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1. Introduction

1.1. Background. Let Rn := C[[x1, ..., xn]] be the formal power series ring of n-
valuables, and let f ∈ Rn be a non-zero element. A matrix factorization of the
pair (Rn, f) is a sequence of the following form

(
F1

ϕ1−→ F0
ϕ0−→ F1

)
,

where Fi are finitely generated free Rn-modules and ϕi are Rn-linear maps such that
ϕ0ϕ1 = f ·idF1 and ϕ1ϕ0 = f ·idF0 . Matrix factorizations are introduced by D. Eisenbud
in [Eis]. In [Eis], Eisenbud consider the homotopy category of matrix factoriza-
tions

KMF(Rn, f)

of (Rn, f) whose objects are matrix factorizations, and prove that the category KMF(Rn, f)
is equivalent to the sable category CM(Rn/⟨f⟩) of maximal Cohen-Macaulay (CM)
modules;

KMF(Rn, f) ∼= CM(Rn/⟨f⟩).

By the above equivalence, we can apply the theory of matrix factorizations to the
representation theory of CMmodules over hypersurface singularities. In [Knö], Knörrer
showed the following result, which is called Knörrer periodicity:

Theorem 1.1 ([Knö]). We have the following equivalence

KMF(Rn, f) ∼= KMF(Rn+2, f + x2n+1 + x2n+2).

The hypersurface singularity Rn/⟨f⟩ is called simple singularities if f is one of
the following polynomials (up to change of variables):

(Ak) : xk+1
1 + x22 + x23 + x24 + · · ·+ x2n (k ≥ 1)

(Dl) : x21x2 + xl−1
2 + x23 + x24 · · ·+ x2n (l ≥ 4)

(E6) : x31 + x42 + x23 + x24 + · · ·+ x2n
(E7) : x31 + x1x

3
2 + x23 + x24 + · · ·+ x2n

(E8) : x31 + x52 + x23 + x24 + · · ·+ x2n

Using Knörrer periodicity, we can reduce the representation theory of CM modules
over higher dimensional simple singularities to the case of lower dimensional simple
singularities, and by this reduction we can show that any dimensional simple singu-
larities is of finite representation type, i.e. the number of irreducible CM modules are
finite.
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2 Y. HIRANO

1.2. Main result. A data (X,χ,W )G is called gauged Landau-Ginzburg model
(or gauged LG model) if X is a scheme over C, G is an algebraic group acting
on X, χ : G → Gm is a character of G, and W : X → A1 is a χ-semi invariant
regular function, i.e. W (g · x) := χ(g)W (x) for any g ∈ G and x ∈ X. If G = 0,
we denote the gauged LG model by (X,W ). We can consider gauged LG models
are generalizations of the pair (Rn, f) in the previous section. As a generalization of
homotopy category of matrix factorizations, we consider the derived factorization
category DcohG(X,χ,W ) of (X,χ,W )G. In fact, we have the following equivalence;

Dcoh(SpecRn, f) ∼= KMF(Rn, f).

Our main result is a Knörrer periodicity type equivalence of derived factorization
categories. To state our main result, we set up notation as follows:

Let X be a smooth quasi-projective variety over C, and let G be a reductive affine
algebraic group acting on X. Let E be a G-equivariant locally free sheaf of finite rank,
and choose a G-invariant regular section s ∈ Γ(X, E∨)G. Denote by Z ⊂ X the zero
scheme of s. Let χ : G → Gm be a character of G, and set E(χ) := E ⊗ O(χ), where
O(χ) is the G-equivariant invertible sheaf corresponding to χ. Then E(χ) induces a
vector bundle V(E(χ)) over X with a G-action induced by the equivariant structure
of E(χ). Let q : V(E(χ)) → X and p : V(E(χ))|Z → Z be natural projections, and
let i : V(E(χ))|Z → V(E(χ)) be a natural inclusion. The regular section s induces a
χ-semi invariant regular function Qs : V(E(χ)) → A1.

Theorem 1.2 ([H]). Let W : X → A1 be a χ-semi invariant regular function, such
that the restricted function W |Z : Z → A1 is flat. Then the functor

i∗p
∗ : DcohG(Z,χ,W |Z)

∼−→ DcohG(V(E(χ)),χ, q∗W +Qs).

is an equivalence.

