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Quantum heat transport of a two-qubit system: Interplay
between system-bath coherence and qubit-qubit coherence
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We consider a system consisting of two interacting qubits that are individually coupled to separate
heat baths at different temperatures. The quantum effects in heat transport are investigated in a numer-
ically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative
and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For
a weak interqubit interaction, the total system is regarded as two individually thermostatted systems,
whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system
coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits
(q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current
calculated for various strengths of the system-bath coupling and interqubit coupling for high and
low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield
equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM
results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength
for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR
approaches do not exhibit such behavior, because they do not possess the capability of treating the
q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and
q-b coherence are balanced in such a manner that coherence of the entire heat transport process
is realized. We also find that the heat current does not follow Fourier’s law when the temperature
difference is very large, due to the non-perturbative system-bath interactions. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928192]

I. INTRODUCTION

Quantum heat transport phenomena exhibited by micro-
scopic systems coupled to multiple macroscopic heat baths at
different temperatures are of both fundamental and practical
interest in quantum thermodynamics,1–18 because such phe-
nomena lie at the crossover between the macroscopic limit of
quantum mechanics and microscopic limit of thermodynamics.
Moreover, the advent of micro-technology allows us to investi-
gate quantum heat current experimentally.19–21 This leads us to
consider the realistic possibility of developing devices that can
control microscopic heat flow.22 For this reason, understand-
ing quantum heat transport phenomena is expected to play
an important role in efforts to construct methods of efficient
energy exploitation.

The well-established models of quantum heat transport
phenomena consist of a chain of systems2–8 or a single quantum
system12–18 coupled to two baths. The difficulty encountered in
the study of such systems is due to problems involved in prop-
erly accounting for the system-bath coherence, which plays an
essential role in quantum heat transport. Because full system-
bath coherence can only be modeled with a non-perturbative
and a non-Markovian treatment of the system-bath interaction,
the perturbative quantum master equation approach cannot be
applied. The modified Redfield and the polaron-transformed
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master equations allow us to include nonperturbative effects,
but there is an evidence that approaches employing these mas-
ter equations lack accuracy in the strongly non-perturbative
case.23,24 Several methods involving the multi-configurational
time-dependent Hartree (MCTDH) approach,14 the quasi-
adiabatic propagator path integral (QUAPI),17 and Monte
Carlo simulations16 have been employed to investigate prob-
lems of this kind, but the applicability of such approaches is
still limited. In the present study, we employ reduced hierar-
chial equations of motion (HEOM) to study the heat transport
problem in order to treat a wide variety of physical condi-
tions in a numerically rigorous manner under non-equilibrium
steady-state conditions.25–39 Moreover, we consider a two-
qubit system40–43 rather than a one-qubit system in order to
increase the number of system degrees of freedom. This allows
us to clearly demonstrate the role of system-bath coherence and
system coherence in quantum heat transport processes.

The organization of this paper is as follows. In Sec. II,
we present a model system of heat transfer and the definition
of the heat current to be calculated. In Sec. III, we explain
the hierarchial equations of motion approach in application
to a system with two heat baths at different temperatures. To
demonstrate the role of system-bath coherence, the time convo-
lutionless (TCL) Redfield approach and the perturbative Fermi
golden rule (FGR) approach are also introduced. In Sec. IV,
numerical results obtained using the above three approaches
are compared and discussed with respect to various values
of the qubit-bath and qubit-qubit interactions. The effects of
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the finite temperature difference on the heat current are also
discussed. Section V is devoted to concluding remarks.

II. MODEL

We employ a model consisting of two qubits described by
the Hamiltonian

Ĥk =
~ωk

2
�
σ̂k

z + Îk
�
, (1)

for k = 1 and 2, where σ̂k
x, y,z and Îk are the Pauli matrices and

the unit matrix for the kth qubit, respectively. The interaction
between the qubits is represented by

Ĥ12 = ~J12
�
σ̂1
+σ̂

2
− + σ̂

1
−σ̂

2
+

�
. (2)

Each qubit is coupled to its own heat bath, Bk. The total
Hamiltonian is then given by

Ĥtot =

k=1,2

�
Ĥk + Ĥk

I + Ĥk
B

�
+ Ĥ12. (3)

