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1 Introduction

We will consider normal projective varieties over C.

During the last thirty years, there has been a lot of interest in the study of varieties
admitting an endomorphism :

1.1 Definition. An endomorphism is a finite surjective morphism f : X ! X of degree
deg(f) > 1.

The existence of an endomorphism on a variety X impose strong conditions on the
global structure of X. For instance, the variety X cannot be of general type. Under the
additional condition that the endomorphism f is polarized (see definition 3.2), then the
Kodaira dimension of X is at most 0. For an overview of the classification of varieties
admitting an endomorphism, see [FN08].

The following problem concerning the endomorphisms of Pn comes from complex dy-
namics. It has originally been studied by Fornaess and Sibony who solved the case n = 2

in [FS94].

1.2 Definition. Let f : X ! X be an endomorphism. A subset Z is said totally
invariant if

f�1
(Z) = Z

1.3 Conjecture. Let f : Pn ! Pn an endomorphism and S = f�1
(S) a totally invari-

ant irreducible hypersurface.

Then S is linear.
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The case of smooth hypersurfaces was solved by Cerveau and Lins Neto in [CLN00].
More generally, Paranjape and Srinivas [PS89] for the quadrics and Beauville [Bea01] for
higher degree hypersurfaces proved the following theorem.

1.4 Theorem. A smooth complex projective hypersurface S of dimension dim(S) > 2

and degree d > 2 admits no endomorphism.

1.5 Corollary. Let f : Pn ! Pn an endomorphism and S = f�1
(S) a totally invariant

smooth hypersurface.

Then S is linear.

Thus the conjecture 1.3 is equivalent to the smoothness of hypersurfaces totally invariant
by an endomorphism f : Pn ! Pn.

A natural question is to ask if the existence of an endomorphism on a variety X impose
conditions on the singularities of X. We cannot expect X to be smooth, see for instance
[BdFF12, sections 6.2, 6.3]. However in the article just cited, Boucksom, de Fernex and
Favre have shown that in the case of isolated singularities, the singularities of X are
controlled in term of the singularities appearing in the minimal model program.

2 Singularities of pairs

We recall briefly the usual terminology for the singularities of pairs. We refer to [KM98]
for more details.

Let � =

P
i di�i be a Q-Weil divisor on X with di  1 for all i.

We say that the pair (X,�) is lc (resp. klt) if

• KX +� is Q-Cartier and

• for every proper birational morphism µ : X 0 ! X from a normal variety X 0 we can
write

KX0
+ µ�1

⇤ (�) = µ⇤
(KX +�) +

X

j

a(Ej , X,�)Ej ,

where the divisor Ej are µ-exceptional and a(Ej , X,�) � �1 (resp. a(Ej , X,�) >
�1) for all j.

The numbers a(Ej , X,�) are called the discrepancies of the divisors Ej .

For a pair (X,�), the non-lc locus Nlc(X,�) is the smallest closed set W ⇢ X such that
(X \W,�|X\W ) is lc.

If (X,�) is lc, we say that a subvariety Z ⇢ X is an lc centre if there exists a proper
birational morphism µ : X 0 ! X and a µ-exceptional divisor E such that E ⇣ Z and
a(E,X,�) = �1.
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3 Singularities of varieties admitting an endomorphism

Unfortunately, for non-isolated singularities the direct generalization of the results of
[BdFF12] is not true.

3.1 Example. Let Y be a variety being not log-canonical.

Let h : P1 ! P1 the endomorphism defined by f(x0 : x1) = (x20 : x
2
1).

Let X = P1 ⇥ Y and f : X ! X defined by f(x, y) = (h(x), y).

Then X is not log-canonical and f is an endomorphism of X.

To avoid this ‘product’ case, we can require the endomorphism to be polarized.

3.2 Definition. An endomorphism f : X ! X is said polarized,

if there exists an ample divisor A and an integer n such that

f⇤A ⇠ nA.

We thus obtain the following result on the singularities of varieties admitting a polarized
endomorphism.

3.3 Theorem.[[BH14], corollary 1.3] Let X be a normal projective variety such that
KX is Q-Cartier, and let f : X ! X be a polarised endomorphism.

Then X has at most log-canonical singularities. Moreover X is klt near the ramification
divisor R.

If the endomorphism is not polarized, we cannot avoid having non-log-canonical singu-
larities, but the locus of this singularities is totally invariant and satisfy a condition on
the degree of the restriction of the endomorphism to it.

3.4 Theorem.[[BH14], theorem 1.2] Let X be a normal variety such that KX is Q-
Cartier, and let f : X ! X be an endomorphism.

