
AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF 1

An Analysis of the Feasibility and Benefits of GPU/Multicore

Acceleration of the Weather Research and Forecasting Model

Wim Vanderbauwhede1∗, Tetsuya Takemi2

1School of Computing Science, University of Glasgow, Glasgow, UK

2Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

2 W. VANDERBAUWHEDE, T. TAKEMI

SUMMARY

There is a growing need for ever more accurate climate and weather simulations to be delivered in shorter

timescales, in particular to guard against severe weather events such as hurricanes and heavy rainfall. Due

to climate change, the severity and frequency of such events – and thus the economic impact – are set to rise

dramatically. Hardware Acceleration using GPUs or FPGAs could potentially result in much reduced run

times or higher accuracy simulations.

In this paper, we present the results of a study of the Weather Research and Forecasting (WRF) model

undertaken in order to assess if GPU and multicore acceleration of this type of Numerical Weather Prediction

(NWP) code is both feasible and worthwhile. The focus of this paper is on acceleration of code running on a

single compute node through offloading of parts of the code to an accelerator such as a GPU. Therefore, in

this work we deployed WRF on a single node consisting of a multicore CPU and GPGPU. We did not use

a cluster of nodes in our experiment as the scalability and performance of WRF in a cluster is determined

by the MPI subsystem, and our GPU/multicore acceleration approach is entirely orthogonal to this. In other

words from a cluster perspective an accelerated node is simply a faster node, and the MPI performance and

scalability of WRF has already been investigated in detail on a variety of systems [1, 2, 3]. The governing

equation set of the WRF model is based on the compressible, non-hydrostatic atmospheric motion with

multi-physics processes. We put this work into context by discussing its more general applicability to

multi-physics fluid dynamics codes: in many fluid dynamics codes the numerical schemes of the advection

terms are based on finite differences between neighboring cells, similar to the WRF code. For fluid systems

including multi-physics processes, there are many calls to these advection routines. This class of numerical

codes will benefit from hardware acceleration.

We studied the performance of the original code of the WRF model and created a simple model

for comparing multicore CPU and GPU performance. Based on the results of extensive profiling of

representative WRF runs, we focused on the acceleration of the scalar advection module. We discuss the

implementation of this module as a data-parallel kernel in both OpenCL and OpenMP.

We show that our data-parallel kernel version of the scalar advection module runs up to 7× faster on the

GPU compared to the original code on the CPU. However, as the data transfer cost between GPU and CPU

is very high (as shown by our analysis), there is only a small speed-up (2×) for the fully integrated code.

In order to carry out this research, we also developed an extensible software system for integrating OpenCL

code into large Fortran code bases such as WRF, which is one of the main contributions of our work . We

discuss the system to show how it allows to replace sections of the original codebase with their OpenCL

counterparts with minimal changes – literally only a few lines – to the original code.

Our final assessment is that even with the current system architectures, accelerating WRF – and hence also

other, similar types of multi-physics fluid dynamics codes – with a factor of up to five times is definitely and

achievable goal.

Accelerating multi-physics fluid dynamics codes including NWP codes is vital for its application to weather

forecasting, environmental pollution warning, and emergency response to the dispersion of hazardous

materials. Implementing hardware acceleration capability that is discussed in this study to fluid dynamics

and NWP codes will be prerequisite for up-to-date and future computer architectures.

Copyright c© 2014 John Wiley & Sons, Ltd.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE

Concurrency Computat.: Pract. Exper. 2014; 00:3–35

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe
Received . . .

KEY WORDS: General-Purpose computation on Graphics Processing Units (GPGPU), Parallelization of

Simulation, Large Scale Scientific Computing

1. BACKGROUND

There is a growing need for ever more accurate climate and weather simulations to be delivered in

shorter timescales, in particular to guard against severe weather events such as hurricanes and heavy

rainfall. Due to climate change, the severity and frequency of such events – and thus the economic

impact – are set to rise dramatically[4, 5]. Hardware Acceleration using GPUs or FPGAs could

potentially result in much reduced run times or higher accuracy simulations. As climate change will

result in more, and more severe extreme weather events, faster, more accurate predictions of extreme

weather events are needed [6, 7]. Understanding climate change itself requires growing amounts of

computational power [8].

1.1. The Weather Research and Forecasting Model

The Weather Research and Forecasting Model† (WRF) [9, 10, 11] is a state-of-the-art mesoscale

numerical weather prediction system (NWP) intended both for forecasting and atmospheric

research. It is an Open Source project, created by a partnership of the US National Oceanic and

Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR),

and more than 150 other organizations and universities; it is used by a large fraction of weather and

climate scientists worldwide. The WRF code base is written in Fortran-90 and is both complex and

extensive (about a million lines of code). The governing equation set of the WRF model is based

on the compressible, non-hydrostatic atmospheric motion with multiple physics processes such as

cloud and precipitation, boundary-layer turbulence, land-ocean-air interaction, radiative transfer in

the atmosphere, and energy transfer at the surface. The finite difference method is used to discretize

∗Correspondence to: School of Computing Science, University of Glasgow, G12 8QQ Glasgow, UK
†http://www.wrf-model.org

Copyright c© 2014 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

4 W. VANDERBAUWHEDE, T. TAKEMI

Figure 1. WRF-ARW system components (from [10])

the governing equations of the WRF model. These discretized equations are integrated in time to

obtain time-dependent atmospheric motion and physical states. Owing to the multiple physical

processes that determine the atmospheric motion field, the number of the prognostic variables of

the WRF model is quite large compared to a simple computational fluid dynamics (CFD) model

that consists of the Navier-Stokes equation and the mass continuity equation. The large number of

the prognostic variables in the three dimensions is a severe computational constraint, which requires

a high-performance computational resource.

In this paper we focus on the advanced research version of WRF, called WRF-ARW (Advanced

Research WRF) [10] which features very high resolution and is being used to explore ways of

improving the accuracy of simulation of severe weather events, e.g. tropical cyclones such as

hurricanes and typhoons, tornadoes, windstorms, and heavy rainfall events. The WRF-ARW system

components are depicted in Figure 1. The most computationally intensive components are the

Dynamics Solvers and the Physics Packages.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF 5

1.2. Previous Work on GPU Acceleration of WRF

Previous work in GPU acceleration of WRF is discussed [12]. This work dealt with the

WRF Single-Moment 5-class (WSM5) microphysics kernel‡ (one of the Physics packages). It

was an experimental, stand-alone implementation and is not included in the standard WRF

distribution. However, it demonstrated the potential for accelerating weather physics codes on

GPUs. Furthermore, both implementations are in CUDA. As CUDA is a proprietary technology,

we prefer to use OpenCL instead. OpenCL has the advantage that it can be deployed on GPUs and

multicore CPUs of different versions. Recently OpenCL support for FPGAs has become available,

this is a very promising technology for NWP. Several other NWP codes have been adapted for GPU

[13, 14, 15]. However, because of its size and complexity, a full GPU port of WRF has not yet been

undertaken.

