Constructing Q-Fano 3-folds à la Prokhorov & Reid

Tom Ducat, RIMS, Kyoto University, taducat@kurims.kyoto-u.ac.jp

Introduction

A Q-Fano 3-fold X is a normal projective 3-dimensional variety over \mathbb{C} with $-K_X$ ample, at worst Q-factorial terminal singularities and Picard rank $\rho_X = 1$. The (Q-Fano) index of X is:

$$q_X := \max \left\{ q \in \mathbb{Z}_{>1} : \exists A \in \operatorname{Cl}(X), -K_X = qA \right\}$$

and, given a Weil divisor A for which $-K_X = q_X A$, we consider X to be **polarised by** A, i.e. with an embedding into weighted projective space given by Proj of the graded ring

$$R(X,A) = \bigoplus_{k \ge 0} H^0(X, \mathcal{O}_X(kA)).$$

Some of the basic numerical invariants of (X, A) are the **codimension** of this embedding, the **index** q_X and the **degree** A^3 .

The **graded ring database** contains a list of 1964 possible Hilbert series for a \mathbb{Q} -Fano 3-fold (X, A) of index ≥ 2 . However it is not known if a \mathbb{Q} -Fano 3-fold actually exists with each Hilbert series.

Main result [2]

For each case in Table 1 we can construct a Sarkisov link:

$$\begin{array}{c} \sigma X' \pi \\ X Y \end{array}$$

where σ is a divisorial extraction from a certain kind of **irreducible** singular curve $\Gamma \subset X$ and π is the Kawamata blowdown of a divisor $E' \subset X'$ to a terminal cyclic quotient singularity.

Table 1: The \mathbb{Q} -Fano 3-folds *Y* we can construct.

$\operatorname{deg} \Gamma$	E	X	Y
7	$\mathbb{P}(1,2,1)$	\mathbb{P}^3	$Y \subset \mathbb{P}(1^4, 2^2, 3)$
5	$\mathbb{P}(1,2,1)$	$X_2 \subset \mathbb{P}^4$	$Y \subset \mathbb{P}(1^5, 2^2, 3)$
14	$\mathbb{P}(1,3,2)$	$\mathbb{P}(1^3,2)$	$Y\subset \mathbb{P}(1^3,2^2,3,4,5)$
9	$\mathbb{P}(1,2,3)$	$X_4 \subset \mathbb{P}(1^2, 2^2, 3)$	$Y\subset \mathbb{P}(1^2,2^2,3^2,4,5)$

The first two cases were **constructed by Prokhorov & Reid** [3]. We generalise their construction to get the remaining cases. We can also get two more examples, however in these cases Γ is necessarily **reducible** and hence *Y* will have **large Picard rank** $\rho_Y > 1$.

A generalisation of Prokhorov & Reid's construction

(1) Embed $E = \mathbb{P}(1, r, ra - 1)$ into a \mathbb{Q} -Fano 3-fold (X, A) such that $A|_E = \mathcal{O}_E(r)$. The point of considering such an embedding is that E has a $\frac{1}{r}(1, -1)$ type A_{r-1} singularity $P \in E$ which is supported at a smooth point $P \in X$.

Lemma. Suppose that (X, A) admits an embedding $E \subset X$ such that $E \in |eA|$ and $A|_E = \mathcal{O}_E(r)$. Then X is either of the form $\mathbb{P}(1, 1, a, ra - 1)$ or $X_{ra} \subset \mathbb{P}(1, 1, a, ra - 1, e)$. By an explicit classification there are precisely **10 cases** with terminal singularities.

(2) Let $\Gamma \subset E \subset X$ be an irreducible curve of degree d passing through $P \in X$ which is contained in the smooth locus of X.

Key claim: If Γ is has an **'appropriately singular'** point at $P \in X$, then there exists a terminal divisorial extraction

 $\sigma \colon (F \subset X') \to (\Gamma \subset X)$

such that σ induces an **isomorphism** $E' \cong E$, where E' is the birational transform of E.

