<table>
<thead>
<tr>
<th>Title</th>
<th>Complex hyperbolicity problems related to abelian varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>山ノ井 克俊</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 2016: 116-120</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/218287</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. Hyperbolicity problems in algebraic setting

Let X be a smooth complex projective variety.

Conjecture 1. Assume that X is of general type. Let L be an ample line bundle on X. Then there exists a positive number $\alpha > 0$ and a proper Zariski closed subset $Z \subsetneq X$ such that for every holomorphic map $g : C \to X$ from a compact Riemann surface C with $g(C) \not\subset Z$, we have

$$\deg_C g^* (L) \leq \alpha \times \{\text{genus}(C) - 1\}$$

We introduce the following special set after S. Lang:

Definition 1 (Special set). Consider all non-constant rational maps $\varphi : A \dashrightarrow X$ from abelian varieties A and define the special set of X by

$$\text{Sp}(X) = \bigcup_{\varphi : A \dashrightarrow X} \text{Zariski closure} \varphi(A)$$

By the definition, $\text{Sp}(X)$ is a Zariski closed set of X. Note that the special set $\text{Sp}(X)$ contains all rational and elliptic curves in X. This is trivial for elliptic curves in X by the definition. For the rational curves $f : \mathbb{P}^1 \to X$, we take the composite with a double covering $\varphi : E \to \mathbb{P}^1$ from an elliptic curve E to get a morphism $f \circ \varphi : E \to X$ from the elliptic curve. So $f(\mathbb{P}^1) = f \circ \varphi(E) \subset \text{Sp}(X)$.

Conjecture 2 (Lang [7]). Assume X is of general type. Then the special set is a proper Zariski closed subset $\text{Sp}(X) \subsetneq X$.

Conjecture 1 implies Conjecture 2. Indeed, let $\varphi : A \dashrightarrow X$ be a non-constant rational map. We want to show that $\varphi(A) \subset Z$, where $Z \subsetneq X$ is the Zariski closed set in Conjecture 1. So suppose contrary that $\varphi(A) \not\subset Z$. Let $E \subset A$ be the indeterminacy set of φ. Then $\text{codim} E \geq 2$. Let $n_A : A \to A$ be the n-times map. Let $C \subset A$ be a smooth curve in A such that $n_A(C) \not\subset E \cup \varphi^{-1}(Z)$ for all n. For an ample line bundle L on X, we have $n_A^* c_1(\varphi^* L) = n^2 c_1(\varphi^* L) \in H^2(A, \mathbb{Z})$, where $c_1(\varphi^* L) \in H^2(A, \mathbb{Z})$ is the characteristic class of $\varphi^* L$. Now we consider the holomorphic map $\varphi \circ n_A|_C : C \to X$. Then

$$\deg_C(\varphi \circ n_A|_C)^* L = n^2 \deg_C(\varphi|_C)^* L \to \infty$$

as $n \to \infty$, but $\varphi \circ n_A|_C(C) \not\subset Z$. This contradicts to Conjecture 1. Thus $\varphi(A) \subset Z$.

These conjectures are open even for the case of $\dim X = 2$. Some known cases are the following:

- Surfaces of general type with $c_1(X)^2 > c_2(X)$. Conjecture 1 is valid ([1]).
- Subvarieties of general type on abelian varieties. Conjecture 2 is valid ([5]).
• Very generic hypersurfaces of degree \(d \geq 2n + 2\) in \(\mathbb{P}^{n+1}\). Conjecture 1 is valid with stronger conclusion that \(Z = \emptyset\) ([2]).

We say that \(X\) is of maximal albanese dimension if the dimension of the image \(a(X)\) of the albanese map \(a : X \rightarrow \text{Alb}(X)\) is equal to the dimension of \(X\).

• Varieties of maximal albanese dimension and of general type. Conjecture 1 is valid ([8]).

2. Hyperbolicity problems in complex analytic setting

Let \(M\) be a complex manifold. We first introduce Kobayashi-Royden pseudo-metric \(F_M : TM \rightarrow \mathbb{R}_{\geq 0}\) as follows. Set \(\Delta = \{z \in \mathbb{C}; |z| < 1\}\).