1.3. OpenCL Programming

OpenCL [16] was developed by the Khronos Group in 2008 as an open standard for parallel

programming of heterogeneous systems and is finding increasing adoption amongst providers of

multicore CPUs and GPUs (e.g. AMD, Intel, ARM) and FPGAs (Altera). It provides an API for

control and data transfer between the host and device (typically the host CPU and a GPU) and a

language for kernel development. Contrary to proprietary solutions such as Nvidia’s CUDA and

Microsoft’s DirectX, OpenCL is open and cross-platform, so that it can be deployed on different

operating systems (Linux, OS X, Windows) and hardware architectures (multicore CPUs, GPUs,

FPGAs). The OpenCL API is defined for C and a C++. In practice, the API is quite fine grained and

verbose and requires a lot of boiler plate code to be written. Consequently, it is not straightforward

to integrate OpenCL in existing codes, especially for non-computing scientists.

‡http://www.mmm.ucar.edu/wrf/WG2/GPU/WSM5.htm

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

6 W. VANDERBAUWHEDE, T. TAKEMI

1.4. The OclWrapper Library

To facilitate the integration of the OpenCL code into the existing code base, we developed the

OclWrapper library§ which supports C, C++ and Fortran-95. The library wraps the OpenCL

platform, context and command queue into a single object, with a much smaller number of calls

required to run an OpenCL computation. As it is a thin wrapper, the additional abstraction comes at

no cost in terms of features: the OpenCL API is completely accessible.

The OclWrapper library consists of several components:

The OclWrapper C++ Class This class abstracts the OpenCL concepts of Platform, Context,

Device and Command Queue using a single object. Using C++ features such as templates,

polymorphic functions and default arguments, it provides a greatly simplified interface that is

suitable for the majority of OpenCL applications. However, as the object includes all the lower-

level OpenCL objects, all low-level OpenCL features are still accessible without overhead.

The oclWrapper Fortran-95 Library This library provides the oclWrapper Fortran module,

which offers a subroutine-based interface to the C++ OclWrapper class. As Fortran does not

offer polymorphic subroutines, the library provides individual functions for manipulating multi-

dimensional arrays of various types.

The oclBuilder SCons Library To build the OclWrapper, we use the SCons¶ build system, a

replacement for Make that allows to write very complex build scripts in Python. The oclBuilder

library makes it possible to write a build script for OclWrapper in a few lines.

The use of the library is illustrated below on a simple C++ OpenCL example.

// Create wrapper for default device and single kernel

OclWrapper ocl(srcfilename,kernelname,opts);

// Create read and write buffers

§https://github.com/wimvanderbauwhede/OpenCLIntegration
¶http://scons.org/

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF 7

cl::Buffer rbuf = ocl.makeReadBuffer(sz);

cl::Buffer wbuf = ocl.makeWriteBuffer(sz);

// Transfer input data to device

ocl.writeBuffer(rbuf,sz,warray);

// Set up index space

ocl.enqueueNDRange(globalrange, localrange);

// Run kernel

ocl.runKernel(wbuf,rbuf).wait();

// Read output data from device

ocl.readBuffer(wbuf,sz,rarray);

Without the wrapper, the same program would be about a hundred lines of code, and each

individual call would have many arguments. Furthermore, the use of wrapper in Fortran is equally

straightforward:

use oclWrapper

integer(8) :: rbuf, wbuf

real :: dimension (ims:ime,kms:kme,jms:jme) rarray

real :: dimension (ims:ime,kms:kme,jms:jme) warray

integer :: globalrange, localrange

! Create wrapper for default device and single kernel

call oclInit(srcfilename,kernelname)

! Create read and write buffers

call oclMake3DFloatArrayReadBuffer(rbuf,sz,rarray)

call oclMake3DFloatArrayWriteBuffer(wbuf,sz)

! Transfer input data to device

call oclWrite3DFloatArrayBuffer(rbuf,sz,rarray)

! Run kernel over index space

oclRun(globalrange, localrange)

! Read output data from device

oclRead3DFloatArrayBuffer(wbuf,sz,warray)

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

8 W. VANDERBAUWHEDE, T. TAKEMI

Moreover, because the Fortran oclWrapper is a module, it stores the OclWrapper object globally,

so that the subroutine calls can be issues in different program units.

1.5. Hardware Performance Indicators

1.5.1. Computational Performance Indicator We used several different systems for this work. The

host system used for the main experiments was based on an Intel Xeon E5-2640 CPU (dual-

processor, 6 cores/chip, 2 threads/core). This processor has 256-bit AVX SIMD, so a smart compiler

will do up to 8 floating point operations in parallel. The GPU was an Nvidia GeForce GX480. It has

15 Compute Units with 32 Processing Elements each.

Two other systems, a 48-core AMD Opteron 6176-SE system (four 12-core processors) and a

Tesla C2070 GPU hosted on a 24-core AMD Opteron 6174 system (two 12-core processors), were

used for additional experiments (see Table I for full details). We define the (single precisions floating

point) computational performance indicator as

CPI= #threads × SIMD width × clock freq

This figure is directly proportional to flops, but more easy to obtain. We define “threads” as the

product of the number of cores/compute units and their hyperthreading capability, and “vector size”

as either the SIMD vector size or the number of processing elements per compute unit. The CPIs

for our platforms are shown in Table I.

From the table we see that purely in terms of computation, under optimal circumstances, the

GeForce GPU can be at best 1.4× faster than the Intel CPU; the CPI of the Tesla GPU is only 3%

higher than that of the Intel CPU. If the memory bandwidth is the limiting factor, the achievable

speed-up for the application running on the GPU would be 4.2×. The total achievable speed-up

is limited by the data transfer rate between host memory and GPU memory, and the overhead for

control of the GPU. According to our measurements we achieve about 2 GB/s reading from the

GPU and 8 GB/s writing to the GPU. In Section 5 we present the detailed discussion of the cost of

data transfer and computation.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF 9

#cores vector

size

Clock

speed

(GHz)

CPI Memory

BW

(GB/s)

CPU: Intel Xeon E5-2640 24 8 2.5 480 42.6

GPU: Nvidia GeForce GX480 15 32 1.4 672 177.4

CPU: AMD Opteron 6176 SE 48 4 2.3 441.6 42.7

CPU: AMD Opteron 6174 24 4 2.1 201.6 42.7

GPU: Nvidia Tesla C2070 14 32 1.1 492.8 144

Table I. Specifications of hardware platforms used in this work

1.5.2. Communication Bandwidth Limit on Achievable Performance In Section 5 we present the

detailed discussion of the cost of data transfer and computation. In general, we can analyse the

achievable speed-up as a function of the computational speed up (which in its term depends on the

CPI and the memory bandwidth) and the data transfer speed. Figure 2 shows a generic graph which

can be used to assess the performance of an algorithm.