If σ exists then it is given by the blowup of the **symbolic powers** of the ideal sheaf $\mathcal{I}_{\Gamma/X}$. We take $\sigma \colon X' \to X$ to be the left-hand side of our Sarkisov link.

- (3) If we make the clever choice d = qr 1 then, following the 2-ray game that starts with σ , we find a **nef divisor** B' which is **numerically trivial** along E'. We check that the corresponding morphism $\pi: X \to Y$ contracts E' to a $\frac{1}{ra+r-1}(1, r, ra 1)$ singularity.
- **Conclusion.** This construction is valid provided the divisorial extraction σ exists as in the **Key claim**. In this case we construct a Sarkisov link from (X, A) to a $\overline{\mathbb{Q}}$ -Fano 3-fold (Y, B) of index $q_Y = q - e$ and degree $B^3 = \frac{d}{r_{a+r-1}}A^3$.

Divisorial extractions from singular curves

A type A_{r-1} Du Val singularity $P \in E$ has a resolution given by a chain of (-2)-curves. We call $P \in \Gamma \subset E$ a curve singularity of type $\Gamma_{(a_1,...,a_{r-1})}$ if the strict transform of Γ on this resolution is smooth with a_i branches intersecting the *i*th exceptional divisor transversely. We now explain what 'appropriately singular' means:

Proposition. For the 10 cases found in the Lemma, $P \in E$ is either an A_1 , A_2 or A_3 Du Val singularity. If a divisorial extraction σ from $\Gamma \subset X$ exists as in the <u>Key claim</u>, then $P \in \Gamma$ has one of the following singularity types (up to a degeneration):

Type
$$A_1$$
 Type A_2
 Type A_3
 $\Gamma_{(3)}$
 $\Gamma_{(1,3)}$
 $\Gamma_{(4,0)}$
 $\Gamma_{(5,0,0)}$

This follows from the unprojection method for constructing divisorial extractions explicitly [1] and by excluding cases according to $\deg \Gamma$.

Now we can check that the only cases admitting one of these singularity types (for Γ **irreducible**) are the four cases of Table 1. In the third case of Table 1 **both** of the A_2 singularity types are possible. In all other cases the singularity type is **unique**.

Unprojection construction for *Y*

We can construct Y explicitly using **unprojection**. Prokhorov & Reid [3] did this for the first two cases in Table 1. The third case $Y \subset \mathbb{P}(1^3, 2^2, 3, 4, 5)$ is interesting as there are **two possible constructions**, given by the **Tom and Jerry**. We have one 36-dimensional family of Tom unprojections and one 34-dimensional family of Jerry unprojections which correspond to Sarkisov links $Y \dashrightarrow \mathbb{P}(1^3, 2)$ ending in a contraction to a curve with singularity $\Gamma_{(1,3)}$ and $\Gamma_{(4,0)}$ respectively.

Figure 1: Two families of $Y \subset \mathbb{P}(1^3, 2^2, 3, 4, 5)$ Q-Fano 3-folds.

They intersect in a 31-dimensional family, where the general member has a Sarkisov link $Y' \rightarrow P(1^3, 2)$ ending in a contraction to a curve with singularity $\Gamma_{(3,2)}$ (a **common degeneration** of $\Gamma_{(1,3)}$ and $\Gamma_{(4,0)}$). However such Y' has a non-terminal singularity of index 1.

Further directions. Construct Sarkisov links with flips, flops and antiflips in the middle, or Sarkisov links which end with a Mori fibre space contractions, or a different type of divisorial contraction.

References

- T. Ducat, Divisorial extractions from singular curves in smooth 3-folds. Int. J Math., 27, Issue 01 (2016), 23 pp.
- [2] T. Ducat, Constructing Q-Fano 3-folds à la Prokhorov & Reid, preprint, arxiv:1610.01773, 15 pp.
- [3] Y. Prokhorov and M. Reid, On Q-Fano threefolds of Fano index 2, in *Minimal Models and Extremal Rays (Kyoto 2011)*, Adv. Stud. in Pure Math., 70, 2016, 397–420