cycles, which implied 

that the Au-coated probe did not wear out during the continuous imaging (see Supporting 
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Information, Fig. S4). 

2.5. GIWAXS Measurements. The GIWAXS measurements were carried out at room 

temperature for unannealed and annealed P3HT films using the BL03XU beam line of 

SPring-8 (Japan Synchrotron Radiation Research Institute, Hyogo, Japan).  The wavelength 

 of the X-rays was set to 0.1 nm and the X-ray beam was directed on the sample at an 

incident angle i of 0.14° with respect to the sample surface.  The scattering signal was 

detected by a two-dimensional CCD camera with a 3000 × 3000 pixel imaging plate, which 

was located 464 mm from the sample.  The scattering intensity was recorded as a function of 

the two scattering angles: in-plane angle 2f with respect to the plane of incidence and exit 

angle f with respect to the sample surface.30  These angles are related to the scattering 

vector along the qy- and the qz-axis according to the equations: qy = k0[sin(2f)cos(f)], qz = 

k0[sin(f) + sin(i)], and k0 = 2/.30  The thermal annealing of the P3HT films for 

GIWAXS measurements was conducted at different temperatures (100, 140, or 180 °C) for 10 

min under an N2 atmosphere. 

2.6. Absorption Measurements. The UV–visible absorption spectra of the 100-, 140-, and 

180-°C-annealed films were measured at room temperature after the films were thermally 

annealed under an N2 atmosphere at each temperature for 10 min.  The in situ temperature 

dependence of the absorption spectra was obtained for a film during heating at 100, 140, and 

180 °C in a vacuum.  The temperature of the P3HT film was controlled in a cryostat 

(OptistatDN-V, Oxford Instruments, UK) with a temperature control unit (ITC503S, Oxford 

Instruments, UK). 

 

3. RESULTS AND DISCUSSION 

3.1. Nanoscale Hole-Transporting Property of P3HT Films. We first characterized the 
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changes in the macroscopic hole-transporting properties of the P3HT film that took place as 

the films were thermally annealed.  The values of  and  calculated for the unannealed and 

annealed P3HT films are listed in Table 1.  Both  and  values increased with increasing 

temperature, demonstrating that thermal annealing increased the hole-transporting capability 

of the P3HT film. 

Table 1.  Macroscopic conductivity () and hole mobility () of P3HT films 

Annealing  

temperature (°C) 
As-spun 100 140 180 

 (107 S cm1) 0.75 0.97 1.3 1.7 

 (104 cm2 V1 s1) 1.1 1.6 2.0 2.7 

 

  Figure 3 shows surface topographical images and the corresponding C-AFM current 

images for the same area of a P3HT film that was first unannealed and then annealed 

sequentially at 100, then 140, and finally 180 °C for 10 min at each temperature.  No 

significant differences were observed in the topographical images before and after the 

annealing (Figure 3a–d).  The cross-sectional height profiles along the broken lines in each 

image are shown in Figure 4; the surface structures were little changed by the annealing.  

Contrary to these topographical images, the corresponding current images (Figure 3e–h) show 

the growth in the hole-transporting capability of the P3HT film.  Furthermore, the C-AFM 

current images reveal that the current magnitudes were not uniform but spatially 

inhomogeneous on the length scale of several tens to hundreds of nanometers.  The mean 

values of the current (Iav) increased from 42 to 80 pA and the values of the relative standard 

deviation of Iav (RSD) extracted from the current histograms increased from 11 to 22% with 

increasing temperature.  It should be noted here that there was little direct correlation 

between the surface topographical structures and the current magnitudes (see Supporting 

Information, Fig. S5), suggesting that the spatial distributions of the local current were not 
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associated with the topographical features of the film.  The qualitatively similar changes in 

hole-transport distribution have been reported for the blended film of P3HT with the fullerene 

derivative phenyl-C61-butyric acid methyl ester (PCBM),31 while we have now achieved at the 

same location before and after the annealing, which allows accurate quantification of the 

electrical properties upon thermal treatment. 
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Figure 3.  (ad) Topographical and (eh) current images (2.5 × 2.5 m2) of a P3HT film that 

was (a, e) unannealed and then annealed sequentially at (b, f) 100 °C, then (c, g) 140 °C, and 

finally (d, h) 180 °C for 10 min at each temperature.  Histograms of the current images of 

P3HT film in (eh) are shown beneath the images.  Iav and RSD represent the average 

current and the relative standard deviation, respectively, extracted from the histograms. 

