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Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian
oscillator model with nonlinear system-bath interactions
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We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator
(BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to
analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD)
simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz,
THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using
an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman
signals are compared with results obtained from the LL+SL BO model applied through use of
hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that
all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are
reproduced with the LL+SL BO model, indicating that this model captures the essential features of the
inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polar-
izability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated
peaks parallel to the probe direction are elucidated using optical Liouville paths. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4917033]

I. INTRODUCTION

Molecular vibrations in condensed phases play an essen-
tial role in various dynamic processes, including inter- and
intra-molecular couplings, and solvent dynamics, all of which
entail energy exchange as well as thermal excitations and
relaxations.1 Multidimensional vibrational spectroscopy tech-
niques make it possible to experimentally distinguish such pro-
cesses due to the sensitivity of the nonlinear response functions
utilized in these techniques to complex dynamics.2,3 For intra-
molecular vibrations, the roles of relaxation and dephasing
are well understood both theoretically and experimentally due
to the advent of infrared (IR) laser technologies. Methods
of analysis with theoretical models that utilize molecular
dynamics (MD) simulations have also been developed to
elucidate multidimensional IR signals.4,5 Because the primary
inter-molecular modes, which are the objects of study in 2D
IR spectroscopy, can be separated from the other modes, as in
the case of the OH stretching mode in liquid water, stochastic
models whose parameters are obtained from classical MD
simulations have been useful for analysis of the inter-
molecular vibrational modes. For inter-molecular vibrational
modes, two-dimensional (2D) Raman spectroscopy6 was for
a long time the only two-dimensional spectroscopy that could
be used for experimental study. However, due to technical
difficulties, such investigations have been carried out only
for CS2,7–10 benzene,11 and formamide12 liquids. Theoretical
investigations have also been limited, due to the availability
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of experimental data and limitations on computational power
for simulations.

Two-dimensional THz-Raman spectroscopy, which has
been studied both theoretically13–16 and experimentally,17

has created a new possibility for investigating the de-
tails of inter-molecular vibrations. In 2D Raman spectros-
copy, the observable is defined in terms of the three-body
response function for the polarizability of the system, Π̂
as R(5)

RRR(t2, t1) = −⟨[[Π̂(t2 + t1),Π̂(t1)],Π̂(0)]⟩/~2, where ⟨. . .⟩
represents the thermal average and Â(t) ≡ ei ĤSt/~Âe−i ĤSt/~

is the Heisenberg operator for an arbitrary operator Â.6

In the case of 2D THz-Raman spectroscopy, the response
function consists of one polarizability, Π̂, and two dipole
operators, µ̂, and there are three different measurements,
which depend upon the sequence of the Raman and THz pulses
as R(3)

RTT(t2, t1) = −⟨[[µ̂(t2 + t1), µ̂(t1)],Π̂(0)]⟩/~2, R(3)
TRT(t2, t1)

= −⟨[[µ̂(t2 + t1),Π̂(t1)], µ̂(0)]⟩/~2, and R(3)
TTR(t2, t1) = −⟨[[Π̂(t2

+ t1), µ̂(t1)], µ̂(0)]⟩/~2. While inter-molecular vibrational
modes are usually both Raman and IR active, the types of
information that we can obtain from the 2D Raman signal and
each of three THz-Raman signals are different, due to the role
of the nonlinear polarizability. Because each of the above-
mentioned response functions is defined in terms of the three-
body correlation function, the signal will vanish if the system is
harmonic and if the total dipole moment and polarizability are
linear functions of the collective coordinate, q̂, representing
the inter-molecular vibration, because there is an odd number
of Gaussian integrals involved in the response function:
Tr{q̂(t2 + t1)q̂(t1)q̂(0) exp(−βĤS)}. The dipole moment is
approximated reasonably well as a linear function of q̂ as
µ̂(q̂) = µ1q̂, because the total dipole moment is a linear
function of the distance between the charges in the system,
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and the nonlinear dipole-induced dipole (DID) interactions are
weak. However, the contribution of the non-linear polarization
is not negligible, because the polarizability originates in the
electronic states of molecules, which depend on the complex
configurations of the atoms and molecules. For this reason,
the polarizability is expressed in a Taylor expansion form as
Π̂(q̂) = Π1q̂ + Π2q̂2/2. Because Π̂ has this non-linear form,
the three response functions given above, representing the
observables in 2D THz-Raman spectroscopy experiments,
provide information about three different physical processes.14

Contrastingly, because 2D Raman spectroscopy experiments
measure just a single observable, they do not provide such a
detailed picture of the physical system. The richness of the
information obtained through 2D THz-Raman spectroscopy
allows for a detailed analysis of inter-molecular vibrational
modes. Note that the optical setup for the THz-THz-
Raman (TTR) measurement differs significantly from that
for the Raman-THz-THz (RTT) and THz-Raman-THz (TRT)
measurements. This is because the RTT and TRT responses
are detected as the emission of THz signals, while the TTR
response is detected as an induced Raman signal.

Although we can obtain relatively reliable 2D THz-
Raman signals using the full MD simulation techniques
developed for 2D Raman spectroscopy,19–26 analysis of the
spectra is not straightforward, due to the complexity of the
2D profiles of the signals, which arises from the complexity
of the inter-molecular vibrational modes. As demonstrated by
2D Raman and 2D IR spectroscopy studies, a model-based
analysis is useful for treating this problem, because the 2D
profile of the signal is so sensitive to the underlying dynamics
that the complex 2D profile cannot be reproduced without
capturing the essential features of the vibrational modes.27

While stochastic models, which can be regarded as Brownian
models with non-linear system-bath interactions,28,29 are
recognized as versatile models for analyzing intra-molecular
modes observed in 2D IR spectroscopy experiments, it is not
clear if such models are useful in the 2D THz-Raman case.
This is because in contrast to the intra-molecular modes, which
are clearly definable with the normal mode picture, the inter-
molecular modes are not localized and change in time due to
changes in the configuration of the system molecules.

In this paper, we explore the possibility of characterizing
inter-molecular modes using a Brownian model with linear-
linear (LL) and square-linear (SL) interactions utilizing 2D
THz-Raman signals obtained from MD simulations. In order
to treat a non-perturbative, non-Markovian, and nonlinear
system-bath interaction, which is necessary to describe the
effects of homogeneous and inhomogeneous broadening in a
unified manner, we employ the hierarchal equations of motion
(HEOM) approach.30–38 The properties of inter-molecular
motion are investigated using the fitted model.

This paper is organized as follows. In Sec. II, we explain
the methodology for calculating 2D THz-Raman signals from
full MD simulations. In Sec. III, we present the LL+SL
Brownian oscillator (BO) model and the hierarchal equations
of motion formalism. We then show how this formalism can
be used to calculate 2D signals. The MD and fitted results ob-
tained from the LL+SL BO model are presented and analyzed
in Sec. IV. Section V is devoted to concluding remarks.

