
Twinned Buffering: A Simple and Highly Effective
Scheme for Parallelization of Successive

Over-Relaxation on GPUs and Other Accelerators
Wim Vanderbauwhede

School of Computing Science
University of Glasgow

Glasgow, UK

Tetsuya Takemi
Disaster Prevention Research Institute

University of Kyoto
Kyoto, Japan

Index Terms—General-Purpose computation on Graphics Pro-
cessing Units (GPGPU), Parallelization of Simulation, Large
Scale Scientific Computing

Abstract—In this paper we present a new scheme for paral-
lelization of the Successive Over-Relaxation method for solving
the Poisson equation over a 3-D volume. Our new scheme is both
simple and effective, outperforming the conventional red-black
scheme by a factor of sixteen on an NVIDIA GeForce GTX 590
GPU and by factor of three on an Intel Xeon Phi. We explain
the rationale and the implementation in OpenCL and present
the performance evaluation results.

I. INTRODUCTION

Numerical Weather Prediction (NWP) models are indispens-
able tools for weather prediction and the study of weather and
climate phenomena. Recently, as a result of climate change,
severe weather events have increased both in frequency and
severity, and the study and prediction of such events requires
higher resolutions to be used in the models, and hence more
compute power. As a result, there has been a lot of interest
in the use of accelerators such as GPUs to speed up NWP
computations [1], [2], [3], [4], [5]. At the heart of every NWP
model is a solver for the governing equations. This work
concerns an implementation of the Successive Over-Relaxation
(SOR) method for solving the Poisson equation in the context
of a particular NWP model, a Large Eddy Simulator. However,
the SOR is a very generic method, and hence the findings in
this work are much more widely applicable. In the next section
we provide some background on the basic NWP equations and
numerical schemes to solve them, and we briefly discuss the
Large Eddy Simulator of which our SOR scheme is part. We
also discuss the GPU programming technology used, OpenCL,
an open standard for heterogeneous computing.

II. BACKGROUND

A. Use of Successive Over-Relaxation in Numerical Weather
Prediction

One of the basic equations used in Numerical Weather
Prediction (NWP) is the Navier-Stokes equation, given by

∂u

∂t
+ u∇u = −1

ρ
∇p+ ν∇2u−∇T+ f (1)

∇u = 0

where

p is the pressure
u is the wind velocity
ρ is the density
ν is the kinematic viscosity
T the subgrid-scale Reynolds stress
f the body force (used to model effects of buildings on the

flow, see [6])

It is common in NWP codes to solve this equation for the
pressure by reducing it first to the Poisson equation, through
derivation of both sides:

∇2p = rhs (2)

or

(
∂2

∂ux
+

∂2

∂uy
+

∂2

∂uz

)
p(x, y, z) = rhs(x, y, z) (3)

The Poisson equation can discretised and solved numeri-
cally using many different schemes. One of the most popular
ones is the Successive Over-Relaxation method, which can
be considered as an improvement over the Jacobi method.
It has O(N

√
N) serial time and O(

√
N) ideal parallel time

(i.e. assuming a PRAM machine with N processors and no
communication cost) [some REF to a numerical recipes book]

The term “over-relaxation” refers to the use of the factor ω > 1
which results in faster convergence.

The canonical scheme for implementing the SOR is the red-
black scheme, so called because conceptually is is obtained
by coloring the points so that any black point only has red
direct neighbours and vice versa. In this way, by alternatingly
updating the red and black points, the computations can be

takemi
取り消し線

takemi
挿入テキスト
Kyoto University

takemi
取り消し線

takemi
挿入テキスト
with compressibility of fluid being neglected (i.e., anelastic and/or imcompressible assumtion). The computational fluid dynamics (CFD) model used in this study is a large eddy simulation (LES) model,

takemi
挿入テキスト
 for incompressible fluid motion

takemi
挿入テキスト
 be

takemi
挿入テキスト
be

takemi
取り消し線

takemi
挿入テキスト
it

Algorithm 1 Successive Over-Relaxation computation of p
p(i,j,k) = p(i,j,k) + omega*(&

p(i+1,j,k) + &
p(i-1,j,k) + &
p(i,j+1,k) + &
p(i,j-1,k) + &
p(i,j,k+1) + &
p(i,j,k-1) - &
rhs(i,j,k))/6 &
- p(i,j,k))

