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1. Introduction

Let k be an algebraically closed field of characteristic p. We work
over k throughout this report.

The notion of Frobenius splitting is very important for analyzing
algebraic varieties in positive characteristic. For a scheme X over k,
the Frobenius morphism is defined as the morphism F : X → X such
that it is the identity map on the underlying topological space, while
the map of sheaves of rings F# : OX → F∗OX is the p-th power map.
Now we say that a scheme X is Frobenius split, or F-split for short, if
the Frobenius map OX → F∗OX splits as a map of OX-modules.
In this report, we investigate F-splitting of smooth del Pezzo sur-

faces. In particular, we would like to characterize non-F-split del Pezzo
surfaces. For the detail, see [7].
Our starting point is the following result in [3]:

Theorem 1.1 (Hara). Let X be a smooth del Pezzo surface over k.
Then X is F-split unless

(1) K2
X = 3, p = 2;

(2) K2
X = 2, p = 2, 3;

(3) K2
X = 1, p = 2, 3, 5.

Especially, if X is a del Pezzo surface of degree 3, then X is not F-split
if and only if X is a Fermat cubic surface in characteristic 2.

As is well known, smooth del Pezzo surfaces are obtained as the blow-
up σ of (9 − d)-points P1, . . . , P9−d on P2 in general position, where d
is the degree of the surface. In the case d = 3, it is a cubic surface
in P3. Homma gives a characterization of the Fermat cubic surface in
characteristic 2 ([5]):

Theorem 1.2 (Homma). Let X be a smooth del Pezzo surface of degree
3 over k. Suppose that X is obtained as the blow-up of P2 with centers
P1, . . . , P6. Then the following conditions are equivalent:

(i) p = 2 and the anticanonical embedding of X is projectively
equivalent to the Fermat cubic surface;
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(ii) p > 0 and each smooth member of | − KX | is a supersingular
elliptic curve;

(iii) Each point of P1, . . . , P6 is the concurrent point of all tangent
lines of the conic passing through the remaining five points. The
set {P1, . . . , P6} is projectively equivalent to

{[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1,α,α2], [1,α2,α]},

where α ∈ F4 with α2 + α + 1 = 0.

Thus this also gives a characterization of non-F-split del Pezzo sur-
faces of degree 3.
Now we would like to have “degree 2 version” of Homma’s result. Let

X be a smooth del Pezzo surface of degree 2 over k. The anticanonical
system | −KX | induces a double cover π|−KX | : X → P2. The branch
curve C on P2 is a smooth quartic curve if p ̸= 2, while it is a possibly
degenerate conic if p = 2:

X
σ

!!♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

π|−KX | : deg 2 finite morphism

""P2 P2 ⊃ C : branch curve.

We have the following theorem:

Theorem 1.3. Let X be a smooth del Pezzo surface of degree 2 over
an algebraically closed field k of characteristic p. Then the following
conditions are equivalent:

(i) p = 2, 3, and the branch locus C of the double cover π : X → P2

is isomorphic to
(a) Fermat quartic curve in characteristic 3,
(b) Double line in characteristic 2.

(ii) X is not F-split.
(iii) Each conic passing through 5 points in {P1, . . . , P7} is tangent

to the line passing through remaining 2 points.
(iv) Each smooth member of |−KX | is a supersingular elliptic curve.

In particular, when p = 3, the following condition is also equivalent to
the above:

(v) the set {P1, . . . , P7} is projectively equivalent to

P0 = {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1],
[1,−1,α], [1,−α3,α3], [1,−α,−1]},

where α ∈ F9 with α2 − α− 1 = 0.
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Remark 1.4. (1) P0 in Theorem 1.3 (v) is characterized as the only
complete 7-arc over F9 (See Hirschfeld [4]). We say a finite set
P of points in P2 over Fq is a complete k-arc if
(a) P consists of k points and no three of them are collinear,

and
(b) P is not contained in any (k + 1)-arc.
Note that the set of 6 points in Theorem 1.2 (iii) is characterized
as the only complete 6-arc over F4.
A group G(P) acting on a k-arc P is called the projective

group for P if G(P), which is a subgroup of the projective
general linear group, fixes P as a set.

(2) Each non-F-split del Pezzo surface of degree 2 in characteristic
2 is obtained as the blow-up of a Fermat cubic surface at a
general point.

2. Preliminaries

2.1. Facts about Frobenius splittings. To check whether a given
ring is F-split or not, one of the very useful tools is the Fedder’s crite-
rion:

Lemma 2.1 (Fedder’s criterion). Let I be an ideal in k[x1, . . . , xn]
defined by I = ⟨f1, . . . , fm⟩. Then k[x1, . . . , xn]/⟨f1, . . . , fm⟩ is F-split
at a point m ∈ Spec k[x1, . . . , xn] if and only if I [p] : I ̸⊂ m[p], where we
denote ⟨f p

1 , . . . , f
p
m⟩ by I [p].

