
NO SMOOTH JULIA SETS FOR POLYNOMIAL DIFFEOMORPHISMS
OF C2 WITH POSITIVE ENTROPY

KYOUNGHEE KIM

1. INTRODUCTION

Let f : X ! X be a holomorphic mapping of a complex manifold X . To under-
stand the mapping f as a dynamical system, it is essential to understand invariant
sets. Two important invariant sets are Fatou sets and Julia sets. The Fatou set of
f is the set where the sequence f n are locally equicontinuous, in other word the
Fatou set is the set where the dynamics of f is regular. In case X is not compact,
we may consider a one point compactification of X so that a uniform divergence
sequence can be considered as equicontinuous. By definition, the Fatou set is an
open set. We define the Julia set as the complement of the Fatou set and thus the
chaotic dynamics of f occurs on the Julia set.

Having a smooth Julia set is very special and rare. For instance, if f is a polyno-
mial map of C with the smooth Julia set, f has to be equivalent to either g(x) = xd

where d is an integer with |d| � 2 or a Chebyshev polynomial. Here we consider
the smoothness of Julia sets of polynomial automorphisms of C2 and conclude that
there is no polynomial automorphism of C2 whose Julia set is a C1-smooth mani-
fold. Since a polynomial automorphism f has a polynomial inverse, • is an attract-
ing fixed point for both f and f�1. We can define Julia sets J± for f and f�1 by
J± = ∂K± where K± = {x : f±n(x) is bounded as n ! •}. Fiedland and Milnor [7]
and Smillie [10] showed the topological entropy of a polynomial automorphism f
is equal to log(degree f ).

Theorem 1 (Friedland and Milnor [7]). Suppose f is a polynomial automorphism
of C2. If the degree of f > 1 then f is conjugate to a composition of generalized
Hénon maps. If degree of f = 1, then f is conjugate to either an affine map or an
elementary map.

The image of a line { y = const } under an elementary map is another line { y =
const0 }. In fact elementary maps and affine maps have simple dynamics. (See [7].)
We focus on the composition of generalized Hénon maps. A generalized Hénon
map h : C2 ! C2 is given by

h(x,y) = (y, p(y)�dx)

where p(y) is a monic polynomial of degree d � 2 and d 2 C \ {0}. The complex
Jacobian of h is d and the degree of h, the largest degree of coordinate polynomials,
is d. Suppose

f = hk � · · ·�h1 (1)
a composition of generalized Hénon maps hi(x,y) = (y, pi(y)� dix). Then the de-
gree of f , d is given by the product of degree of hi’s, d := dk · · ·d1, the Jacobian is
d = dk · · ·d1, and the entropy is given by logd > 0. Dynamics of these mappings
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are nontrivial and have been considered by many authors. For instance, it is shown
that for any saddle point q, the stable manifold W s(q) is a Riemann surface dense
in J+. Also since J+ has no interior and is can not be a Riemann surface, if J+ is a
manifold, then the real dimension of J+ has to be 3. (See for example, [4], [3], [2],
[9], [8], [6] and [7])

In this article we will discuss the following theorem

Main Theorem (Bedford and Kim [1]). For any polynomial automorphism of C2 of
positive entropy, neither J+ nor J� is smooth of class C1, in the sense of manifold-
with-boundary.

2. POLYNOMIAL DYNAMICS OF C
Let us consider a polynomial automorphisms f of C with deg( f )> 1. Since the •

is an attracting fixed point, the Julia set J = ∂K where K = {z : f n(z) is bounded as n!
•}. It is known that there is a Green function G(z) := lim 1

dn log(| f n(z)|+ 1) such
that G� f = d ·G, G is harmonic on C�K, and G ⌘ 0 on K.

If the Julia set J is smooth, then every point z 2 J, then the Green function is
piecewise smooth and thus there exists a normal derivative toward outside K. This
follows that | f 0(z)| = d and |( f n)0(z)| = dn for all periodic points z of period n in
J. Since the degree of f > 1, the number of periodic points on J grows like dn.
It follows that having a smooth Julia set requires infinitely many conditions for a
polynomial automorphism of degree d which only have finitely many parameters.
In other words, it is very special to have a smooth Julia set.

Fatou showed that there are only two possibilities for smooth Julia sets.
Case I. f (z) = zd, |d|� 2: In this case the Julia set is a unit circle J = {z : |z|= 1}.