II. FULL MD SIMULATION

While, to this time, the experimentally obtained 2D THz-
Raman signals are limited to the case of liquid water, in
this paper, we analyze 2D signals obtained from full MD
simulations for formamide, water, and methanol. We chose
these liquids from among many substances that have been
investigated in full MD studies of the 2D Raman and 2D
THz-Raman spectroscopy as characteristic examples of 2D
THz-Raman signals. The MD simulation results used in the
present study of these molecules for 2D RTT and TRT signals
were originally presented in a previous study.15 Nevertheless,
here we repeated the full MD simulations in order to also
obtain TTR and infrared absorption signals, in addition to the
RTT and TRT signals. Moreover, we employed the Ewald sum
for the evaluation of the dipole and polarizability, in addition
to the force fields. This contrasts with the situation in previous
studies, in which only force fields were computed with the
Ewald sum. The change in the resulting signals due to the
use of the Ewald sum in the computation of the dipole and
polarizability, however, is small.

A. Models and simulation details

Based on the MD simulations, we calculated the linear
absorption (1D IR) spectrum and 2D THz-Raman signals
of liquid formamide, water, and methanol. Each system
consisted of 108 molecules in a cubic box with periodic
boundary conditions. The interactions between the molecules
were modeled by a modified T potential,39,40 the TIP4P/2005
potential,41 and the B3 potential42 for formamide, water, and
methanol, respectively.

The interaction potentials were cut off smoothly at a
distance equal to a half the length of the system using a
switching function, and the long-range Coulomb interactions
were calculated with the Ewald sum. The intra-molecular
geometries were kept rigid throughout the simulations, using a
constraint provided by the RATTLE algorithm. The equations
of motion were integrated using the velocity-Verlet algorithm
with time steps of 5.0 fs for formamide and 2.5 fs for water and
methanol. The system volume and total energy were fixed after
the completion of the isothermal simulations carried out for
equilibration. The conditions of the simulation were set such
that the average densities were 1.120 g/cm3 for formamide,
0.997 g/cm3 for water, and 0.786 g/cm3 for methanol. The
temperature was set to 300 K. The permanent molecular
polarizability of each liquid was utilized with the atomic
polarizability for formamide and methanol43 and the Huiszoon
polarizability for water.44

B. Molecular polarizability and dipole

While the MD simulations were carried out using the
permanent polarizability, we calculated the 2D THz-Raman
signals using a full-order DID polarizability model. We did this
because the 2D profiles are extremely sensitive to the accuracy
of the calculated optical observables. In the DID polarizability
model, the expression determining the polarizability of a
molecule includes contributions from other molecules, and
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interactions between molecules are defined with respect to the
centers of individual molecules.43,45 The total polarizability
of the system in a MD simulation is given by Π(t) = 

iΠi,
where Πi is the polarizability of the ith molecule, expressed
as

Πi = αi −

j,i

αiTi jΠ j . (1)

In this expression, αi is the permanent molecular polarizability
of the ith molecule in isolation in the laboratory frame, and
Ti j is the dipole-dipole interaction tensor,

Ti j =
1

r3
i j

− 3
ri j ⊗ ri j

r5
i j

. (2)

Here, ri j is the vector from the center of mass of molecule i
to the center of mass of molecule j, and ri j = |ri j |. Also, 1
and ⊗ are the unit matrix and the tensor product, respectively.
In order to properly take into account the effect of the long-
range interaction on the molecular polarizability, we employ
the Ewald sum for Ti j. This effect has been ignored in
previous MD simulations of 2D Raman and 2D THz-Raman
spectroscopy systems. However, the contribution of this effect
in the 2D THz-Raman case is minor in comparison with that
in the 2D Raman case.

The total dipole moment is evaluated as µ(t) = 
i µ

perm
i

+


i µ
ind
i , where µperm

i and µind
i are the permanent and induced

molecular dipole moments of molecule i, respectively. The
induced molecular dipole moment is expressed in terms of the
interaction tensor as

µind
i = µi

*.
,
Eperm
i −


j,i

Ti jµ
ind
j
+/
-
, (3)

where Eperm
i is the electrostatic field at molecule i created by

all the other molecules in the system. This is evaluated as
Eperm
i =


j,i


l qperm

l j
ril j/r

3
il j

, where ril j is the vector between
the center of mass of molecule i and that of atom l in
molecule j.

C. One- and two-dimensional signals

It should be noted that the majority of MD simulations
of 2D IR spectroscopy systems performed to this time have
been carried out to obtain the parameter values for stochastic
models. Full MD simulations have been carried out mostly
in the cases of low frequency vibrational modes.46–48 This is
because the primary inter-molecular modes, which are the
objects of study in 2D IR spectroscopy, can be separated
from the other modes rather easily, as in the case of the OH
stretching mode in liquid water. Contrastingly in the 2D THz-
Raman case, it is not easy to find primary modes, because the
objects of study in this cases are inter-molecular vibrations that
depend on the complicated nature of molecular ensembles,
whose configurations change in time. Thus, we have to
evaluate 2D signals directly from the MD simulations. Because
quantum mechanical effects are minor for low-frequency
inter-molecular modes, due to their small thermal activation
energies, unlike the case of intra-molecular motion,49 and

because 2D THz-Raman spectroscopy employs the three-
body correlation function with two time variables, instead of
the four-body correlation function with three time variables
employed in 2D IR spectroscopy, the full MD simulation
approach is practical. For this reason with our approach, we
were able to carry out full MD simulations to directly evaluate
2D signals.

Although our MD and model calculations are fully
classical, we start from the quantum expressions for the
response functions, because their classical expressions in the
MD and model calculations are most easily derived by taking
the classical limit of the quantum expressions. The optical
observables in 1D and 2D spectroscopies are represented,
respectively, by two- and three-body response functions of
the forms6,37

R(t) = i
~
⟨[Â(t), B̂(0)]⟩ (4)

and

R(t2, t1) =
(

i
~

)2

⟨[[Â(t2 + t1), B̂(t1)], Ĉ(0)]⟩, (5)

where Â, B̂, and Ĉ can be the total dipole moment, µ̂, or the
total polarizability of the molecules, Π̂. For low-frequency
inter-molecular vibrations, we can take the classical limit,
~ → 0. The commutator and operators are then replaced by
the Poisson bracket and c-number observables as

− i
~
[Â, B̂] → {A,B}PB ≡

∂A
∂q

∂B
∂p
− ∂A
∂p

∂B
∂q

. (6)

Using {e−βH0( p,q),A(t)}PB = βe−βH0( p,q)Ȧ(t) for a molecular
Hamiltonian H0( p,q), we obtain the expression for the linear
response function, for example, for 1D IR as

R(1)
IR (t) = β⟨µeq(t)µ̇eq(0)⟩ (7)

and

I (1)IR (ω) ∝ ωIm
 ∞

0
dteiωtR(1)

IR (t). (8)

It should be noted that the quantum correction factor,
tanh(β~ω/2), is usually included in Eq. (8) to allow compar-
ison with experimentally obtained IR signals, but here we
do not include it. Instead, as the classical limit, we only
multiply by ω.18 We can evaluate the above quantities easily
by calculating µeq(q(t)) from samples of molecular trajectories
q(t) that are obtained from the equilibrium MD simulation.