As a special case of the above theorem, we obtain the following global version of
Theorem 1.1;

Dcoh(SpecC[x1, ..., xn], f) ∼= Dcoh(SpecC[x1, ...., xn+2], f + x2n+1 + x2n+2).

Theorem 1.2 is also an analogy of the result obtained by Shipman and Isik indepen-
dently, where they consider the case when G = Gm, the G-action on X is trivial,
χ = idGm , and W = 0 [Shi], [Isi]. The proof of Theorem 1.1 is quite different from
Shipman’s and Isik’s proofs, and we use relative singularity categories introduced in
[EP], which are equivalent to derived factorization categories.

1.3. Acknowledgments. The author would like to thank the organizers Osamu Fu-
jino, Masanori Kobayashi, and Shinnosuke Okawa for giving me the opportunity to
talk at the Kinosaki Algebraic Geometry Symposium 2016. The author is supported
by the Grant-in-Aid for JSPS fellows #26-6240.

2. Derived factorization categories

In this section, we give the definition of derived factorization categories of gauged LG
models. For the definition of a gauged LG model, see section 1.2 in the introduction.

Definition 2.1. Let (X,χ,W )G be a gauged LG model. A factorization F of
(X,χ,W )G is a sequence

F =
(
F1

ϕF
1−−→ F0

ϕF
0−−→ F1(χ)

)
,

where Fi is a G-equivariant quasi-coherent sheaf on X and ϕF
i is a G-invariant ho-

momorphism for i = 0, 1 such that ϕF
0 ◦ ϕF

1 = W · idF1 and ϕF
1 (χ) ◦ ϕF

0 = W · idF0 .
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3

Equivariant quasi-coherent sheaves F0 and F1 in the above sequence are called com-
ponents of the factorization F .

Definition 2.2. (1) For a gauged LG model (X,χ,W )G, we define an abelian category

QcohG(X,χ,W )

whose objects are factorizations of (X,χ,W )G. For E,F ∈ QcohG(X,χ,W ), the set
of morphisms HomQcohG(X,χ,W )(E,F ) is defined as the set of of pairs (f1, f0) such that
fi ∈ HomQcohGX(Ei, Fi) and that the following diagram is commutative

E1
ϕE
1 !!

f1
""

E0
ϕE
0 !!

f0
""

E1(χ)

f1(χ)
""

F1
ϕF
1 !! F0

ϕF
0 !! F1(χ).

(2) Two morphisms f = (f1, f0) and g = (g1, g0) in HomQcohG(X,χ,W )(E,F ) are homo-
topy equivalent, denoted by f ∼ g, if there exist two G-invariant homomorphisms

h0 : E0 → F1 and h1 : E1(χ) → F0

such that f0 − g0 = ϕF
1 h0 + h1ϕE

0 and f1(χ) − g1(χ) = ϕF
0 h1 + h0(χ)ϕE

1 (χ). The
homotopy category of factorizations

KQcohG(X,χ,W )

of (X,χ,W )G is defined as the category such that the objects are factorizations of
(X,χ,W )G and the set of morphisms is defined as the homotopy equivalence classes
of the morphisms in QcohG(X,χ,W );

HomKQcohG(X,χ,W )(E,F ) := HomQcohG(X,χ,W )(E,F )/ ∼

Similarly, we consider the full subcategories

cohG(X,χ,W )

MFG(X,χ,W )

of QcohG(X,χ,W ) consisting of factorizations whose components are equivariant co-
herent sheaves and equivariant locally free sheaves of finite ranks respectively, and we
define its homotopy categories

KcohG(X,χ,W )

KMFG(X,χ,W ).

We easily see that cohG(X,χ,W ) and MF(X,χ,W ) are exact categories, and if X is
Noetherian, cohG(X,χ,W ) is an abelian category.

We next define the totalizations of bounded complexes of factorizations.