Algorithm 2 Red-Black SOR code as used in the Large Eddy
Simulator

do while (sorr_err > sor_conv)
sor_err = 0.0
do nrd = 0,1
do k = 1,km

do j = 1,jm
do i = 1+mod(k+j+nrd,2),im,2
p_corr = omega*(cn1(i,j,k) *(&
cn2l(i)*p(i+1,j,k) + &
cn2s(i)*p(i-1,j,k) + &
cn3l(j)*p(i,j+1,k) + &
cn3s(j)*p(i,j-1,k) + &
cn4l(k)*p(i,j,k+1) + &
cn4s(k)*p(i,j,k-1) - &
rhs(i,j,k))-p(i,j,k))

p(i,j,k) = p(i,j,k) + p_corr
sor_err = sor_err + p_corr*p_corr

end do
end do

end do
call boundp1(im,jm,km,p)

end do
call boundp2(im,jm,km,p)
sor_err = sqrt(sor_err)

end do

decoupled and parallelised [some REF to a numerical recipes
book].

B. The Large Eddy Simulator for Urban Flows

The Large Eddy Simulator for the Study of Urban
Boundary-layer Flows (LES) is developed by Hiromasa
Nakayama and Haruyasu Nagai at the Japan Atomic Energy
Agency and Prof. Tetsuya Takemi at the Disaster Prevention
Research Institute of Kyoto University [6], [7]. It generates tur-
bulent flows by using mesoscale meteorological simulations,
and was designed to explicitly represent the urban surface
geometry (via the τ and f terms in the Navier-Stokes equation,
cf. [6]). Its purpose is to conduct building-resolving large-
eddy simulations (LESs) of boundary-layer flows over urban
areas under realistic meteorological conditions. The Weather
Research and Forecasting model (WRF, REF) is used to
compute the wind profile as input for LES.

In the original LES, the red-black scheme was implemented
as follows (the cn* arrays are coefficients for dealing with a
non-uniform grid)

Algorithm 3 Boundary conditions for i and j used in the Large
Eddy Simulator

subroutine boundp1(im,jm,km,p)
integer, intent(In) :: im,jm,km
real(kind=4), dimension(0:ip+2,0:jp+2,0:kp+1) , intent(InOut) :: p
do k = 0,km+1

do j = 0,jm+1
p(0,j,k) = p(1 ,j,k)
p(im+1,j,k) = p(im,j,k)

end do
end do
do k = 0,km+1

do i = 0,im+1
p(i, 0,k) = p(i,jm,k)
p(i,jm+1,k) = p(i, 1,k)

end do
end do

end subroutine boundp1

local cach

Algorithm 4 Neumann k-boundary used in the Large Eddy
Simulator

subroutine boundp2(im,jm,km,p)
integer, intent(In) :: im,jm,km
real(kind=4), dimension(0:ip+2,0:jp+2,0:kp+1) , intent(InOut) :: p
do j = 0,jm+1

do i = 0,im+1
p(i,j, 0) = p(i,j,1)
p(i,j,km+1) = p(i,j,km)

end do
end do

end subroutine boundp2

Conceptually, the p array is divided in red and black points
so that every red point has black nearest neighbors and vice-
versa. The new values for p are computed in two iterations
(the nrd-loop in the code example), one for the red, one for
the black.

The calls to boundp1 and boundp2 deal with the bound-
ary conditions. The routine boundp1 implements a periodic
boundary condition in the j-direction and an open Neumann
condition (∂p/∂xi = 0) in the i-direction.

The routine boundp2 implements an open Neumann condition
in the k-direction.

C. GPU Acceleration of the LES

The LES computation is comparatively very time consum-
ing: for every time step of WRF it performs 120 time steps,
and at a much higher spatial resolution. Consequently, in order
to benefit from the coupling of WRF and the LES, GPU
acceleration is very attractive. It is within this context that our
work on the SOR method is positioned. A profiling analysis
of the LES shows that the SOR computation dominates the
total run time: already for as little as 50 iterations, it acounts
for 70% of the total run time.