For the 2D case, the response function in the classical
limit is expressed as19,20

R(t2, t1) = ⟨{{A(t2),B(0)}PB,C(−t1)}PB⟩. (9)

As in the 1D case, we can calculate the above response
function using µ(t) and Π(t) evaluated from the molecular
trajectories p(t) and q(t) obtained from the equilibrium MD
simulations.19–23 The convergence of the signal is, however,
very slow due to the effect of the stability matrix element
in the double Poisson brackets. However, there is a different
approach, the non-equilibrium finite field approach that does
not have this convergence problem. In this approach, the
double Poisson brackets are evaluated as −{A(t ′),B(t)}PB
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= (A+B(t)(t ′) − A−B(t)(t ′))/2F, where A±B(t)(t ′) is the observ-
able corresponding to A(t ′) calculated from the trajectories
subjected to the weak perturbations ±(−Fδ(τ − t)B(τ)), with
the electric field ±F acting on B(τ).24,25 But, this approach
is computationally intensive, and for this reason, here we
employed a hybrid approach, which utilizes both the equi-
librium and non-equilibrium approaches in order to reduce
the computational cost further.26

In our hybrid approach, we evaluate Ċ(−t1) ≡ dC(t)/
dt |t=−t1 with equilibrium MD simulations, while A±B(0)(t2)
with non-equilibrium MD simulations. As a result, the hybrid
expressions for the 2D Raman-THz-THz, THz-Raman-THz,
and THz-THz-Raman signals become

R(3)
RTT(t2, t1) = β

E1
⟨�µ+µ(0)(t2) − µ−µ(0)(t2)� Π̇eq(−t1)⟩, (10)

R(3)
TRT(t2, t1) = 2β

E1E2
⟨�µ+Π(0)(t2) − µ−Π(0)(t2)� µ̇eq(−t1)⟩, (11)

and

R(3)
TTR(t2, t1) = β

E1
⟨�Π+µ(0)(t2) −Π−µ(0)(t2)� µ̇eq(−t1)⟩, (12)

where E j and β = 1/kBT are the external electric field of
the jth pulse and the inverse temperature divided by the
Boltzmann constant.

III. MODEL CALCULATION

A. Brownian oscillator model
with nonlinear interaction

In order to analyze the 2D signals of inter-vibrational
modes, we consider a model that consists of a primary
oscillator mode nonlinearly coupled to the other modes,
which are regarded as a bath system. This bath system is
represented by an ensemble of harmonic oscillators. The
primary mode may change in time or be inhomogeneously
distributed. We can describe both situations within a unified
framework by adjusting the bath parameter variables. The
model is constructed by extending a Brownian (or Caldeira-
Leggett) Hamiltonian50,51 to include a nonlinear system-bath
interaction. We write

Ĥ = ĤS + ĤB + ĤI, (13)

where

ĤS =
p̂2

2m
+U(q̂) (14)

is the Hamiltonian for the system with mass m, momentum p̂,
and potential U(q̂);

ĤB =

j

*
,

p̂2
j

2m j
+

m jω
2
j x̂

2
j

2
+
-
+


j

*
,

α2
jV

2(q̂)
2m jω

2
j

+
-

(15)

is the bath Hamiltonian with the momentum, coordinate, mass,
and frequency of the jth bath oscillator given by p̂j, x̂ j, m j

and ω j, respectively; and

ĤI = −V (q̂)

j

α j x̂ j (16)

is the system-bath interaction, which consists of LL and
SL system-bath interactions, V (q̂) ≡ VLLq̂ + VSLq̂2/2, with
coupling strengths VLL, VSL, and α j.52 This model has been
used to derive predictions for 2D Raman33–37 and 3D IR
signals.27–29 The last term of the bath Hamiltonian is the
counter-term, which maintains the translational symmetry of
the system in the case U(q) = 0.

The sum of the bath coordinates X̂ ≡ 
j α j x̂ j acts as

a collective coordinate that modulates the system.37 As
illustrated in Ref. 27, while the LL interaction shifts the
potential, the SL interaction changes its curvature. Although in
the anharmonic potential case, the LL interaction also changes
the curvature of the potential, we can ignore this effect if the
anharmonicity is weak.27,49 Next, we introduce the spectral
distribution function, J(ω) ≡ 

j α
2
j~δ(ω − ω j)/2m jω j, which

characterizes the bath and system-bath couplings. We assume
that J(ω) has an Ohmic form with a Lorentzian cutoff,30–38

J(ω) = ~mζ
2π

ωγ2

γ2 + ω2 , (17)

where ζ is the system-bath coupling strength, and γ represents
the width of the spectral distribution.

Writing the classical collective coordinate corresponds as
X , we have the correlation function, ⟨X(t)X(0)⟩ ∝ e−γ |t |. This
indicates that the bath oscillators interact with the system in
the form of Gaussian-Markovian noise with correlation time
τ = 1/γ.37 Because the SL interaction affects the frequency
of the potential, the fast modulation limit (τ → 0) of the
SL interaction corresponds to the case of a homogeneous
distribution, as depicted in Fig. 1(a). By contrast, the slow
modulation limit (τ → ∞) corresponds to the case of an
inhomogeneous distribution, as depicted in Fig. 1(b). Note
that SL or LL+SL BO model has the “mode mixing in
polarization”53 because the modes included in collective
coordinate q are frequency distributed by SL interaction and
are mixed by nonlinear polarizability Π2q2.

B. Classical hierarchal Fokker-Planck equations

Because we wish to explore the effects of anharmonicity,
nonlinear polarizability, vibrational dephasing, and homo-
geneous and inhomogeneous broadening within a unified

FIG. 1. Schematic illustration of the relation between line broadening and
modulation of the potential system perturbed by the SL system-bath in-
teraction. (a) The fast modulation limit corresponds to the homogeneous
broadening case, whereas (b) the slow modulation limit corresponds to the
inhomogeneous broadening case.
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framework, we must employ a kinetic equation that can
treat thermal fluctuations as well as dissipation in a non-
perturbative, non-Markovian manner. The reduced HEOM
satisfy all of the requirements mentioned above and are ideal
for the present study.30–38 While we must use the quantum form
of the equations to calculate the signals for high frequency
intra-molecular modes,49 we can employ the classical form
for low frequency inter-molecular modes.

For the LL+SL BO Hamiltonian, given in Eqs. (13)-(16),
the HEOM for the classical distribution function are expressed
as35–37

∂W (n)(p,q; t)
∂t

= −
(
L̂cl + nγ

)
W (n)(p,q; t) − nγΘ̂

×W (n−1)(p,q; t) − Φ̂W (n+1)(p,q; t) (18)

for 0 ≤ n < N and

∂W (N )(p,q; t)
∂t

= −
(
L̂cl + Nγ − Φ̂Θ̂

)
W (N )(p,q; t)

− NγΘ̂W (N−1)(p,q; t). (19)

In the HEOM approach, only the first element, W (0)(p,q; t),
has physical meaning, while the other elements, W (n)(p,q; t)
(1 ≤ n ≤ N), are introduced in the numerical calculations in
order to treat the non-perturbative, non-Markovian system-
bath interaction. We choose N to satisfy N ≫ ωc/γ, where ωc
is the characteristic frequency of the system.