Here, the Hamiltonian of the kth heat bath and the interaction
between the kth qubit and its heat bath are given by

Ĥk
B =


jk

~ω jk b̂†jk b̂jk (4)

and

Ĥk
I =


jk

gjkσ̂
k
x

(
b̂†jk + b̂jk

)
, (5)

where ω jk, gjk, b̂
†
jk

, and b̂jk are the frequency, coupling
strength, creation operator, and annihilation operator for the
jth mode of the kth bath, respectively. A schematic diagram
of the total system is presented in Fig. 1. This model is
useful to explore not only the role of quantum coherence (or
entanglement) between the qubit and bath (q-b coherence) but
also the role of that between the first and the second qubits (q-q
coherence).

In the case of a weak q-b interaction, we regard each
bath to be in its own thermal equilibrium state, e−βk Ĥ

k
B, where

βk = 1/kBTk is the inverse temperature divided by the Boltz-
mann constant, kB (see Fig. 2(a)). In the case of a strong q-b
interaction, for small interqubit coupling J12, each qubit and
its bath are regarded as a single system characterized by the
equilibrium state e−βk(Ĥk+Ĥ

k
I
+Ĥk

B
) (see Fig. 2(b)), whereas for

large J12, the total system exists in a non-trivial thermal steady
state, because q-b coherence between each qubit and its heat
bath interfere through the q-q coherence. To investigate the
interplay between the q-b coherence and the q-q coherence on
heat transport, we must treat the entire system quantum me-
chanically in a consistent manner. Non-Markovian dynamics
play a key role in this study, because a quantum mechanical

FIG. 1. Schematic depiction of the system consisting of two interacting
qubits individually coupled to separate heat baths.

FIG. 2. Schematic depiction of the two limiting cases: (a) the Fermi golden
rule approach, and (b) the Redfield approach. The green wavy lines indi-
cate the parts of the interactions treated as perturbations in the respective
approaches.

heat bath is by nature non-Markovian due to the time scale
that arises as the inverse of the Matsubara frequency, ν = 1/β~.
Due to the appearance of this time scale, the non-perturbative
treatment of the system-bath interaction also becomes impor-
tant even in the weak bath coupling case, because there will
be multiple system-bath interactions that take place during
the correlation time 1/ν.30–33 For these reasons, conventional
perturbative treatments involving the TCL Redfield approach
cannot be applied to fully explore quantum effects in heat
transport.

We define the heat current as the rate of change of the bath
energy,

Jk ≡ −
d⟨Ĥk

B⟩
dt

=
i
~
⟨[Ĥk

B, Ĥk
I ]⟩. (6)

This definition is consistent with the thermodynamic defini-
tion in the equilibrium limit. From the stationarity condition,
d⟨Ĥk

I ⟩/dt = 0, the steady heat current can be evaluated as
Jk = i⟨[Ĥk + Ĥ12, Ĥk

I ]⟩/~ in the non-equilibrium state. If the
equation of motion for the reduced density operator of the sys-
tem is written as d ρ̂/dt = −i L̂S ρ̂ +


k=1,2 Dk[ ρ̂], where L̂S ρ̂

= [Ĥs, ρ̂]/~, with ĤS ≡ Ĥ1 + Ĥ2 + Ĥ12 and Dk is the reduced
operator from the kth bath, we can evaluate the heat current
easily from the relation

Jk = −tr
�(Ĥk + Ĥ12)Dk[ ρ̂]	 . (7)

We adapt the above expression to compute the heat current
using the HEOM approach and the TCL Redfield approach.
It should be noted that while Ĥk + Ĥ12 does not represent
the internal energy of the kth qubit, the above expression is
more convenient for numerical calculations than the expression
defined in terms of two-body correlation functions of σ̂k

x.44–46

Moreover, using the HEOM approach, we can study the heat
current for any temperature difference between the baths with
any strengths of the system-bath couplings under non-trivial
equilibrium conditions, in which case the linear response the-
ory for the thermal conductivity cannot be applied.
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III. NUMERICAL APPROACHES

A. HEOM approach

In this paper, we employ the reduced HEOM,25–33,36–39 to
calculate the heat current numerically in a rigorous manner
under non-Markovian and non-perturbative conditions, specif-
ically focusing on the roles of the q-b and q-q coherences.
After eliminating the bath degrees of freedom, the effects of
each bath are incorporated into the bath spectral density, Ik(ω)
≡ π


j g

2
jk
δ(ω − ω jk). The bath effects due to the kth bath are

represented by the noise correlation function Ck(t), written as

Ck(t) =
 ∞

0

dω
π

Ik(ω)

coth

(
βk~ω

2

)
cos(ωt) − i sin(ωt)


.