GPUs have great potential for data-parallel computation
but the current generation suffers from being a peripheral

Fig. 1. Coupling WRF and the Large Eddy Simulator

on the PCI Express bus, which has a relatively high latency
and much lower bandwidth compared to the main memory
of the host computer (see. e.g [REF own work]). For that
reason, it is important to limit the host/GPU communication
as much as possible. A full discussion of our approach to GPU
acceleration of the LES will be published elsewhere, but the
overall approach is to keep the velocity and pressure arrays
are resident in GPU memory for the full duration of the run,
and to control only the transitions between the kernels.

D. Existing GPU Implementations of the SOR algorithm

While the red-black scheme is very effective for single-
threaded code, and in fact also for parallel code on distributed
memory systems where the communication time is long com-
pared to the compute time, it suffers from poor locality because
the accesses to p are strided.

The effect of poor locality is particularly accute for the 3-D
case as the computation of the next iteration requires access
to all six neighbors of p. If the cache is large enough it is
still possible that all neighbours will be cached, but GPUs
have relatively small caches (order of 104B L1 cache), so in
general not all neighbours will be in the cache. As a result,
the threads in each compute unit cannot perform coalesced
reads or writes.This has been acknowledged by several authors
[8], [9] but interestingly most work on SOR on GPU (e.g.
[10], [11], [12]) still uses the red-black scheme as-is, likely
because for a 2-D SOR the difference in performance is
relatively small compared to the gain in performance obtained
by implementing the SOR on GPU.

In[9], Konstantinidis and Cotronis explore a GPU imple-
mentation of the 2-D SOR method and conclude that their pro-
posed approach of reordering the matrix elements according to
their color results in considerable performance improvement.
However, their approach is not readily applicable to our
problem because one the one hand we have a 3-D array which
is much harder to reorder than a 2-D array (i.e. the cost of

reordering is higher) and also, we cannot use the reordered
array as-is, so we would incur the high reordering cost twice.

In [8], Philip et al. modify the red-black through the use
of texture memory for the read-only values and by copying
each thread block’s portion of the solution to local memory to
reduce conflicts on the global memory. They did not however
fundamentally change the memory access pattern or ordering.

The overall gain in performance for both these approaches
is about a factor of two compared to the unoptimised 2-D
red-black scheme.

E. Basic Concepts of OpenCL

To create a GPU-accelerated version of the LES, and hence
also for the SOR scheme, we used the OpenCL framework.
OpenCL [13] was developed by the Khronos Group in 2008 as
an open standard for parallel programming of heterogeneous
systems. It provides an API for control and data transfer
between the host and device (typically the host CPU and a
GPU) and a language for kernel development. Contrary to
proprietary solutions such as Nvidia’s CUDA and Microsoft’s
DirectX, OpenCL is open and cross-platform, so that it can
be deployed on different operating systems (Linux, OS X,
Windows) and hardware architectures (multicore CPUs, GPUs,
FPGAs). The OpenCL API is defined for C and a C++.
In practice, the API is quite fine grained and verbose and
requires a lot of boiler plate code to be written. Consequently,
it is not straightforward to integrate OpenCL in existing
codes, especially for non-computing scientists. To facilitate the
integration of the OpenCL code into the existing code base,
we developed the OclWrapper library 1 which supports C,
C++ and Fortran-95. The library wraps the OpenCL platform,
context and command queue into a single object, with a
much smaller number of calls required to run an OpenCL
computation. As it is a thin wrapper, the additional abstraction

1https://github.com/wimvanderbauwhede/OpenCLIntegration

comes at no cost in terms of features: the OpenCL API is
completely accessible.

OpenCL views the accelerator (e.g. the GPU), which it calls
the device, as consisting of a number of compute units which
each have a number of processing elements, typically the
compute unit corresponds to what NVIDIA calls “streaming
multiprocessor” or a core on a CPU, and a processing elements
is a thread within a compute unit. Each compute unit in the
device can access the shared global memory and also has its
own local memory, which is shared between the processing
elements within a compute unit. Finally, each processing
element has a private memory.