The classical Liouvillian of the system, L̂cl, is defined by

L̂cl ≡
p
m

∂

∂q
−U ′(q) ∂

∂p
, (20)

where the dash is defined as A′(q) ≡ ∂A(q)/∂q for an arbitrary
function A(q). The operators Φ̂ and Θ̂ describe the energy
exchange between the system and the heat bath for the inverse
correlation time γ. They are defined as

Φ̂ ≡ −V ′(q) ∂
∂p

(21)

and

Θ̂ ≡ −ζV ′(q)
(
p +

m
β

∂

∂p

)
, (22)

with β = 1/kBT and

V ′(q) ≡ VLL + VSLq. (23)

The thermal equilibrium distribution, W eq(p,q), is expressed in
terms of the HEOM elements evaluated from the steady-state
solution of the HEOM. Note that Eqs. (18) and (19) reduce to
the Kramers equation in the limit N → 0 with VSL = 0.54

Hereafter, we employ the dimensionless coordinate and
momentum defined by q̄ ≡ ω0


mβ/2 × q and p̄ ≡


β/2m

× p, where ω0 ≡


U ′′(q)/m represents the fundamental fre-
quency. The potential is then assumed to be

Ū(q̄) = 1
2!

q̄2 +
g3

3!
q̄3, (24)

where g3 is the cubic anharmonicity of the potential. The
other variables, VLL, VSL, µ(q), and Π(q), are also normalized
accordingly.

C. One- and two-dimensional signals

To apply the HEOM formalism, we express the response
functions in terms of the time-propagation operator. Then,
Eqs. (4) and (5) can be rewritten as

R(t) = i
~

Tr


ÂG(t)B̂× ρ̂eq


(25)

and

R(t2, t1) =
(

i
~

)2

Tr


ÂG(t2)B̂×G(t1)Ĉ× ρ̂eq

, (26)

where we have employed the hyperoperator × defined as
Â×B̂ ≡ [Â, B̂], G(t) is the Green’s function of the system
Hamiltonian without a laser interaction, and ρ̂eq is the
equilibrium state. The above equations represent the time
evolution of the system under laser excitation. For example,
Eq. (26) can be interpreted as follows. The system is initially
in the equilibrium state ρ̂eq and is then modified as a result
of the first laser pulse via the dipole interaction by Ĉ. It then
propagates for time t1 under G(t1). The system is next excited
through the second laser pulse by B̂ and propagates for time t2
under G(t2). Finally, the expectation value of the polarizability
at t1 + t2 is generated through the laser pulses by Â.37

The classical expressions for the response functions can
be obtained from the above with the use of the Wigner
transformation.55 In this case, an arbitrary operator Â×(q)
is replaced by A′(q)(∂/∂p). For 1D IR and 2D THz-Raman
spectroscopies, we have

R(1)
IR (t) = µ2

1


dp


dqq


G(t) ∂

∂p
W eq


(27)

and

R(3)
RTT(t2, t1) = µ2

1Π1


dp


dqq

×

G(t2) ∂

∂p

(
G(t1) �1 + Π̄2q

� ∂

∂p
W eq(p,q)

)
,

(28)

R(3)
TRT(t2, t1) = µ2

1Π1


dp


dqq

×

G(t2) �1 + Π̄2q

� ∂

∂p

(
G(t1) ∂

∂p
W eq(p,q)

)
,

(29)

and

R(3)
TTR(t2, t1) = µ2

1Π1


dp


dq

(
q +

1
2
Π̄2q2

)
×


G(t2) ∂

∂p

(
G(t1) ∂

∂p
W eq(p,q)

)
, (30)

respectively. Here, Π̄2 ≡ Π2/Π1 is the relative intensity
of the nonlinear polarizability. The Green’s function G(t)
is now expressed in terms of the classical Liouvillian
as G(t) = exp


−L̂clt


, and W eq(p,q) is the equilibrium

distribution. In order to apply the HEOM formalism, we
express the time-dependent Wigner function W (p,q; t),
such as W (p,q; t1) = G(t1)∂W eq(p,q)/∂p and W (p,q; t1 + t2)
= G(t2)∂W (p,q; t1)/∂p, in terms of the HEOM member
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W (n)(p,q; t1) and W (n)(p,q; t1 + t2), and determine its time
evolution through Eqs. (18) and (19).33–37 In the HEOM
formalism, the equilibrium distribution, W eq(p,q), is also
expressed using the HEOM elements evaluated from the
steady-state solution of Eqs. (18) and (19). In the strong
coupling case, we employ an eigenfunctional representation of
the momentum space for numerical convenience, as discussed
in Appendix A, while in other cases, we solve Eqs. (18) and
(19). Note that, as shown in Ref. 31, the hierarchal Fokker-
Planck approach is equivalent to the generalized Langevin
approach. However, because the Fokker-Planck approach
does not require sampling of system trajectories, unlike the
Langevin approach, it is numerically advantageous, especially
for calculating nonlinear response functions, for which the
trajectories are unstable.

IV. RESULTS AND DISCUSSION

Because the 2D profiles of the signal must be constructed
from complex motion in a complicated manner, the analysis
of the signal profile is not straightforward. Nevertheless,
properly accounting for the components of signals to these
profiles allows us to perform a detailed analysis of the
inter-molecular vibrational motion on the basis of both
experiential and theoretical results. Model-based studies of
the 2D profiles of signals are helpful to identify the underlying
physical mechanisms, because it is necessary to capture the
essential features of the inter-molecular motion in order to
reproduce the complex 2D profile from a simple model.
Analyses of this kind have employed LL+SL BO models
for the 2D IR27–29,49 and 2D Raman cases.33–37 However,
their applicability has not been fully explored because of
the limited availability of experimental and numerical data.
2D THz-Raman measurements, which are applicable not
only to the study of liquids but also to the problem of
distinguishing optical processes through use of RTT, TRT,
and TTR measurements, provide the opportunity to explore
the possibilities of model-based analysis of 2D profiles. Here,
we examine the LL+SL BO model and use it to reproduce
all three THz-Raman signal profiles obtained from full MD
simulations. This is done by choosing the parameter values
of the model so as to realize the best agreement between the
signal profiles provided by the model and the MD simulation.
Before fitting the model to the MD signals, we demonstrate
a general aspect of 2D THz-Raman signals using the SL BO
model and the optical Liouville paths in a simple case. This
serves as a guide to subsequent analysis.

