<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Complex hyperbolicity problems related to abelian varieties</td>
</tr>
<tr>
<td>Author</td>
<td>山ノ井 克俊</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 2016: 116-120</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/218287</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
COMPLEX HYPERBOLICITY PROBLEMS RELATED TO ABELIAN VARIETIES

KATSUTOSHI YAMANOI

1. HYPERBOLICITY PROBLEMS IN ALGEBRAIC SETTING

Let X be a smooth complex projective variety.

Conjecture 1. Assume that X is of general type. Let L be an ample line bundle on X. Then there exists a positive number $\alpha > 0$ and a proper Zariski closed subset $Z \subseteq X$ such that for every holomorphic map $g: C \to X$ from a compact Riemann surface C with $g(C) \not\subseteq Z$, we have

$$\deg_C g^* (L) \leq \alpha \times \{\text{genus}(C) - 1\}$$

We introduce the following special set after S. Lang:

Definition 1 (Special set). Consider all non-constant rational maps $\varphi: A \to X$ from abelian varieties A and define the special set of X by

$$\text{Sp}(X) = \bigcup_{\varphi: A \to X \text{ Zariski closure}} \varphi(A)$$

By the definition, Sp(X) is a Zariski closed set of X. Note that the special set Sp(X) contains all rational and elliptic curves in X. This is trivial for elliptic curves in X by the definition. For the rational curves $f: \mathbb{P}^1 \to X$, we take the composite with a double covering $\varphi: E \to \mathbb{P}^1$ from an elliptic curve E to get a morphism $f \circ \varphi: E \to X$ from the elliptic curve. So $f(\mathbb{P}^1) = f \circ \varphi(E) \subseteq \text{Sp}(X)$.

Conjecture 2 (Lang [7]). Assume X is of general type. Then the special set is a proper Zariski closed subset $\text{Sp}(X) \subseteq X$.

Conjecture 1 implies Conjecture 2. Indeed, let $\varphi: A \to X$ be a non-constant rational map. We want to show that $\varphi(A) \subseteq Z$, where $Z \subseteq X$ is the Zariski closed set in Conjecture 1. So suppose contrary that $\varphi(A) \not\subseteq Z$. Let $E \subseteq A$ be the indeterminacy set of φ. Then $\text{codim} E \geq 2$. Let $n_A: A \to A$ be the n-times map. Let $C \subset A$ be a smooth curve in A such that $n_A(C) \not\subseteq E \cup \varphi^{-1}(Z)$ for all n. For an ample line bundle L on X, we have $n_A^*c_1(\varphi^*L) = n^2 c_1(\varphi^*L) \in H^2(A, \mathbb{Z})$, where $c_1(\varphi^*L) \in H^2(A, \mathbb{Z})$ is the characteristic class of φ^*L. Now we consider the holomorphic map $\varphi \circ n_A|_C : C \to X$. Then

$$\deg_C(\varphi \circ n_A|_C)^*L = n^2 \deg_C(\varphi|_C)^*L \to \infty$$

as $n \to \infty$, but $\varphi \circ n_A|_C(C) \not\subseteq Z$. This contradicts to Conjecture 1. Thus $\varphi(A) \subseteq Z$.

These conjectures are open even for the case of dim $X = 2$. Some known cases are the following:

- Surfaces of general type with $c_1(X)^2 > e_2(X)$. Conjecture 1 is valid ([1]).
- Subvarieties of general type on abelian varieties. Conjecture 2 is valid ([5]).
• Very generic hypersurfaces of degree \(d \geq 2n + 2 \) in \(\mathbb{P}^{n+1} \). Conjecture 1 is valid with stronger conclusion that \(Z = \emptyset \) ([2]).

We say that \(X \) is of maximal albanese dimension if the dimension of the image \(a(X) \) of the albanese map \(a : X \to \text{Alb}(X) \) is equal to the dimension of \(X \).

• Varieties of maximal albanese dimension and of general type. Conjecture 1 is valid ([8]).

2. Hyperbolicity problems in complex analytic setting

Let \(M \) be a complex manifold. We first introduce Kobayashi-Royden pseudo-metric \(F_M : TM \to \mathbb{R}_{\geq 0} \) as follows. Set \(\Delta = \{ z \in \mathbb{C}; |z| < 1 \} \).