(8)

We employ the Drude spectral distribution defined by

Ik(ω) =
ζkγ

2
k
ω

ω2 + γ2
k

, (9)

where ζk represents the coupling strength between the system
and the kth bath, and γk corresponds to the cutoff frequency of
the kth bath. Although the HEOM approach can treat various
spectral distributions, including a Brownian one,34–36 we chose
the Drude form because it reduces to the standard Ohmic distri-
bution for γk → ∞. Also, there exist varieties of results for a
single bath model with the Drude distribution, which can be
helpful to analyze the present results. In the HEOM approach,
we express the above function in terms of the exponential func-
tions Ck(t) =  jk=Nk

jk=0 cjke−γ jk
|t |
+ 2∆kδ(t). Here, we use the

Padé-based expression for cjk and γ jk,37–39 and Nk is an integer
chosen such that the relation

 jk=∞
jk=Nk+1 cjke−γ jk

|t | ≈ 2∆kδ(t)
holds. To properly account for the system-bath coherence for
each of the baths, we need to introduce two sets of hierarchy
elements, which we write as n j1 and m j2.

36 Then, we obtain the
following set of equations of motion for the reduced density
operators by using the path integral method:

˙̂ρn j1,m j2
= −


i L̂S +


j1

n j1γ j1 +

j2

m j2γ j2 − Ξ̂

ρ̂n j1,m j2

− Φ̂1


j1

ρ̂n+
j1
,m j2
− Φ̂2


j2

ρ̂n j1,m
+
j2

−

j1

n j1Θ̂ j1 ρ̂n−j1
,m j2
−


j2

m j2Θ̂ j2 ρ̂n j1,m
−
j2
, (10)

where Θ̂ jk = c′jkΦ̂k − c′′jkΨ̂k, Ξ = ∆1Φ̂
2
1 + ∆2Φ̂

2
2,

Φ̂k ρ̂ ≡
i
~

�
σ̂k

x ρ̂ − ρ̂σ̂k
x

�
, (11)

and

Ψ̂k ρ̂ ≡
�
σ̂k

x ρ̂ + ρ̂σ̂k
x

�
. (12)

The constants c′jk and c′′jk are the real and imaginary parts of
cjk, respectively. The indices n j1(m j2) correspond to the effects
of the first (second) bath, and n+j1(n−j1) represents an increase
(decrease) of the index n j1 by 1. Note that the zeroth element,
ρ̂0,0(t), is identical to the actual reduced density operator of the
system, and the remaining elements are the auxiliary density
operators, which are introduced for the numerical calculation

and include nontrivial system-bath correlation effects. In the
present case, we evaluate D1[ ρ̂] in Eq. (7) for the first heat bath
using the hierarchial members as

D1[ ρ̂] = ∆1Φ̂
2
1 ρ̂0,0 − Φ̂1


j1

ρ̂0+
j1
,0. (13)

In principle, the HEOM provides an asymptotic approach that
allows us to calculate various physical quantities with any
desired accuracy by adjusting the number of hierarchial ele-
ments determined by Nk; the error introduced by the truncation
can be made negligibly small by choosing Nk to be sufficiently
large. While we have to set larger Nk for lower temperature,
we found that we can use smaller Nk by setting N1 = N2 with
suppressing numerical errors.