Definition 2.3. Let F • = (· · · → F i δi−→ F i+1 → · · ·) be a bounded complex of
QcohG(X,χ,W ). For l = 0, 1, set

Tl :=
⊕

i+j=−l

F i
j
(χ⌈j/2⌉),

and let
tl : Tl → Tl+1

be a G-invariant homomorphism given by

tl|F i
j
(χ⌈j/2⌉) := δi

j
(χ⌈j/2⌉) + (−1)iϕF i

j
(χ⌈j/2⌉),
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4 Y. HIRANO

where n is n modulo 2, and ⌈m⌉ is the minimum integer which is greater than or equal
to a real number m. We define the totalization Tot(F •) ∈ QcohG(X,χ,W ) of F • as

Tot(F •) :=
(
T1

t1−→ T0
t0−→ T1(χ)

)
.

Totalizations define a functor

Chb(QcohG(X,χ,W )) → QcohG(X,χ,W ),

where Chb(QcohG(X,χ,W )) is the abelian category of bounded chain complexes in
QcohG(X,χ,W ).

In what follows, we will recall that the category KQcohG(X,χ,W ) has a structure
of a triangulated category.

Definition 2.4. We define an automorphism T on KQcohG(X,χ,W ), which is called
shift functor, as follows. For an object F ∈ KQcohG(X,χ,W ), we define an object
T (F ) as

T (F ) :=
(
F0

−ϕF
0−−−→ F1(χ)

−ϕF
1 (χ)

−−−−−→ F0(χ)
)

and for a morphism f = (f1, f0) ∈ Hom(E,F ), we set T (f) := (f0, f1(χ)) ∈ Hom(T (E), T (F )).
For any integer n ∈ Z, denote by (−)[n] the functor Tn(−).

Definition 2.5. Let f : E → F be a morphism in QcohG(X,χ,W ). We define its
mapping cone Cone(f) to be the totalization of the complex

(· · · → 0 → E
f−→ F → 0 → · · ·)

with F in degree zero.
A distinguished triangle is a sequence in KQcohG(X,χ,W ) which is isomorphic

to a sequence of the form

E
f−→ F

i−→ Cone(f)
p−→ E[1],

where i and p are natural injection and projection respectively.

Proposition 2.6. KQcohG(X,χ,W ) is a triangulated category with respect to its shift
functor and its distinguished triangles defined above. Full subcategories KcohG(X,χ,W )
and KMFG(X,χ,W ) are full triangulated subcategories.

Following Positselski ([Pos1], [EP]), we define derived factorization categories.

Definition 2.7. Denote by AcohG(X,χ,W ) the smallest thick subcategory of
KcohG(X,χ,W ) containing all totalizations of short exact sequences in cohG(X,χ,W ).
We define the derived factorization category of (X,χ,W )G as the Verdier quotient

DcohG(X,χ,W ) := KcohG(X,χ,W )/AcohG(X,χ,W ).

Similarly, consider the smallest thick subcategory AMFG(X,χ,W ) of KMFG(X,χ,W )
containing all totalizations of short exact sequences in MFG(X,χ,W ), and denote the
Verdier quotient by

DMFG(X,χ,W ) := KMFG(X,χ,W )/AMFG(X,χ,W ).

Denote by AcoQcohG(X,χ,W ) the smallest thick subcategory of the triangulated cat-
egory KQcohG(X,χ,W ) which is closed under taking small direct sums and contains
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5

all totalizations of short exact sequences in QcohG(X,χ,W ). Consider the following
Verdier quotient;

DcoQcohG(X,χ,W ) := KQcohG(X,χ,W )/AcoQcohG(X,χ,W ).

If G is trivial, we drop G and χ from the above notation, and denote each triangulated
categories by Dcoh(X,W ), etc.

The following lemma says that, in affine cases, derived factorization categories are
equivalent to homotopy categories.

Lemma 2.8 ([BDFIK, Lemma 2.24]). If X is an affine scheme, then the localization
functor

KMFG(X,χ,W ) → DMFG(X,χ,W )

is an equivalence.

Lemma 2.9 ([BFK, Proposition 3.14] ). (1) Assume that X is a smooth variety. Then
the natural functor

DMFG(X,χ,W ) → DcohG(X,χ,W )

is an equivalence. In particular, if X is a smooth affine variety, the natural functor

KMFG(X,χ,W ) → DcohG(X,χ,W )

is an equivalence.