The basic parallelisation construct in OpenCL is the
NDRange (N-Dimensional Range), and index space which ex-
presses the way the data to be operated on is to be partitioned.
The NDRanges allows to partition the total amount of work
into work groups (typically a compute unit), and into threads
per workgroup.

Essentially, the programmer writes a single-threaded kernel
which takes an global and local index from the NDRanges.
These indices are used to identify the data in global memory
to be used in the computations in each thread.

A key point to be noted is that there is no synchronisation
construct across compute units, only across processing ele-
ments within a compute unit. Consequently, synchronisation
across compute units must be handled by the host.

III. IMPLEMENTATION OF PARALLEL SOR IN OPENCL

The overall implementation of the SOR in OpenCL is
divided between the host and the device as follows: the host
runs the iteration loop and computes the SOR error based on
partial results from the kernel. The kernel computes the new
values for the pressure and the new partial SOR errors, one
per compute unit.

A. The Red-Black Scheme
The loop over nrd serves two functions: for nrd=0 and

nrd=1, the kernel performs the red/black updates; for nrd=2, it
updates the boundary values. The global and local ranges are
chosen to have thread-parallel computations over j, work-group-
parallel computations over k and sequential computations over
i, in order to have the best locality of reference. The ranges for
updating the boundary are different as the boundary update is
a 2-D computation rather than 3-D. The value of nrd is written
to the kernel using the oclWrite1DIntArrayBuffer command. The
kernel is run using runOcl, and the values for the SOR error (1 per
work group) are read back using oclRead1DFloatArrayBuffer and
then accumulated. The OpenCL-specific commands are implemented
in the OclWrapper API [REF].

The kernel code is similar in structure to the origibal Fortran
code, but the loops over j and k are replaced by thread- and
compute-unit-parallel computations. The partial SOR errors
are first computed for each thread, then a barrier synchro-
nisation is performed and the partial SOR error for the
compute unit is computed and returned to the host in an array.
The computations for the correction on p and the boundary
conditions are the same as in the Fortran kernel, therefore in
the interest of brevity the code for calc_p_corr, calc_boundp1
and calc_boundp2 is not shown.

Algorithm 5 Host code for red-black SOR
do while (sor > pjuge)

do nrd = 0,2
if (nrd < 2) then

oclGlobalRange = kp*jp
oclLocalRange = jp
ngroups = kp

else
oclGlobalRange = (ip+2)*(jp+2);
oclLocalRange = jp+2
ngroups = ip+2

end if
call oclWrite1DIntArrayBuffer(&

n_ptr_buf,n_ptr_sz, nrd)
call runOcl(&

oclGlobalRange,oclLocalRange)
if (nrd == 1) then

call oclRead1DFloatArrayBuffer(&
chunks_sor_buf,chunks_sor_sz,&
chunks_sor)

sor = 0.0
do ii = 1,ngroups

sor = sor + chunks_sor(ii)
end do
sor = sqrt(sor)

end if
end do

end do

As we will see in Section IV, this implementation of the
SOR does result in a speed-up of about a factor of two
compared to the original host code.

B. The Twinned Buffering Scheme

As the main barrier to performance is the poor locality
of reference of the 3-D red-black SOR, we designed a new
scheme. Our first step is to replace the red-black approach
by a double-buffer approach, i.e. instead of having a single
buffer containing “red” and “black” points, we use two buffers,
and alternate them at every iteration. Assuming contiguous
allocation, the second buffer will be offset from the first buffer
by the size of the 3-D domain, which is typically in the order
of 106B .Consequently, by itself this approach does not lead
to better performance, because the locations in one buffer are
unlikely to be cached at the same time as the locations in the
other buffer. In fact, we can expect to see worse performance.

However, if we create a single buffer consisting of a vector
which contains the corresponding points for each buffer, then
we get excellent locality of reference. We call this approach
twinned buffering, and as we will show in the next section, this
simple scheme results in excellent performance. The changes
to the above host and kernel code are very small. On the host
side, we need to declare a 4-D array for the double buffer;
on the kernel side, the p array simply changes from __global
float* p to __global float2* p. Furthermore, the kernel now uses the
first element of the vector to update the second and vice versa. The
double-buffering scheme also allows another optimisation: it is not
necessary to update the boundary conditions by copying, instead they
can be computed. As on the GPU computation is faster than memory
access, this is more efficient.