A. General aspects of 2D THz-Raman signals

Here, we elucidate several aspects of the signal compo-
nents in 2D THz-Raman spectroscopy using the SL BO
model and optical Liouville paths. As explained in Sec. I,
we can express the dipole and polarizability in terms of
the collective coordinate q̂ as µ̂(q̂) = µ1q̂ and Π̂(q̂) = Π1q̂
+ Π2q̂2/2, respectively. If the inter-molecular modes are both
Raman and THz active, the three THz-Raman signals are

expressed as

R(3)
RTT(t2, t1) = µ2

1Π1


R̄AH(t2, t1) + Π̄2

2
R̄RTT(t2, t1)


, (31)

R(3)
TRT(t2, t1) = µ2

1Π1


R̄AH(t2, t1) + Π̄2

2
R̄TRT(t2, t1)


, (32)

and

R(3)
TTR(t2, t1) = µ2

1Π1


R̄AH(t2, t1) + Π̄2

2
R̄TTR(t2, t1)


, (33)

with Π̄2 ≡ Π2/Π1, where the anharmonic component is ex-
pressed as

R̄AH(t2, t1) ≡ − 1
~2 ⟨[[q̂(t12), q̂(t1)], q̂(0)]⟩ , (34)

where t12 ≡ t1 + t2. Similarly, the nonlinear polarizability
components are given by

R̄RTT(t2, t1) ≡ − 1
~2


[[q̂(t12), q̂(t1)], q̂2(0)]� , (35)

R̄TRT(t2, t1) ≡ − 1
~2


[[q̂(t12), q̂2(t1)], q̂(0)]� , (36)

and

R̄TTR(t2, t1) ≡ − 1
~2


[[q̂2(t12), q̂(t1)], q̂(0)]� . (37)

In the harmonic LL BO case, the above THz-Raman
signals can be calculated analytically, and we have R̄AH = 0,
R̄RTT = 0,

R̄TRT(t2, t1) = − 1
~2C(t1)C(t2), (38)

and

R̄TTR(t2, t1) = − 1
~2C(t1 + t2)C(t2), (39)

where C(t) ≡ ⟨[q(t),q]⟩ is the first-order response function
of the harmonic BO system. For an isolated oscillator with
frequency ω, we have C(t) = ~ sin(ωt)/2mω. As explained in
Sec. I, the term R̄AH vanishes in the harmonic case because
there is an odd number of Gaussian integrals involved in
the response function.56,57 Moreover, the term R̄RTT vanishes
because of the cancelation of possible optical Liouville paths,
as explained in Appendix B. While R̄AH becomes large for
large anharmonicity g3,56,57 the contribution of R̄RTT remains
small due to this cancelation. Thus, in the anharmonic case,
we can estimate R̄AH from the RTT measurement. Then, by
subtracting R̄AH from the TRT and TTR signals, R(3)

TRT and
R(3)

TTR, we can evaluate R̄TRT and R̄TTR separately. Because each
contribution arises from the corresponding optical process, we
can elucidate the key features of the inter-molecular motion
from them. In the 2D Raman case, contrastingly, because all
of the contributions appear together in a single observable, we
cannot carry out such analysis.

To more clearly elucidate the characteristic of the 2D
THz-Raman signals, in the figures, we display the 2D profiles
of the R̄TRT, R̄TTR, and R̄AH components separately in the slow
modulation case (ζ = 1.0 ω0 and γ = 0.5 ω0) and the fast
modulation case (ζ = 0.49 ω0 and γ = ∞), as obtained from
the SL BO model (VLL = 0, VSL = 1) with ω0 = 600 cm−1
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TABLE I. Relative intensities of the signal components for the SL BO model
in the harmonic (g3= 0) and anharmonic (g3= 0.3) cases. The intensities
are estimated from the maximum peak value of the signal normalized with
respect to the values of R̄TRT. Although the SL interaction gives rise to the
contribution of R̄RTT to the RTT signal, its intensity is weaker than that of
R̄AH if we include the prefactor Π̄2. This situation does not change even if we
increase the strength of the anharmonicity.

Potential Modulation R̄AH R̄RTT
a R̄TRT R̄TTR

Harmonic Slow . . . 0.18 1 0.99
Harmonic Fast . . . 0.11 0.85 0.81
Anharmonic Slow 0.12 0.18 1.01 1.00
Anharmonic Fast 0.14 0.13 0.85 0.81

aThe 2D profile of the RTT component is presented in Appendix B.

and T = 300 K. Note that because the effective system-
bath coupling strength becomes weaker as the modulation
becomes faster, we change both γ and ζ to elucidate a pure
non-Markovian effect.38 Although the contribution is minor,
we plot the R̄RTT component in Appendix B. The relative
intensities of each component evaluated in the harmonic and
anharmonic SL BO cases are presented in Table I. We then
analyze each profile using the optical Liouville paths (the
double-sided Feynman diagrams).

1. The TRT component, R̄TRT (t2, t1)
In Fig. 2, we present the R̄TRT component for (a) the slow

and (b) the fast modulation cases calculated using the harmonic
SL BO model (g3 = 0). It is seen that the peak profiles are
symmetric along the t1 = t2 line, as can be deduced from the
analytical expression for the LL case, Eq. (38). The peaks
in the slow modulation case stretch in the t1 − t2 = 2nπ/ω
direction, whereas those in the fast modulation case stretch
in the t1 + t2 = 2nπ/ω direction, where ω is the fundamental
frequency and n an integer. In the slow modulation case, there
are elongated peaks called “echo peaks” along the t1 = t2
direction.

Although our simulation results are fully classical, these
profiles can be interpreted easily using the quantum Liouville
paths for the TRT process depicted in Fig. 3. There, an energy
eigenstate of the harmonic potential is denoted by |n⟩, and
we have depicted cases starting from the vibrational ground
state as examples. The dipole operator µ1q̂, represented by

FIG. 2. The 2D profiles of the R̄TRT component calculated using the har-
monic SL BO model (g3= 0) for the (a) slow and (b) fast modulation cases.
Contours in red and blue represent positive and negative values, respectively.

FIG. 3. The Liouville paths involved in R̄TRT. The red circles and the blue
double circles represent single and double quantum transitions, respectively.
The three other paths, which are the Hermitian conjugates of the above-
mentioned paths, are not presented. These conjugate paths can be obtained
by exchanging the left and right arrows.

the red circles in the diagram, converts the state |n⟩ into
|n + 1⟩ and |n − 1⟩ through single quantum (SQ) excitations,
while the nonlinear polarizability operator Π2q̂2, represented
by the blue double circles, converts the state |n⟩ into |n + 2⟩
and |n − 2⟩ through double quantum (DQ) excitations or
maintains the same state |n⟩ through the zero quantum (ZQ)
excitation. Because the final state, appearing after the last
laser interaction, must be a population state |n⟩⟨n|, due to the
trace operation involved in the response function, the possible
processes are limited to the cases depicted in Figs. 3(i)-
3(iii) and their conjugate diagrams. While the double circle
in the diagram (i) involves the transition (a†a + aa†)|n + 1⟩
= (2n + 3)|n + 1⟩, that in the diagram (ii) involves the transi-
tion (a†a + aa†)|n⟩ = (2n + 1)|n⟩. Thus, although these paths
have same phases with opposite signs, they do not cancel.
These six components constitute the signal expressed in
Eq. (38) in the isolated oscillator case.

The phases for the paths (i) and (ii) in Fig. 3(i), expressed
as exp[−iω(t1 + t2)], are the same because the net transition
for these paths is a ZQ transition, while that for path (iii),
expressed as exp[−iω(t1 − t2)], is different because the net
transition for this path is a DQ transition. In the slow
modulation case, the signal in Fig. 3(iii) can rephase and
become strong along the t1 = t2 direction, but in the fast
modulation case, coherence is lost due to rapid changes in
the fundamental frequency, as illustrated in Fig. 1, and the
signal decays quickly. Thus, we observe the echo signal in
the TRT component in the slow modulation case, whereas we
observe the chain of peaks along the t1 + t2 = 2nπ/ω direction
in the fast modulation case, due to the processes depicted in
Figs. 3(i) and 3(ii).