Similarly to the derived categories of coherent sheaves, we have standard functors
between derived factorization categories such as direct mage functors, inverse image
functors, and tensor product functors. See [H] for the details.

3. Relative singularity categories

In this section, we recall the definition and properties of relative singularity cate-
gories. Let X be a quasi-projective scheme, and let G be an affine algebraic group
acting on X. Throughout this section, we assume that X has a G-equivariant am-
ple line bundle. If X is normal, this condition is satisfied by [Tho, Lemma 2.10]. The
equivariant triangulated category of singularities Dsg

G (X) of X is defined as the Verdier
quotient

Dsg
G (X) := Db(cohGX)/PerfG(X)

of Db(cohGX) by the thick subcategory PerfG(X) of equivariant perfect complexes
We recall relative singularity categories following [EP]. Let i : Z ↪→ X be a G-

equivariant closed immersion of X such that OZ has finite G-flat dimension as an OX-
module i.e., the G-equivariant sheaf i∗OZ ∈ cohG(X) has a finite resolution F • → i∗OZ

of G-equivariant flat sheaves on X. Under this assumption, we have the derived inverse
image Li∗ : Db(cohGX) → Db(cohGZ).

Definition 3.1 ([EP] Section 2.1). We consider the following Verdier quotient

Dsg
G (Z/X) := Db(cohGZ)/⟨Im(Li∗ : Db(cohGX) → Db(cohGZ))⟩,

where ⟨−⟩ denotes the smallest thick subcategory containing objects in (−). The
quotient category Dsg

G (Z/X) is called the equivariant triangulated category of
singularities of Z relative to X.

Remark 3.2. If X is regular, relative singularity categories are equivalent to the usual
singularity categories;

Dsg
G (Z/X) ∼= Dsg

G (Z).
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6 Y. HIRANO

In what follows, we recall that, under some assumptions on gauged LG models,
derived factorization categories are equivalent to relative singularity categories. Let
χ : G → Gm be a character of G, and let W : X → A1 be a χ-semi-invariant regular
function. We assume that G is reductive and W is flat morphism. Denote by X0 the
zero scheme of W and let i : X0 ↪→ X be the closed immersion.

We have an exact functor τ : cohGX0 → cohG(X,χ,W ) defined by

τ(F ) :=
(
0 → i∗(F ) → 0

)
.

We define a natural functor

Υ : Db(cohGX0) → DcohG(X,χ,W )

as the composition of functors

Db(cohGX0)
τ−→ Db(cohG(X,χ,W ))

Tot−−→ DcohG(X,χ,W ),

where the second functor is induced by totalizations defined in Definition 2.3. The
functor Υ annihilates the thick category ⟨Im(Li∗)⟩ ⊂ Db(cohGX0), and so, by the
universal property of the Verdier quotient, it induces an exact functor

Υ : Dsg
G (X0/X) → DcohG(X,χ,W ).

The following result is an equivariant version of [EP, Theorem 2.7], and it follows from
the argument in Remark 2.7 in loc. cit.

Theorem 3.3 (cf. [EP] Theorem 2.7, Remark 2.7). The functor

Υ : Dsg
G (X0/X) → DcohG(X,χ,W )

is an equivalence.

4. Proof of the main result

In this section, we provide a sketch of the proof of Theorem 1.2, which says that the
functor

i∗p
∗ : DcohG(Z,χ,W |Z) → DcohG(V(E(χ)),χ, q∗W +Qs)

is an equivalence (see the introduction for our notation). In the first subsection, we
will prove that the functor i∗p∗ is fully-faithful, and then we will show that i∗p∗ is
essentially surjective in the second subsection. See [H] for the detailed argument.

4.1. Fully-faithfulness. At first, we will introduceKoszul factorizations. Let (X,χ,W )G

be the gauged LG model as in Theorem 1.2. Let F be a G-equivariant locally free
sheaf on X of rank r, and let

f : F → OX and g : OX → F(χ)

be morphisms in cohGX such that g ◦ f = W · idF and f(χ) ◦ g = W . Let Zf ⊂ X
be the zero scheme of the section f ∈ Γ(X,F∨)G. We say that f is regular if the
codimension of Zf in X equals to the rank r.