There is the unique fixed point z = 1 on J with f 0(z) = d. If z is a periodic points
of period n, then z = e2pip/q where p and q are relatively prime and q = dn �1 and
therefore ( f n)0(z) = dn.

Case II. f is equivalent to a Chebyshev polynomial: To simplicity, let us consider
one case f (z) = z2 �2. The Julia set is given by an interval [�2,2]. There are two
fixed points on J, z = �1 and z = 2. Their derivatives are given by f 0(�1) = �2
and f 0(2) = 4 respectively. Notice that 2 is on the end point of the Julia set. For
all other periodic points of period n � 2 inside J, one can check that their derivative
are given by 2n. In this case, the critical point z = 0 is on the Julia set. But z = 0 is
a pre-periodic : f : 0 7! �2 7! 2 7! 2 7! · · ·

It is natural to ask whether there are special cases with smooth Julia sets for
polynomial automorphisms in the higher dimension.

3. DYNAMICS OF COMPLEX HÉNON MAPS

The proof of main theorem consists of two parts. In the first part, we used known
theories about generalized Hénon maps to show that

Proposition 2. Suppose f is a composition of generalized Hénon maps with deg( f )=
d. If J+ is a C1 smooth manifold, then f satisfies the followings:

(i) f is a volume decreasing map, i.e. the constant Jacobian d satisfies |d|< 1.
(ii) f has d distinct fixed points and the differential D f has multiplier d at least

d �1 fixed points.
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Friedland and Milnor [7] showed that if d| � 1 then K+ has no interior outside
the bidisk DR = {(x,y) : |x|  R, |y|  R} and f has exactly d isolated fixed points
counted with multiplicity. If J+ is C1 then we can conclude that J+ is orientable
3-manifold. However if |d| � 1, then a small neighborhood of a point in J+ \Dc

R
only contains J+ and an attracting basin of •.

If |d|< 1, assuming that J+ is C1 smooth we see the every fixed point in J+ has
to be saddle and has d as its multiplier. To conclude that there are exactly d�1 such
saddle point in J+ we used the following theorem:

Theorem 3 (Bedford and Smillie[4]). The boundary of any basin of attraction is
J+. Thus if f has more than one basin components, then J+ is not an embedded
topological manifold at any point.

For the detailed proof of Proposition 2, let us refer to the original paper [1]. Here
we will focus the second part which we showed that there is no composition of
generalized Hénon maps satisfies the second condition above Proposition.

4. NON-SMOOTHNESS OF J+ FOR A GENERALIZED HÉNON MAP

In this section, we will explain the basic idea using one generalized Hénon map,
h(x,y) = (y, p(y)� dx) with p(y) is a monic polynomial of degree d � 2 and d 2
C�{0}. Let us set

p(y) = yd +q(y), and q(y) =
d�1

Â
i=0

ci yi.

To get a contradiction, let us assume that the Julia set of h is C1 smooth manifold.

4.1. Conditions from Fixed Points. From the Proposition 2, it follows that h has
d distinct fixed points and at least d �1 fixed points has multiplier d. Fixed points
of h are given by {(x,y)|x = y , p(y)�dy = y}. Let us set

f(y) := p(y)� (d+1)y.

The complex differential at the fixed point (y,y) is Dh(y,y) =
✓

0 1
�d p0(y)

◆
. If d is

a multiplier, det|Dh(y,y)�dI2|(:= (p0(y)�d)(�d)+d) = 0. Let us also set

F(y) := p0(y)� (d2 +d)/d.

That is, if (y⇤,y⇤) is a fixed point for h whose multiplier = d, then f(y⇤) = 0 and
F(y⇤) = 0.

If all fixed points for h have the same multiplier d, then F vanishes at every root
of f(y) = 0. However the zero locus of f, Z(f) consists of d distinct numbers, f
can not divide F due to the reason of the degree. Now let us suppose h has one
fixed point whose multiplier is not equal to d. It follows that there is a 2C such that
(y�a)F(y) vanishes at every fixed point. Since p0(y) = dyd�1 +q0(y), we have

(y�a)F(y) =(y�a)p0(y)� (y�a)(d +d/d)

=dyd + yq0(y)�adyd�1 �aq0(y)� (y�a)(d +d/d)
=df(y)+R

(2)
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where the remainder is a polynomial of degree  d �1.