2. The TTR component, R̄TTR(t2, t1)
We now discuss the R̄TTR component, presented in Fig. 4.

The prominent features of this signal are the appearance of
elongated peaks parallel to the t2 axis and the appearance of
peaks along the t1 + 2t2 = 2nπ/ω direction for small values
of t2. The optical Liouville paths for R̄TTR are presented in
Fig. 5. Three other paths can be obtained by exchanging the
left and right arrows. These six components constitute the
signal expressed in Eq. (39) in the isolated oscillator case.

We observe the population states |n⟩⟨n| during the t2
period of Figs. 5(i) and 5(ii) and the coherent states |n + 2⟩⟨n|
created by the two SQ excitations during the t2 period of
Fig. 5(iii). While all of the diagrams in Fig. 5 exhibit the
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FIG. 4. The 2D profiles of the R̄TTR component calculated using the har-
monic SL BO model (g3= 0) for the (a) slow and (b) fast modulation cases.
Contours in red and blue represent positive and negative values, respectively.

oscillation exp[−iωt1] during the t1 period, only that in
Fig. 5(iii) exhibits the oscillation exp[−2iωt2] during the
t2 period. Due to the SL interaction, the high-frequency
oscillation of the coherent state appearing in Fig. 5(iii) decays
quickly, while the population state appearing in Fig. 5(ii)
remains for a long time. Thus, we observe the peaks along
the t1 + 2t2 = 2nπ/ω direction for a short t2 period, whereas
elongated peaks appear along the t2 direction.

3. The AH component, R̄AH(t2, t1)
The contribution of the component R̄AH arises only in the

anharmonic case. In Fig. 6, we display the signal for g3 = 0.3
in the (a) slow and (b) fast modulation cases, respectively.
Although the definition of the response function is different,
the optical Liouville paths for R̄AH are similar to those for
R̄TRT and R̄TTR. To explain the reason for this, we consider
energy eigenstates in the case of an anharmonic potential |n′⟩
with eigenenergy ωn′. The fundamental frequency between
|0′⟩ and |1′⟩ is denoted byω′ = ω1′ − ω0′, whereas that between
|1′⟩ and |2′⟩ is denoted by ω′ − δ = ω2′ − ω1′. In addition to
such frequency shifts, the anharmonicity changes the roles
of the dipole and polarizability operators. While the R̄AH
component involves only µ1q̂ and Π1q̂, they can induce ZQ
and DQ transitions, in addition to the SQ transition, because
⟨n′|q̂|n′⟩, ⟨n′|q̂|n′ + 2′⟩, and ⟨n′ + 2′|q̂|n′⟩ are all nonzero in
the anharmonic case. Because both THz and Raman laser
pulses can induce ZQ and DQ transitions, the diagrams for
R̄AH include all of the diagrams in Figs. 3 and 5, while the
resonant frequency for the t1 period becomes ω′ and that

FIG. 5. The Liouville paths involved in R̄TTR. The red circles and the blue
double circles represent single and double quantum transitions, respectively.
The three other paths, which are the Hermitian conjugates of the above paths,
are not presented.

FIG. 6. The 2D profiles of the R̄AH component calculated using the anhar-
monic SL BO model (g3= 0.3) for the (a) slow and (b) fast modulation cases.
Contours in red and blue represent positive and negative values, respectively.

for the t2 period is 0, ω′, ω′ − δ, or 2ω′ − δ. The rephasing
processes depicted in Fig. 3(iii) occur only rarely, even in
the slow modulation case, due to the anharmonicity, and this
contribution can therefore be ignored. For this reason, the 2D
profiles of the R̄AH component are similar to those of R̄TTR and
R̄TTR, but without the echo peaks described by Fig. 3(iii). As
in the TTR case, the contribution from the diagram depicted in
Fig. 5(iii) decays quickly. Thus, we observe elongated peaks
in the t2 direction that arise from population decay during the
t2 period.

B. The MD and fitted results

In order to concretely study hydrogen-bonding dynamics
in 2D THz-Raman spectroscopy, we selected formamide,
water, and methanol. While water and methanol exhibit high-
frequency librational motion arising from hydrogen bonding,
formamide exhibits only low-frequency inter-molecular mo-
tion. For each liquid, we explore the parameter values of the
LL+SL BO model to fit the RTT, TRT, and TTR signals
to the MD simulation results. We fixed the anharmonicity
to g3 = 0.1, while we varied the nonlinear polarizability Π̄2.
This was done because the intensity of the R̄AH component
is proportional to g3,56,57 and only the ratio of g3 and Π̄2 is
important to elucidate the roles of anharmonicity and non-
linear polarizability. Because the coupling strengths of the
LL and SL interactions are determined by ζVLL and ζVSL,
respectively, we also fixed VSL = 1 and varied ζ and VLL/VSL
in the fit. The best fits of these parameters are presented in
Table II. Note that because the SL interaction increases the
effective system frequency,33,34 the fittedω0 do not correspond
to the resonant frequency estimated from the 1D IR results
obtained from the MD simulation.

TABLE II. The fitted parameter values of the LL+SL BO model for for-
mamide, water, and methanol liquid. Here, we have fixed g3= 0.1, µ1= 1,
Π1= 1, and VSL= 1.

Molecule ω0 (cm−1) Π̄2 ζ/ω0 γ/ω0 VLL/VSL

Formamide 60 0.04 20 ∞ 0
Water 450 0.07 6.0 0.7 0.01
Methanol 540 0.07 2.1 0.4 0.01
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1. Formamide

In Fig. 7, we display (a) the MD results and (b) the fitted
results from the LL+SL BO model for the (i) RTT, (ii) TRT,
and (iii) TTR cases of liquid formamide. It is seen that the
LL+SL BO results capture the essential features of the 2D
THz-Raman spectra. The characteristic feature of the MD
signals for formamide is the elongation of the peaks along
the t2 axis observed in Figs. 7(a-i) and 7(a-ii). By adapting
the analysis applied to R̄AH and R̄TRT, we conclude that this
elongation arises from the slow population decay during the t2
period described by the diagrams in Figs. 3(i), 3(ii), 5(i), and
5(ii). The echo peaks do not appear in Figs. 7(a-ii) and 7(b-ii),
because the modulation in this case is so fast that dephasing
cannot take place. In the TTR case depicted in Figs. 7(a-iii)
and 7(b-iii), the peaks along the t1 + 2t2 = 2nπ/ω direction
appear for small values of t1 and t2 due to the contribution of

the diagram presented in Fig. 5(iii). The similarity between
the MD and model results indicates that the collective modes
are subject to fast frequency modulation, as illustrated in
Fig. 1(a).