The complete code can be found on GitHub: https://github.
com/wimvanderbauwhede/LES.

Algorithm 6 Kernel code for red-black SOR
__kernel void press_sor_kernel(

__global float* p, __global float *rhs,
const __global float *cn1,
const __global float *cn2l, const __global float *cn2s,
const __global float *cn3l, const __global float *cn3s,
const __global float *cn4l, const __global float *cn4s,
__global float *chunks_num,
__global float *rhsav, __global unsigned int *nrd,
const unsigned int im, const unsigned int jm, const unsigned int km
) {

__local float sor_chunks[NTH];
unsigned int gr_id = get_group_id(0);
unsigned int l_id = get_local_id(0);
if (*nrd<2) {

float local_sor = 0.0F;
unsigned int k = gr_id+1; unsigned int j = l_id+1;
for (unsigned int i=1 + ((k + j + *nrd) % 2);i<=im;i+=2) {

float p_corr = calc_p_corr(p,...);
local_sor += p_corr * p_corr;

} // loop over i
calc_boundp1(p,...);

// partial acc of error over threads in CU
sor_chunks[l_id] = local_sor;
barrier(CLK_LOCAL_MEM_FENCE);
float local_sor_acc = 0.0F;
for(unsigned int s = 0; s < jm; s++) {

local_sor_acc += sor_chunks[s];
}

// return partial errors per CU
chunks_num[gr_id] = local_sor_acc;

} else { // nrd==2
calc_boundp2(p,...);

} // nrd
}

IV. RESULTS AND DISCUSSION

We investigated the performance of our new SOR scheme
using several OpenCL platforms and different domain sizes.
We took care to optimise the compilation of the reference
implementation to have a reliable baseline.

What I have right now is REF on CPU/Old kernel and New
kernel on GPU for 1 size]

A. Compilers

The compilers used for the comparison were gfortran 4.8.2
for OpenCL code, as well as pgf77 12.5-0 and ifort 12.0.0 for
the reference code. We used the following optimizations for
auto-vectorization and auto-parallelization:

• gfortran -Ofast -floop-parallelize-all
-ftree-parallelize-loops=24

• pgf77 -O3 -fast -Mvect=simd:256
• ifort -O3 -parallel

We established that the run time of the original Fortran code
was the same with all compilers (to within a few %).

B. Hardware platforms

The host platform was an Intel Xeon E5-2620 0 @
2.00GHz, a 6-core CPU with two-way hyperthreading (i.e.12
threads), with AVX vector instruction support, 32GB memory,
15MB cache, Intel OpenCL v1.2. The GPU platform was

an NVIDIA GeForce GTX 590 @ 1.20 GHz, 16 compute
units, 1.5GB memory, 256KB cache, NVIDIA OpenCL 1.1
(CUDA 6.5.12). Although we are mainly focused on the GPU
implementation, we also e used an Intel Xeon Phi 5110P @
1.05GHz, 59 cores with 4-way hyperthreading, 8GB memory,
30MB cache, Intel OpenCL for MIC v1.2. Table I shows
the hardware performance indicators for these systems. In the
table, “cores” is what OpenCL reports as “compute units”. On
a CPU this is the number of cores times the hyperthreading
factor. By “vector size” we we mean SIMD vectors on a CPU
or processing elements on a GPU. We can observe that in terms
of FLOP performance one could expect the GPU to outperform
the CPU and the MIC to outperform both. Furthermore, we
observe that the cache on the GPU is much smaller than on
the CPU but of the same order as for the Xeon Phi.

In what follows we denote the original Fortran implementa-
tion of the red-black SOR as REF, and the OpenCL versions
deployed on the host CPU, the GPU and the Xeon Phi as CPU,
GPU and MIC respectively.