What the graph shows is the achievable speed up as a function of the CPU compute time relative

to the data transfer time, with the GPU/CPU computational speed-up as a parameter. For example,

if the computation on the CPU takes 100ms, and the data transfer 1000ms, then there can be no

speed-up, no matter how fast the GPU computes. On the other hand, if the CPU takes 1000ms and

the transfer time is 100ms, then with a GPU/CPU computational speed-up of 5× the total speed-up

= 1000 / (100+1000/5) = 3.3×. In the legend, ”pipelined” means that the computations and data

transfers overlap in pipelined fashion, which can improve performance when processing a stream of

data, and if the transfer and compute times are of the same order.

2. METHODOLOGY

To assess the feasibility of GPU acceleration of WRF, we did the following:

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

10 W. VANDERBAUWHEDE, T. TAKEMI

0.1 1 10 100 1000
0.1

1

10

100

GPU/CPU Achievable Speed-up

Data Transfer Limit

GPU 1x

GPU 1x, pipelined

GPU 5x

GPU 5x, pipelined

GPU 10x

GPU 10x, pipelined

GPU 50x

GPU 50x, pipelined

CPU compute time relative to data transfer time

S
p

ee
d

-u
p

Figure 2. Achievable speed-up from offloading work to the GPU

1. Performance evaluation of the current WRF software using MPI and OpenMP

2. Profiling of WRF runs with a number of different configurations

3. Selection of code portions suitable for acceleration via data-parallel computation

4. Implementation of the code in OpenCL

5. Performance evaluation of the OpenCL kernel

6. Integration of the OpenCL kernel into the WRF code

3. WRF-ARW PERFORMANCE ANALYSIS

3.1. Settings of the WRF simulation

The version of the WRF-ARW model used here is version 3.4, which was released in April 2012.

The fifth-order upwind biased scheme is used for the discretization of the advection terms in the

horizontal direction, the third-order upwind biased scheme is used for the discretization of the

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF11

advection terms in the vertical direction, and the third-order Runge-Kutta scheme is used for the

time integration of the governing equations [10].

The case investigated in the present numerical simulations is the severe tornado case that occurred

in Tsukuba, Japan, a suburban area north of the Tokyo metropolitan region, on 6 May 2012. This

tornado spawned severe damages in Tsukuba and its surroundings and was rated as the F3 scale by

the Fujita tornado damage scale. The simulation settings are set up with the full physics modules

implemented in WRF. Since the meteorological case chosen here is a tornado that was generated

by a well-developed cumulonimbus cloud system, one of the most important physical processes is

a cloud and precipitation process, so called a microphysics process. The WRF Single-Moment 6-

class (WSM6) microphysics module [17] is used for the microphysics parametrization, because this

scheme is one of the most sophisticated single-moment schemes and is successful in dealing with

convective storms in moist regions such as East Asia [17].

The WRF model has a capability of setting multiple computational domains nested in a larger

domain. The present study explores the computational performance of two cases of domain settings:

one is a single domain, and the other case sets triple nested domains. For the single domain case the

horizontal grid spacing is 5 km, while for the triple domain case the grid spacings are 2.5 km, 500

m, and 100 m.

3.2. MPI versus OpenMP

To establish the baseline performance, we carried out a number of experiments of WRF runs with

MPI and OpenMP. The first sets of results (Figure 3) was obtained on the AMD 24-core system,

using the GNU Fortran compiler (gfortran). It compares OpenMP with MPI performance for a small

domain size without nesting:

e we = 100,

e sn = 100,

e vert = 27,

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

12 W. VANDERBAUWHEDE, T. TAKEMI

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

WRF MPI/OpenMP Comparison

MPI, no OpenMP

OpenMP, no mpi

OpenMP, mpi=2

#processes x #threads

sp
ee

d-
up

on 24-core AMD system

Figure 3. WRF performance with MPI and OpenMP, domain size 100x100x27, on the 24-core AMD system

where ewe, wsn, and evert are the sizes of computational grid in the east-west, the north-south, and

the vertical direction. The second set of results is obtained on the 48-core AMD system, using the

Intel Fortran compiler (ifort). A third set of results was obtained on a 12-core (24-thread) Intel Xeon

system, it shows OpenMP performance for varying numbers of threads. Both the second and third

experiment simulate a larger domain with nesting:

e we = 500,301, 501,

e sn = 500, 301, 501,

e vert = 60, 60, 60

The other WRF settings are identical. The second and third set are shown in Figure 4.

The figures show the speed-up as a function of the number of parallel processes×threads. Missing

points indicate that the simulation failed to complete.

The conclusions from these experiments are clear:

• First, performance various considerably across platforms.

• Second, for large domains, the speed-up saturates at about half the number of physical threads.

• Finally, MPI outperforms or matches OpenMP for all cases.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF13

0 10 20 30 40 50 60
0

2

4

6

8

10

12

WRF MPI/OpenMP comparison

OpenMP, 24-core Xeon

48-core AMD, MPI, no OpenMP

48-core AMD, OpenMP, no MPI

48-core AMD, OpenMP, mpi=2

48-core AMD, OpenMP, mpi=4

#processes x #threads

sp
ee

d-
up

on 24-core Xeon and 48-core AMD systems

Figure 4. WRF performance with MPI and OpenMP, domain size 500x500x60 with nesting, on the 24-core

Intel and 48-core AMD systems

These findings are in line with other studies, e.g. [18]. The poor OpenMP performance is due to the

sub-optimal use of OpenMP in WRF: the use of many shared variables results in frequent locking.

This is a result of the decision not to rewrite the code for OpenMP, but to rely only on insertion of

pragmas.

The observed behavior constitutes a problem for GPU acceleration, and would need to be

addressed: in current systems, the GPU can only be accessed by a single process at a time. As MPI

creates separate processes, access to the GPU would be serialized. Furthermore, each computation

on the GPU would be on the portion of the total memory space used by the MPI process, rather than

on the full memory space. So either all processes would have to copy their memory space to the

process controlling the GPU, or the GPU would have to be called sequentially by each process in

turn. Either way, as a result the overhead of accessing the GPU would dominate the performance, and

the net result would be a slow-down rather than a speed-up. With effective use of OpenMP, it should

be possible to match or even better the MPI performance (as intrinsically OpenMP has a lower

overhead). The host code would be a single process with a single memory space and could easily

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

14 W. VANDERBAUWHEDE, T. TAKEMI

functionality modules test1 test2

dynamics 71 65

advection:

advect scalar

advect scalar pd

28 20

small-step 17 17

big-step 17 18

other 9 10

physics 14 21

microphysics 7 12

other 7 9

Table II. Contributions of various parts of WRF to total run time (%)

and effectively interact with the GPU. An alternative solution would be to rewrite the MPI code to

include an additional process which would have access to the combined memory space and control

the GPU. As the OS uses copy-on-write, this approach should also result in good performance, and

might even be preferred.