B. TCL Redfield approach

In the case of weak system-bath coupling, ζ1,2 ≪ J12, the
perturbative TCL Redfield approach is appropriate for calcu-
lating the heat current,33,49,50 while we treat interqubit interac-
tions non-perturbatively by explicitly treating the system de-
grees of freedom. In this case, the system consisting of the two
qubits and the baths is weakly entangled because of the weak
system-bath coupling. We express the eigenstate of the system
Hamiltonian as ĤS | j⟩ = ~ω̄ j | j⟩. The TCL Redfield equation
for the reduced density matrix elements, ρi j(t) ≡ ⟨i | ρ̂S(t)| j⟩,
is then given by49–51

∂

∂t
ρi j(t) = −iω̄i jρi j(t) +


k=1,2


l,m

Rk
i j,lm(t)ρlm(t), (14)

where ω̄i j ≡ ω̄i − ω̄ j, and Rk
i j,lm

(t) is the Redfield tensor for
the kth bath, defined as

Rk
i j,lm(t) ≡ Γkm j, il(t) + Γk†l i, jm(t)

− δ jm

n

Γ
k
in,nl(t) − δil


n

Γ
k†
jn,nm(t), (15)

with

Γ
k
i j,lm(t) = Γ̄ki jlm *.

,

ζkγ
2
k
e−i

βk~γk
2

2 sin
(
βk~γk

2

) 1 − e−(γk+iω̄lm)t

γk + iω̄lm

− 2
βk~

∞
ak=1

ζkγ
2
k
νak

γ2
k
− ν2

ak

1 − e−(νak+iω̄
′
lm

)t

νak + iω̄lm

+/
-
. (16)

Here, the interaction tensor without the rotating wave approx-
imation (RWA) is defined by

Γ̄i jlm ≡ ⟨i |σ̂k
x | j⟩ ⟨l |σ̂k

x |m⟩. (17)

In the Redfield case, the operator in Eq. (7) is expressed as

(D1[ ρ̂])i j =

l,m

R1
i j,lmρlm. (18)

While the positivity of reduced density operator is not main-
tained, we do not employ the RWA because it does not yield
a proper steady state distribution, which is essential for calcu-
lating the heat flow.33
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C. Fermi golden rule approach

In the case of strong system bath coupling, ζ1,2 ≫ J12,
we can regard each system consisting of a qubit and its bath,
with the Hamiltonian Ĥk + Ĥk

I + Ĥk
B, as an extended bath.

In this case, Ĥ12 is the coupling between these extended
baths. Then, we can treat Ĥ12 perturbatively by invoking the
FGR, assuming that the qubit systems are in the reduced
equilibrium state of the kth qubit-plus-bath system described
by trBk

{e−βk(Ĥk+Ĥ
k
I
+Ĥk

B
)}, with temperature βk. The resulting

expression for the heat current is J = ~(ω1κ1→2 − ω2κ2→1),
where κk→ k′ is the transition rate from the kth to the k ′th qubit
defined by

κk→ k′ = 2J2
12Re

 ∞

0
dt Ek(t)Ak′(t)


, (19)

with the excitation and de-excitation functions Ek(t) = trtot′�⟨gk �µ̂k(t) ρ̂kee µ̂k
�
gk⟩	 and Ak(t) = trtot′

⟨ek ���µ̂k(t) ρ̂kgg µ̂k
��� ek⟩



(for details, see the Appendix). Note that the form of the above
transition rate is analogous to that of the exciton transfer rate
in Förster theory.47,48 Here, |ek⟩ (|gk⟩) is the excited (ground)
state of the kth qubit, µ̂k(t) is the Heisenberg operator, µ̂k
= |gk⟩ ⟨ek | + |ek⟩ ⟨gk |, ρ̂kee ( ρ̂kgg) is the total density matrix in
the case that the kth qubit is in the excited (ground) state, and
trtot′{ } is the trace over B1 + B2 and the k ′ qubit degrees of
freedom. In the present study, we determine Ek(t) and Ak(t)
using the HEOM approach. The transition rates are deter-
mined by the correlation function of the operator µ̂k = |gk⟩ ⟨ek |
+ |ek⟩ ⟨gk | in the local equilibrium state. To guarantee the
validity of the local equilibrium assumption, in addition to the
condition ζ1,2 ≫ J12, we have to impose the condition that the
two qubits are well separated, i.e., J12 ≪ ω1,2, as we elucidate
on the basis of numerical results below.

