
DEGENERATION AND CURVES ON K3 SURFACES

TAKEO NISHINOU

Abstract. We study curves on K3 surfaces. A folklore conjecture concerning rational
curves on K3 surfaces states that all K3 surfaces contain infinite number of irreducible
rational curves. It is known that all K3 surfaces, except those contained in the countable
union of hypersurfaces in the moduli space of K3 surfaces satisfy this property. We
present a new approach for constructing curves using degenerations, and apply this
technique to the above problem. In particular, we prove that there is a Zariski open
dense subset in the moduli space of K3 surfaces whose members satisfy the conjecture.

1. Introduction

A folklore conjecture concerning rational curves on K3 surfaces is the following (see [4,
Section 13] for more details about the historical development related to this conjecture).

Conjecture 1. Every polarized K3 surface (X,H) over an algebraically closed field con-
tains infinitely many integral rational curves linearly equivalent to some multiple of H.

Mori and Mukai [7] showed (attributed to Bogomorov and Mumford) that every com-
plex polarized K3 surface (X,H) contains at least 1 rational curve which belongs to the
linear system |H|. One subtle point about this problem is the difference between generic
and general. Here generic means a property held by members in a non-empty Zariski
open subset of the moduli space of K3 surfaces. While general means a property held
by members in the complement of the countable union of proper Zariski closed subsets
(typically hypersurfaces). Using this terminology, one can deduce from Mori and Mukai’s
argument that a general polarized complex K3 surface (X,H) contains infinitely many
irreducible rational curves linearly equivalent to some nH (see [4, Corollary 1.2, Section
13]).

In the late 90’s, Chen [2] proved the existence of infinitely many irreducible nodal
rational curves on general K3 surfaces. More recently, Bogomolov-Hassett-Tschinkel [1]
and Li-Liedtke [6] proved stronger result for general K3 surfaces based on sophisticated
arithmetic geometric argument as well as deep geometry of K3 surfaces.

We introduce new technique to construct curves on varieties via degeneration. Our
method is essentially elementary, constructive, and does not much depend on the special
properties of K3 surfaces. In fact, it can also be used to produce many kinds of holo-
morphic curves in variety of situations. For example, the same ideas can be applied to
construct rational curves on Calabi-Yau quintic 3-folds and holomorphic disks on hyper-
surfaces in Pn ([8]), and holomorphic curves on Abelian surfaces ([10]).
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2. Degeneration of K3 surfaces and obstruction

In this section, we recall some calculations in [8]. There we considered a degeneration
of a quartic K3 surface

xyzw + tf(x, y, z, w) = 0,

where x, y, z, w are homogeneous coordinates of P3, t ∈ C is the parameter of the degen-
eration and f is a generic homogeneous quartic polynomial of x, y, z, w. Let

X ⊂ P3 × C
be the variety defined by the above equation (the total space of the degeneration), and
X0 be the central fiber. Let

i0 : X0 → X

be the inclusion. The space X0 is the union of 4 projective planes glued along projective
lines:

X0 = ∪4
i=1P2

i

Each P2
i has a natural structure of a toric variety, in which the lines mentioned above are

the toric divisors. Let
ℓ1, . . . , ℓ6

be these projective lines. Let
L = ∪6

i=1ℓi
be the union of them. Each ℓi has 2 distinguished points, which are the triple-intersections
of the projective planes. We write by ℓ◦i the complement of these 2 points.

Since f is generic, the total space X has 24 singular points, and for each i, 4 of them
lie on ℓ◦i . Let

S ⊂ X0

be the set of these singular points.
We consider the following problem. Let C0 be a pre-stable curve and

ϕ0 : C0 → X0

be a stable map. Then the problem is, whether the map ϕ0 has a smoothing or not. More
precisely, we ask whether there is a family of pre-stable curves

C → C
such that the fiber over 0 is C0, and a family of stable maps

Φ : C → X

over C which coincides with ϕ0 on C0.

2.1. Pre-log curves and pre-smoothable curves. As is pointed out in [5] (see also [9]
in the context of tropical curves), for an immersed stable map ϕ0 : C0 → X0, if the image
is away from the singularities of X, it is necessary for ϕ0 to satisfy the pre-log condition
([9, Definition 4.3]) to solve the above problem. We now recall the pre-log condition.

