COMPLEX HYPERBOLICITY PROBLEMS RELATED TO ABELIAN VARIETIES

KATSUTOSHI YAMANOI

1. Hyperbolicity problems in algebraic setting

Let X be a smooth complex projective variety.
Conjecture 1. Assume that X is of general type. Let L be an ample line bundle on X. Then there exists a positive number $\alpha>0$ and a proper Zariski closed subset $Z \varsubsetneqq X$ such that for every holomorphic map $g: C \rightarrow X$ from a compact Riemann surface C with $g(C) \not \subset Z$, we have

$$
\operatorname{deg}_{C} g^{*}(L) \leq \alpha \times\{\operatorname{genus}(C)-1\}
$$

We introduce the following special set after S . Lang:
Definition 1 (Special set). Consider all non-constant rational maps $\varphi: A \rightarrow X$ from abelian varieties A and define the special set of X by

$$
\operatorname{Sp}(X)={\overline{\bigcup_{\varphi: A-\rightarrow X}} \varphi^{\text {Zariski closure }}}^{\text {Z }}
$$

By the definition, $\operatorname{Sp}(X)$ is a Zariski closed set of X. Note that the special set $\operatorname{Sp}(X)$ contains all rational and elliptic curves in X. This is trivial for elliptic curves in X by the definition. For the rational curves $f: \mathbb{P}^{1} \rightarrow X$, we take the composite with a double covering $\varphi: E \rightarrow \mathbb{P}^{1}$ from an elliptic curve E to get a morphism $f \circ \varphi: E \rightarrow X$ from the elliptic curve. So $f\left(\mathbb{P}^{1}\right)=f \circ \varphi(E) \subset \operatorname{Sp}(X)$.

Conjecture 2 (Lang [7]). Assume X is of general type. Then the special set is a proper Zariski closed subset $\operatorname{Sp}(X) \varsubsetneqq X$.

Conjecture 1 implies Conjecture 2. Indeed, let $\varphi: A \rightarrow X$ be a non-constant rational map. We want to show that $\varphi(A) \subset Z$, where $Z \varsubsetneqq X$ is the Zariski closed set in Conjecture 1. So suppose contrary that $\varphi(A) \not \subset Z$. Let $E \subset A$ be the indeterminacy set of φ. Then $\operatorname{codim} E \geq 2$. Let $n_{A}: A \rightarrow A$ be the n-times map. Let $C \subset A$ be a smooth curve in A such that $n_{A}(C) \not \subset E \cup \varphi^{-1}(Z)$ for all n. For an ample line bundle L on X, we have $n_{A}^{*} c_{1}\left(\varphi^{*} L\right)=n^{2} c_{1}\left(\varphi^{*} L\right) \in H^{2}(A, \mathbb{Z})$, where $c_{1}\left(\varphi^{*} L\right) \in H^{2}(A, \mathbb{Z})$ is the characteristic class of $\varphi^{*} L$. Now we consider the holomorphic map $\left.\varphi \circ n_{A}\right|_{C}: C \rightarrow X$. Then

$$
\operatorname{deg}_{C}\left(\left.\varphi \circ n_{A}\right|_{C}\right)^{*} L=n^{2} \operatorname{deg}_{C}\left(\left.\varphi\right|_{C}\right)^{*} L \rightarrow \infty
$$

as $n \rightarrow \infty$, but $\left.\varphi \circ n_{A}\right|_{C}(C) \not \subset Z$. This contradicts to Conjecture 1. Thus $\varphi(A) \subset Z$. \square
These conjectures are open even for the case of $\operatorname{dim} X=2$. Some known cases are the following:

- Surfaces of general type with $c_{1}(X)^{2}>c_{2}(X)$. Conjecture 1 is valid ([1]).
- Subvarieties of general type on abelian varieties. Conjecture 2 is valid ([5]).
- Very generic hypersurfaces of degree $d \geq 2 n+2$ in \mathbb{P}^{n+1}. Conjecture 1 is valid with stronger conclusion that $Z=\emptyset([2])$.
We say that X is of maximal albanese dimension if the dimension of the image $a(X)$ of the albanese map $a: X \rightarrow \operatorname{Alb}(X)$ is equal to the dimension of X.
- Varieties of maximal albanese dimension and of general type. Conjecture 1 is valid ([8]).

