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Abstract

This is a talk presented at 2016 Kinosaki Symposium in Algebraic Geome-

try, October 17-27, 2016. It is based mainly on a work [1] with M. Herbst and

D. Page, a work [2] with M. Romo, and a work in progress [3] with R. Eager,

J. Knapp and M. Romo.

1 2d (2,2) supersymmetry and categories of branes

For each quantum field theory, one can extract several mathematical structures out of

it. If there is some relationship between two quantum field theories, then, it may induce

some relationship between the associated mathematical structures. If the two theories are

equivalent (we say that they are dual to each other), then the mathematical structures

are of course equivalent. Such a duality usually appears as a very non-trivial conjecture

which is hard to prove.1 Therefore, if we can establish the equivalence of the associated

mathematical structures, that can be regarded as a strong test of the duality. Conversely,

if some equivalence of mathematical structures is found, that can be used as a hint to

discover a new duality in quantum field theory. In the past two decades, there has been

such interaction between physics and mathematics in the arena of two-dimensional (2,2)

supersymmetric quantum field theories.

To each 2d (2, 2) supersymmetric quantum field theory T , two categories are asso-

ciated — the category of A-branes CA(T ) and the category of B-branes CB(T ). For

example, for the non-linear sigma model σ(X) associated to a Kähler manifold X, the

category of A-branes is the Fukaya category, CA(σ(X)) = Fuk(X), and the category of

B-branes is the derived category, CB(σ(X)) = Db
Coh(X). For the Landau-Ginzburg model

1In fact the theories themselves are not even defined (yet), and the words like “conjecture” and “proof”

are not in the mathematical sense!
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LG(W ) associated to W ∈ C[x1, . . . , xn], the category of A-branes is the Fukaya cat-

egory, CA(LG(W )) = Fuk(W ), and the category of B-branes is the category of matrix

factorizations, CB(LG(W )) = MF(W ).

If 2d (2,2) supersymmetric quantum field theories T1 and T2 are dual to each other,

the categories of branes are equivalent, CA(T1) ∼= CA(T2) and CB(T1) ∼= CB(T2). There is

also a twisted version of duality called mirror symmetry, under which the supersymmetry

is transformed via a certain automorphism. If T1 and T2 are mirror to each other, then

CA(T1) ∼= CB(T2) and CB(T1) ∼= CA(T2). If a given theory T1 flows under the renormaliza-

tion group to another theory T2, then, we have CA(T1) ∼= CA(T2) and CB(T1) ∼= CB(T2).

Therefore, if the two theories are dual or mirror at low energies, we have the equivalences

of categories as stated above. We often use the term “dual” and “mirror” in this sense.

For example, if σ(X) and LG(W ) are mirror at low eneries, then, we have equivalences

Fuk(X) ∼= MF(W ) and Db
Coh(X) ∼= Fuk(W ) (homological mirror symmetry).

Continuous deformations may also result in some mathematical consequences. 2d

(2, 2) supersymmetric quantum field theories have two distinguished classes of deforma-

tions, A-chiral deformations and B-chiral deformations. The categories CB and CA are

invariant under A- and B-chiral deformations respectively. Let MA and MB be the space

of A-chiral and B-chiral parameters. If T1 and T2 correspond to the same point in MB and

different points in MA connected by a path, then, CB(T1) and CB(T2) are equivalent, and

the equivalence depends on the homotopy class of the path. To a non-contractible loop in

MA associated an autoequivalence of CB(T ) for the theory T at each point on the loop.

The space MA can have limiting regions that correspond to sigma models and/or orb-

ifold of Landau-Ginzburg models. If a sigma model σ(X) and Landau-Ginzburg orbifold

LG(W,Γ) appear at different limits of a common space MA, then, we have an equiva-

lence Db
Coh(X) ∼= MFΓ(W ) (homological Calabi-Yau/Landau-Ginzburg correspondence).

If the sigma models on different target spaces, X and Y , appear at different limits of a

common space MA, then, we have a derived equivalence Db
Coh(X) ∼= Db

Coh(Y ). Of course

these equivalences depend on the homotopy classes of the paths in MA that connects the

limiting regions.