Definition 2 ([9, Definition 4.1]). Let Y be a toric variety. A holomorphic curve C ⊂ Y
is torically transverse if it is disjoint from all toric strata of codimension greater than 1.
A stable map φ : C → Y is torically transverse if φ−1(intY ) ⊂ C is dense and φ(C) ⊂ Y
is a torically transverse curve. Here intY is the complement of the union of toric divisors.
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Let π : Y → C be a flat family of varieties such that

• The fibers Yt = π−1(t), t ̸= 0 are nonsingular irreducible varieties.
• The special fiber Y0 is a union of toric varieties Y0 = ∪k

i=1Y0,k such that for any
different i, j ∈ {1, . . . , k}, the intersection Y0,i ∩ Y0,j is a toric stratum of both Y0,i

and Y0,j.
• For each point p ∈ Y0, there is an analytic neighborhood U ⊂ Y with the property

that U is analytically isomorphic to an open subset of a toric variety and the
restriction U → C of π to U has a natural (up to isomorphisms) structure of an
open subset of a degeneration of toric varieties whose central fiber is U ∩ Y0.

In other words, any point on Y0 has a neighborhood modeled on a toric degeneration of
toric varieties.

Definition 3. Let C0 be a prestable curve. A pre-log curve on Y0 is a stable map
ϕ0 : C0 → Y0 with the following properties.

(i) For any component Y0,i of Y0, the restriction C ×Y0 Y0,i → Y0,i is a torically
transverse stable map.

(ii) Let p ∈ C0 be a point which is mapped to the singular locus of Y0. Then C0 has
a node at p, and ϕ0 maps the two branches (C ′

0, p), (C ′′
0 , p) of C0 at P to different

irreducible components Y0,i′ , Y0,i′′ ⊂ Y0. Moreover, if w′ is the intersection index
of the restriction (C ′

0, p) → (Y0,i′ , D′) with the toric divisor D′ ⊂ Y0,i′ , and w′′

accordingly for (C ′′
0 , p) → (Y0,i′′ , D′′), then w′ = w′′.

Let T be the singular locus of the total space Y. Note that T is contained in the
singular locus (in particular, in the union of toric strata of positive codimension) of Y0.
Then we generalize the notion of pre-log curves to this case.

As we noted above, if the image of a map ϕ0 : C0 → Y0 intersects a singular point of Y0

not contained in T , the map ϕ0 must satisfy the pre-log condition above for the existence
of smoothings. In particular, if a smooth point of C0 is mapped to a toric boundary of
a component of Y0, then it must be mapped into the singular subset T . We record this
point as a lemma.

Lemma 4. Let ϕ0 be as above. Also assume the map ϕ0 admits a smoothing Φ in the
above sense. Let x ∈ C0 be a smooth point which is mapped to a toric boundary of a
component of Y0 by ϕ0. Then, the image ϕ0(x) must be contained in the set T . !

We give a slight generalization of the notion of pre-log curves, to account for the sin-
gularity of the total space.

Definition 5. We call a map ϕ0 : C0 → Y0 pre-smoothable if it satisfies the following
conditions.

• The set ϕ−1
0 (T ) is a finite set consisting of regular points of C0.

• The restriction of the map ϕ0 to C0 \ ϕ−1
0 (T ) is a pre-log curve.

In our situation, the degeneration X → C satisfies the above condition for π : Y → C.
By Lemma 4, if the map ϕ0 admits a smoothing, then it must be pre-smoothable. The
curves we study are rather simple ones among pre-smoothable curves.
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Definition 6. Let ϕ0 : C0 → X0 be a pre-smoothable curve. If the map ϕ0 satisfies the
condition

• the image of any irreducible component of C0 by ϕ0 is a curve of degree 1 in some
component of X0 = ∪4

i=1P2
i ,

then we call ϕ0 simply pre-smoothable.