2. Water and methanol

In Figs. 8 and 9, we display (a) the MD results and (b) the
LL+SL BO results for the (i) RTT, (ii) TRT, and (iii) TTR cases
of liquid water and methanol, respectively. We reproduced all
of the 2D profiles obtained from the MD simulation for these
liquids using the LL+SL BO model with the parameter values
listed in Table II. In these liquids, the vibrational modes near
ω = 600 cm−1 are the librational modes.58,59

The characteristic features of the MD signals for these two
liquids are the elongation of the peaks along the t2 axis in the

FIG. 7. The 2D signals for formamide
obtained from (a) the MD simulation
and (b) the LL+SL BO model for the
(i) RTT, (ii) TRT, and (iii) TTR mea-
surements, respectively. The fitted pa-
rameter values of the LL+SL BO model
are presented in Table II. Using these
values, we also calculated the 1D IR
signal, which is presented with the MD
results in (c).
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FIG. 8. The 2D signal for water ob-
tained from (a) the MD simulation and
(b) the LL+SL BO model for the (i)
RTT, (ii) TRT, and (iii) TTR measure-
ments, respectively. The fitted parame-
ter values of the LL+SL BO model are
presented in Table II. Using these val-
ues, we also calculated the 1D IR signal,
which is presented with the MD results
in (c).

RTT and TRT signals and the echo peaks along the t1 = t2 line
in the TRT signals. The existence of these peaks indicates that
the collective modes are inhomogeneously distributed, as de-
picted in Fig. 1(b), due to slow frequency modulation. Because
water and methanol exhibit high-frequency librational motion
caused by hydrogen bonds, we observe an oscillatory feature
in the 2D signal. This contrasts with the formamide signal,
which decays quickly.

V. CONCLUSION

Using a BO model with LL and SL system-bath inter-
actions, we analyzed the 2D RTT, TRT, and TTR signals
for formamide, water, and methanol liquids obtained from
full MD simulations. The classical hierarchal equations of
motion approach were used to calculate the 2D signals with the
LL+SL BO model under non-perturbative and non-Markovian

conditions. By fitting the anharmonicity of the potential,
the LL and SL coupling strengths, and the inverse noise
correlation time of the LL+SL BO model to the results of
the MD simulations, we reproduced each of the simulated
signal profiles by capturing their characteristic features. We
found that the profile of formamide liquid can be accounted
for by homogeneously distributed oscillators, whereas the
profiles of water and methanol liquids can be accounted for
by inhomogeneously distributed oscillators. Due to hydrogen
bond interactions, water and methanol exhibit oscillating echo
peaks. We were able to describe the two cases as the cases
of fast and slow modulation of the anharmonic LL+SL BO
model. The key feature of the present model that allows it
to account for the simulated signal is the existence of the
SL interaction. We were able to describe the complex inter-
molecular motion with this simple model because it is capable
of describing the collective modes under conditions ranging



212421-11 Ikeda, Ito, and Tanimura J. Chem. Phys. 142, 212421 (2015)

FIG. 9. The 2D signal for methanol ob-
tained from (a) the MD simulation and
(b) the LL+SL BO model for the (i)
RTT, (ii) TRT, and (iii) TTR measure-
ments, respectively. The fitted parame-
ter values of the LL+SL BO model are
presented in Table II. Using these val-
ues, we also calculated the 1D IR signal,
which is presented with the MD results
in (c).

from homogeneous to inhomogeneous in a unified manner
through variation of the noise correlation time. The success of
the present study indicates that the LL+SL BO model captures
the essence of the inter-molecular motion.

Finally, we briefly discuss some extensions of the present
study. First, note that there does exist some discrepancy
between the MD simulation results and the LL+SL BO
model results. It should not be too difficult to decrease this
discrepancy. For example, in the case of water, we should
be able to improve the description of the signal profiles by
introducing the second mode, which is 220 cm−1, in the
BO model. The significance of the fitted frequencies, ω0,
should be clarified through the normal mode analysis of
MD simulations. Second, as shown in previous studies, the
LL+SL BO model can be applied not only to 2D THz-Raman
spectroscopy but also to 2D IR spectroscopy for both inter-
molecular27 and intramolecular vibrations.28,29,49 An extension
to bridge between the inter- and intra-molecular modes using

an extension of the present model should also be possible. We
leave such extensions to future studies, in accordance with
progress in experiments and simulations.
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APPENDIX A: THE HIERARCHAL FOKKER-PLANCK
EQUATIONS IN THE HERMITE REPRESENTATION

In the case of a strong system-bath coupling strength
ζ , Eqs. (18) and (19) converge very slowly as difference
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equations with a discrete mesh in the phase space. By
expanding in terms of Hermite functions in the momentum
direction,54 the convergence can be improved. In this case, the
HEOM become simultaneous equations for the coefficients of
the expression. We expand the distribution function as follows:

W (n)(q,p; t) = ψ0e−βU/2
∞
k=0

c(n)
k
(q; t)ψk(p), (A1)

where ψk(p) is the kth Hermite function,

ψk(p) = 1
2kk!a

√
π

Hk

( p
a

)
exp

(
− p2

2a2

)
, (A2)

with Hk(x) is the kth Hermite polynomial and a =


2m/β.
The Liouvillian of the system (given in Eq. (20)) and the

relaxation operators (given in Eqs. (21) and (22)) are expressed
as

L̄ = −b−D+ + b+D−, (A3)

Φ̄ = V ′(q)


β

m
b+, (A4)

and

Θ̄ = −ζV ′(q)


m
β

b−, (A5)

where Ā ≡ eβp
2/4m+βU/2Âe−βp

2/4m−βU/2,

b± ≡ 1
2


β

m
p ∓


m
β

∂

∂p
, (A6)

and

D± ≡ 1
2


β

m
∂U
∂q
∓ 1

m


m
β

∂

∂q
. (A7)

Then, the equations of motion for the coefficients c(n)
k
(q ; t)

are reduced to

∂c(n)
k

∂t
=
√

k + 1D+c(n)
k+1 −

√
kD−c(n)

k−1 − nγc(n)
k

+ nγζV ′(q)


m
β

√
k + 1c(n−1)

k+1

−V ′(q)


β

m

√
kc(n+1)

k−1 (A8)

for 0 ≤ n < N and

∂c(N )
k

∂t
=
√

k + 1D+c(N )
k+1 −

√
kD−c(N )

k−1 − Nγc(N )
k

+ NγζV ′(q)


m
β

√
k + 1c(N−1)

k+1 − ζV ′(q)2kc(N )
k
.

(A9)

To carry out the numerical calculation, we chose kmax so as
to satisfy ck ≈ 0 (k ≥ kmax) and solved Eqs. (A8) and (A9) as
kmax simultaneous equations.

APPENDIX B: THE RTT COMPONENT, R̄RTT(t2, t1)
In Fig. 10, we depict the R̄RTT component for the (a) slow

and (b) fast modulation cases, calculated using the harmonic
SL BO model (g3 = 0). Here, we chose the same parameter

FIG. 10. The 2D profiles of the R̄RTT component calculated using the har-
monic SL BO model (g3= 0) for (a) the slow modulation case (ζ = 1.0 ω0
and γ = 0.5 ω0) and (b) the fast modulation case (ζ = 0.49 ω0 and γ =∞).
Contours in red and blue represent positive and negative values, respectively.

FIG. 11. The Liouville paths involved in R̄RTT. The red circles and the blue
double circles represent single and double quantum transitions, respectively.
The four other paths, which are the Hermitian conjugates of the above paths,
are not presented. In the harmonic case, the propagators from (i) and (ii) and
those from (iii) and (iv) cancel, and the signal from this component vanishes.

values as in Sec. IV A. The estimated signal intensity for R̄RTT
is presented in Table I.

