On the singularities of varieties admitting an endomorphism

Amaël Broustet

Acknowledgments This conference paper is about a joint work with Andreas Höring published in [BH14].

1 Introduction

We will consider normal projective varieties over \mathbb{C}.
During the last thirty years, there has been a lot of interest in the study of varieties admitting an endomorphism :
1.1 Definition. An endomorphism is a finite surjective morphism $f: X \rightarrow X$ of degree $\operatorname{deg}(f)>1$.

The existence of an endomorphism on a variety X impose strong conditions on the global structure of X. For instance, the variety X cannot be of general type. Under the additional condition that the endomorphism f is polarized (see definition 3.2), then the Kodaira dimension of X is at most 0 . For an overview of the classification of varieties admitting an endomorphism, see [FN08].

The following problem concerning the endomorphisms of \mathbf{P}^{n} comes from complex dynamics. It has originally been studied by Fornaess and Sibony who solved the case $n=2$ in [FS94].
1.2 Definition. Let $f: X \rightarrow X$ be an endomorphism. A subset Z is said totally invariant if

$$
f^{-1}(Z)=Z
$$

1.3 Conjecture. Let $f: \mathbf{P}^{n} \rightarrow \mathbf{P}^{n}$ an endomorphism and $S=f^{-1}(S)$ a totally invariant irreducible hypersurface.

Then S is linear.

The case of smooth hypersurfaces was solved by Cerveau and Lins Neto in [CLN00]. More generally, Paranjape and Srinivas [PS89] for the quadrics and Beauville [Bea01] for higher degree hypersurfaces proved the following theorem.
1.4 Theorem. A smooth complex projective hypersurface S of dimension $\operatorname{dim}(S) \geqslant 2$ and degree $d \geqslant 2$ admits no endomorphism.
1.5 Corollary. Let $f: \mathbf{P}^{n} \rightarrow \mathbf{P}^{n}$ an endomorphism and $S=f^{-1}(S)$ a totally invariant smooth hypersurface.

Then S is linear.

Thus the conjecture 1.3 is equivalent to the smoothness of hypersurfaces totally invariant by an endomorphism $f: \mathbf{P}^{n} \rightarrow \mathbf{P}^{n}$.
A natural question is to ask if the existence of an endomorphism on a variety X impose conditions on the singularities of X. We cannot expect X to be smooth, see for instance [BdFF12, sections 6.2, 6.3]. However in the article just cited, Boucksom, de Fernex and Favre have shown that in the case of isolated singularities, the singularities of X are controlled in term of the singularities appearing in the minimal model program.

2 Singularities of pairs

We recall briefly the usual terminology for the singularities of pairs. We refer to [KM98] for more details.
Let $\Delta=\sum_{i} d_{i} \Delta_{i}$ be a \mathbb{Q}-Weil divisor on X with $d_{i} \leq 1$ for all i.
We say that the pair (X, Δ) is lc (resp. klt) if

- $K_{X}+\Delta$ is \mathbb{Q}-Cartier and
- for every proper birational morphism $\mu: X^{\prime} \rightarrow X$ from a normal variety X^{\prime} we can write

$$
K_{X^{\prime}}+\mu_{*}^{-1}(\Delta)=\mu^{*}\left(K_{X}+\Delta\right)+\sum_{j} a\left(E_{j}, X, \Delta\right) E_{j}
$$

where the divisor E_{j} are μ-exceptional and $a\left(E_{j}, X, \Delta\right) \geq-1$ (resp. $a\left(E_{j}, X, \Delta\right)>$ $-1)$ for all j.

The numbers $a\left(E_{j}, X, \Delta\right)$ are called the discrepancies of the divisors E_{j}.
For a pair (X, Δ), the non-lc locus $\operatorname{Nlc}(X, \Delta)$ is the smallest closed set $W \subset X$ such that $\left(X \backslash W,\left.\Delta\right|_{X \backslash W}\right)$ is lc.

If (X, Δ) is lc, we say that a subvariety $Z \subset X$ is an lc centre if there exists a proper birational morphism $\mu: X^{\prime} \rightarrow X$ and a μ-exceptional divisor E such that $E \rightarrow Z$ and $a(E, X, \Delta)=-1$.

3 Singularities of varieties admitting an endomorphism

Unfortunately, for non-isolated singularities the direct generalization of the results of [BdFF12] is not true.
3.1 Example. Let Y be a variety being not log-canonical.

Let $h: \mathbf{P}^{\mathbf{1}} \rightarrow \mathbf{P}^{\mathbf{1}}$ the endomorphism defined by $f\left(x_{0}: x_{1}\right)=\left(x_{0}^{2}: x_{1}^{2}\right)$.
Let $X=\mathbf{P}^{\mathbf{1}} \times Y$ and $f: X \rightarrow X$ defined by $f(x, y)=(h(x), y)$.
Then X is not \log-canonical and f is an endomorphism of X.