2.2. Log structures on a neighborhood of a curve and log normal sheaves of
simply pre-smoothable curves. Now we recall the calculation in [8] of the sheaves
which control the deformation of ϕ0. This uses the notion of log structures. Let P2

i be a
component of X0. Let ℓ be one of the toric divisors of P2

i . Let x ∈ ℓ be a point on ℓ◦ which
is not contained in the set S. Then there is a neighbourhood of the point x in X which is
isomorphic to a neighbourhood of the origin of the variety defined by the equation

z1z2 + t = 0

in C3 × C with coordinates (z1, z2, z3, t). This variety has a natural structure of a toric
variety over C = Spec C[t] (which is also seen as a toric variety) and we put a natural log
structure coming from the toric structure.

On the other hand, if x ∈ ℓ lies in the set S, then X is locally isomorphic to a neigh-
borhood of the origin of the variety defined by the equation

z1z2 + tz3 = 0.

This also has a natural toric structure, and we put a log structure coming from it.

Remark 7. It is important to notice that we do not need to put a log structure on whole
X, but only around the curve ϕ0(C0). The local log structures above may not extend
globally to X, but it does not matter in our argument. We put log structures around the
intersection of ϕ0(C0) and the toric divisors of the components of X0 in the way described
above, and around other points of ϕ0(C0), we put a strict log structure pulled back from
the standard log structure on C as a toric variety. This is possible when the subvariety of
X locally defined by the equation z3 = 0 in the above notation around the singular locus of
X intersects the image ϕ0(C0) transversally. For general f (the defining polynomial of the
degenerating K3 surface), we can always assume this condition in the argument below.

We put a log structure on C0 over Spec C[t] which is described in [9, Proposition 7.1]
on neighborhoods of the nodes, and in [8, Section 2.1] on neighborhoods of points in the
inverse image of the set S, and put a strict log structure over Spec C[t] otherwise. Then
the map ϕ0 can be equipped with a structure of a map between log schemes so that the
composition with the projection to Spec C[t] is log smooth in an essentially unique way.

Log smooth deformations of ϕ0 are controlled by its log normal sheaf Nϕ0 = ϕ∗
0ΘU/ΘC0 .

Here U is a neighborhood of ϕ0(C0) in X (see Remark 7 above), ΘU and ΘC0 are the log
tangent sheaves with respect to the above log structures. In [8, Subsection 2.1.1], we com-
puted this sheaf for the case of a line on X0. The computation for general pre-smoothable
curves with arbitrary genus is done by gluing the restrictions of Nϕ0 to irreducible compo-
nents of C0, which reduces the computation to the case of a line above. So the computation
is essentially the same as that in [8, Subsection 2.1.1] and we obtain the following.
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Proposition 8. Let ϕ0 : C0 → X0 be a simply pre-smoothable curve. Then the log normal
sheaf Nϕ0 is an invertible sheaf, and if C0,i is a component of C0, then the restriction of
Nϕ0 to C0,i is isomorphic to

NC0,i/P2(−
∑

i

xi),

here NC0,i/P2 is the usual (non log) normal sheaf of ϕ0|C0,i as a map to a component (∼= P2)
of X0, and the set {xi} is inverse image of the intersection ϕ0|C0,i(C0,i) ∩ S. !

The Zariski tangent space of the space of log-smooth deformations of ϕ0 is given by

H0(C0,Nϕ0)

and the obstruction is given by
H1(C0,Nϕ0).

Lemma 9. Let ϕ0 : C0 → X0 be a simply pre-smoothable curve. Then we have the
isomorphism

H1(C0,Nϕ0) ∼= C.

!
Remark 10. Note that Lemma 9 applies regardless of the genus of C0. Also note that
each component of C0 is a rational curve with 3 special points (that is, the points mapped
to the toric divisors of the components of X0), and so belongs to the unique isomorphism
class. Given 2 simply pre-smoothable curves ϕ0 : C0 → X0 and ϕ′

0 : C ′
0 → X0, consider

components C0,v and C0,v′ of C0 and C ′
0 which are mapped to the same component of

X0. Then under this isomorphism, a generator of the groups H0(C0,N ∨
ϕ0

⊗ ωC0) and
H0(C ′

0,N ∨
ϕ0

⊗ ωC′
0
) restricts to the same meromorphic 1-form (up to a constant multiple)

on C0,v and C0,v′. Here the curves C0, C ′
0 need not be isomorphic (in particular, the genera

of them may be different).