First, we should note that the signal intensity of this
component is very weak. To illustrate this point, we present
the optical Liouville paths for R̄RTT in Fig. 11. In the harmonic
case, the diagrams in Figs. 11(i) and 11(ii) and those in
Figs. 11(iii) and 11(iv) cancel, respectively, and the signal
from R̄RTT vanishes. However, in the anharmonic case and/or
the SL BO case, the diagrams in Figs. 11(iii) and 11(iv) may
survive, although those in Figs. 11(i) and 11(ii) always cancel.
This is because the transition frequencies between |n⟩ and
|n + 1⟩ and between |n + 1⟩ and |n + 2⟩ involved in the t2
period of Figs. 11(iii) and 11(iv) are different in these cases.
Thus, we observe the signal displayed in Fig. 10 with nodes
along the 2t1 + t2 = nπ/ω directions. Its intensity is weak,
however, because of the cancellation.

APPENDIX C: THE 2D PROFILES OF THE SIGNAL
COMPONENTS FOR DIFFERENT LL+SL COUPLINGS

In this appendix, we present the profiles of the 2D THz-
Raman signals in terms of the (i) AH, (ii) RTT, (iii) TRT, and
(iv) TTR components to clarify the roles of the LL and/or SL
interactions. These results can be used to elucidate the key
features of the inter-molecular interactions as revealed by 2D
signals obtained from experiments or simulations.

To carry out the numerical calculations, we set the
frequency, anharmonicity, and temperature as ω0 = 600 cm−1,
g3 = 0.1, and T = 300 K. Then, we calculated the signal
components for the LL (VLL = 1, VSL = 0), SL (VLL = 0,
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VSL = 1), and LL+SL (VLL = 0.5, VSL = 1) models in the slow
(γ = 0.5 ω0) and fast (γ = ∞) modulation cases. Because the
effective coupling strength depends on γ,38 we adjusted ζ in
the fast and slow modulation cases in order to have the same
maximum intensity in the absorption spectrum.

The 2D profiles of the (i) R̄AH, (ii) R̄RTT, (iii) R̄TRT, and
(iv) R̄TTR components for the LL, SL, and LL+SL models are
presented in Figs. 12, 13, and 14, respectively. The estimated
signal intensities for each component are listed in Table III.

Because the anharmonicity is not strong, the calculated
results appearing in Figs. 12(iii) and 12(iv) are similar to those
predicted by Eqs. (38) and (39), respectively. This indicates
that the node lines in R̄TRT correspond to t1 = 2nπ/ω and
t2 = 2mπ/ω, whereas those in R̄TTR correspond to t1 + 2t2
= 2nπ/ω, where n and m are any integers. Note that due to the

FIG. 12. The 2D profiles of the (i) R̄AH, (ii) R̄RTT, (iii) R̄TRT, and (iv) R̄TTR
components for the (a) slow modulation (ζ = 1.5 ω0 and γ = 0.5 ω0) and
(b) fast modulation (ζ = 0.2 ω0 and γ =∞) cases obtained from the anhar-
monic (g3= 0.1) LL BO model. Contours in red and blue represent positive
and negative values, respectively.

FIG. 13. The 2D profiles of the (i) R̄AH, (ii) R̄RTT, (iii) R̄TRT, and (iv) R̄TTR
components for the (a) slow (ζ =ω0 and γ = 0.5 ω0) and (b) fast modulation
(ζ = 0.49 ω0 and γ =∞) cases obtained from the anharmonic (g3= 0.1) SL
BO model. Contours in red and blue represent positive and negative values,
respectively.

effect of the heat bath, the fundamental frequency ω is shifted
from ω0.38 The components R̄AH and R̄RTT in the LL case
appear solely due to the anharmonicity, while those presented
in Figs. 6 and 10 arise from both the SL interaction and the
anharmonicity in the former case and just the SL interaction in
the latter case. The profiles in the fast modulation limit of the
SL mode presented in Figs. 6(b) and 13(b) are similar to those
for the anharmonic LL model presented in Fig. 6, because this
limit corresponds to the case of homogeneously distributed
oscillators, illustrated in Fig. 1(a). The intensity of the R̄RTT
component in the LL case is significantly weaker than that of
the other components, because of the cancelation explained in
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FIG. 14. The 2D profiles of the (i) R̄AH, (ii) R̄RTT, (iii) R̄TRT, and (iv)
R̄TTR components for the (a) slow (ζ = 1.35 ω0 and γ = 0.5 ω0) and (b) fast
modulation (ζ = 0.32 ω0 and γ =∞) cases obtained from the anharmonic
(g3= 0.1) LL+SL BO model (VLL= 0.5 and VSL= 1). Contours in red and
blue represent positive and negative values, respectively.

Appendix B. As in the case of Fig. 10, we observe nodes along
the 2t1 + t2 = 2nπ/ω direction, although they are not clear.

Although we included anharmonicity in the SL case de-
picted in Fig. 13, the overall profiles of the signals are similar to
those in the harmonic case, presented in Figs. 2, 4, and 10. This
indicates that the effects of the SL interactions are dominant in
these profiles. This is also true in the LL+SL case considered
in Fig. 14, as indicated by the similarity of the profiles there
with that in Figs. 2, 4, 10, and 13. The intensity of the R̄AH
component in the LL+SL case, however, is much larger than
that in the other cases, because the LL+SL interaction induces
transitions through the cubic interactions VLLVSLq̂(t ′′)q̂2(t ′)

TABLE III. Relative intensities of the signal components for the LL (VLL= 1,
VSL= 0), SL (VLL= 0, VSL= 1), and LL+SL (VLL= 0.5, VSL= 1) anharmonic
BO models (g3= 0.1). The intensities are estimated from the maximum peak
values of the signals. The obtained intensities were normalized with respect
to the intensity of R̄TRT in the slow modulation case.

Model Modulation R̄AH R̄RTT R̄TRT R̄TTR

LL Slow 0.04 <0.01 1 1.00
LL Fast 0.07 0.01 1.22 1.22
SL Slow 0.05 0.23 1.28 1.26
SL Fast 0.06 0.14 1.09 1.04
LL+SL Slow 0.37 0.16 1.15 1.11
LL+SL Fast 0.15 0.10 1.16 1.13

and VLLVSLq̂2(t ′′)q̂(t ′), derived from V (q̂(t ′′))V (q̂(t ′)). These
interactions can induce a signal in the R̄AH component, even
in the harmonic case, involving only Gaussian integrals in
the response function, for example, as VLLVSLTr{q(t1 + t2)
q̂(t ′′)q̂(t1)q̂2(t ′)q̂(0) exp(−βĤS)}.36 Then, the profile of the
R̄AH component in the LL+SL case exhibits some similarity
to that in the LL model, presented in Fig. 12(iii), because
the dipole and linear polarizability operators associated with
the system-bath interactions, for example, q̂(t ′′)q̂(t1)q̂2(t ′) and
q̂(t1 + t2)q̂(t ′′)q̂2(t ′), induce the same DQ and ZQ transitions
as nonlinear polarizability.
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