Definition 2 (Kobayashi-Royden pseudo-metric). For \(v \in T_x(M)\),

\[
F_M(v) = \inf \left\{ \frac{1}{r}; \exists f : \Delta \rightarrow M \text{ holomorphic s.t. } f(0) = x, \ f'(0) = rv \right\}.
\]

Proposition 1. Let \(\varphi : X \rightarrow Y\) be a holomorphic map between complex manifolds, let \(\varphi_* : TX \rightarrow TY\) be the induced map. Then for all \(v \in TX\),

\[
F_X(v) \geq F_Y(\varphi_*(v)).
\]

In particular, every holomorphic automorphism is an isometry of \(F_X\).

Proof. This follows directly from the definition. We prove, for arbitrary \(v \in TX\),

\[
F_X(v) = F_Y(\varphi_*(v)).
\]

Take an arbitrary \(1/r > F_X(v)\). It is enough to show \(1/r > F_Y(\varphi_*(v))\). There exists \(f : \Delta \rightarrow X\) such that \(f'(0) = rv\). Hence \(\varphi \circ f : \Delta \rightarrow Y\) satisfies \((\varphi \circ f)'(0) = r\varphi_*(v)\).

Hence \(F_Y(\varphi_*(v)) < 1/r\), so \(F_X(v) \geq F_Y(\varphi_*(v))\). \(\square\)

Definition 3 (Kobayashi pseudo-distance). For \(x, y \in M\), we define

\[
d_M(x, y) = \inf_\gamma \int_\gamma F_M(\gamma'(t))dt
\]

where the infimum is taken over all piecewise smooth curves \(\gamma\) joining \(x\) and \(y\).

Corollary 1. For all \(x, y \in X\), we have \(d_X(x, y) \geq d_Y(\varphi(x), \varphi(y))\).

Definition 4 (S. Kobayashi [6]). A complex manifold \(M\) is Kobayashi hyperbolic if \(d_M\) is a true distance, i.e., \(d_M(p, q) > 0\) whenever \(p \neq q\).

Examples.

(1) If \(M = \Delta\), then \(F_\Delta = \frac{|dz|}{1 - |z|^2}\). Hence \(d_\Delta\) is the Poincaré distance of the unit disc \(\Delta\).

Proof. Both \(F_\Delta\) and \(|dz|/(1 - |z|^2)\) are isometric under \(\text{Aut}(\Delta)\). Hence it is enough to compare them over \(0 \in \Delta\), and show \(F_\Delta(\partial/\partial z) = 1\). The existence of \(\text{id}_\Delta : \Delta \rightarrow \Delta\) yields \(F_\Delta(\partial/\partial z) \leq 1\). By the Schwarz lemma, if \(f : \Delta \rightarrow \Delta\) is holomorphic with \(f(0) = 0\) and \(f'(0) = r\frac{a}{\partial z}\), then \(1 \leq 1/r\). This shows \(1 \leq F_\Delta(\partial/\partial z)\). Hence \(F_\Delta(\partial/\partial z) = 1\). \(\square\)
(1) If \(X \) is a compact Riemann surface of genus \(\geq 2 \), then \(d_X \) is equal to the Poincaré distance on \(X \) induced from the universal covering map \(\Delta \to X \). In particular, \(X \) is Kobayashi hyperbolic.

(2) If \(M = \mathbb{C} \), then \(F_{\mathbb{C}} \equiv 0 \) and \(d_{\mathbb{C}} \equiv 0 \).

Proof. For arbitrary \(R > 0 \), let \(f_R : \Delta \to \mathbb{C} \) be defined by \(f_R(z) = Rz \). Then \(f_R(0) = 0 \) and \(f_R'(0) = R \frac{\partial}{\partial z} \). Hence \(F_{\mathbb{C}}(\partial / \partial z) \leq 1/R \). Since \(R > 0 \) is arbitrary, \(F_{\mathbb{C}}(\partial / \partial z) = 0 \). Using automorphism of \(\mathbb{C} \), \(F_{\mathbb{C}} \equiv 0 \). □

(3) If \(X \) is a projective space or an Abelian variety, then \(d_X \equiv 0 \).

Proof. For every \(x, y \in X \), there exists a holomorphic map \(f : \mathbb{C} \to X \) such that \(f(0) = x \) and \(f(1) = y \). So by the distance decreasing property, we have \(d_X(x, y) \leq d_{\mathbb{C}}(0, 1) = 0 \). □

Thus if \(X \) is a smooth projective variety with \(\dim X = 1 \), the followings are equivalent:

1. genus(\(X \)) ≥ 2.
2. \(X \) is of general type.
3. \(X \) is Kobayashi hyperbolic.