We also need to consider the case where the stable map is not pre-smoothable. The
main example of such a curve is a limit of degenerate higher genus curves. An important
point is that the image of such a curve is the same as the image of a map from a degenerate
rational curve. Another important point is that although such a map may not fit in the
formalism of log smooth deformation theory, the generator of H0(C0,N ∨

ϕ0
⊗ ωC0) makes

sense.

3. Calculation of the obstruction in the simplest case and the existence
of the smoothing

3.1. Remarks on calculation of the obstruction. Given a simply pre-smoothable
curve ϕ0 : C0 → X0, we calculated the generator of the dual obstruction class H0(C0,N ∨

ϕ0
⊗

ωC0) in Lemma 9. We write this generator by η. On the other hand, the obstruction class
in H1(C0,Nϕ0) is calculated as follows.

Namely, we can take a suitable covering {Ui}i of C0 so that on Ui there is a local lift
of the map ϕ0. Such a covering exists since the projection X → C is log smooth. These
local lifts are torsor over the group of sections of Nϕ0 , and so the difference of the lifts
on the intersections Ui ∩ Uj defines a Nϕ0-valued Čech 1-cocycle. This is the obstruction
class in H1(C0,Nϕ0).
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It is clear that the class does not depend on the choices of local lifts, since by construc-
tion the cocycles defined by two lifts differ only by coboundary. It is not easy in general
to directly identify the obstruction cohomology class (in particular, determine whether it
is zero or nonzero) from the presentation as a Čech cohomology class. More efficient way
is to calculate the coupling between H1(C0,Nϕ0) and its dual H0(C0,N ∨

ϕ0
⊗ ωC0), and it

can be reduced to the calculation of appropriate residues at the nodes, see [8].
In this note we do not really need to do the actual calculation of the obstruction class

since we can show that it vanishes by another reason. However, since the actual calculation
will help understand the later argument, we perform a calculation of the obstruction in a
simple case in the next subsection.

3.2. Degenerate curves of degree 4 and their obstructions. Our construction of
rational curves on a quartic K3 surface will be done by deforming a rational curve on the
degenerate space X0 to general fibers Xt, t ̸= 0. So the starting point is the construction
of a rational curve on X0. This can be done by considering intersections with other
particular surfaces.

Let us start from the simpler case of general curves of degree 4. Such a curve on
a quartic K3 surface or its degeneration is obtained by taking the intersection with a
general hyperplane H. In particular, we assume that the image of the map ϕ0 : C0 → X0

does not intersect the singular locus S of X. Thus, the map ϕ0 is a pre-log curve in the
sense of [9]. On the degenerate space X0, the intersection will be the union of 4 lines (see
Figure 1).

Figure 1. Picture of a general curve of degree 4 on X0. Here X0 is the
union of 4 P2s. The tetrahedron is the intersection complex of X0, so each
triangle corresponds to P2, and the triangle can be regarded as the moment
polytope of P2. On the other hand, the graph on the tetrahedron is the
dual intersection graph of a curve on X0.

Now we turn to the construction of degenerate rational curves. As we mentioned in
Section 2, the total space X of the degeneration contains the singular set S consisting of
24 points. On the tetrahedron of Figure 2, every edge contains 4 of these singular points.

If we choose a hyperplane H so that H intersects 3 singular points which are not
contained in a single component of X0, we can regard the intersection of H and X0 as the
image of a map from a nodal rational curve, and by Lemma 4, we can ask whether this
map can be lifted to a non-zero fiber Xt, t ̸= 0, giving a rational curve there, see Figure
3. Let us write by

ψ0 : B0 → X0
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Figure 2. The cross marks mean the singular points of the total space X
of the degeneration.

the stable map from a nodal rational curve to X0 obtained in this way.

Figure 3. Picture of a degenerate rational curve ψ0(B0) on X0. The pic-
ture on the left is the dual intersection graph of the nodal rational curve
which is the domain of the map ψ0. The cross marks on the graph corre-
sponds to regular points on the rational curve mapped to the singular locus
of X.