Algorithm 7 Kernel code for SOR with twinned buffering
__kernel void press_sor_kernel_twinned_buffer (

__global float2* p_db,
... (same as red/black)

) {
__local float sor_chunks[NTH];
unsigned int gr_id = get_group_id(0);
unsigned int l_id = get_local_id(0);
float local_sor_acc = 0.0F;
float local_sor = 0.0F;
unsigned int k = gr_id;
unsigned int i = l_id;
unsigned int k_lhs = k;
if (k == 0) { k = 1; }
if (k == km + 1) { k = km; }
if (i == 0) { i = 1; }
if (i == im + 1) { i = im; }
for (unsigned int j_lhs= 0; j_lhs <= jm + 1; j_lhs++) {
unsigned int j = j_lhs;
if (j_lhs == 0) { j = jm; }
if (j_lhs == jm + 1) { j = 1; }
float p_corr = calc_p_corr_db(p_db,...);
local_sor += p_corr * p_corr;

}
sor_chunks[l_id] = local_sor;
barrier(CLK_LOCAL_MEM_FENCE);
local_sor_acc = 0.0F;
for (unsigned int s = 1; s < jm+1; s++) {
local_sor_acc += sor_chunks[s];

}
chunks_num[gr_id] = local_sor_acc;

}

#cores vector size clock speed (GHz) FLOPS Memory BW (GB/s) Cache
Intel Xeon E5-2620 12 8 2.00 192 42.6 15MB

Nvidia GeForce GTX590 16 32 1.2 614 163.9 256KB
Intel Xeon Phi 5110P 236 16 1.05 3965 320 512KB

TABLE I
HARDWARE PERFORMANCE INDICATORS

C. Red-Black versus Twinned Buffering

Figure 2 shows the performance comparison between both
schemes on the three OpenCL platforms. The reference code
was compiled with auto-vectorisation and auto-parallelisation
optimizations to make as much as possible use of the capabil-
ities of the host platform. The performance of the straight port
of the original red-black SOR to OpenCL is reasonable on the
CPU: the performance gain is a factor of two. However, on
the GPU the performance is slightly worse than the reference
and on the MIC it is only about 1.5× better. This illustrates
our point about the impact of the poor locality of references.
The Twinned Buffering scheme performs somewhat better on
the CPU, resulting in a speed-up of 2.5× , but as explained,
because of the large cache of the host CPU, we did not expect
a big increase in performance. On the GPU however, the per-
formance increase is dramatic: the speed-up is more than 15×.
The speed-up of the Twinned Buffering scheme compared to
the Red/Black scheme on the MIC is reasonable (3× speed-up)
but the overall performance (speed-up compared to the CPU
reference) might seem somewhat disappointing considering the

REF CPU GPU MIC
0

100

200

300

400

500

600

700

SOR time for Red/Black and Twinned Buffer Schemes

for 50 iterations, averaged over 200 runs; domain size = 150x150x90

Red/Black

Twin Double Buf

tim
e

 (
m

s)

REF CPU GPU MIC
0

100

200

300

400

500

600

700

SOR time for Red/Black and Twinned Buffer Schemes

for 50 iterations, averaged over 200 runs; domain size = 150x150x90

Red/Black

Twinned Buffer

tim
e

 (
m

s)

Fig. 2. Comparison of Red/Black and Twinned Buffering schemes on different
platforms

hardware capability of the device. However, we will discuss
this performance in more detail in the next section.

REF CPU MIC GPU
1

10

100

1000

10000

SOR time for Twinned Double Buffer Scheme

as a function of domain size, 50 iterations, 200 runs

510x509x94
254x253x94
150x150x90

tim
e

 (
m

s)

REF CPU MIC GPU
1

10

100

1000

10000

SOR time for Twinned Buffer Scheme

as a function of domain size, 50 iterations, 200 runs

24.4M

6.0M

2.0M

tim
e

 (
m

s)

