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1. Introduction

Thoughout this article, we work over the complex number field.
Generic vanishing theory is the study of the family of the cohomolo-

gies
{H i(X,F ⊗ L)|L ∈ Pic0(X)}

of a fixed coherent sheaf F . Let f : X → A be a morphism from a
smooth projective variety X to an abelian variety A and F a coherent
sheaf on X. We take a closed subset

V i
k (F , f) = {α ∈ Pic0(A)|hi(X,F ⊗ f ∗α) ≥ k}

of Pic0(A) for integers i, k ≥ 0. Our aim is to investigate the dimensions
and structures of V i

k (F , f). If f is the Albanese morphism, V i
k (F , f) is

denoted by V i
k (F). Moreover we also denote V i

1 (F , f) by V i(F , f).
For F = ωX , we have the following good results.

Theorem 1.1 (The generic vanishing theorem, Green–Lazarsfeld [GrLa]).
Let f : X → A be a morphism from a smooth projective variety X to
an abelian variety A. Then codimV i(ωX , f) ≥ i− (dimX−dim f(X))
for every i ≥ 1.

Definition 1.2 (GV-sheaf). Let A be an abelian variety and F a
coherent sheaf on A. F is called a generic vanishing sheaf (GV-sheaf,
for short) if codimV i(F) ≥ i for every i ≥ 1.

Theorem 1.3 (Hacon [Hac]). Let f : X → A be a morphism from a
smooth projective variety X to an abelian variety A. Then Rjf∗ωX is
a GV-sheaf for every j ≥ 0.

Remark 1.4. Theorem 1.3 implies Thm 1.1 by using Kollár’s theorem
on the higher direct images of ωX .

Definition 1.5 (Torsion subvariety). Let A be an abelian variety and
T a closed subvariety of A. T is called a torsion subvariety if T is a
translate of an abelian subvariety by a torsion point.
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Theorem 1.6 (Simpson [Sim]). Let f : X → A be a morphism from a
smooth projective variety X to an abelian variety A. Then V j

k (ωX , f)
is a finite union of torsion subvarieties of Pic0(A) for every j ≥ 0 and
k ≥ 1.

We investigate whether these theorems can be generalized to log
pluricanonical bundles OX(m(KX +∆)) of a log canonical pair (X,∆).

2. Main results

We fix the following notation and convention.

• X is a smooth projective variety, A is an abelian variety, and
f : X → A is a morphism.

• ∆ is a boundary Q-divisor on X with simple normal crossing
support, that is, a Q-divisor on X whose coefficients are in [0, 1]
and Supp∆ is a simple normal crossing divisor.

• When considering a Q-divisor m(KX + ∆) for some positive
integer m, we always assume that there exists a Cartier divisor
D on X such that D ∼Q m(KX + ∆). So we can consider
V j
k (m(KX +∆), f) and Rjf∗OX(m(KX +∆)).

• Hj
m denotes the statement that Rjf∗OX(m(KX +∆)) is a GV-

sheaf on A, which is a generalization of Theorem 1.3.
• Sj

m denotes the statement that V j
k (m(KX + ∆), f) is a finite

union of torsion subvarieties for every k ≥ 1, which is a gener-
alization of Theorem 1.6.

Theorem 2.1. In the above notation, the following hold.

(i) Hj
1 holds for every j ≥ 0.

(ii) H0
m holds for every m ≥ 1.

(iii) If j ≥ 1 and m ≥ 2, then Hj
m does not hold in general.

(iv) Sj
1 holds for every j ≥ 0.

(v) S0
m holds for every m ≥ 1.

(vi) If j ≥ 1 and m ≥ 2, then Sj
m does not hold in general.

Remark 2.2.
• (ii) is a result of Popa–Schnell [PoSc, Theorem 1.10]. (i) is
immediately deduced by their argument, although it is not ex-
plicitly stated in their paper. So (i) and (ii) are not new results.

• The KLT case of (iv) was proved by Clemens–Hacon [ClHa,
Theorem 8.3].

• The ∆ = 0 case of Theorem 2.1 (v) was proved by Chen–Hacon
[ChHa, Theorem 3.2].
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• (ii) and (v) holds for general projective log canonical pairs,
which are easily reduced to the log smooth case by taking a
log resolution.