R = �dq(y)+d(d+1)y+ yq0(y)�adyd�1 �aq0(y)� (y�a)(d +d/d)

To make (y�a)F(y) divisible by f, that is R ⌘ 0, we must have

ci = (�a)d�i ·
✓

d
d � i

◆
8 i = 2, . . . ,d �1,

c1 = (�a)d�1 ·d +d(d +1)/d,

c0 = (�a)d +a(1�1/d).

(3)

Thus we have p(y) = (y�a)d +dy+d/d y+a(1�1/d) and thus

f(y) = (y�a)d +(d/d �1)y+a(1�1/d).

Since we assume (a,a) is a fixed point for h, f(a) = (d� 1)a/d must be equal to
zero. Using the fact that |d|< 1 and d � 2, we see that a has to be zero and therefore
p(y) = yd +d(1+1/d)y.

4.2. Conditions from Period 2 Points. Taking n-th iteration would not change
the Julia set. If the Julia set of h is C1-smooth then all but one fixed points for h2

must have the same multiplier d2 while all but one fixed points for h must have
the same multiplier d. From the previous subsection, we have seen that if all but
one fixed points for h must have the same multiplier d then the only possibility is
p(y) = yd +d(1+1/d)y. Now suppose (y0,y1) is a point of period 2:

h : (y0,y1) 7! (y1,y2) 7! (y0,y1)

It follows that y2 = y0 and two polynomial conditions on y0 and y1.

f0 := yd
0 +d(1+1/d)y0 � (d+1)y1 = 0

f1 := yd
1 +d(1+1/d)y1 � (d+1)y0 = 0.

(4)

Using the theorem 1 by Friedland and Milnor, we see that there are exactly d2 fixed
points for h2 and d of them are fixed points for h. The one extra fixed points with
different multiplier must be the fixed point (0,0). Using the chain rule, we see that

Dh2(y0,y1) = Dh(y1,y0) ·Dh(y0,y1) =


0 1
�d p0(y0)

�
·


0 1
�d p0(y1)

�

To have a multiplier d2, (y0,y1) must satisfies the polynomial equation F = 0 where

F = (�1/d2) ·Det|Dh2(y0,y1)�d2I2|= p0(y1)p0(y0)� (1+d/d)2.

Since the origin is the extra fixed point, to have a C1 smooth Julia set the polynomial
equation y1F must vanish at all d2 roots of the system of equations (4). However

y1F =d2yd�1
2 f1 +d2(d+1)f0

�d(d2 �1)yd�1
0 y1 �dd(d+1)(d +1)y0 +((dd +1)2 � (d/d +1)2)y1

Since all fixed points except the origin are saddle points, those d2 roots of equations
(4) are all distinct. However there are at most d of them that belongs to the zero
set of y1F and thus all not fixed periodic 2 cycles doesn’t have a multiplier d2. It
follows that
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Lemma 4. If f is a generalized Hénon map, then the Julia set is not C1 smooth.

5. n-FOLD COMPOSITION OF GENERALIZED HÉNON MAPS

Let us suppose f is a composition of n generalized Hénon maps with n � 3 and
its Julia set is C1 smooth. As we have seen in the previous section, we can always
consider the iteration to increase the number of Hénon maps in the composition.
When n is too small, it is necessary to consider periodic points. It turns out that a
composition of 3 maps is already sufficient to get the desired contradiction.

f = hn � · · ·�h1 and hi(x,y) = (y, pi(y)�dix)

where pi is a degree di monic polynomial, d = dn · · ·d1, and di is a non-zero complex
number satisfying |d|= |dn · · ·d1|< 1. Let us set pi(y) = ydi

i +zi(yi) then zi(yi) is a
polynomial of degree � di �1.

5.1. An Ideal for Fixed Points. If q = (x,y) is a fixed point for f , there exist n
points in C2 such that (x1,y1) = (x,y), (xi+1,yi+1) = hi(xi,yi) for i = 1, . . . ,n and
(xn+1,yn+1) = (x1,y1). Since hi(x,y) = (y, pi(y)� dix), we see that xi+1 = yi for
all i. Furthermore yi+1 = pi(yi)� diyi�1 for all i where the subscription is defined
cyclically in mod n. Let us define n polynomials in C[y1, . . . ,yn]

f1 := p1(y1)�d1yn � y2

fi := pi(yi)�diyi�1 � yi+1, i = 2, . . . ,n�1
fn := pn(yn)�dnyn�1 � y1

(5)