3.3. WRF Run Profiling

We profiled the two typical WRF runs (on a 256x256x32 domain) using the Shark sampling profiler

(on OS X 10.6.8). The conclusion of these experiments was that most of the time is spent in the

dynamic core and, to a lesser extent, the physics modules (See Table II)

Together, dynamics and physics constitutes about 85% of the total run time. This time is divided

across a large number of calls to different routines, so there is no “quick win”. However, the

contributions of advection, big-step and small-step routines and microphysics already account for

70% of the total run time, so these parts of the model constitute a logical focus for acceleration.

These findings are in line with those for the COSMO model [14]. Note that accelerating 70% of

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF15

the code with 5× results in a speed-up of 2.3×, a speed-up of 10× on 85% of the code would

result in 4.3×. Furthermore, the structure of the dynamics kernels is similar in terms of the required

approach to parallelisation, so that by studying one of the kernels we can infer the behaviour of the

other kernels.

4. OPENCL KERNEL FOR SCALAR ADVECTION

A relatively large part of the run time for WRF is spent in the scalar advection routines advect scalar

and advect scalar pd. These routines are part of the dynamic core (dyn em), and no previous GPU

implementations have been reported. As all the advection routines are all similar in structure, the

OpenCL version of advect scalar can serve as a template for the other routines.

4.1. Approach

The original WRF kernel for scalar advection consists of a number of nested loops over i, j, k,

where typically the inner loops are guarded by if -statements. Also, the code uses arrays to store

all intermediate results. First, we translated the code to C, using F2C ACC [13]. We then analyzed

the conditionals and replaced all run-time if -statements that are actually run-time constants with

preprocessor if -statements. This is important for GPU kernels as run-time branching of a thread in

a single warp will lead to stalling of the threads that do not execute the selected branch. The next

step was an analysis of the loop structures and boundaries, resulting eventually in a single, unified

nested loop with conditionals inside.

This approach is not appropriate for single-threaded code as the new code executes more

statements because the conditions are evaluated for every combined loop iteration. However, for

data parallel execution, the placement of the conditionals as in the original code would not result in

reduced run times, only in thread stalling.

We then replaced the intermediate arrays with local variables and removed some loop

dependencies by computing “ahead of time”. Finally, we merged the loops into a single loop, and

then used this loop’s range as the index space (the global NDRange). The local NDRange was set to

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

16 W. VANDERBAUWHEDE, T. TAKEMI

the k-range. We experimented with different approaches and values for global and local ranges, but

found that the above configuration was optimal.

In terms of effort, the total elapsed time to parallelise the kernel, port it to OpenCL and validate

it was about one month, for an experienced computing scientist. The total project including the

software engineering required to integrate the OpenCL code seamlessly into the original WRF code

took two months.

4.2. Implementation

The structure of the kernel is shown in Algorithm 1. The array ranges boundaries degrade contains

the various ranges (ims, ime etc.) and computed boundaries (i start, i end etc.) and conditions

(degrade xs,...) for the computation. It is more efficient to pass these to the kernel as an array than

as individual arguments. The zero tendency argument is used to determine the part of the kernel to

be executed (first zero the tendency array , then compute the new values). Every thread only uses a

small portion of the field array (typically ±3 grid points in every dimension), therefore we copy the

required values to a local arrays for i,j and k. The functions calc tendency * contain the advection

computations for the x, y and z dimensions.

4.3. Verification

In order to verify that our OpenCL kernel code produces the same results as the original Fortran

code, we employed a testing approach where both codes are run in succession on identical input

values, and the results computed by each are compared at run time using a set of comparison

functions. To account for differences in rounding errors arising from the different order in which

the floating point instructions are executed, we allowed an error of 5.10−6 (2 bits).

4.4. Performance Evaluation

The rewritten code is intended for data-parallel execution on a GPU. It is therefore expected that

the code will run slower than the original sequential code. This is confirmed by our measurements

(Figure 5): the data-parallel kernel, when run sequentially, is about 4× slower than the original

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF17

Algorithm 1 Structure of the OpenCL scalar advection kernel
kernel void advect scalar (

global float *tendency,

global const float *field,

// ... other data ...

constant const int *ranges boundaries degrade,

constant const int *zero tendency

) {

int gl id = get global id(0);

if (zero tendency[0]!=0) {

// zero the tendency array

tendency[gl id]=0.0;

} else {

// assign ranges boundaries degrade to local variables for convenience

// calculate the ranges for i, j, k

// calculate i,j,k from the global index

// create a local copy lfield of the field entries for i,j,k needed for calculating the fluxes

// read tendencies for x, y and z

float tend ikj=0.0;

// calculate the tendencies for x, y and z

if (j>=j start y && j<=j end y) {

tend ikj = calc tendency y l(...);

}

if (i>=i start x && i<=i end x) {

tend ikj = calc tendency x l(...);

}

tend ikj= calc tendency z l(...);

// write the result to main memory

tendency[...] = tend ikj;

}

}

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

18 W. VANDERBAUWHEDE, T. TAKEMI

Fortran code compiled with gfortran or the equivalent C code compiled with gcc, with optimization

-O3. This is expected because, as detailed in Section 4.1, the rewritten code executes many more

instructions than the original code, as a result of moving conditional branches from the outside

to the inside of loops. However, when compiled with the PGI Fortran compiler pgfortran, with

optimizations -fast -fastsse -Mipa=fast, the original Fortran code is 5× faster compared to the

gfortran binary. This is a result of the better vectorization performance of the GPI compiler: the

Xeon E5-2640 CPU has 256-bit AVX vectors, so it can in principle handle 8 single-precision

floating-point operations in parallel. The gcc compiler does not vectorize the code, hence the

observed performance difference. We also tested the effect of the auto-parallelization option -

Mconcur with various sub-options, but this does not result in performance improvement.

F90, pgf90

F90, gfortran

C, gcc

C kernel, gcc

0 5 10 15 20 25

Kernel Performance on CPU

run time relative to F90 code compiled with pgf90

Figure 5. Kernel performance compared to original code, both running single-threaded on CPU.

Figure 6 shows the performance of the actual OpenCL kernel (which is essentially the same

code as the C kernel but parallelized using the OpenCL framework), relative to the performance of

gcc/gfortran, which we chose as the reference because it is available on all CPU platforms we used.

We observe a speed-up of about 12× on the GeForce GPU (the reasons for the lower performance

on the Tesla GPU are discussed in Section 5).