• For (iii) and (vi), we will construct counterexamples. In fact,
those counterexamples can be taken as ∆ = 0 (just a pluri-
canonical bundle, not a log pluricanonical bundle).

We can generalize the generic vanishing theorem for log canonical
pairs by using Theorem 2.1 (i).

Theorem 2.3. Let X be a smooth projective variety, ∆ a boundary
Q-divisor on X with simple normal crossing support, f : X → A
a morphism to an abelian variety, and D a Cartier divisor on X
such that D ∼Q KX + ∆. Set l = max{dimV − dim f(V ) | V =
X or V is a log canonical center of (X,∆)}. Then

codimV i(D, f) ≥ i− l

for any i.

Proof. Set S = ⌊∆⌋ and let ∆i be an irreducible component of S.
Consider the exact sequence · · · → Rjf∗OX(D−∆i) → Rjf∗OX(D) →
Rjf∗O∆i(D|∆i) → · · · . Then it follows that Rjf∗OX(D) = 0 for j > l
by induction of both the dimension of X and the number of irreducible
components of S.

Consider the Leray spectral sequence

Ep,q
2 = Hp(A,Rqf∗OX(D)⊗ ξ) ⇒ Hp+q(X,OX(D)⊗ f ∗ξ),

where ξ ∈ Pic0(A). Then it follows by the spectral sequence that

V i(D, f) ⊂
l⋃

q=0

V i−q(Rqf∗OX(D)).

Furthermore, Rqf∗OX(D) are GV-sheaves on A for all q by Theorem
2.1 (i), so

codimV i−q(Rqf∗OX(D)) ≥ i− q

for 0 ≤ i ≤ l. Hence codimV i(D, f) ≥ i− l. !
Proof of Theorem 2.1 (iii). We will construct an irregular smooth pro-
jective variety of dimension ≥ 2 with big anti-canonical bundle and
show that such a variety does not satisfy Hj

m for some j ≥ 1 and
m ≥ 2.

Let A be an abelian variety. We take an ample line bundle L on A
and define a vector bundle E as the direct sum of L−1 and OA. Let
π : X = PA(E) → A be the projective bundle on A associated to E.
Clearly the irregularity q(X) of X is positive. The canonical bundle
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ωX is isomorphic to π∗(ωA⊗detE)⊗OX(− rankE) = π∗L−1⊗OX(−2)
(see [Laz, 7.3.A]).

We will see that ω−1
X is big. Let ξ and l be the numerical classes

of OX(1) and L, respectively. Note that ξ is an effective class since
H0(X,OX(1)) = H0(A,E) ̸= 0. The numerical class of ω−1

X is equal to

2ξ + π∗l =
N − 1

N
2ξ +

1

N
2ξ + π∗l,

where N is a sufficiently large integer such that (1/N)2ξ+π∗l is ample.
So the numerical class of ω−1

X is represented by the sum of an effective
class and an ample class. Therefore ω−1

X is big.
Let f = albX : X → A be the Albanese morphism of X. Now we

show that Rjf∗ω
⊗m
X is not a GV-sheaf for some positive integers j and

m.
Now we prove the following lemma.

Lemma 2.4. Let X be a smooth projective variety of dimension n and
D be a big Cartier divisor on X. Then

V 0(mD) = {ξ ∈ Pic0(X) | H0(X,OX(mD + ξ)) ̸= 0} = Pic0(X)

for any sufficiently large and divisible m.

Proof. Since D is big, there exist a positive integer m0, a very ample
Cartier divisor H, and an effective Cartier divisor E such that m0D ∼
H + E. For any positive integer m, we have

V 0(mm0D) = V 0(mH +mE) ⊃ V 0(mH).

We can take a positive integer m1 satisfying that

H i(X,OX(mH + ξ)) = 0

for every ξ ∈ Pic0(X), m ≥ m1 and i > 0 (take m1 such that m1H −
KX is ample). According to the notion of the Castelnuovo–Mumford
regularity, mH + ξ is 0-regular for every ξ ∈ Pic0(X) and m ≥ m1+n,
and so it is globally generated. In particular, V 0(mH) = Pic0(X)
for every m ≥ m1 + n. Therefore V 0(mm0D) = Pic0(X) for every
m ≥ m1 + n. !