Definition 2 (Kobayashi-Royden pseudo-metric). For \(v \in T_x(M) \),

\[
F_M(v) = \inf \left\{ \frac{1}{r}; \exists f : \Delta \to M \text{ holomorphic s.t. } f(0) = x, \ f'(0) = rv \right\}.
\]

Proposition 1. Let \(\varphi : X \to Y \) be a holomorphic map between complex manifolds, let \(\varphi_* : TX \to TY \) be the induced map. Then for all \(v \in TX \),

\[
F_X(v) \geq F_Y(\varphi_*(v)).
\]

In particular, every holomorphic automorphism is an isometry of \(F_X \).

Proof. This follows directly from the definition. We prove, for arbitrary \(v \in TX \),

\[
F_X(v) \geq F_Y(\varphi_*(v)).
\]

Take an arbitrary \(1/r > F_X(v) \). It is enough to show \(1/r > F_Y(\varphi_*(v)) \). There exists \(f : \Delta \to X \) such that \(f'(0) = rv \). Hence \(\varphi \circ f : \Delta \to Y \) satisfies \((\varphi \circ f)'(0) = r\varphi_*(v) \). Hence \(F_Y(\varphi_*(v)) < 1/r \), so \(F_X(v) \geq F_Y(\varphi_*(v)) \). \(\square \)

Definition 3 (Kobayashi pseudo-distance). For \(x, y \in M \), we define

\[
d_M(x, y) = \inf_{\gamma} \int_{\gamma} F_M(\gamma'(t))dt
\]

where the infimum is taken over all piecewise smooth curves \(\gamma \) joining \(x \) and \(y \).

Corollary 1. For all \(x, y \in X \), we have \(d_X(x, y) \geq d_Y(\varphi(x), \varphi(y)) \).

Definition 4 (S. Kobayashi [6]). A complex manifold \(M \) is Kobayashi hyperbolic if \(d_M \) is a true distance, i.e., \(d_M(p, q) > 0 \) whenever \(p \neq q \).

Examples.

1. If \(M = \Delta \), then \(F_\Delta = \frac{|dz|}{1 - |z|^2} \). Hence \(d_\Delta \) is the Poincaré distance of the unit disc \(\Delta \).

Proof. Both \(F_\Delta \) and \(|dz|/(1 - |z|^2) \) are isometric under \(\text{Aut}(\Delta) \). Hence it is enough to compare them over \(0 \in \Delta \), and show \(F_\Delta(\partial/\partial z) = 1 \). The existence of \(\text{id}_\Delta : \Delta \to \Delta \) yields \(F_\Delta(\partial/\partial z) \leq 1 \). By the Schwarz lemma, if \(f : \Delta \to \Delta \) is holomorphic with \(f(0) = 0 \) and \(f'(0) = r \frac{a}{dz} \), then \(1 \leq 1/r \). This shows \(1 \leq F_\Delta(\partial/\partial z) \). Hence \(F_\Delta(\partial/\partial z) = 1 \). \(\square \)
If X is a compact Riemann surface of genus ≥ 2, then d_X is equal to the Poincaré distance on X induced from the universal covering map $\Delta \to X$. In particular, X is Kobayashi hyperbolic.

(2) If $M = \mathbb{C}$, then $F_{\mathbb{C}} \equiv 0$ and $d_{\mathbb{C}} \equiv 0$.

Proof. For arbitrary $R > 0$, let $f_R : \Delta \to \mathbb{C}$ be defined by $f_R(z) = Rz$. Then $f_R(0) = 0$ and $f_R'(0) = R \frac{\partial}{\partial z}$. Hence $F_{\mathbb{C}}(\partial / \partial z) \leq 1/R$. Since $R > 0$ is arbitrary, $F_{\mathbb{C}}(\partial / \partial z) = 0$. Using automorphism of \mathbb{C}, $F_{\mathbb{C}} \equiv 0$. □

(3) If X is a projective space or an Abelian variety, then $d_X \equiv 0$.