2. Hyperbolicity problems in complex analytic setting

Let M be a complex manifold. We first introduce Kobayashi-Royden pseudo-metric $F_{M}: T M \rightarrow \mathbb{R}_{\geq 0}$ as follows. Set $\Delta=\{z \in \mathbb{C} ;|z|<1\}$.
Definition 2 (Kobayashi-Royden pseudo-metric). For $v \in T_{x}(M)$,

$$
F_{M}(v)=\inf \left\{\frac{1}{r} ; \exists f: \Delta \rightarrow M \text { holomorphic s.t. } f(0)=x, \quad f^{\prime}(0)=r v\right\}
$$

Proposition 1. Let $\varphi: X \rightarrow Y$ be a holomorphic map between complex manifolds, let $\varphi_{*}: T X \rightarrow T Y$ be the induced map. Then for all $v \in T X$,

$$
F_{X}(v) \geq F_{Y}\left(\varphi_{*}(v)\right) .
$$

In particular, every holomorphic automorphism is an isometry of F_{X}.
Proof. This follows directly from the definition. We prove, for arbitrary $v \in T X$,

$$
F_{X}(v) \geq F_{Y}\left(\varphi_{*}(v)\right)
$$

Take an arbitrary $1 / r>F_{X}(v)$. It is enough to show $1 / r>F_{Y}\left(\varphi_{*}(v)\right)$. There exists $f: \Delta \rightarrow X$ such that $f^{\prime}(0)=r v$. Hence $\varphi \circ f: \Delta \rightarrow Y$ satisfies $(\varphi \circ f)^{\prime}(0)=r \varphi_{*}(v)$. Hence $F_{Y}\left(\varphi_{*}(v)\right)<1 / r$, so $F_{X}(v) \geq F_{Y}\left(\varphi_{*}(v)\right)$.

Definition 3 (Kobayashi pseudo-distance). For $x, y \in M$, we define

$$
d_{M}(x, y)=\inf _{\gamma} \int_{\gamma} F_{M}\left(\gamma^{\prime}(t)\right) d t
$$

where the infimum is taken over all piecewise smooth curves γ joining x and y.
Corollary 1. For all $x, y \in X$, we have $d_{X}(x, y) \geq d_{Y}(\varphi(x), \varphi(y))$.
Definition 4 (S. Kobayashi [6]). A complex manifold M is Kobayashi hyperbolic if d_{M} is a true distance, i.e., $d_{M}(p, q)>0$ whenever $p \neq q$.

Examples.

(1) If $M=\Delta$, then $F_{\Delta}=\frac{|d z|}{1-|z|^{2}}$. Hence d_{Δ} is the Poincaré distance of the unit disc Δ.

Proof. Both F_{Δ} and $|d z| /\left(1-|z|^{2}\right)$ are isometric under $\operatorname{Aut}(\Delta)$. Hence it is enough to compare them over $0 \in \Delta$, and show $F_{\Delta}(\partial / \partial z)=1$. The existence of $\mathrm{id}_{\Delta}: \Delta \rightarrow \Delta$ yields $F_{\Delta}(\partial / \partial z) \leq 1$. By the Schwarz lemma, if $f: \Delta \rightarrow \Delta$ is holomorphic with $f(0)=0$ and $f^{\prime}(0)=r \frac{\partial}{\partial z}$, then $1 \leq 1 / r$. This shows $1 \leq F_{\Delta}(\partial / \partial z)$. Hence $F_{\Delta}(\partial / \partial z)=1$.
(1)' If X is a compact Riemann surface of $\operatorname{genus}(X) \geq 2$, then d_{X} is equal to the Poincaré distance on X induced from the universal covering map $\Delta \rightarrow X$. In particular, X is Kobayashi hyperbolic.
(2) If $M=\mathbb{C}$, then $F_{\mathbb{C}} \equiv 0$ and $d_{\mathbb{C}} \equiv 0$.

Proof. For arbitrary $R>0$, let $f_{R}: \Delta \rightarrow \mathbb{C}$ be defined by $f_{R}(z)=R z$. Then $f_{R}(0)=0$ and $f_{R}^{\prime}(0)=R \frac{\partial}{\partial z}$. Hence $F_{\mathbb{C}}(\partial / \partial z) \leq 1 / R$. Since $R>0$ is arbitrary, $F_{\mathbb{C}}(\partial / \partial z)=0$. Using automorphism of $\mathbb{C}, F_{\mathbb{C}} \equiv 0$.
(3) If X is a projective space or an Abelian variety, then $d_{X} \equiv 0$.

Proof. For every $x, y \in X$, there exists a holomorphic map $f: \mathbb{C} \rightarrow X$ such that $f(0)=$ x and $f(1)=y$. So by the distance decreasing property, we have $d_{X}(x, y) \leq d_{\mathbb{C}}(0,1)=0$

Thus if X is a smooth projective variety with $\operatorname{dim} X=1$, the followings are equivalent:
(1) $\operatorname{genus}(X) \geq 2$.
(2) X is of general type.
(3) X is Kobayashi hyperbolic.