 

 

Figure 4.  Cross-sectional profiles along the dashed lines in the topographical images in 

Figure 3ad. 
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  We discuss in more detail the highly conductive nanostructures that appeared in the current 

images as a result of thermal annealing.  Figure 5a and b show the magnified current images 

at the same locations in a film before and after annealing at 180 °C: they are marked by 

squares in Figure 3e and h, respectively.  Here, the color range used for the magnified 

images is individually rescaled: for both images, the relatively high current regions are 

represented as yellow and red, and the relatively low current regions as blue.  As a result, the 

inhomogeneous hole-transporting capability of the film is clearly depicted both for the 

unannealed and annealed film.  To compare the hole-transporting nanostructures, we 

outlined the relatively high and low current regions in black and white, respectively; these 

lines were drawn at the same position for both of these current images.  This analysis reveals 

that spatial distributions of the relatively high and low current regions in the annealed film are 

well correlated with those in the unannealed film.  The cross-sectional current profiles along 

the dashed lines in these images are shown in Figure 6a.  The positions of the peaks and 

valleys are well matched between these two profiles.  In addition, the lateral size of these 

relatively high conductive regions was determined to be approximately 200 nm regardless of 

annealing.  We therefore conclude that the nanoscale morphologies responsible for the hole 

transport were structured during spin-coating of the film and were mostly preserved even after 

thermal annealing.   

 

Figure 5.  Current images of (a) the unannealed film and (b) the film annealed at 180 °C, 

corresponding to the square areas marked in Figures 3e and 3h, respectively. 
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Figure 6.  (a) Cross-sectional current profiles corresponding to the dashed lines in the 

images of Figure 5: the unannealed (black line) film and the film annealed at 180 °C (red line).  

(b) Annealing-temperature dependence of the amount of current that was carried through a 

peak within good conductive regions (circles) and poor conductive regions (squares). 

 

  We further examined the annealing-temperature dependence of the current magnitudes 

carried through the relatively high and low conductive regions in a P3HT film.  Here, the 

current values at the peaks in the cross-sectional current profiles were all averaged and used 

as a representative of the relatively high conductive domains.  On the other hand, the values 

corresponding to the valleys in the profiles were all averaged and used as a representative of 

the relatively low conductive regions.  This analysis was conducted for the current images of 

2.5 × 2.5 μm2 in Figure 3eh and the results are shown in Figure 6b; the current at the 

relatively high conductive domains increased by a factor of 2.3 with annealing at 180 °C, 

whereas the increase in current from the relatively low conductive regions was limited by a 

factor of 1.5.  These results demonstrate that the hole-transporting capability increased more 



 14 

effectively at the relatively high conductive domains than the surrounding low conductive 

regions.  As a result, thermal annealing accentuated the differences in the hole-transporting 

capability in the film on the nanometer scale. 

 

3.2. Characterization of P3HT Crystalline Structures 

3.2.1. GIWAXS. To examine the correlation between the C-AFM current images and the 

P3HT crystalline structures in the film, GIWAXS measurements were performed.  Figure 7a 

shows the 2D GIWAXS pattern of the unannealed film.  Here, qy is the component of the 

scattering vector parallel to the substrate plane, and qz is the component perpendicular to the 

substrate plane.  According to previous reports, the diffraction peak that appears at qy = 0.39 

Å1 is assigned to the (100) reflection from the alkyl-stacking direction and the peak at qz = 

1.67 Å1 is assigned to the (010) reflection from the π-stacking direction as shown in Figure 

7b.5,6,8,32 

 

Figure 7.  (a) Two-dimensional diffraction patterns of unannealed P3HT films.  (b) 

Schematic representation of the orientations of the crystalline lamellae of P3HT.  (c) 

Azimuthal profiles of the (010) π-stacking peak for the unannealed and annealed P3HT films.  