Proof. For every $x, y \in X$, there exists a holomorphic map $f : \mathbb{C} \to X$ such that $f(0) = x$ and $f(1) = y$. So by the distance decreasing property, we have $d_X(x, y) \leq d_{\mathbb{C}}(0, 1) = 0$ □

Thus if X is a smooth projective variety with $\dim X = 1$, the followings are equivalent:

(1) genus(X) ≥ 2.
(2) X is of general type.
(3) X is Kobayashi hyperbolic.

Indeed, if genus(X) $= 0$ or 1, then X is \mathbb{P}^1 or elliptic curve, so $d_X \equiv 0$. Hence (3) implies (1).

For $\dim X \geq 2$, a projective variety X of general type need not be Kobayashi hyperbolic. Indeed X may contain rational or elliptic curves even if X is of general type, and such X is not Kobayashi hyperbolic. We introduce weaker notion.

Definition 5. Let M be a complex manifold and let $S \subset M$ be a closed subset. M is Kobayashi hyperbolic modulo S, if d_M is a true distance outside S.

Conjecture 3 ([6]). If X is a projective variety of general type, then X is pseudo-Kobayashi hyperbolic, i.e., there exists a proper Zariski closed subset $S \subsetneq X$ such that X is Kobayashi hyperbolic modulo S.

Conjecture 3 implies Conjecture 2. We want to show that the image of every non-constant rational map $A \to X$ from abelian variety A should be contained in S, where $S \subsetneq X$ is the proper Zariski closed subset appeared in Conjecture 3. This follows from the distance decreasing property of Kobayashi pseudo-distance and $d_A \equiv 0$. Hence $\text{Sp}(X) \subset S \subsetneq X$. □

It is not clear whether or not Conjecture 3 implies Conjecture 1. However the following implication is known by Demailly.

Theorem 1 ([3]). Let X be a Kobayashi hyperbolic projective manifold. Let L be an ample line bundle on X. Then there exists a positive number $\alpha > 0$ such that for every holomorphic map $g : C \to X$ from a compact Riemann surface C, we have

$$\deg_C g^*(L) \leq \alpha \times \{\text{genus}(C) - 1\}.$$

Proof. Let ω_L be a curvature form of L, which is a positive $(1,1)$-form on X. For $v \in TX$, we denote by $|v|_{\omega_L}$ the norm associated to ω_L. There exists a positive constant $\delta > 0$ such that $F_X(v) \geq \delta |v|_{\omega_L}$ for all $v \in TX$; For otherwise, Brody's reparametrization argument yields a non-constant holomorphic map $C \to X$, which contradicts to the assumption that X is Kobayashi hyperbolic. By the distance decreasing property, we
have $F_C(v) \geq F_X(g_*v)$ for all $v \in TC$. Hence we have $F_C(v) \geq \delta |v|_g \omega_L$ for all $v \in TC$. Since F_C coincides with Poincaré metric on C, we have

$$\omega_C \geq \delta g^* \omega_L,$$

where ω_C is the $(1,1)$-form on C associated to the Poincaré metric. By integrating both sides of this estimate, we conclude the proof. □

Recently, Conjecture 3 is verified for subvarieties of general type on abelian varieties ([9]).

Theorem 2. Let X be a subvariety of general type on an abelian variety. Then X is Kobayashi hyperbolic modulo $\text{Sp}(X)$.

Recall that $\text{Sp}(X)$ is a proper Zariski closed set $\text{Sp}(X) \subsetneq X$ by [5], where X is a subvariety of general type on an abelian variety A. Moreover, $\text{Sp}(X)$ has more clear description without taking Zariski closure:

$$\text{Sp}(X) = \{ x \in X; \exists B \subset A, \text{an abelian variety, s.t. } \dim(B) > 0 \text{ and } x + B \subset X \}.$$

Corollary 2. For subvariety X of an abelian variety A, we have

$$X \text{ is of general type } \iff X \text{ is pseudo-Kobayashi hyperbolic}.$$

Proof. The direction \implies is by the theorem. The converse follows by a theorem of Ueno. Indeed, if X is not of general type, then the stabilizer of X is positive dimensional. Hence there exists a positive dimensional abelian subvariety $B \subset A$ such that $x + B \subset X$ for all $x \in X$. Hence, for each point $x \in X$, there exists a non-constant map $B \to X$ passing through x. Hence by the distance decreasing property and $d_B \equiv 0$, we conclude that X is not pseudo-Kobayashi hyperbolic. □

Theorem 2 is a generalization of the following theorems for a subvariety X of general type on an abelian variety.