To avoid this 'product' case, we can require the endomorphism to be polarized.
3.2 Definition. An endomorphism $f: X \rightarrow X$ is said polarized, if there exists an ample divisor A and an integer n such that

$$
f^{*} A \sim n A
$$

We thus obtain the following result on the singularities of varieties admitting a polarized endomorphism.
3.3 Theorem./[BH14], corollary 1.3] Let X be a normal projective variety such that K_{X} is \mathbb{Q}-Cartier, and let $f: X \rightarrow X$ be a polarised endomorphism.
Then X has at most log-canonical singularities. Moreover X is klt near the ramification divisor R.

If the endomorphism is not polarized, we cannot avoid having non-log-canonical singularities, but the locus of this singularities is totally invariant and satisfy a condition on the degree of the restriction of the endomorphism to it.
3.4 Theorem./[BH14], theorem 1.2] Let X be a normal variety such that K_{X} is \mathbb{Q} Cartier, and let $f: X \rightarrow X$ be an endomorphism.

Let Z be an irreducible component of the non-lc locus $\operatorname{Nlc}(X)$. Then (up to replacing f by some iterate) Z is totally invariant. In this case Z is not contained in the ramification divisor R, and the induced endomorphism $\left.f\right|_{Z}: Z \rightarrow Z$ satisfies

$$
\operatorname{deg}\left(\left.f\right|_{Z}\right)=\operatorname{deg}(f)
$$

4 Lifting endomorphisms on a resolution

It is convenient to be able to lift the endomorphism on a resolution of the singularities of X. Although not always possible in general, in the étale in codimension 1 case we can lift the endomorphism to a special partial resolution : the log-canonical modification.
4.1 Definition. Let (X, Δ) be a log-pair such that $\Delta \geq 0$. A log-canonical model over the pair (X, Δ) is a proper birational morphism

$$
\mu: Y \rightarrow X
$$

such that if we set

$$
\Delta_{Y}:=\mu_{*}^{-1}(\Delta)+E_{\mu}^{l c}
$$

where $E_{\mu}^{l c}$ is the sum of all the μ-exceptional prime divisors taken with coefficient one, the pair $\left(Y, \Delta_{Y}\right)$ is log-canonical and $K_{Y}+\Delta_{Y}$ is μ-ample.

The existence of the log-canonical models is a consequence of the full minimal model program, including abundance conjecture. In the log- \mathbb{Q}-Gorenstein case, the existence of log-canonical models has been proved by Odaka and Xu in [OX12].

4.2 Theorem.

- If there exists a log-canonical model over a pair (X, Δ), it is unique up to isomorphism.
- Suppose now that $\Delta \geq 0$ and $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then there exists a log-canonical model over (X, Δ). Moreover the μ-exceptional locus has pure codimension one. If we write

$$
K_{Y}+\Delta_{Y}=\mu^{*}\left(K_{X}+\Delta\right)+\Delta_{Y}^{>1}
$$

then $\Delta_{Y}^{>1}$ is anti-effective and $\operatorname{supp} \Delta_{Y}^{>1}=\operatorname{Exc}(\mu)$.

So we have the following lemma which is the main tool in the étale in codimension 1 case.
4.3 Lemma.[/BH14], lemma 2.11] Let $f: X_{1} \rightarrow X_{2}$ be a finite morphism. Let Δ_{1} and Δ_{2} be reduced effective Weil divisors on X_{1} and X_{2} such that $\Delta_{1}=\operatorname{supp} f^{*} \Delta_{2}$ and we have

$$
K_{X_{1}}+\Delta_{1}=f^{*}\left(K_{X_{2}}+\Delta_{2}\right)
$$

Suppose that there exists a log-canonical model $\mu_{2}:\left(Y_{2}, \Delta_{Y, 2}\right) \rightarrow\left(X_{2}, \Delta_{2}\right)$ over the pair $\left(X_{2}, \Delta_{2}\right)$.
Then there exists a log-canonical model $\mu_{1}:\left(Y_{1}, \Delta_{Y, 1}\right) \rightarrow\left(X_{1}, \Delta_{1}\right)$ over the pair $\left(X_{1}, \Delta_{1}\right)$, moreover f lifts to a finite morphism $g: Y_{1} \rightarrow Y_{2}$ such that

$$
K_{Y_{1}}+\Delta_{Y, 1}=g^{*}\left(K_{Y_{2}}+\Delta_{Y, 2}\right)
$$

and $\mu_{2} \circ g=f \circ \mu_{1}$.

5 Proof of the main results

We only sketch the proof and refer to [BH14] for the full details.