By the above lemma, we can take a positive integer m such that
V n(ω⊗m

X , f) = −V 0(ω⊗(1−m)
X , f) = Pic0(A). Consider the Leray spec-

tral sequence

Ep,q
2 = Hp(A,Rqf∗ω

⊗m
X ⊗ α) ⇒ Hp+q(X,ω⊗m

X ⊗ f ∗α), α ∈ Pic0(A).
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Then it follows that

Pic0(A) = V n(ω⊗m
X , f) ⊂

n⋃

i=0

V i(Rn−if∗ω
⊗m
X ).

So V i(Rn−if∗ω
⊗m
X ) = Pic0(A) for some i. Note that i > 0 since

Rnf∗ω
⊗m
X = 0. Hence it follows that Rn−if∗ω

⊗m
X is not a GV-sheaf. !

Theorem 2.1 (ii) is proved by the following vanishing theorem.

Theorem 2.5 (Popa–Schnell [PoSc, Theorem 1.7]). Let (X,∆) be a
projective log canonical pair, Y a projective variety, g : X → Y a
morphism, andL an ample and globally generated line bundle on Y .
Take an integer m ≥ 1. Then H i(Y, f∗OX(m(KX +∆))⊗L⊗l) = 0 for
every i > 0 and l ≥ (m− 1)(dimY + 1) + 1.

Conversely, by a similar argument, Theorem 2.1 (iii) implies that the
above vanishing does not hold for higher cohomologies of pluricanonical
bundles in general.

Corollary 2.6. Let X be a smooth projective variety, Y a projective
variety, g : X → Y a morphism, and L an ample and globally generated
line bundle on Y . Take integers j ≥ 1 and m ≥ 2. Then we can not
take a positive integer N = N(j,m, dimY ) depending only on j, m and
dimY such that H i(Y, f∗ω

⊗m
X ⊗ L⊗l) = 0 for every i > 0 and l ≥ N .

Sketch of proof of Theorem 2.1 (iv). (For a detailed proof, see [Shi, The-
orem 3.5].) By assumption, there exists a Cartier divisor D such that
D ∼Q KX + ∆. Set C = D − (KX + ⌊∆⌋). Since C ∼Q {∆},
NC ∼ N{∆} for some positive integer N . Take the normalization
of the cyclic cover Spec

⊕N−1
k=0 OX(−kC) → X. Then

π∗OY =
N−1⊕

k=0

OX(−kC + ⌊k{∆}⌋).

So π∗OY (−π∗⌊∆⌋) contains OX(−C − ⌊∆⌋) = OX(−(D − KX)) as a
direct summand. Hence it follows that, if V j

k (−π∗⌊∆⌋, f ◦ π) is a finite
union of torsion subvarieties for every j and k, then V j

k (D, f) is also a
finite union of torsion subvarieties for every j and k. Further, we can
show that (Y, π∗⌊∆⌋) is a log canonical pair.
Take a log resolution µ : Y ′ → Y of (Y, π∗⌊∆⌋). Set

∆Y ′ = µ∗(KY + π∗⌊∆⌋)−KY ′ ,

then
∆=1

Y ′ = µ−1
∗ (π∗⌊∆⌋) + E
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for some reduced µ-exceptional divisor E. Since −KY ′/Y = −(KY ′ −
µ∗KY ) has no irreducible components with coefficient 1, every compo-
nent of E is contained in µ∗π∗⌊∆⌋. Since E is µ-exceptional, E is in fact
contained in µ∗π∗⌊∆⌋ − µ−1

∗ π∗⌊∆⌋. So F = µ∗π∗⌊∆⌋ − µ−1
∗ π∗⌊∆⌋ − E

is an effective and µ-exceptional divisor on Y ′. By the Fujino–Kovács
vanishing theorem (see [Kov] and [Fuj2]),

Riµ∗OY ′(−∆=1
Y ′ ) = 0

for i > 0. Therefore

Rµ∗OY ′(−∆=1
Y ′ ) ∼= µ∗OY ′(−∆=1

Y ′ )

∼= µ∗OY ′(−µ−1
∗ π∗⌊∆⌋ − E)

∼= µ∗OY ′(−µ∗π∗⌊∆⌋+ F )
∼= OY (−π∗⌊∆⌋).