1. **Green’s theorem** states that if $\text{Sp}(X) = \emptyset$, then X is Kobayashi hyperbolic ([4]). Indeed our theorem implies that X is Kobayashi hyperbolic modulo \emptyset, hence X is Kobayashi hyperbolic. Green actually proved that there is no non-constant holomorphic map $f : \mathbb{C} \to X$, if $\text{Sp}(X) = \emptyset$. By Brody’s criterion, this implies that X is Kobayashi hyperbolic.

2. More generally, **Bloch-Ochiai-Kawamata’s theorem** states that every non-constant holomorphic map $f : \mathbb{C} \to X$ satisfies $f(\mathbb{C}) \subset \text{Sp}(X)$ ([5]). This follows from our theorem by the distance decreasing property and $d_C \equiv 0$. However, from this theorem, we can’t conclude any information for Kobayashi pseudo-distance d_X. We can’t even exclude the possibility $d_X \equiv 0$.

In complex analysis, there is a philosophical principle stated by A. Bloch as follows: *Nothing exists in the infinite plane that has not been previously done in the finite disk.* This principle says that if some property \mathcal{P} reduces analytic maps in \mathbb{C} to a constant, then a family of analytic maps in Δ with the property \mathcal{P} will be normal. The property of ‘bounded analytic function’ is one such example; Liouville’s theorem corresponds to Montel’s theorem. The following theorem may be considered as one example of this principle which corresponds to Bloch-Ochiai-Kawamata’s theorem above.

We denote by $\text{Hol}(\Delta, X)$ the set of all holomorphic mappings $f : \Delta \to X$.

Theorem 3. Let X be a subvariety of general type on an abelian variety. Then for each sequence $\{f_n\}_{n=1}^\infty$ in $\text{Hol}(\Delta, X)$, we have one of the following:

1. $\{f_n\}_{n=1}^\infty$ has a subsequence which converges locally uniformly to some $f \in \text{Hol}(\Delta, X)$, or
2. for each compact subset $K \subset \Delta$ and each compact subset $L \subset X \setminus \text{Sp}(X)$, there exists an integer n_0 such that $f_n(K) \cap L = \emptyset$ for all $n \geq n_0$.

In other words, X is taut modulo $\text{Sp}(X)$ with terminology in [6]. Theorem 2 follows from this theorem. Indeed, Theorem 2 is an integrated version of the following lower estimate of F_X.

Corollary 3 (Lower estimate of F_X). For each open neighborhood $U \subset X$ of $\text{Sp}(X)$, there exists a positive constant $c > 0$ such that $F_X(v) \geq \frac{1}{c} |v|$ for all $v \in T_x X$ with $x \notin U$.

Proof. We first show that there exists a positive constant $c > 0$ such that for every $f \in \text{Hol}(\Delta, X)$ with $f(0) \notin U$, we have $|f'(0)| < c$. For otherwise, there exists a sequence $\{f_n\} \subset \text{Hol}(\Delta, X)$ such that $f_n(0) \notin U$ and $|f'_n(0)| \to \infty$. For this sequence, the second conclusion of Theorem 3 does not occur. Hence there exists a subsequence $\{f_{n_k}\}$ which converges locally uniformly to some $f \in \text{Hol}(\Delta, X)$, so $|f_{n_k}(0)| \to |f'(0)|$. This is a contradiction.

Now to measure $F_X(v)$, we take $f \in \text{Hol}(\Delta, X)$ with $f'(0) = rv$. Then we have $|f'(0)| = r|v| \leq c$. Hence $|v|/c \leq 1/r$. So by the definition of $F_X(v)$, we have $|v|/c \leq F_X(v)$. □

References

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
E-mail address: yamano@math.sci.osaka-u.ac.jp