Fig. 3. Performance of Twinned Buffering scheme for different domain sizes

D. Effect of the Domain Size

We evaluated the performance of the Twinned Buffering
schemes for different domain sizes, and the results are shown
if Fig. 3. For the reference and the OpenCL versions on
the CPU and GPU, the performance scales linearly with the
domain size. For the GPU, the domain size of 6M points is
the maximum that can fit in its global memory (because all
arrays required for the LES together take up the complete
available memory). The MIC can handle larger domain sizes of
up to 24M points, an order of magnitude more than the typical
domain size used in the LES simulations. The key observation
is that the performance of the MIC is flat over the whole range.
The smaller domain sizes under-utilize the MIC’s resources,
which explains the poor performance observed in the previous
section. For the larger domains, the achieved speed-up for the
Twinned Buffer scheme is actually 50×, which is much more
in line with the hardware capabilities of the device.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, we have presented a novel scheme imple-
menting the 3-D Successive Over-Relaxation (SOR) algorithm
for solving the Poisson pressure equation. Though the context
of our work is numerical weather prediction, the scheme is
much more widely applicable as many problems in science
require solving the Poisson equation in three dimensions. The
main novelty of our scheme is the use of a buffer of two-
element vectors, which we call a twinned buffer, to obtain
excellent locality if reference. This is particularly important
for GPUs, as shown by our results of a speed-up of more than
15×, but the novel scheme leads to improved performance on
other OpenCL platforms such as multicore CPUS and the Intel
MIC. Thus, our novel scheme offers portable performance over
a wide range of OpenCL accelerator platforms. To build on this
result we aim to extend the scheme to work across multiple
devices.

REFERENCES

[1] M. Govett, J. Middlecoff, T. Henderson, J. Rosinski, and P. Madden,
“Successes and Challenges Porting Weather and Climate Models to
GPUs,” in AGU Fall Meeting Abstracts, vol. 1, 2011, p. 02.

[2] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical
weather prediction,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–7.

[3] O. Fuhrer, T. Gysi, X. Lapillonne, C. Osuna, B. Cumming, W. Sawyer,
P. Messme, , T. Schroeder, and T. C. Schulthess, “GPU Consideration
for Next Generation Weather and Climate Simulations,” CSCS Swiss
National Supercomputing Centre, Tech. Rep., 2012.

[4] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo,
A. Nukada, N. Maruyama, and S. Matsuoka, “An 80-fold speedup, 15.0
TFlops full GPU acceleration of non-hydrostatic weather model ASUCA
production code,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2010 International Conference for. IEEE, 2010, pp.
1–11.

[5] W. Vanderbauwhede and T. Takemi, “An investigation into the feasibility
and benefits of gpu/multicore acceleration of the weather research and
forecasting model,” in High Performance Computing and Simulation
(HPCS), 2013 International Conference on. IEEE, 2013, pp. 482–489.

[6] H. Nakayama, T. Takemi, and H. Nagai, “Les analysis of the aerody-
namic surface properties for turbulent flows over building arrays with
various geometries,” Journal of Applied Meteorology and Climatology,
vol. 50, no. 8, pp. 1692–1712, 2011.

[7] ——, “Large-eddy simulation of urban boundary-layer flows by gen-
erating turbulent inflows from mesoscale meteorological simulations,”
Atmospheric Science Letters, vol. 13, no. 3, pp. 180–186, 2012.

[8] S. Philip, B. Summa, V. Pascucci, and P.-T. Bremer, “Hybrid cpu-gpu
solver for gradient domain processing of massive images,” in Parallel
and Distributed Systems (ICPADS), 2011 IEEE 17th International Con-
ference on. IEEE, 2011, pp. 244–251.

[9] E. Konstantinidis and Y. Cotronis, “Graphics processing unit acceleration
of the red/black sor method,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 8, pp. 1107–1120, 2013.

[10] L. Itu, C. Suciu, F. Moldoveanu, and A. Postelnicu, “Gpu optimized
computation of stencil based algorithms,” in Roedunet International
Conference (RoEduNet), 2011 10th. IEEE, 2011, pp. 1–6.

[11] J. T. Liu, Z. S. Ma, S. H. Li, and Y. Zhao, “A gpu accelerated red-black
sor algorithm for computational fluid dynamics problems,” Advanced
Materials Research, vol. 320, pp. 335–340, 2011.

[12] C.-W. Hsieh, S.-H. Kuo, F.-A. Kuo, and C.-Y. Chou, “Solving parabolic
problems using multithread and gpu,” in Parallel and Distributed
Processing with Applications (ISPA), 2010 International Symposium on.
IEEE, 2010, pp. 75–80.

[13] A. Munshi et al., “The opencl specification,” Khronos OpenCL Working
Group, vol. 1, pp. l1–15, 2009.