On the other hand, we can also choose a family of hyperplanes Hs, s ∈ D parametrized
by a small disk D around the origin of C whose central fiber H0 is the hyperplane H chosen
above. The intersection between Hs × C ⊂ P3 × C and X gives a family of degenerating
families of curves of degree 4. In particular, the intersection between H0 × C and X also
gives a degenerating family whose general fiber is a smooth curve of genus 3. Thus, the
image ψ0(B0) can also be seen as a degenerate genus 3 curve. We write it by

ϕ0,0 : C0,0 → X0,

see Figure 4. We also write by
ϕ0,s : C0,s → X0

the degenerate curve obtained as the intersection between Hs and X0. Note that all the
domain curves C0,s are in fact isomorphic, including C0,0.

Compared with the map ψ0 : B0 → X0 above, the map ϕ0,0 has the different domain
curve, but their images are the same. We do not calculate the obstruction cohomology
group of the map ϕ0,0. However, the generator η of the obstruction to lift the maps ϕ0,s,
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Figure 4. The intersection H ∩ X0 seen as a degenerate genus 3 curve ϕ0,0(C0,0).

s ̸= 0 calculated in Lemma 9 can be naturally defined on C0,0, since all C0,s are isomorphic
(see Remark 10).

Also, we can construct a family of obstruction Čech 1-cocycles on C0,s by using a family
version of local lifts considered in Subsection 3.1, parametrized by s. These cocycles
couple with the above generator η, and the result is an analytic function of s. This
analytic function is identically 0.

The important point is that although the domain curves are different, the generator η
of the obstruction class on C0,s and B0 are identical after partial normalizaton of C0,s (see
Remark 10).

Moreover, in the calculation of the obstruction in Subsection 3.1, clearly it is possible
to choose the covering {Ui} of C0,s so that for any node of the image ϕ0,s(C0,s), there
is only one Ui which contains the inverse image of that node. The covering {Ui} gives
rise to a covering {Ũi} of B0 in an obvious way. That is, if p : B0 → C0 is the partial
normalization, then Ũi is the inverse image p−1(Ui). Note that some Ũi has 2 components.

Choosing the covering in this way, the Čech 1-cocycle defined by the local lifts on each
covering is supported on open subsets of C0,s or B0 which do not contain a node. When
there is a local lift of C0,0 on a neighborhood of each node such that it can also be seen
as a local lift of B0, the following holds. Namely, if the cohomology class of the Čech
1-cocycle defined by the local lifts on C0,0 is 0, then the cohomology class defined by the
same Čech 1-cocycle on B0 is also 0, since if the class is given as the coboundary of a
Čech 0-cochain {ηi} on C0,0 associated to the covering {Ui}, it naturally determines a
Čech 0-cochain on B0 associated to the covering {Ũi}, and its coboundary is the given
Čech 1-cocycle on B0.

The condition that the cohomology class of the Čech 1-cocycle defined by the local lifts
on C0,0 is 0 can be assured when such lifts can be extended to a family of lifts on C0,s,
since the corresponding cohomology classes on C0,s, s ̸= 0 is 0 as we noted above.

Based on this observation, we can prove the following.

Proposition 11. The map ψ0 has smoothings up to any order. !

4. Construction of infinitely many rational curves

Now we turn to the construction of infinitely many rational curves on generic quartic
K3 surfaces. The idea is the same as the previous section. Namely:
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• Construct a degenerate curve on the special fiber X0 of the degeneration X. In
general, such a curve is seen as a degeneration of smooth curves of high genus. But
there are some particular curves which are seen as degenerations of nodal rational
curves.

• Compute the obstruction cohomology classes to deform these degenerate curves.
An important point is that although the genus is different in general, the obstruc-
tion classes can be identified in a natural way (see Remark 10).

• Compute the actual obstruction. In the case of higher genus curves, one sees that
the obstruction automatically vanishes since one can construct actual families
of curves which degenerate to the given degenerate curves. Then the case of a
degenerate rational curve is a limit of them, and since the obstruction can be seen
as an analytic function of suitable parameters which is identically 0 when these
parameters are nonzero, the obstruction vanishes also in the case of the rational
curve.

The construction of degenerate curves in the case of higher genus curves is simple. If
we want a degeneration of general curves of degree 4m, then take a product

m∏

i=1

(aix + biy + ciz + diw)

of m general linear functions. This gives a degenerate curve on X0 which is a nodal union
of 4m rational curves. Then take a general deformation of this polynomial over C[t], and
consider the intersection of its zero and X. In this way one obtains a family of smooth
curves which degenerates to the above degenerate curve.