Thus we have V j
k (−∆=1

Y ′ , f ◦π◦µ) = V j
k (−π∗⌊∆⌋, f ◦π). Moreover, ∆=1

Y ′

is a simple normal crossing divisor on Y ′. Then the proof is reduced to
the case when ∆ is a simple normal crossing divisor. This case holds
due to Budur [Bud]. !
Sketch of proof of Theorem 2.1 (v). (For a detailed proof, see [Shi, The-
orem 3.9].) Take any point ξ ∈ V 0

k (m(KX +∆), f). Then there exists
ξ0 ∈ Pic0(A) such that ξ = mξ0. After replacing (X,∆) by a suitable
log resolution, we can take a Cartier divisor D0 on X such that

• D0 ∼Q KX + ∆0, where ∆0: a boundary Q-divisor with SNC
support,

• ξ0 ∈ V 0
k (D0, f), and

• V 0
k (D0, f) + (m− 1)ξ0 ⊂ V 0

k (m(KX +∆), f).

By Theorem 2.1 (iv), V 0
k (D0, f) is a finite union of torsion subvari-

eties. So there exist an abelian subvariety B of A and a torion point q
of A such that ξ0 ∈ B + q ⊂ V 0

k (D0, f). Then

ξ = ξ0 + (m− 1)ξ0 ∈ B + q + (m− 1)ξ0 ⊂ V 0
k (m(KX +∆), f).

Since ξ0 ∈ B + q, ξ0 = b+ q for some b ∈ B. So

B + q + (m− 1)ξ0 = B + q + (m− 1)b+ (m− 1)q = B +mq.

Therefore

ξ ∈ B +mq ∈ V 0
k (m(KX +∆), f).

So V 0
k (m(KX +∆), f) is a union of torsion subvarieties. Since the set

of torsion subvarieties of A is countable, V 0
k (m(KX +∆), f) is in fact

a finite union of torsion subvarieties. !
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Corollary 2.7 (Campana–Koziarz–Păun [CKP], Kawamata [Kaw]).
Let (X,∆) be a projective log canonical pair. Assume that KX+∆ ≡ 0.
Then KX +∆ ∼Q 0.

We give another proof of this theorem.

Proof. By taking a log resolution, we may assume that (X,∆) is log
smooth. Take m > 0 such that α = m(KX + ∆) ∈ Pic0(X). Then
h0(X,m(KX + ∆) − α) = h0(X,OX) ̸= 0, so −α ∈ V 0(m(KX + ∆)).
Hence V 0(m(KX + ∆)) is non-empty. Theorem 2.1 (v) implies that
there exists a torsion point β ∈ V 0(m(KX + ∆)). This means that
m(KX +∆) ∼Q 0. !

In addition, we give the following corollary, which is an implication
of Iitaka’s subadditivity conjecture.

Corollary 2.8. Let (X,∆) be a projective log canonical pair, A an
abelian variety, f : X → A a surjective morphism with connected fibers,
and F a sufficiently general fiber of f . Assume that κ((KX+∆)|F ) ≥ 0.
Then κ(KX +∆) ≥ 0.

Proof. Take m > 0 such that m(KX + ∆) is Cartier and h0(m(KX +
∆)|F ) ̸= 0. Then f∗OX(m(KX + ∆)) ̸= 0. Theorem 2.1 (ii) implies
that f∗OX(m(KX +∆)) is a GV-sheaf on A.

Now we need the fact that, for a GV-sheaf F on A, F ̸= 0 if and only
if V 0(F) ̸= ∅. So V 0(f∗OX(m(KX +∆))) ̸= ∅. Then Theorem 2.1 (v)
implies that there exists a torsion point α ∈ V 0(f∗OX(m(KX + ∆))).
Take N > 0 such that Nα = 0. We compute

h0(X,OX(Nm(KX +∆))) = h0(X,OX(Nm(KX +∆))⊗ f∗α⊗N)

≥ h0(X,OX(m(KX +∆))⊗ f∗α)

= h0(A, f∗OX(m(KX +∆))⊗ α)

̸= 0.