Lemma 2.1 states the criterion in the local settings. Thanks to the
following theorem (cf. [9]), we can apply Fedder’s criterion to a projec-
tive variety:

Theorem 2.2. Let X be any projective scheme over a perfect field.
The followings are equivalent:

(i) X is Frobenius split;
(ii) the ring SL = ⊕n∈NH0(X,L n) is Frobenius split for all invert-

ible sheaves L ;
(iii) the section ring SL = ⊕n∈NH0(X,L n) is Frobenius split for

some ample invertible sheaf L .

By Grothendieck duality for F : X → X where X is a scheme
over k, we have an isomorphism H omOX (F∗OX ,OX) ∼= F∗ω

1−p
X , which

implies that if X is Frobenius split, then there exists a section s ∈
H0(X,ω1−p

X ), called a splitting section, corresponding to the F-splitting.
The following useful criterion for Frobenius splitting is proved by Mehta
and Ramanathan ([6, Proposition 8]):
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Proposition 2.3. Let X be a smooth projective variety of dimension
n. X is Frobenius split if there is a point P in X and a global section
s ∈ H0(X,ω−1

X ) with divisor of zeros

(s)0 = Y1 + · · ·+ Yn + Z,

where Y1, . . . , Yn are prime divisor intersection transversally at P , and
Z is an effective divisor not containing P . The section s is a splitting
section.

2.2. Aronhold sets. Let X be a smooth del Pezzo surface of degree
2. If p ̸= 2, the branch locus of the double cover π|−KX | : X → P2

is a smooth quartic curve C. Over the complex numbers, it is well
known that a plane quartic curve has 28 bitangents. This also holds in
positive characteristic if p ̸= 2. The problem is that which 7 of them
correspond to the blow-ups.

Definition 2.4. Let C be a smooth plane quartic curve. A set K =
{ℓ1, . . . , ℓ7} of 7 bitangents of C among 28 ones is called an Aronhold
set if for each subtriple {ℓi, ℓj, ℓk} ⊂ K there no exists a conic passing
through the 6 contact points of ℓi ∪ ℓj ∪ ℓk with C.

Note that two of the contact points may be infinitely near. Aronhold
sets can also be defined by using the theory of theta characteristics.
There are 288 Aronhold sets for each smooth plane quartic curve. For
more details, see [2].
For a del Pezzo surface of degree 2, there is a one-to-one correspon-

dence between each Aronhold set of a quartic curve which is a branch
curve of the double cover induced by anticanonical divisor and a set of
7 points, the centers of the blow-up, on the dual projective plane:

Proposition 2.5. Let σ : X → P2 is the blow-up of P2 with cen-
ters {P1, . . . , P7}, and C a branch quartic curve of the double cover
π|−KX | : X → P2. Then 7 bitangents which are the images of (−1)-
curves σ−1(Pi) form an Aronhold set of C. Conversely, for each Aron-
hold set K of C, there exists a set of 7 points on P2 such that each
(−1)-curve σ−1(Pi) corresponds to a member in K .

3. Outline of the Proof of the Main Theorem

We sketch the outline of the proof of Theorem 1.3. For the detail,
see [7].
If p = 2, the equivalences of (i)-(iv) easily follows from [1] and some

easy calculation. Thus from now on, we assume p ̸= 2.
(i)⇒(ii)⇔(iii): Apply Lemma 2.1 and Theorem 2.2 and some known

facts.
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(ii)⇒(iv): It is known that a quartic curve has 28 bitangents. If ℓ is
a bitangent of a quartic branch curve of π : X → P2, then

π∗ℓ = Γ1 + Γ2 ∈ |−KX |,

where Γ1,Γ2 are (−1)-curves with Γ1.Γ2 = 2. X has 56 (−1)-curves
paired into 28 pairs. Moreover, these pairs are the proper inverse trans-
forms of the following curves:

21 pairs: Each pair consists of the conic through 5 points in
{P1, . . . , P7} and the line through the remaining 2 points.

7 pairs: Each pair consists of the cubic through the 7 points with
a double point at Pi and the exceptional curve σ−1(Pi).

If there exists a pair of (−1)-curves such that they intersect transver-
sally, then X is F-split by Proposition 2.3. Thus if X is not F-split,
then each pair of a conic and a line through the 7 points must intersect
tangentially. Hence the condition (iv) holds.