Indeed, if genus(\(X \)) = 0 or 1, then \(X \) is \(\mathbb{P}^1 \) or elliptic curve, so \(d_X \equiv 0 \). Hence (3) implies (1).

For \(\dim X \geq 2 \), a projective variety \(X \) of general type need not be Kobayashi hyperbolic. Indeed \(X \) may contain rational or elliptic curves even if \(X \) is of general type, and such \(X \) is not Kobayashi hyperbolic. We introduce weaker notion.

Definition 5. Let \(M \) be a complex manifold and let \(S \subset M \) be a closed subset. \(M \) is Kobayashi hyperbolic modulo \(S \), if \(d_M \) is a true distance outside \(S \).

Conjecture 3 ([6]). If \(X \) is a projective variety of general type, then \(X \) is pseudo-Kobayashi hyperbolic, i.e., there exists a proper Zariski closed subset \(S \subsetneq X \) such that \(X \) is Kobayashi hyperbolic modulo \(S \).

Conjecture 3 implies Conjecture 2. We want to show that the image of every non-constant rational map \(A \to X \) from abelian variety \(A \) should be contained in \(S \), where \(S \subseteq X \) is the proper Zariski closed subset appeared in Conjecture 3. This follows from the distance decreasing property of Kobayashi pseudo-distance and \(d_A \equiv 0 \). Hence \(\text{Sp}(X) \subset S \subsetneq X \). □

It is not clear whether or not Conjecture 3 implies Conjecture 1. However the following implication is known by Demailly.

Theorem 1 ([3]). Let \(X \) be a Kobayashi hyperbolic projective manifold. Let \(L \) be an ample line bundle on \(X \). Then there exists a positive number \(\alpha > 0 \) such that for every holomorphic map \(g : C \to X \) from a compact Riemann surface \(C \), we have

\[
\deg_C g^*(L) \leq \alpha \times \{\text{genus}(C) - 1\}.
\]

Proof. Let \(\omega_L \) be a curvature form of \(L \), which is a positive (1,1)-form on \(X \). For \(v \in TX \), we denote by \(|v|_{\omega_L} \) the norm associated to \(\omega_L \). There exists a positive constant \(\delta > 0 \) such that \(F_X(v) \geq \delta |v|_{\omega_L} \) for all \(v \in TX \); for otherwise, Brody’s reparametrization argument yields a non-constant holomorphic map \(C \to X \), which contradicts to the assumption that \(X \) is Kobayashi hyperbolic. By the distance decreasing property, we
have \(F_C(v) \geq F_X(g vX) \) for all \(v \in TC \). Hence we have \(F_C(v) \geq \delta|v|g^*\omega_L \) for all \(v \in TC \). Since \(F_C \) coincides with Poincaré metric on \(C \), we have

\[
\omega_C \geq \delta g^*\omega_L,
\]

where \(\omega_C \) is the \((1,1)\)-form on \(C \) associated to the Poincaré metric. By integrating both sides of this estimate, we conclude the proof. \(\square \)

Recently, Conjecture 3 is verified for subvarieties of general type on abelian varieties ([9]).

Theorem 2. Let \(X \) be a subvariety of general type on an abelian variety. Then \(X \) is Kobayashi hyperbolic modulo \(\text{Sp}(X) \). \(\square \)

Recall that \(\text{Sp}(X) \) is a proper Zariski closed set \(\text{Sp}(X) \subsetneq X \) by [5], where \(X \) is a subvariety of general type on an abelian variety \(A \). Moreover, \(\text{Sp}(X) \) has more clear description without taking Zariski closure:

\[
\text{Sp}(X) = \{ x \in X; \exists B \subset A, \text{an abelian varietys.t. } \dim(B) > 0 \text{ and } x + B \subset X \}.
\]

Corollary 2. For subvariety \(X \) of an abelian variety \(A \), we have

\[
X \text{ is of general type } \iff X \text{ is pseudo-Kobayashi hyperbolic}
\]

Proof. The direction \(\Rightarrow \) is by the theorem. The converse follows by a theorem of Ueno. Indeed, if \(X \) is not of general type, then the stabilizer of \(X \) is positive dimensional. Hence there exists a positive dimensional abelian subvariety \(B \subset A \) such that \(x + B \subset X \) for all \(x \in X \). Hence, for each point \(x \in X \), there exists a non-constant map \(B \to X \) passing through \(x \). Hence by the distance decreasing property and \(d_B \equiv 0 \), we conclude that \(X \) is not pseudo-Kobayashi hyperbolic. \(\square \)

Theorem 2 is a generalization of the following theorems for a subvariety \(X \) of general type on an abelian variety.