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF19

Orig, gfortran, Intel CPU

Orig, gfortran, AMD CPU

Orig, pgf90, Intel CPU

Kernel, gcc, Intel CPU

Kernel, gcc, AMD CPU

Kernel, gcc,OpenMP, Intel CPU

Kernel, gcc,OpenMP, AMD CPU

OpenCL, GeForce GPU

OpenCL, Intel CPU

OpenCL, AMD CPU

OpenCL, Tesla GPU

0 2 4 6 8 10 12 14

Performance of WRF scalar advection kernel

256x256x64
256x256x32

speed-up wrt orig,gfortran

Figure 6. OpenCL kernel performance

We also evaluated the performance when parallelizing the kernel execution with OpenMP

(Figure 7). On the AMD system, the speed-up for 24 threads was 21×. This The performance on the

Intel CPU was also very good but saturated at 8× at 12 threads, this shows that the performance of a

hyperthreaded core is less good than that of two separate cores for this type of code. This is because

all threads are busy most of the time: hyperthreading works essentially by allowing more than one

thread to run per core, but this mechanism is only effective when the threads are stalling a lot of the

time: under such circumstances, without hyperthreading the CPU would idle, with hyperthreading

the CPU is used by one thread while the other is stalled.

4.5. Discussion of Kernel Performance

At first sight it might seem from these results that the GPU acceleration is hardly worth it: the

OpenCL code deployed on the GeForce GTX 480 GPU is only about twice as fast as the original

code when compiled with the PGI compiler. However, it is important to realize that accelerating

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

20 W. VANDERBAUWHEDE, T. TAKEMI

0 5 10 15 20 25 30
0

5

10

15

20

25

OpenMP performance of scalar advection kernel

Intel, k=64

AMD, k=64

Intel, k=32

AMD, k=32

#threads

sp
ee

d
-u

p

Figure 7. OpenMP performance of the scalar advection kernel, (i,j,k)=(256,256,32) and (256,256,64)

only the scalar advection kernel would not speed up WRF execution anyway, as it accounts for only

about 10% of the run time.

As explained in Section 3.3, a large portion of the code base must be accelerated to the GPU

to achieve considerable speed-ups of the total application (Amdahl’s law). As we will see from

the analysis in Section 5, under those circumstances GPU acceleration can result in considerable

performance increase.

5. GPU RUN TIME ANALYSIS

The specifications in Section 1.5 provide a good guideline for the achievable performance; however,

to get a clear picture, in this Section we present an analysis of the performance of the advect scalar

kernel on a GeForce GTX480 and a Tesla C2070 GPU.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF21

5.1. Experiments

We performed the following experiment on the advect scalar kernel, with a domain size of

256×256×64:

• For each run of the GPU, the host:

– writes 4 buffers of the domain size (16MB) to the GPU memory, and a number of smaller

buffers, total transferring about 64.25 MB

– calls the GPU twice: first to zero the tendency array, then to compute the new tendencies

– reads the new tendency array, 16MB

• The host performed 100 runs in a loop and recorded the aggregate run time.

• This experiment was repeated 20 times

The run time contributions for both GPUs are shown in Figure 8. In this figure, “compute only”

means no data transfer from host memory to GPU memory; “data transfer only” means that the

kernel is called but performs no computation; “no zeroing” means that the call to zero the tendency

array is skipped, so the GPU is called only once per run.

We also investigated the influence of the data size on the performance. The experiment was the

same as above, but we varied the domain size as follows:

i,j: 32,64,128,256,512,1024

k: 32,64

Figure 9 shows the speed-up of the OpenCL GPU code compared to the original code with the GNU

and PGI fortran compilers.

There are several interesting points about these results:

5.1.1. Influence of Host System on Transfer Time The first is the difference in transfer time: the

AMD/Tesla system takes almost 4× longer than the Intel/GeForce system: the transfer bandwidth

for the Intel/GeForce system is 2.8GB/s (100 transfers of 64MB in 2.3s), which is reasonably close

to the top performance of 4GB/s for a 16-lane PCI express with 2.5GT/s transfer rate; however, the

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

22 W. VANDERBAUWHEDE, T. TAKEMI

advect_scalar, 256x256x32

advect_scalar, k=64

data transfer only, k=32

data transfer only, k=64

compute only, k=32

compute only, k=64

compute only, no zeroing, k=32

compute only, no zeroing, k=64

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

GPU Run Time Contributions
for 100 runs of scalar advection kernel

GeForce GTX480

Tesla C2070

time (ms)

Figure 8. Run time contributions for GeForce GTX 480 GPU on Intel host and Tesla C2070 on AMD host

1E+5 1E+6 1E+7 1E+8 1E+9
0

2

4

6

8

10

12

14

Effect of data size on performance
for WRF scalar advection kernel

wrt orig, gcc

wrt orig, pgf90, k=64

wrt orig, pgf90

wrt orig, gcc, k=64

data size (B)

sp
e

e
d

-u
p

Figure 9. Influence of data size on performance

AMD/Tesla system only reaches 730MB/s. Looking closer at the the PCIe specs of both systems,

the only difference is in the latency: both systems have a 16-lane PCI Express v2, 2.5GT/s, but the

more recent Intel system has a latency< 256ns, whereas the AMD system has a latency< 1µs. The

AMD system also has a significantly lower memory bandwidth (see Figure 10). Another factor that

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF23

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Host Memory Bandwidth

Intel+GeForce

AMD+Tesla

Data Transfer Size (B)

B
a

nd
w

id
th

 (
G

B
/s

)

Figure 10. Host memory bandwidth

most likely influences the transfer time is the smaller cache size; in any case, for a transfer size of

> 1MB the AMD CPU’s memory bandwidth is 2.5× lower than the Intel CPU’s.

It should be noted that a more modern system with PCIe v3 should be capable of 10GT/s, so

the achievable performance of the GPU computation would be considerably better: for the scalar

advection kernel, the total run time would be reduced by a factor of two.

5.1.2. GPU Compute Performance The second observation is that the Tesla GPU computes the

kernel about as fast as the GeForce: this is not really surprising when comparing the specs of both

GPU cards: the main difference is in the amount of on-board memory. NVidia mentions that the

floating point performance of the Tesla cards is better than that of the “consumer cards”, but that

applies only to double-precision floating point. As the WRF uses single precision, the much cheaper

GeForce card is the better choice.

5.1.3. Influence of the Data Size We see from Figure 9 that the speed-up of the GPU increases for

larger data sizes. The reasons for this behavior are twofold: on the on hand, the fixed cost for starting

the GPU is relatively less important for larger data transfers. On the other hand, the computation

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

24 W. VANDERBAUWHEDE, T. TAKEMI

grows more than linear with data size, so the cost if the data transfer is less dominant for larger

data sizes. There are other factors, e.g. cache mis-alignment is less important on larger transfers. All

these factors contribute to the observed behavior.

If we compare only the compute performance of the GPU with the original code on the Intel CPU

(compiled with the PGI compiler), we see that the GPU is up to 7× faster (Figure 11).

1E+5 1E+6 1E+7 1E+8 1E+9
1

10

100

1000

10000

100000

Compute performance vs data size
for 50 calls to scalar advection kernel

Intel CPU, pgf90
GeForce GPU, OpenCL, no zeroing
GeForce GPU, OpenCL
Tesla GPU, OpenCL, no zeroing
Tesla GPU, OpenCL

data size (B)

co
m

pu
te

 ti
m

e
(m

s)

Figure 11. Compute performance comparison of original code on Intel CPU, compiled with the PGI Fortran

compiler, to OpenCL code on Tesla and GeForce GPUs.