Each fixed point q = (yn,y1) can be identified with a point q̃ = (y1,y2, . . . ,yn) in the
zero locus of Z(f1, . . . ,fn). From the Proposition 2, we see that Z(f1, . . . ,fn) con-
sists of d distinct points. It follows that every polynomial which vanishes at every
fixed point belongs to the ideal If = hf1,f2, . . . ,fni. To check this, we construct
the Gröbner basis for If. For a zero dimensional ideal, it is relatively easy to find
its Gröbner basis. (See for example [5].) In our case, the formula of a generalized
Hénon map makes it possible to compute the Gröbner basis of the ideal generated
by f1, . . . ,fn. Notice the fact that each fi only depends on three variables and its
non linear terms only depends on one variable yi. Using this, we first get the Gröb-
ner basis and perform multivariate division algorithm to show that F can not be in
the ideal If.

Let us fix the graded lexicographical order in monomials in {y1, . . .yn}. Notice
that in fi all non-linear terms belong to pi(yi). The least common multiple of the
leading terms of fi,f j is ydi

i yd j
j . Now because di � 2, qi := fi � ydi

i is a polynomial
whose leading term is strictly smaller than the leading term of fi. Thus we have

yd j
j fi � ydi

i f j = (f j �q j)fi � (fi �qi)f j =�q jfi +qif j.

Using Buchberger’s Algorithm, we see that {f1, . . . ,fn} is in fact a Gröbner basis
of the ideal If.

Lemma 5. With the graded lexicographical order, {f1, . . . ,fn} is a Gröbner basis
of If.
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5.2. Multiplier Condition. The complex differential of f at the fixed point q $
q̃ = (y1, . . . ,yn) is given by

D f (q) = Dhn(yn�1,yn) ·Dhn�1(yn�2,yn�1) · · ·Dh1(yn,y1)

where Dhi(x,y) =
✓

0 1
�di p0i(y)

◆
for all i. If a fixed point q has d as its multi-

plier, then F := det|D f (q)�dI2| = 0. Direct computation shows that F is a linear
combination of products of p0i(yi)

F = Â
J⇢{1,...,n}

aJ

 

’
i2J

p0i(yi)

!
. (6)

Using the fact that F is the determinant of 2⇥2 matrix and the induction on n, one
can also show that the index set J satisfies |J|= n�2k for some k = 0,1, . . .bn/2c.
The leading monomial of F is given by the product of leading monomials of p0i(yi), i=
1, . . . ,n.

The Leading Monomial of F, LM(F) = yd1�1
1 yd2�1

2 · · ·ydn�1
n .

With the graded lexicographical order, LM(F) is not divisible by fi for each i =
1, . . . ,n since the leading monomial of fi, LM(fi) = ydi

i . It follows that F 62 If and
thus f must have one fixed point with different multiplier.

5.3. Division Algorithm. To simplicity let us assume that one extra fixed point is
(0,0). Otherwise we can always use affine conjugation to move the extra fixed point
to the origin. The leading monomial of y1F is yd1

1 yd2�1
2 · · ·ydn�1

n which is divisible
by the leading monomial of f1. In fact, we have

y1F = yd1
1 ·Q(y2, . . . ,yn)+R1(y1, . . . ,yn)

where R1 is a polynomial in y1, . . . ,yn and none of LM(fi) divides LM(R) for i =
1, . . . ,n and Q is a polynomial in y2, . . . ,yn with LM(Q) = yd2�1

2 · · ·ydn�1
n . Since

F is written in a special form in (6), we see that Q also has the same form in (6)
with variables y2, . . . ,yn. Recall that a monic polynomial pi(yi) = ydi

i + zi(yi) and
yd1

1 = f1 �z1(y1)+d1yn + y2. Thus we have

y1F =Q(y2, . . . ,yn)f1 �z1(y1)Q(y2, . . . ,yn)

+d1yn ·Q(y2, . . . ,yn)+ y2 ·Q(y2, . . . ,yn)+R1(y1, . . . ,yn).