Indeed, if $\operatorname{genus}(X)=0$ or 1 , then X is \mathbb{P}^{1} or elliptic curve, so $d_{X} \equiv 0$. Hence (3) implies (1).

For $\operatorname{dim} X \geq 2$, a projective variety X of general type need not be Kobayashi hyperbolic. Indeed X may contain rational or elliptic curves even if X is of general type, and such X is not Kobayashi hyperbolic. We introduce weaker notion.

Definition 5. Let M be a complex manifold and let $S \subset M$ be a closed subset. M is Kobayashi hyperbolic modulo S, if d_{M} is a true distance outside S.
Conjecture 3 ([6]). If X is a projective variety of general type, then X is pseudoKobayashi hyperbolic, i.e., there exists a proper Zariski closed subset $S \varsubsetneqq X$ such that X is Kobayashi hyperbolic modulo S.

Conjecture 3 implies Conjecture 2. We want to show that the image of every nonconstant rational map $A \rightarrow X$ from abelian variety A should be contained in S, where $S \varsubsetneqq X$ is the proper Zariski closed subset appeared in Conjecture 3. This follows from the distance decreasing property of Kobayashi pseudo-distance and $d_{A} \equiv 0$. Hence $\operatorname{Sp}(X) \subset$ $S \varsubsetneqq X$.

It is not clear whether or not Conjecture 3 implies Conjecture 1. However the following implication is known by Demailly.
Theorem 1 ([3]). Let X be a Kobayashi hyperbolic projective manifold. Let L be an ample line bundle on X. Then there exists a positive number $\alpha>0$ such that for every holomorphic map $g: C \rightarrow X$ from a compact Riemann surface C, we have

$$
\operatorname{deg}_{C} g^{*}(L) \leq \alpha \times\{\operatorname{genus}(C)-1\}
$$

Proof. Let ω_{L} be a curvature form of L, which is a positive (1,1)-form on X. For $v \in T X$, we denote by $|v|_{\omega_{L}}$ the norm associated to ω_{L}. There exists a positive constant $\delta>0$ such that $F_{X}(v) \geq \delta|v|_{\omega_{L}}$ for all $v \in T X$; For otherwise, Brody's reparametrization argument yields a non-constant holomorphic map $\mathbb{C} \rightarrow X$, which contradicts to the assumption that X is Kobayashi hyperbolic. By the distance decreasing property, we
have $F_{C}(v) \geq F_{X}\left(g_{*} v\right)$ for all $v \in T C$. Hence we have $F_{C}(v) \geq \delta|v|_{g^{*} \omega_{L}}$ for all $v \in T C$. Since F_{C} coincides with Poincaré metric on C, we have

$$
\omega_{C} \geq \delta g^{*} \omega_{L}
$$

where ω_{C} is the $(1,1)$-form on C associated to the Poincaré metric. By integrating both sides of this estimate, we conclude the proof.

Recently, Conjecture 3 is verified for subvarieties of general type on abelian varieties ([9]).
Theorem 2. Let X be a subvariety of general type on an abelian variety. Then X is Kobayashi hyperbolic modulo $\operatorname{Sp}(X)$.

Recall that $\operatorname{Sp}(X)$ is a proper Zariski closed set $\operatorname{Sp}(X) \varsubsetneqq X$ by [5], where X is a subvariety of general type on an abelian variety A. Moreover, $\operatorname{Sp}(X)$ has more clear description without taking Zariski closure:

$$
\operatorname{Sp}(X)=\{x \in X ; \exists B \subset A \text {, an abelian varietys.t. } \operatorname{dim}(B)>0 \text { and } x+B \subset X\} .
$$

Corollary 2. For subvariety X of an abelian variety A, we have

$$
X \text { is of general type } \Longleftrightarrow X \text { is pseudo-Kobayashi hyperbolic }
$$

Proof. The direction \Longrightarrow is by the theorem. The converse follows by a theorem of Ueno. Indeed, if X is not of general type, then the stabilizer of X is positive dimensional. Hence there exists a positive dimensional abelian subvariety $B \subset A$ such that $x+B \subset X$ for all $x \in X$. Hence, for each point $x \in X$, there exists a non-constant map $B \rightarrow X$ passing through x. Hence by the distance decreasing property and $d_{B} \equiv 0$, we conclude that X is not pseudo-Kobayashi hyperbolic.