P2

X

P2

π|−KX |

Γ1

Γ2

C

σ

(iv)⇒(i): If the condition (iv) holds, then 21 bitangents among 28
touch C quadruply. This implies that C has 21 hyperflexes. Then
thanks to the following theorem ([10]), we see that C is a Fermat
quartic:

Theorem 3.1 (Stöhr-Voloch). A smooth quartic curve in P2 has 28
hyperflexes if and only if it is a Fermat quartic curve in characteristic
3. Moreover, if it is not, then the number of hyperflexes is less than
12.

(v)⇒(iii): We can check that the set of 7 points described in (v)
satisfies the condition (iii) by direct calculation.
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(i)⇒(v): Let C ⊂ P2 be a Fermat quartic curve in characteristic 3.
Consider a set of 7 points

P ′
0 = {[0,α, 1], [0,α− 1, 1], [−α, 0, 1], [α− 1, 0, 1],

[α, 1, 0], [−α + 1, 1, 0], [1, 1, 1]}
on C, where α ∈ F9 with α2 − α − 1 = 0. We can check that there
exists no conic passing through any three points in P ′

0 with double
multiplicities. Hence P ′

0 is an Aronhold set for C. Moreover, there
exists a projective transformation T : P ′

0 → P0 given by
⎡

⎣
1 α− 1 α

α− 1 α 1
α 1 α− 1

⎤

⎦ ∈ PGL(3,F9).

Hence P ′
0 is projectively equivalent to P0. Thus P ′

0 is the complete
7-arc.
It is known that the automorphism group of C is isomorphic to the

projective unitary group U3(3) (see [8] for example). The projective
group G(P ′

0) for P ′
0 is isomorphic to Z/3Z! Z/7Z, in which Z/3Z is

induced by changing cyclic coordinates, and Z/7Z is a cyclic transfor-
mation of the 7 points given by

⎡

⎣
1 α + 1 −α + 1

α + 1 α 1
−α + 1 1 −1

⎤

⎦ ∈ PGL(3,F9).

It is easy to see that G(P ′
0) is a subgroup of U3(3). Thus the number

of orbits of P ′
0 under the action of U3(3) on C is

|U3(3)|
|G(P ′

0)|
=

6048

21
= 288,

which implies the set of Aronhold sets is transitive for the action of
U3(3). Hence by Proposition 2.5, each 7-arc which is obtained as the
centers of the blow-ups is projectively equivalent to each other.

4. On non-F-split del Pezzo surfaces of degree 1

We have a few comments on non-F-split del Pezzo surfaces of degree
1. If X is a smooth del Pezzo surface of degree 1, the linear system
| − 2KX | induces a finite map π|−2KX | : X → Q ⊂ P3 of degree 2
ramified along a curve of degree 6, where Q is a quadric cone. X
can also be expressed as a hypersurface of degree 6 in the weighted
projective space P(1, 1, 2, 3).
Unlikely the case that the degree of a del Pezzo surfaceX is 3 or 2, we

cannot expect a characterization of non-F-split del Pezzo surfaces like
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Theorem 1.3 if deg(X) = 1. By Theorem 1.1, all del Pezzo surfaces are
F-split unless p = 2, 3 or 5. We can easily see that del Pezzo surfaces
defined by

y2 = x3 + t50f1(t0, t1) + t51g1(t0, t1) (p = 5),

y2 = x3 + f4(t0, t1)x+ f6(t0, t1) (p = 3),

y2 + f3(t0, t1)y = x3 + f2(t0, t1)x
2 + f4(t0, t1)x+ f6(t0, t1) (p = 2)

are not F-split by Lemma 2.1, where t0, t1, x, y are variables of weights
1, 1, 2 and 3 respectively, and fi(t0, t1) and gi(t0, t1) are some homoge-
neous polynomials of degree i. Note that non-F-split del Pezzo surfaces
of degree 2 are projectively equivalent to a double cover of P2 ramified
along a Fermat quartic curve if p = 3. In contrast, those of degree 1
are not uniquely determined even in p = 5. For example, we can see
that two del Pezzo surfaces X1, X2 in p = 5 defined by

X1 : y
2 = x3 + t0t1(t

4
0 − t41),

X2 : y
2 = x3 + t60 + t61

are not projectively equivalent, while they are both non-F-split.
Moreover, the equivalence of the conditions (ii) and (iv) in Theorem

1.3 also fails if deg(X) = 1. For example, assuming p ≥ 5, consider a
del Pezzo surface defined by

y2 = x3 + f6(t0, t1)

in P(1, 1, 2, 3). Then we can see that each smooth member of |−KX |
is a supersingular elliptic curve if p ≡ 2 (mod 3).
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