In this talk, we shall present two examples of such equivalences of categories which

can be seen from a family of 2d (2,2) supersymmetric quantum field theories called the

gauged linear sigma models. The main problem we would like to solve is to determine the

equivalence for each homotopy class of paths.
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2 Gauged Linear Sigma Models

2.1 Basic Data and the Moduli Spaces

A gauged linear sigma model (GLSM) [4] is specified by a choice of a compact Lie

group G (gauge group), a finite dimensional faithful representation V of G over the

field C of complex numbers (matter representation), a G invariant polynomial function

W : V → C (superpotential), and a G invariant polynomial function W̃ : gC → C (twisted

superpotential). We require that the model has vector and axial U(1) R-symmetries

with charge integrality, that is, there is an R ∈ End(V )G (vector R-charge) such that

W (λRφ) = λ2W (φ) and eπiR = J for some J ∈ G, the twisted superpotential W̃ is linear,

and G ⊂ SL(V ). The linear twisted superpotential is written as

W̃ (σ) = −⟨t,σ⟩, (2.1)

for t ∈ (g∗C)
G. To be precise, t is subject to a discrete identification, t ≡ t + 2πin for

n ∈ Im(Hom(G,U(1)) → i(g∗)G) =: ΛG.

Under the R-symmetry assumptions, the A-chiral parameters are the FI-theta pa-

rameters t and the B-chiral parameters are the couplings in the superpotential W . We

require that the theory is regular so that the energy spectrum is discrete when formulated

on R× S1. Then, the spaces of parameters of regular theories are (Zariski) open subsets

of these spaces

MA = (g∗C)
G/2πiΛG −∆t, MB ⊂ ((Sym(V ∗)G)2 −∆W )/ ≃ . (2.2)

In the latter, the superscript 2 selects the component of vector R-charge 2, W (λRφ) =

λ2W (φ), and / ≃ is the identification by reparametrizations of the argument φ. The

discriminant loci ∆t and ∆W are where the theory becomes irregular.

2.2 Examples

Quintic model

The first model, introduced in [4], is

G = U(1),

V = C(−5)⊕ C(1)⊕5 ∋ (p, x1, . . . , x5)

W = pf(x1, . . . , x5),

W̃ = −t · σ.
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f(x1, . . . , x5) is a polynomial of degree 5 and t = ζ − iθ ∈ C/2πiZ. The vector R-charge

is unique up to gauge R = (2 − 5ϵ, ϵ, . . . , ϵ). The theory is regular when the quintic

polynomial f is generic in that df = 0 ⇒ x = 0 and when t is away from the discriminant

point t ≡ 5 log(−5), i.e.,

ζ = 5 log 5, θ ≡ π. (2.3)

When ζ is large positive, the theory reduces at low energies to the sigma model σ(Xf )

whose target space is the quintic threefold Xf = (f = 0) ⊂ P4. The Kähler class and

the B-field is approximately given by ζH and (θ + π)H respectively, where H is the

hyperplane class of P4 restricted to Xf . In the limit ζ → −∞, the theory reduces at

low energies to the Landau-Ginzburg orbifold LG(f(x1, . . . , x5),Z5) where ω ∈ Z5 acts as

(x1, . . . , x5) → (ωx1, . . . ,ωx5).

Rødland model

The second model, introduced in [5], is

G = U(2),

V = (det−1S)⊕7 ⊕ S⊕7 ∋ (p1, . . . , p7, x1, . . . , x7)

W =
7∑

i,j,k=1

Aij
k p

k[xixj],

W̃ = −t · trSσ.

S ∼= C2 is the fundamental representation of U(2), [xixj] = x1
ix

2
j − x2

ix
1
j is a symplectic

pairing of xi and xj in S, Aij
k are complex numbers which are antisymmetric in the upper

indices, and t = ζ−iθ ∈ C/2πiZ. We may also writeW =
∑

ij A
ij(p)[xixj] =

∑
k p

kAk(x).

The vector R-charge is unique up to gauge; R = 2 − 2ϵ on p’s and R = ϵ on x’s.

The theory is regular when Aij
k are generic in a certain sense (i.e. rank(xa

i ) = 2 and

A1(x) = · · · = A7(x) = 0 ⇒ dA1(x) ∧ · · · ∧ dA7(x) ̸= 0) and when t is away from the

discriminant locus {t1, t2, t3}, where

ζa = 7 log
(
2 cos

(πa
7

))
, θa ≡ πa, a = 1, 2, 3. (2.4)

When ζ is large positive, the theory reduces at low energies to the sigma model σ(XA)

whose target space is the complete interesection XA = ∩7
k=1(Ak(x) = 0) ⊂ G(2, 7). When

ζ is large negative, the theory reduces at low energies to the sigma model σ(YA) whose

target space is the Pfaffian variety YA = {rankA(p) ≤ 4} ⊂ P6. Both XA and YA are

