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Simulating two-dimensional infrared-Raman and Raman spectroscopies
for intermolecular and intramolecular modes of liquid water
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Full classical molecular dynamics (MD) simulations of two-dimensional (2D) infrared-Raman and
2D Raman spectroscopies of liquid water were carried out to elucidate a mode-mode coupling
mechanism using a polarizable water model for intermolecular and intramolecular vibrational
spectroscopy (POLI2VS). This model is capable of describing both infrared and Raman spectra.
Second-order response functions, which consist of one molecular polarizability and two molecular
dipole moments for 2D IR-Raman and three molecular polarizabilities for 2D Raman spectroscopies,
were calculated using an equilibrium-non-equilibrium hybrid MD approach. The obtained signals
were analyzed using a multi-mode Brownian oscillator (BO) model with nonlinear system-bath
interactions representing the intramolecular OH stretching, intramolecular HOH bending, hydrogen
bonded (HB)-intermolecular librational motion and HB-intermolecular vibrational (translational)
motion of liquid water. This model was applied through use of hierarchal Fokker-Planck equations.
The qualitative features of the peak profiles in the 2D spectra obtained from the MD simulations
are accurately reproduced with the BO model. This indicates that this model captures the essential
features of the intermolecular and intramolecular motion. We elucidate the mechanisms governing the
2D signal profiles involving anharmonic mode-mode coupling, the nonlinearities of the polarizability
and dipole moment, and the vibrational dephasing processes of liquid water even in the case that the
2D spectral peaks obtained from the MD simulation overlap or are unclear. The mode coupling peaks
caused by electrical anharmonic coupling (EAHC) and mechanical anharmonic coupling (MAHC) are
observed in all of the 2D spectra. We find that the strength of the MAHC between the OH-stretching
and HB-intermolecular vibrational modes is comparable to that between the OH-stretching and
HOH bending modes. Moreover, we find that this OH-stretching and HB-intermolecular vibrational
coupling should be observed as off-diagonal cross peaks in the 2D spectra. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4941842]

I. INTRODUCTION

Intramolecular vibrational modes play essential roles
in many chemical and biological processes because they
promote bond forming and bond breaking processes in
solute molecules in solvation. To realize irreversible chemical
reaction processes, in which energy is not conserved,
interplay between the interactions among intramolecular
modes and intermolecular modes is essential.1–3 In numerical
calculations employing classical molecular dynamics (MD)
simulations, two-dimensional (2D) infrared (IR), and 2D
heterodyne-detected vibrational sum frequency generation
(HD-VSFG), and 2D IR surface spectra have been applied
to study high-frequency intramolecular motion in bulk
water,4–9 the vapor/water interface,9 and CO molecule on
the Cu(100) surface,10 while 2D Raman11–18 and 2D THz-
Raman17–23 signals have been applied to detect low-frequency
intermolecular vibrational modes. Theoretical studies of
2D spectroscopic approaches for intermolecular modes
have demonstrated a capability to elucidate the difference
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between homogeneous and inhomogeneous broadening,24–27

the anharmonicity of the potential,28–30 and the mode-
mode coupling mechanism.31–35 Also, interactions among
the intermolecular modes have been investigated with 2D
Raman and 2D THz-Raman spectroscopy, while those among
the intramolecular modes have been investigated with 2D
IR spectroscopy. The vibrational relaxation processes of
OH stretching and HOH bending in liquid water has been
investigated experimentally36–44 and theoretically2–9 by means
of 2D IR. The results of these experiments indicate the
importance of the coupling between the intramolecular
and intermolecular modes. However, direct measurement
of the interactions between these modes are difficult to
carry out, because no practical light source that can cover
both intermolecular and intramolecular modes has yet been
developed.

In this paper, we theoretically examine the possibility of
measuring interactions among intermolecular and intramolec-
ular mode by means of 2D IR-Raman spectroscopy, in addition
to 2D Raman spectroscopy, as an extension of 2D THz-Raman
spectroscopy.20,45 We demonstrate this possibility specifically
for liquid water using a polarizable water model for
intermolecular and intramolecular vibrational spectroscopy
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(POLI2VS)46 that possesses the essential capability of
simulating both infrared and Raman spectra. Both 2D Raman
and 2D IR-Raman signals were calculated using the second-
order response functions expressed in terms of the three-
body correlation functions of the single polarizability and
two dipole moments in the 2D IR-Raman case and the
three polarizabilities in the 2D Raman case. We calculated
these signals using an equilibrium-nonequilibrium hybrid MD
simulation algorithm.16 The calculated signals plotted in the
frequency domain were analyzed using a Brownian oscillator
(BO) model with linear-linear (LL) and square-linear (SL)
system-bath interactions.24–35,47–51 To treat a non-perturbative,
non-Markovian, nonlinear system-bath interaction, which
is necessary to describe the effects of homogeneous and
inhomogeneous broadening in a unified manner, we employed
the hierarchal equations of motion (HEOM) approach.19,48–60