In summary, the conclusions of this analysis are:

• The host-GPU link is the main bottleneck, and care must be taken in the choice of the host

platform, in particular memory bandwidth and PCIe latency.

• The GPU needs to work on large data sizes for optimal performance. For our kernel,

performance is optimal for data sizes > 64MB.

• If the complete computation was performed on the GPU, this would yield a speed-up of 5× –

10× compared to the original code compiled with the PGI compiler.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF25

wrf

wrf_init

wrf_run

wrf_finalize

init_modules

init_modules_em

integrate

solve_interface

solve_em
rk_tendency

microphysics_driver

rk_scalar_tend

advect_scalar

Figure 12. WRF code structure

6. INTEGRATION OF THE OPENCL CODE INTO WRF

As part of this research we developed a strategy for integrating OpenCL code into large Fortran

codebases such as WRF. We created a simplified Fortran OpenCL wrapper library‖ to facilitate the

integration.

6.1. Overview of WRF Code Structure

The WRF code structure for the dynamic kernel, omitting details, is shown in Figure 12. To integrate

the OpenCL host code code, we added a single use statement and a single call to wrf init in

main/module wrf top.F:

subroutine wrf init(no init1)

! ... other use statements ...

use module init ocl

! ... original wr init code ...

call advect scalar init ocl grid (head grid)

‖https://github.com/wimvanderbauwhede/OpenCLIntegration

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

26 W. VANDERBAUWHEDE, T. TAKEMI

end subroutine wrf init

This is the only change to the initialisation code.

The change to the dynamic kernel code is also minimal: in the subroutine rk tendency (in

dyn em/module em.F) we added:

use module advect scalar ocl

And we replace the call to advect scalar using the preprocessor by a call to advect scalar ocl:

call advect scalar ocl

We could have given the OpenCL routine the same signature as the original advect scalar routine

but for clarity we prefer to have a separate name.

The actual new source code is entirely contained in two new modules, init ocl and

advect scalar ocl.

The first module contains two subroutines, advect scalar init ocl grid and advect scalar init ocl.

The first routine (Algorithm 2) is called in wrf init as shown above. It is essentially a

wrapper routine which extracts information from the head grid datastructure and passes it on to

advect scalar init ocl (Algorithm 3), which performs the OpenCL framework initialisation. The

main actions in this routine are loading and compiling the kernel, creating the buffers and setting

the kernel arguments.

The second module (Algorithm 4) runs the OpenCL scalar advection kernel on the GPU. Its main

actions are writing the data to the GPU, running the GPU and reading back the data. Note that the

GPU is run twice, once to zero the tendencies and once to compute the new tendencies.

To extend this work, rather than making separate calls to all the different dynamics and physics

routines, the aim is to create an OpenCL version of the full solve em subroutine. Then we can simply

replace solve em by solve em ocl in quite the same way as above.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF27

Algorithm 2 OpenCL initialisation wrapper to extract info from grid
subroutine advect scalar init ocl grid (grid)

use module domain

! Variable declarations

...

call get ijk from grid (...)

! Loop range computations

...

call nl get time step (1, time step)

! Call actual OpenCL initialisation routine

call advect scalar init ocl (...)

end subroutine

7. DISCUSSION

The main research questions we set out to answer in this work was: is hardware acceleration of the

Weather Research and Forecasting model on GPUs feasible and worthwhile?

First, we studied the code and performed experiments on the current parallel performance using

MPI and OpenMP. We found that the WRF OpenMP performance is sub-optimal as it performs

worse than MPI, whereas in principle OpenMP should have considerably smaller overhead. We

analyzed the reasons for this behavior, and concluded that to amend it is a major effort. We also

observed that the MPI behavior is strongly sub-linear and saturates typically when 50% of the

available hardware threads have been used, and at a performance of less than half the maximally

achievable performance. In other words, it is in principle possible to speed up WRF considerably.

Then we profiled WRF runs to identify the most important routines in terms of run time. Our

findings, confirmed by other authors, are that the dynamics and physics account for the majority of

the WRF run time. As there has been previous work on acceleration of physics modules, we focused

on the dynamics, and in particular we chose the scalar advection module as the target for our study

as it is the dominant routine in terms of run time. By implementing the GPU kernel and evaluating

its performance, we get more detailed answers to the questions of feasibility and pay-off.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

28 W. VANDERBAUWHEDE, T. TAKEMI

Algorithm 3 OpenCL initialisation routine
subroutine advect scalar init ocl (...)

use oclWrapper

! Load the kernel source and compile for the platform

srcstr=’advect scalar ocl.cc’

kstr=’advect scalar’

call oclInit(srcstr,kstr)

! Set up the ranges

oclGlobalRange = gl range

oclLocalRange = 0 ! NullRange

! Create the buffers

call oclMakeWriteBuffer(tendency buf,jikmfsz)

call oclMakeFloatArrayReadBuffer(field buf,jik sz,field)

!...

! Set the Kernel arguments

call oclSetFloatArrayArg(0, tendency buf)

!...

! Assign to module array for convenience

oclBuffers(1) = tendency buf

!...

end subroutine ! advect scalar init ocl

Before discussing the parallelization of the WRF scalar advection kernel, we want to discuss

the capabilities of the hardware platforms used in this work. There are a lot of unrealistic

expectations considering the achievable performance of multicore CPUs and GPUs. To help

understand the performance of these systems we defined indicators for the compute capability and

memory bandwidth. From these indicators, we concluded that for computation-dominated code, the

theoretical speed-up achievable by running the code on the GPU is quite small: moving the code

from the Intel Xeon to the Nvidia Geforce could result in a speed-up of 1.4×; moving the code from

the AMD host CPU to the Nvidia Tesla C2070 can at best provide a 3% speed-up. As noted above,

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF29

Algorithm 4 OpenCL driver code for scalar advection kernel
subroutine advect scalar ocl (...)

use oclWrapper

!...

! Write buffers to GPU memory

call oclWriteBuffer(field buf,jik sz,field);

!...

! First zero the tendency array on the GPU

zero tend(1)=1

call oclWriteIntBuffer(zero tend buf,zero tend sz, zero tend);

call runOcl(jikmsz,0)

! Then compute the new tendencies

zero tend(1)=0

call oclWriteIntBuffer(zero tend buf,zero tend sz, zero tend);

call runOcl(oclGlobalRange,oclLocalRange)

! Read back results from GPU

call oclReadBuffer(tendency buf,jik sz,tendency)

end subroutine advect scalar ocl

the reason for this smaller improvement is the higher transfer cost on the AMD system. Of course,

these indicators ignore the effect of the implementation of the code and the compiler performance,

but they give an indication of what is achievable in terms of the hardware capability. What this

means is that, if one achieves a higher speed-up than these figures, either the application is not

computation dominated, or the coding is sub-optimal, or the compilation is sub-optimal. If the code

is memory bandwidth dominated, we see that the achievable speed-up is about 4×.