Let Z be an irreducible component of the non-lc locus Nlc(X). Then (up to replacing f
by some iterate) Z is totally invariant. In this case Z is not contained in the ramification
divisor R, and the induced endomorphism f |Z : Z ! Z satisfies

deg(f |Z) = deg(f).

4 Lifting endomorphisms on a resolution

It is convenient to be able to lift the endomorphism on a resolution of the singularities
of X. Although not always possible in general, in the étale in codimension 1 case we can
lift the endomorphism to a special partial resolution : the log-canonical modification.
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4.1 Definition. Let (X,�) be a log-pair such that � � 0. A log-canonical model over
the pair (X,�) is a proper birational morphism

µ : Y ! X

such that if we set
�Y := µ�1

⇤ (�) + Elc
µ ,

where Elc
µ is the sum of all the µ-exceptional prime divisors taken with coefficient one,

the pair (Y,�Y ) is log-canonical and KY +�Y is µ-ample.

The existence of the log-canonical models is a consequence of the full minimal model
program, including abundance conjecture. In the log-Q-Gorenstein case, the existence of
log-canonical models has been proved by Odaka and Xu in [OX12].

4.2 Theorem.

• If there exists a log-canonical model over a pair (X,�), it is unique up to isomor-
phism.

• Suppose now that � � 0 and KX+� is Q-Cartier. Then there exists a log-canonical
model over (X,�). Moreover the µ-exceptional locus has pure codimension one. If
we write

KY +�Y = µ⇤
(KX +�) +�

>1
Y ,

then �

>1
Y is anti-effective and supp�

>1
Y = Exc(µ).

So we have the following lemma which is the main tool in the étale in codimension 1

case.

4.3 Lemma.[[BH14], lemma 2.11] Let f : X1 ! X2 be a finite morphism. Let �1 and
�2 be reduced effective Weil divisors on X1 and X2 such that �1 = supp f⇤

�2 and we
have

KX1 +�1 = f⇤
(KX2 +�2).

Suppose that there exists a log-canonical model µ2 : (Y2,�Y,2) ! (X2,�2) over the pair
(X2,�2).

Then there exists a log-canonical model µ1 : (Y1,�Y,1) ! (X1,�1) over the pair (X1,�1),
moreover f lifts to a finite morphism g : Y1 ! Y2 such that

KY1 +�Y,1 = g⇤(KY2 +�Y,2)

and µ2 � g = f � µ1.

5 Proof of the main results

We only sketch the proof and refer to [BH14] for the full details.
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Invariance. The following lemma shows the crucial invariance of the non-log-canonical
locus.

5.1 Lemma. Let f : X ! X be an endomorphism. Assume that KX is Q-Cartier.

Let Z ⇢ X be an irreducible component of Nlc(X,�).

Then (up to replacing f by some power) we have

f�1
(Z) = Z.

The ramified case. The following result shows that we can reduce the situation to the
non-ramified case.

5.2 Proposition.[[BH14], proposition 3.1] Let f : X ! X be an endomorphism. De-
note by R the ramification divisor. Assume that KX is Q-Cartier.

Let Z be an irreducible component of Nlc(X, 0) that is totally invariant.

Then Z 6⇢ R.

The étale case. We now consider an irreducible component Z of Nlc(X, 0).

Assume that :

• Z is totally invariant (up to replacing f by an iterate).

• The ramification divisor R is null, so that KX = f⇤KX (using the previous propo-
sition and working locally around Z).

Taking a log-canonical model µ : (Y,�Y ) ! (X, 0), we can lift f : X ! X to an endo-
morphism g : Y ! Y .

We have
KY +�Y = g⇤(KY +�Y )

Letting
KY +�Y = µ⇤KX +�

>1
Y ,

We have
µ⇤KX +�

>1
Y = g⇤(µ⇤KX +�

>1
Y )

That is
�

>1
Y = g⇤�>1

Y

Thus
g⇤Ei = Ei

for every exceptional divisor.
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g�1 acts by permutation on the µ-exceptional divisors Ei dominating Z. Up to taking
an iterate we can assume that g�1

(E1) = E1.

We have
deg(g|E1) = deg(f |Z).

Arguing by contradiction, we assume that deg(f |Z) < deg(f).

This means that
deg(g|E1) < deg(g).

Thus g ramify over E1 :
g⇤E1 = rE1

with r > 1. This is a contradiction.

The case of a polarized endomorphism. If Z ⇢ X is a totally invariant subvariety,
the endomorphism f |Z : Z ! Z is polarised by H|Z (for H such that f⇤H ⇠ mH).

We have
deg(f |Z) = mdimZ < mdimX

= deg(f).

Thus Z is not a component of Nlc(X, 0).
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