IV. NUMERICAL RESULTS

A. Interplay between the q-q coherence and the q-b
coherence

In the following, we set ω1 = ω2 = ω, ζ1 = ζ2, and γ1
= γ2 = 2ω. The bath temperatures are characterized by the

average temperature, T̄ = (T1 + T2)/2, and the temperature
difference, ∆T = (T1 − T2)/2, where T1 = 1/kB β1 and T2 = 1/
kB β2. We consider (a) the high temperature case, T̄ = 2.0~ω/
kB, and (b) the low temperature case, T̄ = 0.2~ω/kB, while
we fix the difference between the bath temperatures with the
small value ∆T = 0.01T̄ . The heat current is evaluated from
the thermal steady state. To obtain the steady state from the
HEOM, we integrate Eq. (10) using the fourth-order Runge-
Kutta method from a temporal initial state until all of the hier-
archy elements reach the steady state. Then, we calculate the
heat current from the first hierarchial members using Eq. (13).
Similarly, the heat current in the TCL Redfield case is evaluated
from Eq. (18) using the steady state solution of Eq. (14). In
both HEOM and Redfield cases, the time step and the time
duration of numerical integration are the same in the single bath
case and the double bath case at all temperatures. Therefore,
regardless of the temperature difference, the computational
costs of the current calculations are similar. We display the
results as functions of the effective coupling strength, ζ̄ ≡ (ζ1
+ ζ2)/J12, for several values of J12 in Fig. 3. To elucidate the
roles of the q-b and q-q coherences, we also calculated the heat
current using the TCL Redfield approach without the RWA33,51

and with the FGR approach using Eqs. (7) and (19).
We first discuss the high temperature case depicted in

Fig. 3(a). Here, the noise is semi-classical and fluctuation
and dissipation exhibit similar relaxation times.31–33 In the
weak interqubit coupling case, J12 = 0.01ω, considered in
Fig. 3(a-i), the curve obtained with the TCL approach nearly
coincides with that obtained with the HEOM approach,
because here the net coupling strength, ζ1 = ζ2 = J12ζ̄ , is
small even in the case of large ζ̄ , and hence, the perturbative
treatment of the system-bath coupling is valid. The curve
obtained with the FGR approach, by contrast, is close to the
other curves only in the strong system-bath coupling regime,
because we assumed that the qubit systems are in equilibrium
states described by trBk

{e−βk(Ĥk+Ĥ
k
I
+Ĥk

B
)} in the application

of Eq. (19).
Next, we consider the case of intermediate and strong

interqubit coupling, depicted in Figs. 3(a-ii) and 3(a-iii). It is
seen that there is a large discrepancy between the TCL and
HEOM results in the strong coupling region. This indicates

FIG. 3. Heat current calculated as func-
tions of the effective coupling strength,
ζ̄ ≡ (ζ1+ζ2)/J12, is plotted in (a) the
high temperature case, T̄ = 2.0~ω/kB,
and (b) the low temperature case, T̄
= 0.2~ω/kB, for three values of the in-
terqubit interaction, J12/ω: (i) 0.01, (ii)
0.1, and (iii) 0.5.
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the failure of the perturbative treatment. The FGR results
also deviate greatly from the HEOM results, because in this
case, the qubit systems are not in their own equilibrium states,
trBk

{e−βk(Ĥk+Ĥ
k
I
+Ĥk

B
)}, but in non-trivial thermal steady states,

due to the strong q-q coherence.
In the low temperature case depicted in Fig. 3(b), the

fluctuation part of the noise exhibits highly non-Markovian
behavior, and for this reason, a non-perturbative treatment of
the noise is important even in the weak system-bath coupling
case.32,33 This explains the large discrepancy between the
HEOM results and the TCL results in the intermediate and
strong interqubit coupling region. In the cases of intermediate
and strong interqubit coupling, the results obtained with the
TCL approach do not converge, due to the breakdown of
the positivity condition. The results obtained with the FGR
approach deviate significantly from those obtained with the
HEOM approach, because the two q-b coherences interfere
significantly at low temperature, particularly for large in-
terqubit coupling. This results in the entire system being in a
non-trivial thermal steady state. Both in the high temperature
and low temperature cases, the heat current increases as the
interqubit coupling increases, because the interqubit coupling
is the only pathway for the heat, as found by Yao in the case
of a heat engine.52 The current is large in the high temperature
case even for the same value of J12, due to the larger density
of the heat energy at high temperature.