Since both y2Q and d1ynQ have the essentially same form as y1F with the reduced
number of variables, we can apply the multivariable division algorithm with f2 and
fn respectively and get

y1F =Q(y2, . . . ,yn)f1 +d1Qn(y2, . . . ,yn�1)fn +Q2(y3, . . . ,yn)f2

+d1dnyn�1Qn(y2, . . . ,yn�1)+d1y1Qn(y2, . . . ,yn�1)

+d2y1Q2(y3, . . . ,yn)+ y3Q2(y3, . . . ,yn)

�z1(y1)Q(y2, . . . ,yn)�d1zn(yn)Qn(y2, . . . ,yn�1)

�z2(y2)Q2(y3, . . . ,yn)+R1(y1, . . . ,yn).

(7)

Since the cardinality of the index sets in the summation in (6) decreases by 2, each
time we remove the leading terms, we only create the remainder terms with smaller
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number of variables. For instance the term yk
1yd2�1

2 ydn�1
n , k  d1�1 only appears in

either z1(y1)Q(y2, . . . ,yn) or R1(y1, . . . ,yn). Continuing this division algorithm we
get

y1F = A1f1 +A2f2 + · · ·+AnFn +R

where the leading monomial of the remainder R is not divisible by any of the leading
monomial of fi for i = 1, . . . ,n. Since z1(y1)Q(y2, . . . ,yn) has terms of the form
yk

1 ’i2J pi(yi) with |J| n�2 and k  d1�1, the monomial y1ydn�1
n ’n�1

i=3 ydi�1
i only

appears in d2y1Q2(y3, . . . ,yn) in (7). Similarly the monomial y1yd2�1
2 ’n�1

i=3 ydi�1
i is

in only d1y1Qn(y2, . . . ,yn�1). It follows that the remainder term R can be written as
sum of two polynomials R = R⇤+ R̃ and

R⇤ = (d1d2d2y1ydn�1
n +d1dnd1y1yd2�1

2 )
n�1

’
i=3

ydi�1
i

and R̃ doesn’t have monomials in R⇤. Since n � 3, we conclude that R⇤ is not equal
to zero and thus

y1F 62 hf1,f2, . . . ,fni
Thus we have

Lemma 6. If f is a composition of generalized Hénon maps, then the Julia set is
not C1 smooth.

Since both f and f�1 are equivalent to composition of generalized Hénon maps,
applying above Lemma for both f and f�1 we get the main theorem. In fact the
argument in this section works for any multiplier.

Corollary 7. Suppose f is a n-fold composition of the generalized Hénon maps with
n � 3 and suppose d 6= 0. Let d be the degree of f . Then for all l 2 C, the number
of fixed points with the multiplier l is at most d �2.

REFERENCES

[1] E. Bedford and K. Kim. No smooth julia sets for polynomial diffeomorphisms of C2 with
positive entropy. 2015.

[2] Eric Bedford, Mikhail Lyubich, and John Smillie. Polynomial diffeomorphisms of C2. IV. The
measure of maximal entropy and laminar currents. Invent. Math., 112(1):77–125, 1993.

[3] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2: currents, equilibrium mea-
sure and hyperbolicity. Invent. Math., 103(1):69–99, 1991.

[4] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2. II. Stable manifolds and
recurrence. J. Amer. Math. Soc., 4(4):657–679, 1991.

[5] D Cox, J Little, and D O’Shea. Ideals, varieties, and algorithms. Springer, New York, 2007.
[6] John Erik Fornæss and Nessim Sibony. Complex Hénon mappings in C2 and Fatou-Bieberbach

domains. Duke Math. J., 65(2):345–380, 1992.
[7] Shmuel Friedland and John Milnor. Dynamical properties of plane polynomial automorphisms.

Ergodic Theory Dynam. Systems, 9(1):67–99, 1989.
[8] John H. Hubbard and Ralph W. Oberste-Vorth. Hénon mappings in the complex domain. I. The

global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math., (79):5–46, 1994.

109



NO SMOOTH JULIA SETS 8

[9] John H. Hubbard and Ralph W. Oberste-Vorth. Hénon mappings in the complex domain.
II. Projective and inductive limits of polynomials. In Real and complex dynamical systems
(Hillerød, 1993), volume 464 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 89–132.
Kluwer Acad. Publ., Dordrecht, 1995.

[10] John Smillie. The entropy of polynomial diffeomorphisms of C2. Ergodic Theory Dynam. Sys-
tems, 10(4):823–827, 1990.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE FL 32306,
USA
CURRENT ADDRESS: RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVER-
SITY, KYOTO, JAPAN

E-mail address: kim@math.fsu.edu

110