The parallelization of the advection kernel using OpenCL is discussed above, the conclusion is

that it is definitely feasible and can result in very good performance. However, we want to focus

on the findings from the performance evaluation. In our opinion, the most important finding is

that, in order to achieve the best possible performance on either a multicore CPU or a GPU, it

is necessary to considerably rewrite the code for data-parallel execution. The other key finding

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

30 W. VANDERBAUWHEDE, T. TAKEMI

is that the current system architecture is problematic for GPU acceleration, because the PCIe bus

performance constitutes a huge bottleneck. However, it is still possible to achieve good performance

provided that a substantial part of the model code is implemented on the GPU.

On the other hand, one has to ask the question if it is at all worthwhile to offload the code to

the GPU. To evaluate this question we used both OpenCL and OpenMP to parallelize our kernel

code on the multicore CPU. As argued above, there is in fact theoretically almost no difference in

performance between the Intel Xeon E5-2640 multicore CPU and the Nvidia Tesla C2070 GPU.

In practice, the GPU performance of the scalar advection kernel is worse because of the high cost

of moving the data. If we remove this cost – effectively simulating the case of running a fully

integrated model on the GPU – we see that the GPU performance is much better than the original

(single-threaded) code.

The difference in performance between the GPU and the Intel CPU is a result of a combination of

factors: the CPU code is vectorized but single-threaded; the GPU code is parallelised over multiple

compute units but the threads within a single compute units can’t deliver the theoretical level of

parallelism because the memory accesses are not entirely coalesced.

We must introduce another key factor in performance comparisons, often overlooked: the

influence of the compiler. For the original Fortran code, we used both the GNU compiler and the

commercial PGI compiler, and we found that the code compiled with the latter runs much faster

than with the former. The reason is that the PGI compiler makes full use of the Xeon’s 256-bit

AVX vector instructions, while gcc doesn’t. Unfortunately, we did not have a license for the C/C++

version of the PGI compiler and as a result we could not directly evaluate our C++ OpenMP code

performance with this compiler. However, it is reasonable to assume that the PGI compiler would

produce the same speed-ups for the C++ code as for the Fortran code. As seen from the OpenMP

benchmarks (Figure 4), the multi-threaded CPU version could run almost six times faster than the

single-threaded version, so compared to that the GPU would be about two times faster. It is unlikely

that the CPU would be actually six times faster because due to the vectorization, effectively there

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF31

Orig, gfortran, CPU

Orig, gfortran, CPU, MPI best perf

Kernel, gcc, CPU

Kernel, gcc, CPU, OpenMP best perf

OpenCL, GPU

OpenCL, GPU, Compute time only

100 1000 10000 100000 1000000

GPU Compute Performance vs CPU performance
scalar advection kernel, domain 256x256x64

GeForce GPU vs 48-core AMD CPU

compute time (ms)

Figure 13. Advection kernel GPU compute performance vs original kernel parallelized using MPI

will be no benefit from hyperthreading, as demonstrated by Saini in [19], so that the expected figure

is closer to four times, in other words the GPU would be 3 times faster.

From Table I is is clear that the CPIs for the Intel and AMD 48-core CPUs and the GPU are very

similar; furthermore, [20], Langkamp found very little difference in the WRF MPI performance

when compiled using gfortran and the PGI compiler (on a AMD Opteron 2384 system). So, using

the 48-core AMD system as our reference, we can compare our kernel’s compute performance with

the original kernel parallelised using MPI. The results are summarised in Figure 13. We see that

the OpenCL kernel’s compute performance on the GPU is about three times faster than the original

kernel parallelized using MPI on the 48-core AMD CPU.

Thus, we can conclude that the performance of the OpenCL kernel on the GPU would be at least

three times faster than the parallelized kernel on the CPU, for GPUs and CPUs with comparable

CPIs.

Note that if we had only used the GNU compiler on the Intel platform, we would have reported a

20× speed-up; and without compiler optimizations, this figure would be even higher. This example

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

32 W. VANDERBAUWHEDE, T. TAKEMI

illustrates the values of the estimates based on the CPIs, as well as illustrating the differences caused

by different coding styles and compilers.

A final point concerns the optimization goal: should the code be optimized for speed or for power?

For the individual user, the aim is either to reduce the run time of the simulation or increase the

accuracy. The limitation for an individual user is usually the cost of purchasing the system, rather

than the operating cost. Considering that the low cost of a GeForce GPU, it might be more cost-

effective to buy a GPU rather than an additional multicore CPU system.

However, for large high-performance computing centers, the aim is to minimize the energy

consumption of the system, because electricity bills are the dominant component in the total cost

of ownership. To save energy, one must consider both the power consumption and the speed of

execution. For example, if a GPU has the same power consumption as its host CPU, then using it will

result in a net energy savings only if the speed-up is greater than a factor of two. Therefore, arguably,

the key indicator for assessing hardware acceleration should be the increase in performance-per-

Watt. Here, the PCIe-hosted GPU is at a disadvantage because it can’t work without its host, and

even in idle mode the power consumption of a large multicore CPU is considerable. Hosting the

GPU on a low-power ARM or Atom based system is a possible option to alleviate this issue. A

GPU-CPU hybrid such as the AMD Fusion or the low-power Nvidia Tegra 4 could potentially be

an even better choice.

8. CONCLUSIONS

Based on our work we can conclude that GPU acceleration of NWP codes such as WRF is both

feasible and worthwhile, but that a number of important issues remain to be addressed.

A very important conclusion is that rewriting the code as OpenCL-style data-parallel kernels can

already result in significant speed-up of the code on a multicore CPU system using either OpenCL

or OpenMP, i.e. without using a GPU. Consequently, this is an essential step. However, in particular

for WRF this requires a major rewrite of the dynamics and physics code.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF33

Another important finding is that the current PCIe-based CPU-GPU system architecture is sub-

optimal for NWP acceleration because of the huge bottleneck of the data transfers over the PCIe

bus. On the one hand, this means that a considerable part of the code must be executed on the GPU

to amortize this cost. On the other hand, it means that the new CPU-GPU hybrid chips could be very

promising for NWP acceleration.

Our final assessment is that even with the current system architectures, accelerating WRF with a

factor of up to five times is definitely an achievable goal.

It is important to note that our findings are more generally applicable to multi-physics fluid

dynamics codes: in many fluid dynamics codes the numerical schemes of the advection terms are

based on finite differences between neighboring cells, similar to the WRF code. For fluid systems

including multi-physics processes, there are many calls to these advection routines. This class of

numerical codes will benefit from hardware acceleration.