This paper is organized as follows. In Sec. II, we introduce
the LL+SL BO model and the hierarchal equations of motion
formalism for a multimode system. We then present the
theoretical framework for analyzing 2D IR-Raman and 2D
Raman spectra in the frequency domain on the basis of
single-mode and two-mode models. In Sec. III, we describe
the computational details of the full classical MD simulation
of liquid water in the cases of 2D IR-Raman spectroscopy and
2D Raman spectroscopy. The MD and fitted results obtained
from the LL+SL BO model are presented and analyzed in
Sec. IV. Section V is devoted to concluding remarks.

II. BROWNIAN ANALYSIS OF THE SECOND-ORDER
RESPONSE FUNCTION

A. Multi-mode Brownian oscillator model
with nonlinear system-bath coupling

In 2D THz-Raman, 2D IR-Raman and 2D Raman
spectroscopy methods, defined by second-order response
functions expressed in terms of the three-body correlation
functions of optical observables, the non-diagonal spectral
peaks in the frequency domain signals need not be the mode-
mode coupling peaks, because of overtone and population
relaxation processes,31–35 unlike in the 2D IR case, defined by
third-order response functions expressed in terms of the four-
body correlation functions of the dipole moment.1–3 Moreover,
because the profiles of the peaks obtained in 2D spectroscopy
studies employing MD approaches must be constructed from
complex motion in a complicated manner, the analysis of
the signal profile is not straightforward. It has been shown
that model-based studies of the 2D profiles of signals are
helpful for identifying the underlying physical mechanisms,
because it is necessary to capture the essential features of
the molecular vibrational motion in order to reproduce the
complex 2D profile from a simple model.40,51 Such analyses
of the BO model with nonlinear system-bath interactions have
been carried out in the 2D Raman57–60 and 2D THz-Raman18,19

cases for intermolecular modes and in the 2D IR case for
intramolecular modes.48–51 It has been shown that the analysis
of 2D Raman signals based on the BO model is consistent with
the normal mode analysis based on MD simulations.61 Here,
we employ this model in the multi-mode case for calculations

of the 2D spectra in the frequency domain in order to capture
the characteristic features of the 2D signals and elucidate the
role of the mode-mode coupling mechanism from the MD
results.

We consider a model that consists of several primary
oscillator modes independently coupled to the other optically
inactive modes, which are regarded as a bath system. The bath
system is represented by an ensemble of harmonic oscillators.
The vibrational frequency of the primary mode may change
in time or it can be made to be inhomogeneously distributed
by introducing a nonlinear system-bath coupling. The total
Hamiltonian is expressed as

H =

s

(
H (s)

S + H (s)
B + H (s)

I

)
+


s,s′>s

Us,s′(qs,qs′), (1)

where

H (s)
S =

p2
s

2ms
+Us(qs) (2)

is the Hamiltonian for the sth mode with mass ms, coordinate
qs, momentum ps and potential Us(qs), Uss′(qs,qs′) is the
interaction between the modes s and s′,

H (s)
B =


js

*
,

p2
js

2m js

+
m jsω

2
js

x2
js

2
+
-
+


js

*
,

α2
js

V 2
s (qs)

2m jsω
2
js

+
-

(3)

is the bath Hamiltonian for the sth mode with the momentum,
coordinate, mass, and frequency of the jsth bath oscillator
given by pjs, x js, m js and ω js, respectively, and

H (s)
I = −Vs(qs)


js

α jsx js (4)

is the system-bath interaction, which consists of linear-
linear (LL) and square-linear (SL) system-bath interactions,
Vs(qs) ≡ V (s)

LL qs + V (s)
SL qs

2/2, with coupling strengths V (s)
LL , V (s)

SL ,
and α js.

47 This model has been used to derive predictions
of a single-mode system for 2D Raman19,27,57–60 and 2D IR
signals48,49 and a two-mode system for 2D IR signal.50,51 The
last term of the bath Hamiltonian is a counter-term, which
maintains the translational symmetry of the system in the
case Us(qs) = Us,s′(qs,qs′) = 0.57 Here, we apply this model
to describe the simulated 2D signal of liquid water. In this
case, the vibrational frequencies of the representative modes
all differ sufficiently that we can assume that the fluctuations
arising from the bath are uncorrelated. In addition, the 2D
vibrational spectroscopy considered here is insensitive to
correlations among fluctuations, because it does not include a
population decay time, unlike third-order spectroscopy.44,50,51

For this reason, we assume that each mode is coupled to a
separate bath.