Calabi-Yau threefolds with Hodge numbers (h1,1, h2,1) = (1, 50).
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2.3 Expectations

From the general principles described in Section 1, we expect to have the following

equivalences of categories. In the quintic model, for each homotopy class of paths in the

space of t ∈ C/2πiZ that goes from ζ ≫ 0 to ζ ≪ 0 avoiding the discriminant point (2.3),

we have an equivalence

Db
Coh(Xf ) ∼= MFZ5

(f). (2.5)

In Rødland model, for each homotopy class of paths in the space of t ∈ C/2πiZ that goes

from ζ ≫ 0 to ζ ≪ 0 avoiding the three discriminant points (2.4), we have an equivalence

Db
Coh(XA) ∼= Db

Coh(YA). (2.6)

Indeed, the equivalences (2.5) and (2.6) had been proven in [6] and in [7, 8] respectively.

The main problem we would like to solve is to identify which equivalence is associated to

each homotopy class of paths.

3 B-branes in Gauged Linear Sigma Models

3.1 B-brane Data

A B-brane in the GLSM (G, V,W, t) is specified classically by a choice of

• a G-equivariant matrix factorization of W ;

– M = Mev ⊕Mod, a Z2-graded finite dimensional representation of G over C,

– Q : V → Endod(M), a G-equivariant polynomial function such that

Q(φ)2 = W (φ) · idM, (3.1)

• γ ⊂ tC, a Weyl invariant Lagrangian submanifold.

Here t is the Lie algebra of a maximal torus T of the gauge groupG, which is equipped with

a Weyl invariant inner product that induces a symplectic structure on tC. We require that

the vector U(1) R-symmetry with charge integrality is preserved by the brane: there is an

r ∈ Endev(M)G such that λrQ(λRφ)λ−r = λQ(φ) and eπirJ = ±1 on even/odd elements

of M. Note that G-equivariant matrix factorizations of W satisfying this condition form

a differential Z-graded category which we denote by MFG(W ).
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Given the above data, we have a B-brane at the classical level. We note that the dis-

crete identification of the parameter t involves a twist of the data: For χ ∈ Hom(G,U(1))

with infinitesimal version nχ ∈ ΛG,

t → t− 2πinχ is equivalent to M → M(χ). (3.2)

The main question is whether the data defines a B-brane in the quantum theory. To

get some hint, we consider the partition function on the hemisphere [2].

3.2 Hemisphere Partition function and the Grade Restriction Rule

Let

V =
⊕

i

C(Ri, Qi) (3.3)

be the weight decomposition of the matter representation — Ri and Qi are the vector R-

charge and the T -weight of the i-th component. Then, the hemisphere partition function

with the B-brane (M, Q, γ) at the boundary is given by [2, 9, 10]1

ZD2(M,Q, γ) =

∫

γ

dℓσ
∏

α>0

⟨α, σ⟩ sinh(π⟨α, σ⟩)
∏

i

Γ
(
i⟨Qi, σ⟩+

Ri

2

)
ei⟨t,σ⟩ trM

(
eπir e2πσ

)
.

(3.4)

Here dℓσ is a flat holomorphic volume form on tC (ℓ is the rank of G), the first product

is over positive roots of G, and Γ(x) in the second product is Euler’s Gamma function.

Note that the integrand has poles at the hyperplanes

⟨Qi, σ⟩ = i

(
ni +

Ri

2

)
, ni = 0, 1, 2, 3, . . . . (3.5)

Note also that the convergence of the integral is not trivial when γ is non-compact. The

asymptotic behaviour of the integrand can be seen from Stirling’s formula.

The formula (3.4) is derived first for the case where we take γ = it (the real locus)

under the assumption that all the vector R-charges are brought in the band 0 < Ri < 2

by using the gauge ambiguity if necessary. Note that the pole hyperplanes (3.5) do not

meet the real locus it under the assumtion.

The requirement for the brane (M, Q, γ) is that γ ⊂ tC is homotopic to the real locus

in the complement of the poles,

γ ≃ it in tC−(3.5), (3.6)

1To be precise, the partition function depends on the radius L of the hemisphere. In the model with

the two U(1) R-symmetries, the dependence is an overall power factor Lĉ/2 where ĉ = trV (1−R)−dimG.

For simplicity, we suppress the dependence from the expression.
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on which the integral (3.4) is absolutely convergent. Existence of such γ imposes a severe

constraint on the representations on G that can enter into M. This is the grade restriction

rule.

In what follows, we shall workout the rule in the two models.

