<table>
<thead>
<tr>
<th>Title</th>
<th>Enriques quotients of the universal cover of $E[n]$ of an Enriques surface E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>林 太郎</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 代数幾何学シンポジウム記録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/218256</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. Introduction

An Enriques surface E is a compact complex surface with $H^1(E, \mathcal{O}_E) = 0$, $H^2(E, \mathcal{O}_E) = 0$, and $\omega_E \simeq \mathcal{O}_E$. Let $E^{[n]}$ be the Hilbert scheme of n points of E. We fix the universal cover $\pi: X \to E^{[n]}$ and its covering involution ρ. It is known that $\pi_1(E^{[n]}) = 2$ and X is a Calabi-Yau manifold.

Definition 1.1. A variety Y is called an Enriques quotient of X if there is an Enriques surface E_0 and a free involution φ of X such that $Y = X/\varphi$. Here we will call two Enriques quotients of X distinct if they are not isomorphic to each other.

We count the number of distinct Enriques quotients of X.

2. Ohashi’s result

When $n = 1$, Ohashi obtained the following theorem (see [1, Theorem 0.1]).

Theorem 2.1. For any nonnegative integer l, there exists a K3 surface with exactly 2^{2+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a K3 surface.

3. Main Theorem 1

When $n \geq 3$, the situation is totally different from Ohashi’s result (see [2, Theorem 1.7]). We get the following Theorem.

Theorem 3.1. If τ is a free involution of X such that X/τ is an Enriques quotient of X, then $\tau = \rho$. In particular the number of distinct Enriques quotients of X is one.

4. Strategy

i) We show that for $n \geq 3$, the covering involution of $\pi: X \to E^{[n]}$ acts on $H^2(X, \mathbb{C})$ as id and $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}$. Remark $n = 2$, the covering involution of does not acts on $H^2(X, \mathbb{C})$ as id.

ii) We show that for $n \geq 2$, if an automorphism φ of X acts on $H^2(X, \mathbb{C})$ as identity, then φ is a lift of a natural automorphism of $E^{[n]}$.

By using the above, we get Main Theorem 1.

5. Main Theorem 2

When $n = 2$, we get the following Theorem.

Theorem 5.1.

i) For two Enriques surfaces E and E', if $E^{[2]} \cong E'[2]$, then $E \cong E'$.

ii) $\text{Aut}(E^{[2]}) \cong \text{Aut}(E)$, i.e. all automorphisms of $\text{Aut}(E^{[2]})$ are the natural automorphisms.

Remark 5.2.

When $n = 2$, we did not yet count the number of distinct Enriques quotients of X.

6. References