We found that for all values of the temperature and in-
terqubit coupling strength considered here, the current exhibits
turnover behavior as a function of the coupling strength. In
the present case, heat transfer occurs through the coherence
between the qubits even at high temperature.51 To illustrate this
point, in Fig. 4, we plot the density matrix elements for the
transitions |e1⟩ |g2⟩ → |g1⟩ |e2⟩ and |e1⟩ |e2⟩ → |g1⟩ |g2⟩ for high
and low temperatures, calculated using the HEOM approach.
The similar tendency observed here for the heat current and
Imρeg,ge leads to the conclusion that the heat current occurs
not through the population state but through the coherent state,
|e1⟩ |g2⟩ → |g1⟩ |e2⟩. This situation can also be understood from

FIG. 4. The density matrix elements Imρeg ,g e (solid curves) and Reρee,g g

(dashed curves) corresponding to the transitions |e1⟩ |g2⟩→ |g1⟩ |e2⟩ and
|e1⟩ |e2⟩→ |g1⟩ |g2⟩, respectively, are plotted for T̄ = 2.0~ω/kB (red) and
T̄ = 0.2~ω/kB (black) in the intermediate coupling case, J12/ω = 0.1.

Eq. (7) if we replace Ĥk + Ĥ12 with Ĥk; the expression for the
heat current is proportional to Imρeg,ge.

In the weak system-bath coupling regime, ζ̄ ≪ 1, the
current is an increasing function of ζ̄ . This phenomenon
can be interpreted as environment-assisted quantum transport
(ENAQT);53,54 in this case, the fluctuations that arise from the
system-bath interaction supply the energy for the transition
between qubits. In the strong system-bath coupling regime,
ζ̄ ≫ 1; however, the coherence is suppressed by dissipation
that also arises from the system-bath interaction. The suppres-
sion of the transition rate is often referred to as the quantum
Zeno effect, as can be understood if we regard the system-bath
interaction to be a measurement of a microscopic quantum
system carried out through use of a macroscopic instrument.

Surprisingly, as indicated by Fig. 3, the heat current is
maximal near ζ̄ ∼ 1 for any interqubit coupling. This indicates
that heat transfer becomes most efficient when the b-q and
q-q coherent processes are balanced in such a manner that
coherence is realized for the total system. It should be noted
that similar turnover behavior is observed in the chemical
reaction problem,27,28,55 electron transfer problem,34–36,56 and
exciton transfer problem,57 but these are dynamical processes
that occur through population transfer, whereas heat trans-
fer is a steady-state process that occurs through coherence
transfer.

B. Effects of temperature difference: Deviation
from Fourier’s law

When the temperature difference between the two baths
is small, the heat flow is characterized by the thermal conduc-
tance appearing in Fourier’s law (J = κ∆T), namely, κ
≡ lim∆T→0 J/∆T . However, because there is quantum coher-
ence between the system and the baths, the validity of Fourier’s
law in the quantum case is unclear. Because we introduced two
heat baths with different temperatures in our formalism, we
can test the limitation of Fourier’s law. In Fig. 5, we depict the
heat current as a function of the temperature differences, ∆T ,
in (a) the high temperature case T̄ = 2.0~ω/kB and (b) the low
temperature case T̄ = 0.2~ω/kB for the qubit-qubit interaction
strength J12 = 0.1ω. These two cases correspond to the cases
in Figs. 3(a-ii) and 3(b-ii), respectively.

We find that when the temperature difference is small,
the linear relation holds for all coupling strengths and average
temperatures. For a large temperature difference, however, the
simulation results deviate significantly from the value pre-
dicted by Fourier’s law. Deviation was also observed when
using the perturbative approach13 and the polaron-transformed
approach,18 but the tendency of the deviation in the pres-
ent case differs from that in those cases. Our results for the
heat current are larger than those predicted by Fourier’s law
near the turnover region, while the results obtained with the
perturbative and polaron-transformed approaches are smaller.
Although we also found that the values obtained from our
simulations become slightly smaller than those predicted by
Fourier’s law in both weak and strong system-bath coupling re-
gions, the phenomena we observed are peculiar, because these
phenomena depend on the qubit-bath and qubit-qubit inter-
action strengths as well as the temperature. This peculiarity
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FIG. 5. Heat current calculated as a
function of the temperature difference,
∆T = (T1−T2)/2, is plotted in (a) the
high temperature case, T̄ = 2.0~ω/kB,
and (b) the low temperature case, T̄
= 0.2~ω/kB for various values of the
qubit-bath interaction ζ1= ζ2.