For the system potential and mode-mode interaction, we
consider

Us(qs) = 1
2!

msω
2
sq

2
s +

1
3!
gs3q3

s (5)

and

Uss′(qs,qs′) = 1
2
�
gs2s′q

2
sqs′ + gss′2qsq2

s′
�
. (6)

We assume that the anharmonicity of the vibrational motion
is weak and that the system potential can be expressed
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as a function of qs and qs′ in the form of a Taylor
expansion that includes only terms through third order.
It should be noted that the fourth-order term in this
expansion does not contribute to the second-order response
functions.28,29,31 As shown in Ref. 51, while the LL interaction
contributes mainly to energy relaxation, the SL system-
bath interaction leads to vibrational dephasing in the slow
modulation case, due to the frequency fluctuation of system
vibrations.51,58–60 The sum of the bath coordinates Xs

≡ 
js α jsx js acts as a collective coordinate that modulates the

mode s.57 We introduce the spectral distribution function Js(ω)
≡ 

js α
2
js
~δ(ω − ω js)/2m jsω js, which characterizes the bath

and system-bath coupling. We assume that Js(ω) has an Ohmic
form with a Lorentzian cutoff:57

Js(ω) = ~msζs
2π

ωγ2
s

γ2
s + ω

2 . (7)

Here, ζs is the system-bath coupling strength, and γs represents
the width of the spectral distribution for the mode s.

In the present study, we consider each primary mode
representing the collective modes of the OH stretching,
HOH bending, HB-intermolecular librational and HB-
intermolecular vibrational (translational) motion of liquid
water.

B. Classical hierarchal Fokker-Planck equations
for a multi-mode system

To study a multi-mode Brownian system, we employ
the reduced hierarchal equations of motion (HEOM)
approach, which allows us to treat the effects of thermal
activation, relaxation, the anharmonicity of the potential,
the nonlinearities of the polarizability and dipole moment,
vibrational dephasing, and homogeneous and inhomogeneous
broadening in the 2D spectra within a unified framework.48–60

Although quantum mechanical effects are important to
calculate the signals for high-frequency intramolecular
modes,49 here we employ a classical framework for the
analysis of both intramolecular and intermolecular modes,
because the MD results that allow comparison with the model
calculations are all classical. For the LL+SL BO model
with the two modes α and β, described by Eqs. (1)–(4),
the HEOM for the classical distribution function, W (p,q; t)
≡ W (pα,pβ,qα,qβ; t), are obtained through the extension of a
single-mode case as19,57

∂W (n1,n2)(p,q; t)
∂t

= −(L̂α+β + n1γα + n2γβ)W (n1,n2)(p,q; t)
− n1γαΘ̂αW (n1−1,n2)(p,q; t)
− n2γβΘ̂βW (n1,n2−1)(p,q; t)
− Φ̂αW (n1+1,n2)(p,q; t)
− Φ̂βW (n1,n2+1)(p,q; t), (8)

where n1 and n2 are the depth of the hierarchy elements
for the modes α and β, respectively. In the HEOM
approach, only the first element, W (0,0)(p,q; t), has physical
meaning, while the other elements, W (n1,n2)(p,q; t) with n1,
n2 > 0, are introduced into the numerical calculations in
order to properly treat the non-perturbative, non-Markovian

system-bath interactions. The classical Liouvillian of the sys-
tem with the Hamiltonian Hα+β ≡ H (α)

S + H (β)
S +Uαβ(qα,qβ)

is given by

L̂α+β =

α,β
s

(
∂Hα+β

∂ps

∂

∂qs
−
∂Hα+β

∂qs

∂

∂ps

)
. (9)

The operators Θ̂s and Φ̂s here describe the energy exchange
between the system and the heat bath for the sth mode. These
are defined in terms of the inverse correlation time, γs, the
coupling strength, ζs, and the temperature, T , as

Φ̂s ≡ −
∂V (s)(qs)
∂qs

∂

∂ps
(10)

and

Θ̂s ≡ −ζs
∂V (s)(qs)
∂qs

(
ps + mskBT

∂

∂ps

)
, (11)

where kB is the Boltzmann constant. The equa-
tions of motion are truncated by making the replace-
ments Φ̂αW (n1+1,n2)(p,q; t) → −Φ̂αΘ̂αW (n1,n2)(p,q; t) and
Φ̂βW (n1,n2+1)(p,q; t) → −Φ̂βΘ̂βW (n1,n2)(p,q; t) in Eq. (8) for
sufficiently large n1 + n2 = N .54–56 In principle, the HEOM
provide an asymptotic approach that allows us to calculate
various physical quantities with any desired accuracy by
adjusting the number of hierarchal elements, determined
by N ; the error introduced by the truncation can be made
negligibly small by choosing N to be sufficiently large.
The computational details for the hierarchal Fokker-Planck
equations are described in Appendix A.