(d) Crystallite dimensions in the (010) π-stacking (solid circles) and (100) alkyl-stacking 

directions (open circles) as functions of the annealing temperature. 
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The orientation of the crystals was determined from azimuthal dependence of the intensity of 

the (010) π-stacking peak.  The (010) peak intensity obtained from the 2D GIWAXS image 

was plotted as a function of the azimuthal angle () for the unannealed film and the films 

annealed at 100, 140, or 180 °C for 10 min.  As shown in Figure 7c, all the films showed the 

(010) reflection peak at an angle of  = 90°, which corresponds to the scattering vector 

perpendicular to the substrate plane, indicating that the P3HT crystallites had predominantly 

face-on orientations in the films. 

  As to the face-on components of the crystallites, the dimensions in the (010) and (100) 

directions were calculated from the full width at half maximum (FWHM) of those Bragg 

peaks using Scherrer’s equation (the shape factor K was assumed to be 0.9)33 and the results 

are plotted in Figure 7d as functions of the annealing temperature.  As a result of thermal 

annealing, the P3HT crystallites grew in size from 5 to 7 nm in the π-stacking direction (solid 

circles) and from 12 to 23 nm in the alkyl-stacking direction (open circles). 

 

3.2.2. Temperature Dependence of Absorption Spectra. Figure 8a–d show the UV–visible 

absorption spectra of the unannealed P3HT film and the films after annealing at 100, 140, and 

180 °C for 10 min.  As clearly indicated by their spectral shapes in the wavelength range of 

500 to 650 nm, the shoulders at 550 and 600 nm, which represent ordered structures of the 

P3HT chains,3436 became more pronounced after annealing at higher temperatures.  The 

growth of the vibronic structures shows that the crystallinity of the films was increased by 

thermal annealing.  We next measured the UV–visible absorption spectra of the P3HT film 

during heating at temperatures from 100 to 180 and then 240 °C (Figure 9a).  Here, the 

spectrum at 240 °C represents the absorption characteristics of amorphous P3HT because the 

temperature is higher than the melting temperature of P3HT crystals (Tm = 220 °C).12,14,33  At 
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room temperature, the film showed an absorption maximum at 532 nm and shoulders at 550 

and 600 nm.  Upon heating, the absorption maximum was blue-shifted and the absorbance of 

these bands decreased continuously.  This observation suggests a continuous disruption of 

ordered structures of the polymer chains.33,37  On the other hand, the absorption was still 

obvious at wavelengths between 550 and 650 nm when compared with the spectrum of 

amorphous P3HT (dashed line in Figure 9a), suggesting that P3HT crystallites remained in the 

film during the heating at temperatures below 180 °C.  To confirm this, the -conjugation 

length (L) of P3HT chains was estimated from the excitonic band widths W, obtained by 

analyzing the UV–visible absorption spectra in Figures 8a–d and 9a on the basis of the weakly 

interacting H-aggregate model (see Supporting Information, Fig. S6).37,38  Here, W is related 

to the length of the cofacially arranged chain segments in the crystallites.37,38  Using the 

simulation data from Gierschner et al. (see Supporting Information, Figure S7), we calculated 

the number of interacting repeating units (the number of planarized thiophene repeating units) 

N, from the excitonic bandwidths W (see Supporting Information, Fig. S7).37,38  The value of 

L was calculated by multiplying N by the length of a P3HT repeating unit, 0.4 nm.  As 

shown in Figure 9b, L decreased with increasing temperature but it still showed the value of 