4 Quintic

In the quintic model where the gauge group G is U(1), we choose 0 < ϵ < 2/5 in order

for the bound 0 < Ri < 2 to be satisfied. The integrand of (3.4) has fifth order poles at

σ = i(nx+ϵ/2) on the positive imaginary axis and simple poles at σ = i(−(np+1)/5+ϵ/2)

on the negative imaginary axis. For the term corresponding to the charge q representation

C(q) in M, the integrand behaves at large |σ| as

|integrandq| ∼ exp
(
−(ζ − 5 log 5)Im σ + (θ + 2πq)Reσ − 5π|Reσ|

)
, (4.1)

where exp (5 log 5Im σ − 5π|Re σ|) comes from the Gamma function factors.

When ζ ≫ 0 (resp. ζ ≪ 0), (4.1) decays exponentially at infinity of γ+ (resp. γ−) for

an arbitrary q where

γ± = {Im σ = ±(Re σ)2}. (4.2)

In particular, the integral on γ+ (resp. γ−) is absolutely convergent for any representation

C(q). There is no condition on the representations to be included in M for ζ ≫ 0 and for

ζ ≪ 0. I.e., there is no non-trivial garde restriction rule there.

When t moves along a path from ζ ≫ 0 to ζ ≪ 0 avoiding the discriminant locus

5 log(−5) + 2πiZ, then, it must go through the window wn:

ζ = 5 log 5, θ ∈ ((2n− 1)π, (2n+ 1)π), (4.3)

for some n ∈ Z. On this window, (4.1) grows exponentially in either Re σ → +∞ or

Re σ → −∞ unless |θ + 2πq| < 5π for the θ in the window wn, that is,

q ∈ {−n− 2,−n− 1,−n,−n+ 1,−n+ 2}. (4.4)

We can find a family of contours γ along the path, starting from γ+ at ζ ≫ 0 and ending

with γ− at ζ ≪ 0, on which the integral is absolutely convergent all the way, if and only

if all the q’s in M are in the range (4.4). This is the grade restriction rule for the paths

through the window wn given by (4.3).
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Let GRwn ⊂ MFC∗(p · f) be the subcategory of grade restricted matrix factorizations

with respect to the window wn, i.e., (M, Q) where M is a direct sums of copies of the

C(q)’s for q in the range (4.4). Then, we have a diagram

MFC∗(p · f)

∪
GRwn

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏❏❫

%
%

%✠

❅
❅
❅❘

∼= ∼=

MFZ5
(f) Db

Coh(Xf ) (4.5)

The downward arrows to Db
Coh(Xf ) and MFZ5

(f) are functors that represent the reduction

to the sigma model at ζ ≫ 0 and to the Landau-Ginzburg orbifold at ζ ≪ 0 respectively.

The arrows from MFU(1)(p · f) are very far from equivalences — many different objects

are sent to the same object. However, when restricted to the grade restricted subcategory

GRwn , they are equivalences. In particular, we obtain an equivalence from Db
Coh(Xf ) to

MFZ5
(f) via GRwn . This is the equivalence associated to the paths through wn.

If we change the window, we get a different equivalence. This effect can be used to find

the monodromy along the loop around a discriminant point, say, t = 5 log 5 − 5πi. The

window to the right (resp. left) of this point is w−2 (resp. w−3), for which the set (4.4) is

{0, 1, 2, 3, 4} (resp. {1, 2, 3, 4, 5}). Let us consider a loop that starts from ζ ≫ 0, goes to

ζ ≪ 0 through the window w−2 and comes back to ζ ≫ 0 through the window w−3. Then,

the monodromy is the functor from Db
Coh(Xf ) to MFZ5

(f) through GRw−2
followed by the

functor backward through GRw−3
. Note that the representation C is grade restricted with

respect to the first window w−2 but not with respect to the second window w−3. Instead,

C(5) is grade restricted with respect to w−3. Let us see what the monodromy does on an

object E ∈ Db
Coh(Xf ). Let (M, Q) be its lift to MFC∗(p · f) that is grade restricted with

respect to w−2. This can be transported from ζ ≫ 0 to ζ ≪ 0 along a path through the

window w−2. While at ζ ≪ 0, we would like to find another matrix factorization which

is isomorphic to (M, Q) when reduced to MFZ5
(f) and is grade restricted with respect

to w−3. To do so, we must replace each C component in M by something else made of

C(1), . . . ,C(5). This can be done by using the matrix factorization (M−, Q−)

M− = C(0)[0]⊕ C(5)[1− 5ϵ], (4.6)

Q− =

(
0 p

f(x) 0

)

, (4.7)

and its shifts (M−[i], Q−) for i ∈ Z. Here C(q)[j] stands for the charge q representation

C(q) of G = U(1) at r = j. When reduced to MFZ5
(f), these are empty, and hence

8
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binding them to a given matrix factorization does not change the image in MFZ5
(f).