Invariance. The following lemma shows the crucial invariance of the non-log-canonical locus.
5.1 Lemma. Let $f: X \rightarrow X$ be an endomorphism. Assume that K_{X} is \mathbb{Q}-Cartier.

Let $Z \subset X$ be an irreducible component of $\operatorname{Nlc}(X, \Delta)$.
Then (up to replacing f by some power) we have

$$
f^{-1}(Z)=Z
$$

The ramified case. The following result shows that we can reduce the situation to the non-ramified case.
5.2 Proposition./[BH14], proposition 3.1] Let $f: X \rightarrow X$ be an endomorphism. Denote by R the ramification divisor. Assume that K_{X} is \mathbb{Q}-Cartier.

Let Z be an irreducible component of $\operatorname{Nlc}(X, 0)$ that is totally invariant.
Then $Z \not \subset R$.

The étale case. We now consider an irreducible component Z of $\operatorname{Nlc}(X, 0)$.
Assume that :

- Z is totally invariant (up to replacing f by an iterate).
- The ramification divisor R is null, so that $K_{X}=f^{*} K_{X}$ (using the previous proposition and working locally around Z).
Taking a log-canonical model $\mu:\left(Y, \Delta_{Y}\right) \rightarrow(X, 0)$, we can lift $f: X \rightarrow X$ to an endomorphism $g: Y \rightarrow Y$.
We have

$$
K_{Y}+\Delta_{Y}=g^{*}\left(K_{Y}+\Delta_{Y}\right)
$$

Letting

$$
K_{Y}+\Delta_{Y}=\mu^{*} K_{X}+\Delta_{Y}^{>1}
$$

We have

$$
\mu^{*} K_{X}+\Delta_{Y}^{>1}=g^{*}\left(\mu^{*} K_{X}+\Delta_{Y}^{>1}\right)
$$

That is

$$
\Delta_{Y}^{>1}=g^{*} \Delta_{Y}^{>1}
$$

Thus

$$
g^{*} E_{i}=E_{i}
$$

for every exceptional divisor.
g^{-1} acts by permutation on the μ-exceptional divisors E_{i} dominating Z. Up to taking an iterate we can assume that $g^{-1}\left(E_{1}\right)=E_{1}$.

We have

$$
\operatorname{deg}\left(\left.g\right|_{E_{1}}\right)=\operatorname{deg}\left(\left.f\right|_{Z}\right)
$$

Arguing by contradiction, we assume that $\operatorname{deg}\left(\left.f\right|_{Z}\right)<\operatorname{deg}(f)$.
This means that

$$
\operatorname{deg}\left(\left.g\right|_{E_{1}}\right)<\operatorname{deg}(g)
$$

Thus g ramify over E_{1} :

$$
g^{*} E_{1}=r E_{1}
$$

with $r>1$. This is a contradiction.

The case of a polarized endomorphism. If $Z \subset X$ is a totally invariant subvariety, the endomorphism $\left.f\right|_{Z}: Z \rightarrow Z$ is polarised by $\left.H\right|_{Z}$ (for H such that $f^{*} H \sim m H$).
We have

$$
\operatorname{deg}\left(\left.f\right|_{Z}\right)=m^{\operatorname{dim} Z}<m^{\operatorname{dim} X}=\operatorname{deg}(f)
$$

Thus Z is not a component of $\operatorname{Nlc}(X, 0)$.

References

[BdFF12] Sebastien Boucksom, Tommaso de Fernex, and Charles Favre. The volume of an isolated singularity. Duke Math. J., 161(8):1455-1520, 2012.
[Bea01] Arnaud Beauville. Endomorphisms of hypersurfaces and other manifolds. Internat. Math. Res. Notices, (1):53-58, 2001.
[BH14] Amaël Broustet and Andreas Höring. Singularities of varieties admitting an endomorphism. Mathematische Annalen, 360(1-2):439-456, apr 2014.
[CLN00] D. Cerveau and A. Lins Neto. Hypersurfaces exceptionnelles des endomorphismes de CP(n). Bol. Soc. Brasil. Mat. (N.S.), 31(2):155-161, 2000.
[FN08] Yoshio Fujimoto and Noboru Nakayama. Complex projective manifolds which admit non-isomorphic surjective endomorphisms. In Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, B9, pages 51-79. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.
[FS94] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimension. I. Astérisque, (222):5, 201-231, 1994. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992).
[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[OX12] Yuji Odaka and Chenyang Xu. Log-canonical models of singular pairs and its applications. Mathematical Research Letters, 19(2):325-334, 2012.
[PS89] K. H. Paranjape and V. Srinivas. Self-maps of homogeneous spaces. Invent. Math., 98(2):425-444, 1989.