Accelerating multi-physics fluid dynamics codes including NWP codes is critically important for

forecasting applications in atmospheric and environmental issues. Forecasting of extreme weather

events, early warning of environmental pollution, and emergency response to the dispersion of

hazardous materials all requires fast and accurate computations of multi-physics atmospheric

motion. For example, a numerical forecasting of micro-scale atmospheric motions in urban areas

and/or over complex topography should be benefitted from computational accelerations, because

it requires a coupling approach merging NWP and CFD codes [21] or very high resolutions to

accurately represent complex topography [22, 23]. Furthermore, the computational accelerations

would be advantageous in climate prediction simulations with high-resolution global- and regional-

scale atmospheric model for better representing tropical cyclones and heavy rainfall systems

[24, 25].

REFERENCES

1. Shainer G, Liu T, Michalakes J, Liberman J, Layton J, Celebioglu O, Schultz SA, Mora J, Cownie D. Weather

research and forecast (wrf) model performance and profiling analysis on advanced multi-core hpc clusters. The

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

34 W. VANDERBAUWHEDE, T. TAKEMI

10th LCI InternationalConference on High-Performance Clustered Computing. Boulder, CO 2009; .

2. Morton D, Nudson O, Stephenson C. Benchmarking and evaluation of the weather research and forecasting (wrf)

model on the cray xt5. Cray User Group Proceedings, Atlanta, GA 2009; :04–07.

3. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W. The weather research and forecast

model: software architecture and performance. Proceedings of the 11th ECMWF Workshop on the Use of High

Performance Computing In Meteorology, vol. 25, World Scientific, 2004; 29.

4. World Economic Forum. Global Risks 2011 Sixth Edition – An initiative of the Risk Response Network Jan 2011.

5. Stern N. The economics of climate change: the Stern review. Cambridge Univ Pr, 2007.

6. Rosenzweig C, Iglesias A, Yang X, Epstein P, Chivian E. Climate change and us agriculture: The impacts of

warming and extreme weather events on productivity, plant diseases, and pests. Center for Health and the Global

Environment, Harvard Medical School, Boston, MA, USA 2000; .

7. Luber G, McGeehin M. Climate change and extreme heat events. American Journal of Preventive Medicine 2008;

35(5):429–435.

8. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl G. Challenges in combining projections from multiple climate

models. Journal of Climate 2010; 23(10):2739–2758.

9. Michalakes J, Chen S, Dudhia J, Hart L, Klemp J, Middlecoff J, Skamarock W. Development of a next generation

regional weather research and forecast model. Developments in Teracomputing: Proceedings of the Ninth ECMWF

Workshop on the Use of High Performance Computing in Meteorology, vol. 1, World Scientific, 2001; 269–276.

10. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG. A

description of the Advanced Research WRF Version 3. Technical Report, NCAR/TN-475+STR 2008.

11. Skamarock WC, Klemp JB. A time-split nonhydrostatic atmospheric model for weather research and forecasting

applications. Journal of Computational Physics 2008; 227:3465–3485.

12. Michalakes J, Vachharajani M. GPU acceleration of numerical weather prediction. Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on, IEEE, 2008; 1–7.

13. Govett M, Middlecoff J, Henderson T, Rosinski J, Madden P. Successes and Challenges Porting Weather and

Climate Models to GPUs. AGU Fall Meeting Abstracts, vol. 1, 2011; 02.

14. Fuhrer O, Gysi T, Lapillonne X, Osuna C, Cumming B, Sawyer W, Messme P, , Schroeder T, Schulthess TC. GPU

Consideration for Next Generation Weather and Climate Simulations. Technical Report, CSCS Swiss National

Supercomputing Centre 2012.

15. Shimokawabe T, Aoki T, Muroi C, Ishida J, Kawano K, Endo T, Nukada A, Maruyama N, Matsuoka S. An 80-

fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather model ASUCA production code. High

Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for, IEEE, 2010;

1–11.

16. Munshi A, et al.. The OpenCL Specification. Technical Report, Khronos OpenCL Working Group 2009.

17. Hong SY, Lim JO. The wrf single-moment 6-class microphysics scheme (wsm6). Journal of the Korean

Meteorological Society 2006; 42:129–151.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

AN ANALYSIS OF THE FEASIBILITY AND BENEFITS OF GPU/MULTICORE ACCELERATION OF WRF35

18. Porter A, Ashworth M, Gadian A, Burton R, Connolly P, Bane M. WRF Code Optimisation for Meso-Scale Process

Studies (WOMPS) dCSE Project Report. Technical Report, STFC 2012.

19. Saini S, Jin H, Hood R, Barker D, Mehrotra P, Biswas R. The impact of hyper-threading on processor resource

utilization in production applications. High Performance Computing (HiPC), 2011 18th International Conference

on, IEEE, 2011; 1–10.

20. Langkamp T, Böhner J. Influence of the compiler on multi-cpu performance of wrfv3. Geoscientific Model

Development 2011; 4(3):611–623.

21. Nakayama H, Takemi T, Nagai H. Large-eddy simulation of urban boundary-layer flows by generating turbulent

inflows from mesoscale meteorological simulations. Atmospheric Science Letters 2012; 13(3):180–186.

22. Takemi T. High-resolution meteorological simulations of local-scale wind fields over complex terrain: A case study

for the eastern area of fukushima in march 2011. Theoretical and Applied Mechanics Japan 2013; 61:3–10.

23. Oku Y, Takemi T, Ishikawa H, Kanada S, Nakano M. Representation of extreme weather during a typhoon landfall

in regional meteorological simulations: A model intercomparison study for typhoon songda (2004). Hydrologic

Research Letters 2010; 4:1–5.

24. Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto

S, et al.. Climate simulations using mri-agcm3.2 with 20-km grid. Journal of the Meteorological Society of Japan

2012; 90A:233–258.

25. Kanada S, Nakano M, Kato T. Projections of future changes in precipitation and the vertical structure of the frontal

zone during the baiu season in the vicinity of japan using a 5-km-mesh regional climate model. Journal of the

Meteorological Society of Japan 2012; 90A:65–86.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Background
	1.1 The Weather Research and Forecasting Model
	1.2 Previous Work on GPU Acceleration of WRF
	1.3 OpenCL Programming
	1.4 The OclWrapper Library
	1.5 Hardware Performance Indicators
	1.5.1 Computational Performance Indicator
	1.5.2 Communication Bandwidth Limit on Achievable Performance

	2 Methodology
	3 WRF-ARW Performance Analysis
	3.1 Settings of the WRF simulation
	3.2 MPI versus OpenMP
	3.3 WRF Run Profiling

	4 OpenCL Kernel for Scalar Advection
	4.1 Approach
	4.2 Implementation
	4.3 Verification
	4.4 Performance Evaluation
	4.5 Discussion of Kernel Performance

	5 GPU Run Time Analysis
	5.1 Experiments
	5.1.1 Influence of Host System on Transfer Time
	5.1.2 GPU Compute Performance
	5.1.3 Influence of the Data Size

	6 Integration of the OpenCL Code into WRF
	6.1 Overview of WRF Code Structure

	7 Discussion
	8 Conclusions