Once all the C components of (M, Q) are replaced by C(5) in this way, the resulting

matrix factorization (M′, Q′) is grade restricted with respect to the window w−3 and can

be transported from ζ ≪ 0 back to ζ ≫ 0 along a path through w−3. The reduction of

this (M′, Q′) to Db
Coh(Xf ) is the monodromy image of the object E. When reduced to

Db
Coh(Xf ), the matrix factorization (M−, Q−) and its shifts become the structure sheaf

OXf
and its shifts. In effect, the monodromy is the Seidel-Thomas twist

STV : E 6−→ Cone

(

E →
⊕

i

Hom(E,V[i])⊗V[i]

)

[−1], (4.8)

by V = OXf
.

5 Rødland Model

Let us next describe the grade restriction rule and the monodromy action in Rødland

model. We choose 0 < ϵ < 1 for the bound 0 < Ri < 2. Note that a finite dimensional

irreducible representations of the gauge group G = U(2) is one of

Sl(i) := SymlS ⊗ (detS)⊗i, l = 0, 1, 2, . . . ; i ∈ Z. (5.1)

We shall write C(i) = S0(i), S(i) = S1(i) and Sl = Sl(0). As a maximal torus T of G, we

choose the diagonal matrices and write σ ∈ tC as σ = diag(σ1, σ2).

When ζ ≫ 0, the integral (3.4) is absolutely convergent on

γ+ =
{
Im σ1 = (Re σ1)

2, Im σ2 = (Re σ2)
2
}
, (5.2)

for any (M, Q). There is no non-trivial grade restriction rule.

When ζ ≪ 0, the integral (3.4) is absolutely convergent on

γ− =
{
Im σ1 = Im σ2 = −(Re σ1 + Re σ2)

2
}
, (5.3)

if M is a direct sum of copies of Sl(i) with l = 0, 1, 2 and i ∈ Z. Also, it is divergent

on any γ ≃ it if M includes a component Sl(i) with l ≥ 3. Thus, we have the grade

restriction rule: {
C(i), S(i), S2(i)

}
i∈Z

. (5.4)

We shall say that a matrix factorization (M, Q) is grade restricted in ζ ≪ 0 when M is a

direct sum of copies of representations in (5.4).

9
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t1

t2

t3

−6π−8π−12π

ζ

θ

Figure 1: Different types of paths in the t-space

Now, let us describe the grade restriction rule for the paths from ζ ≫ 0 to ζ ≪ 0

avoiding the discriminant locus ta + 2πiZ (a = 1, 2, 3), for ta ≡ ζa − iθa given in (2.4).

This time, since there are three arrays of discriminant points, there are several types of

paths, in addition to the variety coming from the shift θ → θ+2π. See Fig. 1. The grade

restriction rule for the four types of paths in Fig. 1 is shown in Fig. 2. To each homotopy

C C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)C(-1)

S(-2) S(-1) S S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8)

S2(-3) S2(-2) S2(-1) S2 S2(1) S2(2) S2(3) S2(4) S2(5) S2(6) S2(7) S2(8)

Figure 2: The grade restriction rule in Rødland model

class of paths, we associate a set of twenty one representations of G = U(2) encircled

by a line of the corresponding color, which we shall call the grade restricted subset. For

example, the grade restricted subset for the light blue path is {C(i), S(i), S2(i)}6i=0. If we

shift the path by θ → θ− 2π, the set is shifted by ⊗C(1), as shown for the green paths in

the Figures, in accord with (3.2). The main statement is: along each path, there exists

a family of γ’s, starting from γ+ at ζ ≫ 0 and ending with γ− at ζ ≪ 0, on which the

integral (3.4) is absolutely convergent all the way, if and only if (M, Q) is grade restricted,
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i.e. M is a direct sum of copies of the representations from the grade restricted subset.