Now we turn to the construction of degenerate rational curves. We start from the
degree 4 rational curve ψ0 : C0 → X0 in the previous section. We choose a node, see
Figure 5. Note that in the case of rational curves, we think that the intersection points
between the curve and the singular locus of X are not nodes of the curve, see Figure 3.
So the chosen point is away from the singular locus of X.

Figure 5. The node circled is chosen.

Then consider another degenerate curve σ0 : D0 → X0, whose image shares the chosen
node with ψ0(C0), and intersects the singular locus of X at 2 points, see Figure 6.

This is a degenerate genus 1 curve. Then take a finite covering of the domain curve D0.
In the tropicalized picture, this corresponds to cut the loop of the graph and graft some
copies of it, and make a loop again, see Figure 7. On the side of holomorphic curves, this
is again a degenerate genus 1 curve.
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Figure 6. Tropicalized picture of a degenerate genus 1 curve on X0 and
its domain D0 of the map. The ends of the edges connected by the dotted
curve are glued so these edges are merged into 1 edge, which corresponds
to a node of the holomorphic curve.

Figure 7. 3-fold covering of D0. The edges connected by dotted curves
are glued into 1 edge, each of which corresponds to a node on the side
of holomorphic curves. The nodes corresponding to the edges marked by
circles intersect the degenerate rational curve.

Let us write by D̃0 the resulting genus 1 curve. To obtain a degenerate rational curve,
we cut the curve D̃0 at 2 of its intersection with the degenerate rational curve C0 at the
chosen node. This divides the curve D̃0 into 2 pieces. Then similarly cut the degenerate
rational curve at the corresponding node, and graft parts of the degenerate rational curve
to one of the components of the divided D̃0, see Figure 8, 9 and 10.

Figure 8. Cut D̃0 at 2 nodes (picture on the left), and pick one of the
resulting connected components (picture on the right).
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DEGENERATION AND CURVES ON K3 SURFACES 11

Figure 9. Similarly, cut the degenerate rational curve into 2 pieces.

Figure 10. Graft the pieces of the rational curve to a part of divided D̃0.
The result is a degenerate rational curve D0,r.

When the degree of the covering of D0 we first take is r, we write the resulting rational
curve by this process by D0,r. We have an obvious map

ψ0,r : D0,r → X0

induced from ϕ0 and σ0. The image of ψ0,r is a curve of degree 4r.
Similarly to Lemma 9, the obstruction cohomology classes of these curves are 1 dimen-

sional, and the generators of them can be identified in a natural way. Then Proposition
11 can also be extended to higher degree curves.

Theorem 12. The degenerate rational curve ψ0,r has smoothings up to any order. !
Since the defining polynomial f of a K3 surface can be taken generic, we have the

following.

Theorem 13. The moduli space of quartic K3 surfaces contains a Zariski open subset
whose members contain infinitely many irreducible rational curves. !

5. General K3 surfaces

The argument so far can be extended to more general K3 surfaces provided nice de-
generations are given. In fact, such degenerations are constructed in [3]. Namely, a K3
surface X ⊂ Pn degenerates into Q1 ∪ Q2, where

{
Qi

∼= P1 × P1, n: odd

Qi
∼= F1, n: even.

The intersection Q1 ∩ Q2 is an anti-canonical divisor (elliptic curve).
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Using this degeneration, we can construct degenerate rational and higher genus curves
by the same method as in the quartic case. Namely, a rational curve can be taken in the
central fiber in the following way:

Q1∩Q2

Q1 Q2

Figure 11. The straight line is the intersection Q1 ∩ Q2 (elliptic curve)
and the cross marks on it are the singular points of the total space.

An elliptic curve can be taken in the central fiber in the following way:

Q1∩Q2

Q1 Q2

Figure 12

Higher degree rational curves are obtained by grafting:

Figure 13

These curves also have 1 dimensional obstructions, and the vanishing of them follows
from the trivial vanishing of the obstruction to deform higher genus curves as before.
Thus, we have the following.

Theorem 14. For each component of the moduli space of polarized K3 surfaces, there is a
Zariski open subset whose members contain infinitely many irreducible rational curves. !
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