6.0 nm during heating at 180 °C.  Moreover, upon cooling to room temperature, L became 

larger than the initial value of 7.0 nm before heating.  These results imply that the ordering 

or crystallization of P3HT chains proceeded as illustrated in Figure 9c.  During thermal 

annealing, part of the ordered structure of P3HT chains was disrupted by activated relaxations 

of the P3HT chains, resulting in an increase in the disordered nature of the film.  During 

cooling, the flexible P3HT chains around the remaining crystallites reorganized preferentially 

to form an extended ordered structure, enlarging the size of the crystallites, as shown by the 

GIWAXS analysis. 
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Figure 8.  UV–visible absorption spectra of (a) the unannealed P3HT film and the films after 

annealing at (b) 100 °C, (c) 140 °C, and (d) 180 °C for 10 min. 

 

 

Figure 9.  (a) UV–visible absorption spectra of P3HT films measured at room temperature 

RT (black line), 100 °C (blue line), 140 °C (green line), 180 °C (red line), and 240 °C (dashed 

line).  (b) -conjugation length of P3HT chains during heating (squares) and after cooling 

(circles).  (c) Illustration of ordering or crystallization of P3HT chains by thermal annealing. 

 

3.3. Correlation between Crystalline Structures and Hole Transport in the Film.  Our 

analysis of GIWAXS and absorption spectra showed that the P3HT crystallites grew in size as 

a result of thermal annealing, but the C-AFM current images revealed that there existed a 

large discrepancy in size between the individual P3HT crystallites and the relatively high 

conductive domains (~200 nm).  These results suggest that the aggregation of P3HT 
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nanocrystallites, through the electrically connected networks among the crystallites, formed 

the high conductive domains.  In other words, the relatively high and low conductive regions 

visualized in Figure 5 should be assigned to the relatively high and low density regions, 

respectively, of P3HT crystallites that were inhomogeneously dispersed in the film.  

Furthermore, the growth of nanocrystallites by thermal annealing is considered to have 

occurred while keeping their original locations in the film, whose structure was established 

during spin-coating.  The scenario is brought to light by the C-AFM images showing that 

locations of the relatively high conductive domains in the annealed film were spatially 

correlated with the original locations before annealing.  As illustrated in Figure 10, for the 

relatively high-density regions of crystallites in the film, the electrical connectivity between 

the crystallites should have been effectively improved even if the individual crystalline size 

grew by just several nanometers.  On the other hand, at the low-density regions of 

crystallites, the growth of the crystalline size did not make an equal contribution to the 

increase in current because the crystallites remained largely disconnected from each other, 

resulting in charge-transporting bottlenecks due to the surrounding disordered phase.  As a 

result, the current carried through the relatively high conductive regions in the unannealed film 

was increased largely by thermal annealing rather than the current through the low conductive 

regions. 

 

Figure 10.  Illustration of the development of P3HT crystalline networks for efficient hole 

transport in a film.  The P3HT crystallites are indicated by the purple rectangles. 
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4. CONCLUSION 

The growth of nanostructures for efficient hole transport in P3HT films was visualized by 

C-AFM.  The C-AFM current images revealed that the capability of vertical hole transport 

of the film was not uniform but inhomogeneous on the nanometer scale, and the film consisted 

of relatively low conductive regions and high conductive domains with a typical size of 

approximately 200 nm.  These characteristic nanoscale morphologies responsible for the 

hole transport were structured during spin-coating of the film.  Thermal annealing improved 

the hole-transporting property of the film on average, but both the size and spatial 

distributions of the relatively high conductive domains remained almost the same even after 

annealing.  Furthermore, we found that the increase in the current flow proceeded mostly in 

the relatively high conductive domains rather than the surrounding low conductive regions, 

accentuating the nanoscale inhomogeneity of the hole-transporting capability in the film.  

The high conductive domains are attributed to the relatively high-density regions of P3HT 

nanocrystallites dispersed in the film.  For the domains, the electrical connectivity among the 

crystallites was effectively improved by the growth of individual crystallite size, leading to 

the formation of preferred hole-transporting pathways in the direction of film thickness. 
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