Definition 4.1. We define an object K(f, g) ∈ MFG(X,χ,W ) as

K(s, t) :=
(
K1

k1−→ K0
k0−→ K1(χ)

)

where

K1 :=

⌈r/2⌉−1⊕

n=0

(
2n+1∧

F)(χn), K0 :=

⌊r/2⌋⊕

n=0

(
2n∧

F)(χn)

and
ki := g ∧ (−)⊕ f ∨ (−).
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The following property will be necessary in the proof of the fully-faithfulness.

Lemma 4.2 ([BFK] Lemma 3.21 and Proposition 3.20).
(1) We have a natural isomorphism

K(f, g)∨ ∼= K(g∨, f∨).

(2) If f is regular, we have a natural isomorphisms in DcohG(X,χ,W )

OZf
∼= K(f, g) and OZf ⊗

r∧
F∨(χ−1)[−r] ∼= K(f, g)∨,

where OZf :=
(
0 → OZf → 0

)
and

∧r F∨(χ−1)[−r] is a complex in cohGX.

In the following proposition, we don’t need to assume the condition that W |Z is flat,
which is assumed in the main result.

Proposition 4.3. The functor

i∗p
∗ : DcohG(Z,χ,W |Z) → DcohG(V(E(χ)),χ, q∗W +Qs)

is fully faithful.

Proof. The functor i∗p∗ can be extended to the following functor

i∗p
∗ : DcoQcohG(Z,χ,W |Z) → DcoQcohG(V(E(χ)),χ, q∗W +Qs),

and the following diagram is commutative;

DcoQcohG(Z,χ,W |Z)
i∗p∗ !! DcoQcohG(V(E(χ)),χ, q∗W +Qs)

DcohG(Z,χ,W |Z)
i∗p∗ !!

""

DcohG(V(E(χ)),χ, q∗W +Qs)

""

where the vertical arrows are fully faithful functors. Hence it is enough to show that
the extended functor i∗p∗ : DcoQcohG(Z,χ,W |Z) → DcoQcohG(V(E(χ)),χ, q∗W +Qs)
is fully faithful.

Set

ωj :=
r∧
(IZ/I2

Z)
∨ and ωi := p∗ωj ,

where IZ is the ideal sheaf of Z in X. These are G-equivariant invertible sheaves on
Z and V(E(χ))|Z respectively. We define an exact functor

i! : DcoQcohG(V(E(χ)),χ,W +Qs) → DcoQcohG(V(E(χ))|Z ,χ,W )

as i!(−) := Li∗(−) ⊗ ωi[−r]. Then the above functor i! is right adjoint to i∗ :
DcoQcohG(V(E(χ))|Z ,χ,W ) → DcoQcohG(V(E(χ)),χ,W + Qs). Hence the compo-
sition

p∗i
! : DcoQcohG(V(E(χ)),χ, q∗W +Qs) → DcoQcohG(Z,χ,W |Z)

is right adjoint to i∗p∗. Let

K := K(q∗s, t) ∈ MFG(V(E(χ)),χ, Qs)

be the Koszul factorization of q∗s ∈ Γ(V(E(χ)), q∗E∨)G and t ∈ Γ(V(E(χ)), q∗E)G,
where t is the tautological section. By easy computation, there exists an object P ∈
DcoQcohG(Z,χ, 0) such that

(∗) p∗i
!i∗p

∗(−) ∼= (−)⊗ P.