Theorem 2 is a generalization of the following theorems for a subvariety X of general type on an abelian variety.
(1) Green's theorem states that if $\operatorname{Sp}(X)=\emptyset$, then X is Kobayashi hyperbolic ([4]). Indeed our theorem implies that X is Kobayashi hyperbolic modulo \emptyset, hence X is Kobayashi hyperbolic. Green actually proved that there is no non-constant holomorphic map $f: \mathbb{C} \rightarrow X$, if $\operatorname{Sp}(X)=\emptyset$. By Brody's criterion, this implies that X is Kobayashi hyperbolic.
(2) More generally, Bloch-Ochiai-Kawamata's theorem states that every non-constant holomorphic map $f: \mathbb{C} \rightarrow X$ satisfies $f(\mathbb{C}) \subset \operatorname{Sp}(X)([5])$. This follows from our theorem by the distance decreasing property and $d_{\mathbb{C}} \equiv 0$. However, from this theorem, we can't conclude any information for Kobayashi pseudo-distance d_{X}. We can't even exclude the possibility $d_{X} \equiv 0$.
In complex analysis, there is a philosophical principle stated by A. Bloch as follows: Nothing exists in the infinite plane that has not been previously done in the finite disk. This principle says that if some property \mathcal{P} reduces analytic maps in \mathbb{C} to a constant, then a family of analytic maps in Δ with the property \mathcal{P} will be normal. The property of 'bounded analytic function' is one such example; Liouville's theorem corresponds to Montel's theorem. The following theorem may be considered as one example of this principle which corresponds to Bloch-Ochiai-Kawamata's theorem above.

We denote by $\operatorname{Hol}(\Delta, X)$ the set of all holomorphic mappings $f: \Delta \rightarrow X$.

Theorem 3. Let X be a subvariety of general type on an abelian variety. Then for each sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $\operatorname{Hol}(\Delta, X)$, we have one of the following:
(1) $\left\{f_{n}\right\}_{n=1}^{\infty}$ has a subsequence which converges locally uniformly to some $f \in \operatorname{Hol}(\Delta, X)$, or
(2) for each compact subset $K \subset \Delta$ and each compact subset $L \subset X \backslash \operatorname{Sp}(X)$, there exists an integer n_{0} such that $f_{n}(K) \cap L=\emptyset$ for all $n \geq n_{0}$.
In other words, X is taut modulo $\operatorname{Sp}(X)$ with terminology in [6]. Theorem 2 follows from this theorem. Indeed, Theorem 2 is an integrated version of the following lower estimate of F_{X}.

Corollary 3 (Lower estimate of $\left.F_{X}\right)$. For each open neighborhood $U \subset X$ of $\operatorname{Sp}(X)$, there exists a positive constant $c>0$ such that $F_{X}(v) \geq \frac{1}{c}|v|$ for all $v \in T_{x} X$ with $x \notin U$.

Proof. We first show that there exists a positive constant $c>0$ such that for every $f \in \operatorname{Hol}(\Delta, X)$ with $f(0) \notin U$, we have $\left|f^{\prime}(0)\right|<c$. For otherwise, there exists a sequence $\left\{f_{n}\right\} \subset \operatorname{Hol}(\Delta, X)$ such that $f_{n}(0) \notin U$ and $\left|f_{n}^{\prime}(0)\right| \rightarrow \infty$. For this sequence, the second conclusion of Theorem 3 does not occur. Hence there exists a subsequence $\left\{f_{n_{k}}\right\}$ which converges locally uniformly to some $f \in \operatorname{Hol}(\Delta, X)$, so $\left|f_{n_{k}}^{\prime}(0)\right| \rightarrow\left|f^{\prime}(0)\right|$. This is a contradiction.

Now to measure $F_{X}(v)$, we take $f \in \operatorname{Hol}(\Delta, X)$ with $f^{\prime}(0)=r v$. Then we have $\left|f^{\prime}(0)\right|=$ $r|v| \leq c$. Hence $|v| / c \leq 1 / r$. So by the definition of $F_{X}(v)$, we have $|v| / c \leq F_{X}(v)$.

References

[1] F. Bogomolov, Families of curves on a surface of general type, Soviet Math. Dokl. 18 (1977), 1294-1297.
[2] H. Clemens, Curves on generic hypersurfaces, Ann. Sci. ENS 19 (1986), 629-636.
[3] J. P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proceedings of Symposia in Pure Mathematics. Vol. 62. American Mathematical Society, 1997.
[4] M. Green, Holomorphic maps to complex tori, American Journal of Mathematics 100 (1978) 615-620.
[5] Y. Kawamata, On Bloch's conjecture, Invent. Math. 57 (1980), 97-100.
[6] S. Kobayashi, Hyperbolic Complex Spaces, Springer, 1998.
[7] S. Lang, Survey of Diophantine Geometry, Springer-Verlag, 1997.
[8] K. Yamanoi, Holomorphic curves in algebraic varieties of maximal albanese dimension, International Journal of Mathematics 26, 1541006.
[9] K. Yamanoi, Pseudo Kobayashi hyperbolicity of subvarieties of general type on abelian varieties, preprint.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: yamanoi@math.sci.osaka-u.ac.jp