1. **Green’s theorem** states that if \(\text{Sp}(X) = \emptyset \), then \(X \) is Kobayashi hyperbolic ([4]). Indeed our theorem implies that \(X \) is Kobayashi hyperbolic modulo \(\emptyset \), hence \(X \) is Kobayashi hyperbolic. Green actually proved that there is no non-constant holomorphic map \(f : \C \to X \), if \(\text{Sp}(X) = \emptyset \). By Brody’s criterion, this implies that \(X \) is Kobayashi hyperbolic.

2. More generally, **Bloch-Ochiai-Kawamata’s theorem** states that every non-constant holomorphic map \(f : \C \to X \) satisfies \(f(\C) \subset \text{Sp}(X) \) ([5]). This follows from our theorem by the distance decreasing property and \(d_C \equiv 0 \). However, from this theorem, we can’t conclude any information for Kobayashi pseudo-distance \(d_X \). We can’t even exclude the possibility \(d_X \equiv 0 \).

In complex analysis, there is a philosophical principle stated by A. Bloch as follows:

Nothing exists in the infinite plane that has not been previously done in the finite disk.

This principle says that if some property \(\mathcal{P} \) reduces analytic maps in \(\C \) to a constant, then a family of analytic maps in \(\Delta \) with the property \(\mathcal{P} \) will be normal. The property of ‘bounded analytic function’ is one such example; Liouville’s theorem corresponds to Montel’s theorem. The following theorem may be considered as one example of this principle which corresponds to Bloch-Ochiai-Kawamata’s theorem above.

We denote by \(\text{Hol}(\Delta, X) \) the set of all holomorphic mappings \(f : \Delta \to X \).
Theorem 3. Let X be a subvariety of general type on an abelian variety. Then for each sequence $\{f_n\}_{n=1}^{\infty}$ in $\text{Hol}(\Delta, X)$, we have one of the following:

1. $\{f_n\}_{n=1}^{\infty}$ has a subsequence which converges locally uniformly to some $f \in \text{Hol}(\Delta, X)$, or
2. for each compact subset $K \subset \Delta$ and each compact subset $L \subset X \setminus \text{Sp}(X)$, there exists an integer n_0 such that $f_n(K) \cap L = \emptyset$ for all $n \geq n_0$.

In other words, X is taut modulo $\text{Sp}(X)$ with terminology in [6]. Theorem 2 follows from this theorem. Indeed, Theorem 2 is an integrated version of the following lower estimate of F_X.

Corollary 3 (Lower estimate of F_X). For each open neighborhood $U \subset X$ of $\text{Sp}(X)$, there exists a positive constant $c > 0$ such that $F_X(v) \geq \frac{1}{c} |v|$ for all $v \in T_xX$ with $x \notin U$.

Proof. We first show that there exists a positive constant $c > 0$ such that for every $f \in \text{Hol}(\Delta, X)$ with $f(0) \notin U$, we have $|f'(0)| < c$. For otherwise, there exists a sequence $\{f_n\} \subset \text{Hol}(\Delta, X)$ such that $f_n(0) \notin U$ and $|f_n'(0)| \to \infty$. For this sequence, the second conclusion of Theorem 3 does not occur. Hence there exists a subsequence $\{f_{n_k}\}$ which converges locally uniformly to some $f \in \text{Hol}(\Delta, X)$, so $|f_{n_k}'(0)| \to |f'(0)|$. This is a contradiction.

Now to measure $F_X(v)$, we take $f \in \text{Hol}(\Delta, X)$ with $f'(0) = rv$. Then we have $|f'(0)| = r|v| \leq c$. Hence $|v|/c \leq 1/r$. So by the definition of $F_X(v)$, we have $|v|/c \leq F_X(v)$. □

References

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
E-mail address: yamanoi@math.sci.osaka-u.ac.jp