Enriques quotients of the universal cover of $E^{[n]}$ of an Enriques surface ETaro Hayashi (Osaka university)

1. Introduction

An Enriques surface E is a compact complex surface with $H^1(E, \mathcal{O}_E) = 0$, $H^2(E, \mathcal{O}_E) = 0$, and $\omega_E^{\otimes 2} \simeq \mathcal{O}_E$. Let $E^{[n]}$ be the Hilbert scheme of n points of E. We fix the universal cover $\pi : X \to E^{[n]}$ and its covering involution ρ . It is known that $\pi_1(E^{[n]}) = 2$ and X is a Calabi-Yau manifold.

Definition 1.1. A variety Y is called an Enriques quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y = X/\langle \tau \rangle \cong E'^{[n]}$. Here we will call two Enriques quotients of X distinct if they are not isomorphic to each other.

We count the number of distinct Enriques quotients of X.

2. Ohashi's result -

When n = 1, Ohashi obtained the following theorem (see [1, Theorem 0.1]).

Theorem 2.1. For any nonnegative integer l, there exists a K3 surface with exactly 2^{l+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a K3 surface.

3. Main Theorem 1 -

When $n \geq 3$, the situation is totally different from Ohashi's result (see[2, Theorem 1.7]). We get the following Theorem.

Theorem 3.1. If τ is a free involution of X such that $X/\langle \tau \rangle$ is an Enriques quotient of X, then $\tau = \rho$. In particular the number of distinct Enriques quotients of X is one.

- 4. Stragety –

i) We show that for $n \geq 3$, the covering involution of $\pi : X \to E^{[n]}$ acts on $H^2(X, \mathbb{C})$ as id and $H^{2n-1,1}(X, \mathbb{C})$ as -id. Remark n = 2, the covering involution of does not acts on $H^2(X, \mathbb{C})$ as id.

ii) We show that for $n \geq 2$, if an automorphism φ of X acts on $H^2(X, \mathbb{C})$ as identity, then φ is a lift of a natural automorphism of $E^{[n]}$.

By using the above, we get Main Theorem 1.

$\sim 5. Main Theorem 2$

When n = 2, we get the following Theorem.

Theorem 5.1.

i) For two Enriques surfaces E and E',
if E^[2] ≅ E'^[2], then E ≅ E'.
ii) Aut(E^[2]) ≅ Aut(E), i.e. all automorphisms of Aut(E^[2]) are the natural automorphisms.

Remark 5.2.

When n = 2, we did not yet count the number of distinct Enriques quotients of X.

6. References

 H. Ohashi: On the number of Enriques quotients of a K3 surface. Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181-200. 14J28.
 T. Hayashi: Universal covering calabi-yau

manifolds of the Hilbert schemes of n points of Enriques surfaces. arXiv:1502.02231.