Let GR− and GRw be the subcategories of MFGL2(C)(W ) consisting of matrix factor-

izations which are grade restricted in ζ ≪ 0 and with respect to the homotopy class w of

paths respectively. Then, we have a diagram

MFGL2(C)(W )

⊂

GR−

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❏❫

⊂
GRw

%
%

%%✠

❅
❅
❅❅❘

∼= ∼=

Db
Coh(YA) Db

Cof (XA) (5.5)

The downward arrows to Db
Coh(XA) and Db

Coh(YA) are functors that represent the reduc-

tion to the sigma models at ζ ≫ 0 and ζ ≪ 0 respectively. The arrows from MFGL2(C)(W )

and from GR− are very far from equivalences but the arrows from GRw are. In particular,

we obtain an equivalence from Db
Coh(XA) to Db

Coh(YA) via GRw. This is the equivalence

associated to the homotopy class w of paths.

We can also find the monodromy along loops around the discriminant points. Let us

look at a loop around t1 in Fig. 1 with a base point at ζ ≫ 0. It can be represented

as the concatenation of the light blue path and the blue path. The monodromy is the

functor from Db
Coh(XA) to Db

Coh(YA) through GRlight blue followed by the functor backward

through GRblue. To see what that is, let us note that the difference between the light blue

set and the blue set in Fig. 2 is that C is in light blue but not in blue while C(7) is in

blue but not in light blue. If we start from a matrix factorization at ζ ≫ 0 which is grade

restricted with respect to the light blue path, then, while at ζ ≪ 0 we must replace each

C component by something else made of the blue set. This can be done using the matrix

factorization (M−, Q−):

M− =
∧

C(1)⊕7[1− 2ϵ] =
7⊕

j=0

C(j)⊕(
7

j)[j − 2jϵ], (5.6)

Q− =
7∑

k=1

(
pkηk + Ak(x)η

k
)
, (5.7)

and its shifts (M−[i], Q−) for i ∈ Z. In (5.6)-(5.7), we regard M− as a module over the

Clifford algebra generated by ηk and ηk (k = 1, . . . , 7) obeying the relations {ηk, ηl} = δlk,

{ηk, ηl} = {ηk, ηl} = 0 such that the j = 0 component C(0)[0] ⊂ M− is annihilated by

11
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all ηk’s. The brane (M−, Q−) and its shifts are empty when reduced to Db
Coh(YA) but

descend to the structure sheaf OXA
and its shifts when reduced to Db

Coh(XA). There-

fore, the monodromy is the Seidel-Thomas twist by OXA
. Similarly, the monodromy

along a loop around t2 is Db
Coh(XA) → GRblue → Db

Coh(YA) followed by Db
Coh(YA) →

GRdashed green → Db
Coh(XA). The relevant matrix factorizations for the replacement at

ζ ≪ 0 are (M−⊗S,Q−) and its shifts, which descend to the tautological vector bundle SXA

and its shifts when reduced to Db
Coh(XA). Therefore, the monodromy is the Seidel-Thomas

twist by SXA
. The monodromy along a loop around t3 is Db

Coh(XA) → GRpink → Db
Coh(YA)

followed by Db
Coh(YA) → GRblue → Db

Coh(XA). The relevant matrix factorizations for

the replacement at ζ ≪ 0 are (M− ⊗ S2(−1), Q−) and its shifts, which descend to

Sym2SXA
(−1) and its shifts when reduced to Db

Coh(XA). Therefore, the monodromy

is the Seidel-Thomas twist by Sym2SXA
(−1). To summarize, the monodromies around

t1, t2 and t3 are respectively

STOXA
, STSXA

and STSym2SXA
(−1). (5.8)

6 Remarks

The grade restriction rule was first found in [1] for GLSMs with Abelian gauge groups

by analyzing the effective potential localized near the boundary. Later in [2] it was shown

to be reproduced by looking at the condition of convergence of the hemisphere partition

function, as described in this talk.

We would like to make some remarks on related mathematical works. The grade

restriction rule, or its purely categorical extraction to be precise, had been completed in

[11] and is extended in [12, 13] to a general variation of GIT quotients in the case when the

quotients are good. In these works, the term “window” is used for the subcategory GRw

instead of the actual window w that determines it, which is understandable as the space

MA is out of scope in their current formulation. (However, a mathematical incarnation

of MA is discussed in a recent work [14].) These works do not apply to the case with bad

GIT quotients such as Rødland model. Nevertheless, GLSM-like proof of the Pfaffian-

Grassmannian equivalence (2.6) was given in [15]. In fact, the diagram (5.5) was first

obtained in this work for the case GRw = GRlight blue, and that was a huge encouragement

for the work in progress [3] presented here. Later, the proof is revisited in [16] based on

the categorical extraction of the duality found in [17].
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