So κ(KX +∆) ≥ 0. !
Proof of Theorem 2.1 (vi). Let E be an elliptic curve, L a principal
polarization on E (i.e. an ample line bundle on E with h0(L) = 1),
and A an abelian variety of dimension g ≥ 2 including E as a proper
abelian subvariety. Take a non-torsion point a ∈ A and define a closed
immersion ι : E → A by ι(x) = x + a. By definistion, ι(E) = E + a.
Let Â be the dual abelian variety of A, and RΦ : D(A) → D(Â) and
RΨ : D(Â) → D(A) the Fourier–Mukai transforms.

Set F = RΦι∗L ∈ D(Â). Since hi(E,L ⊗ ι∗α) = 0 for i > 0 and
α ∈ Pic0(A) by Kodaira vanishing, RiΦι∗L = 0 for i > 0. So F =
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Φι∗L. Furthermore h0(E,L⊗ ι∗α) = χ(E,L⊗ ι∗α) = χ(E,L) = 1 for
α ∈ Pic0(A), so F is in fact a line bundle on Â.

Take a vector bundle V = F ⊕ OÂ on Â. Let π : X = PÂ(V ) → Â
be the projective bundle over Â associated to V . Then

ωX = π∗(ωÂ ⊗ detV )⊗OÂ(− rankV )

= π∗F ⊗OÂ(−2)

(cf. [Laz, 7.3.A]). Therefore

π∗(ω
−1
X ) = F−1 ⊗ π∗OÂ(2)

= F−1 ⊗ S2V

= F−1 ⊗ (F 2 ⊕ F ⊕OÂ)

= F ⊕OÂ ⊕ F−1.

So

V g+1(ω2
X) = V g+1(ω2

X , π) = −V 0(ω−1
X , π) = −V 0(π∗ω

−1
X )

= −V 0(F ) ∪ −V 0(OÂ) ∪ −V 0(F−1)

= V g(F−1) ∪ {0} ∪ V g(F )

(note that π is the Albanese morphism of X, so we have the first
equality).

First we calculate V g(F−1).

V g(F−1) = {a ∈ A|hg(Â, F−1 ⊗ La) ̸= 0}
= {a ∈ A|hg(Â, (−1)∗(F−1 ⊗ La)) ̸= 0}
= {a ∈ A|hg(Â, (−1)∗F−1 ⊗ L−a) ̸= 0}
= −V g((−1)∗F−1)

= −SuppRgΨ(−1)∗F−1,

where (−1) : Â → Â is the multiplication by −1. The last equation
follows by the base change theorem. We write R∆(·) = RH om(·,OÂ).
Then

RΨ(−1)∗F−1 = RΨ(−1)∗R∆RΦι∗L

= RΨ(−1)∗(−1)∗RΦR∆ι∗L[g] (RΦR∆(·) = (−1)∗RΦR∆(·)[g])
= (−1)∗R∆ι∗L (by Mukai′s theorem)

= (−1)∗RH om(ι∗L,OÂ)

= (−1)∗Rι∗RH om(L,OÂ ⊗ ωE/A[1− g]) (Grothendieck duality)

= (−1)∗Rι∗L
−1[1− g].
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So RgΨ(−1)∗F−1 = (−1)∗R1ι∗L−1 = 0. This implies that V g(F−1) =
−V g((−1)∗F−1) = ∅ (using base change theorem).

Next, we calculate V g(F ). By base change theorem, V g(F ) = SuppRgΨF.
We have RgΨF = RgΨRΦι∗L = (−1)∗ι∗L by Mukai’s theorem, so

V g(F ) = SuppRgΨF = (−1)−1(Suppι∗L) = E − a.

Consequently, we have

V g+1(ω2
X) = {0} ∪ E − a.

Therefore V g+1(ω2
X) is not a union of torsion translates. !

References

[Bud] N. Budur, Unitary local systems, multipier ideals, and polynomial period-
icity of Hodge numbers, Adv. Math. 221 (2009), 217-250.

[ChHa] J. A. Chen, C. D. Hacon, On the irregularity of image of Iitaka fibration,
Comm. in Algebra 32 (2004), no. 1, 203–215.

[ClHa] H. Clemens, C. D. Hacon, Deformations of the trivial line bundle and
vanishing theorems, Amer. J. Math. 124 (2002), no. 4, 769–815.
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