is due to the non-perturbative system-bath interaction, and
this seems to be the reason that it appears in the region, in
which the perturbative Redfield approach breaks down. To
properly account for the effects of the large temperature differ-
ence, we should introduce the second-order correction term
as J = κ1∆T + κ2(∆T)2 + · · · . As the Meir-Wingreen-like for-
mula44,45 suggested, this term arises from the quantum nature
of the noise. Quantum coherence between the system and
bath may also play a significant role in this correction term.
To investigate further, analysis based on non-linear response
functions should be carried out.59–61

V. CONCLUDING REMARKS

In the present study, we calculated the heat current in a
system consisting of two interacting qubits that are individu-
ally coupled to separate heat baths at different temperatures.
We investigated the effects of the quantum coherence between
the two qubits (q-q coherence) and between the qubits and
baths (q-b coherence) on the heat current for various strengths
of the system-bath coupling and interqubit coupling at high
and low temperatures. We observed turnover behavior of the
heat current as a function of the system-bath coupling strength,
in which the heat current first increases as a function of this
coupling strength, reaches a peak value, and then decreases. In
the present study, we limited our analysis to the two-qubit case.
By employing the numerical acceleration schemes developed
for the HEOM approach, it is possible to investigate a longer
chain of spins system4–8 or a molecular junction system.9–11 For
example, using a graphics processing unit (GPU), we should be
able to study the heat transport problem of 9-10 spins system.58

Although, here we restricted our analysis to the case of
steady-state heat current, but there is no inherent restriction
in the simulation of system dynamics when using the HEOM
approach. Because in the present formalism, the difference
between the temperatures of the two baths can be very large,
we can study dynamical behavior of the heat current under
highly non-equilibrium conditions, for example, in the case
that one heat bath is in the high-temperature classical regime,
while the other is in the low temperature quantum regime.
Because the two-qubit model has been employed to study the

quantum information problem41,50,60–64 and multidimensional
spectroscopy,59 we can characterize the present results in terms
of dynamical behavior with respect to the results obtained in
those studies. Heat engines and heat refrigerators65–69 can also
be studied by extending the present study. The investigation of
these devices is left for future studies.
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APPENDIX: TRANSITION RATES IN THE FERMI
GOLDEN RULE APPROACH

Here, we calculate the transition rate from the first to the
second qubit, κ1→2. The rate from the second to the first, κ2→1,
can be calculated in the same manner. We assume that the first
qubit is initially in the excited state, while the second qubit is in
the ground state, and hence, the state of the two-qubit system
is given by |e1⟩ |g2⟩. The probability of finding the two qubits
in the state in which the excitation transfers from the first qubit
to the second qubit, i.e., |g1⟩ |e2⟩, at time t is then expressed as

P(t) = TrB
⟨g1| ⟨e2|e−i Ĥtott/~ ρ̂0ei Ĥtott/~|g1⟩ |e2⟩


, (A1)

where ρ̂0 is the initial density operator of the total system
without the qubit-qubit interaction. Expanding Ĥtot appear-
ing in Eq. (A1) in terms of Ĥ12 to first order, the expression
becomes

P(t) = 1
~2

 t

0
dτ

 t

0
dτ′TrB

⟨g1| ⟨e2|ei Ĥ0(τ−τ′)/~

× Ĥ12e−i Ĥ0(τ−τ′)/~ ρ̂0Ĥ12|g1⟩ |e2⟩

, (A2)

where Ĥ0 ≡ Ĥtot − Ĥ12. The transition rate κ1→2 is defined
as the limit of the time derivative of the transition proba-
bility: κ1→2 ≡ d

dt
P(t)|t→∞. Inserting the definition of Ĥ12 into

Eq. (A2), we obtain the expression given in Eq. (19). The above
expression is identical to the transition rate obtained using
exciton transfer theory.
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