If W = 0, by Lemma 4.2, we have the following isomorphisms;

p∗i
!i∗p

∗(OZ) ∼= p∗i
!(K) ∼= p∗Li

∗(K∨) ∼= p∗Li
∗(OZt∨ )

∼= OZ ,
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8 Y. HIRANO

where OZ :=
(
0 → OZ → 0

)
∈ MFG(Z,χ, 0). Substituting OZ into the isomorphism

(∗) when W = 0, we obtain an isomorphism P ∼= OZ . Since P doesn’t depend on W ,
we have p∗i!i∗p∗ ∼= id. Since i∗p∗ ⊣ p∗i!, the functor i∗p∗ is fully faithful. !
4.2. Essentially surjectivity. Denote by Z0, V |Z0 and V0 the zero schemes of W |Z ∈
Γ(Z,O(χ))G, p∗(W |Z) ∈ Γ(V(E(χ))|Z ,O(χ))G and q∗W + Qs ∈ Γ(V(E(χ)),O(χ))G

respectively. Let p0 : V |Z0 → Z0 and i0 : V |Z0 → V0 be natural projection and
injection. Then the composition of functors

Db(cohG Z0)
p∗0−→ Db(cohG V |Z0)

i0∗−−→ Db(cohG V0)

induces the following functor

Φ : Dsg
G (Z0/Z) → Dsg

G (V0).

Then the following diagram is commutative;

Dsg
G (Z0/Z)

Φ !!

Υ
""

Dsg
G (V0)

Υ
""

DcohG(Z,χ,W )
i∗p∗ !! DcohG(V(E(χ)),χ,W +Qs),

where the vertical arrows are equivalences by Theorem 3.3. Hence it is enough to show
the following proposition:

Proposition 4.4. The functor Φ : Dsg
G (Z0/Z) → Dsg

G (V0) is essentially surjective.

Proof. To prove the above proposition, we need to compactify the vector bundle
V(E(χ)). Let

P := P(E(χ)⊕OX) = Proj(Sym(E(χ)⊕OX)
∨)

be the projective space bundle over X with a G-action induced by the equivariant
structure of E(χ)⊕OX . Then we have a natural equivariant open immersion

l : V(E(χ)) → P.

Denote by q : P → X the natural projection. Let P0 be the G-invariant subscheme of
P defined by the G-invariant section s⊕W ∈ Γ(P,O(1)(χ))G which is corresponding
to the composition

OP
q∗(s⊕W )−−−−−−→ q∗(E ⊕O(χ−1))∨

σ−→ OP (1)(χ),

where σ is the canonical surjection. Since the pull-back of s⊕W by the open immersion
l is equal to W +Qs, the open immersion l0 : V0 ↪→ V0 induces the following functor

l0
∗ : Dsg

G (P0) → Dsg
G (V0).

We have the functor
Φ : Dsg

G (Z0) → Dsg
G (P0),

which is defined similarly to Φ, and the following diagram is commutative.

Dsg
G (Z0)

Φ !!

π
""

Dsg
G (P0)

l0∗

""
Dsg

G (Z0/Z)
Φ !! Dsg

G (V0),

where the vertical arrow on the left side is a Verdier localization. Using [Orl, Theorem
2.1], we see that the functor Φ is an equivalence. Since the functor l0

∗ : Dsg
G (P0) →

Dsg
G (V0) is also essentially surjective, so is the composition l0

∗ ◦ Φ. Hence Φ is also
essentially surjective. !
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5. Implication of Knörrer periodicity

At the end of this report, we will explain that our main result is a generalization of
Knörrer periodicity.

Let S be a smooth quasi-projective variety, and let G be an affine reductive group
acting on S. Let W : S → A1 be a χ := χ1 + χ2-semi invariant non-constant regular
function for some characters χi : G → Gm. Let X := V(O(χ1)) ∼= S × A1

x1
be the

G-vector bundle over S, and let s ∈ Γ(X,O(χ1))G be the section corresponding to the
χ1-semi invariant function S×A1

x1
→ A1 which is defined as the projection (s, x1) %→ x1.

Then S is isomorphic to the zero scheme of s, and the G-vector bundle V(O(−χ1)(χ))
over X is isomorphic to the G-variety S × A2

x1,x2
, where the G-weights of xi is given

by χi. By Theorem 1.2, we have the following result.

Corollary 5.1. We have the following equivalence

DcohG(S,χ,W ) ≃ DcohG(S × A2
x1,x2

,χ,W + x1x2).

When you consider the case that G = 0, since we are working over C, the category
Dcoh(S×A2

x1,x2
,W+x1x2) is equivalent to the category Dcoh(S×A2

x1,x2
,W+x21+x22).

Hence the above corollary can be regarded as a generalization of Theorem 1.1.
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