C. Calculating 1D and 2D signals
from response functions

The optical observables in 1D and 2D spectroscopy
studies are defined respectively as the first- and second-order
response functions.24 In the classical case, they are expressed
as17–19

R(t1) = −⟨{A(t1),B(0)}PB⟩ (12)

and

R(t2, t1) = ⟨{{A(t2 + t1),B(t1)}PB,C(0)}PB⟩, (13)

where A, B, and C are the total dipole moment (µ) or the total
polarizability (Π) of the molecular system, and { , }PB is the
Poisson bracket defined by

{A,B}PB ≡

s

(
∂A
∂qs

∂B
∂ps
− ∂A
∂ps

∂B
∂qs

)
. (14)

2D IR-Raman spectroscopy is described in terms of three-
body correlation functions, as in the cases of 2D Raman and
2D THz-Raman spectroscopy. 2D IR-Raman spectroscopy
utilizes two IR (or THz) processes and one Raman process,
and there are three different measurements, specifically, those
with the Raman-IR-IR (RII), IR-Raman-IR (IRI), and IR-IR-
Raman (IIR) configurations depicted in Fig. 1. In the present
study, we also calculated the 2D Raman spectrum utilizing
three Raman processes, because the recently developed
single-beam spectrally controlled 2D Raman spectroscopy
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FIG. 1. Pulse sequences in the (a) Raman-IR-IR, (b) IR-Raman-IR, and (c) IR-IR-Raman configurations for 2D IR-Raman spectroscopy. The blue curves
represent Raman interactions, whereas the red ones represent IR (or THz) interactions.

method makes it possible to obtain 2D spectra by suppressing
cascading effects.66 We can calculate these signals by setting,
for example, A = µ(q), B = µ(q), and C = Π(q) in Eq. (13)
for the RII case.

To apply the HEOM formalism, we express the response
functions in terms of Wigner distribution functions as30,57

R(t1) =


dpdq
�
−A(q)G(t1)B×(q)W eq(p,q)	 (15)

and

R(t2, t1) =


dpdqA(q)G(t2)B×(q)G(t1)C×(q)W eq(p,q),
(16)

where we have employed the hyperoperator × defined as
C×(q)W (p,q) ≡ {C(q),W (p,q)}PB, and G(t) is the Green’s
function of the system Hamiltonian without a laser pulse
interaction. Then, the 1D spectra are obtained from the above
as

I(ω) = ωℑ
 ∞

0
dteiωt1R(t1), (17)

where the pre-factor ω for the 1D spectrum is a harmonic
quantum correction factor that must be included with the
classical calculations.62 By contrast, the 2D spectra are
estimated as

I(ω2,ω1) =
 ∞

0
R(t2, t1) sin(ω1t1) sin(ω2t2)dt1dt2. (18)

In the low-frequency range, this 2D sine-Fourier represen-
tation is more intuitive than the real part of the 2D Fourier
representation.20

Although the characteristic features of 2D Raman signals
in Fourier space have been explored on the basis of
analytic solutions of the LL Brownian oscillator model,31–35

the extension of these studies to 2D IR-Raman and 2D
THz-Raman spectroscopy on the basis of the LL+SL
BO model have not yet been explored, particularly for
multimode systems. Using the HEOM approach, here we
investigate the roles of anharmonic mode-mode coupling with
inhomogeneous broadening for such 2D spectra described by
this model.

As shown in the cases of 2D Raman and 2D THz-Raman
spectroscopy, nonlinear polarizability plays an essential role
in 2D spectroscopy results described by the second-order
response function.21,24 In the 2D IR-Raman case, we find
that the nonlinear dipole elements also play a significant role,
because the induced contributions of the dipole moment for
the OH stretching and HB-intermolecular vibrational modes
are very large in comparison with those for the other modes,

as illustrated in Appendix C. Thus, we assume

µ(q) =

s

µsqs +
1
2!


s,s′

µss′qsqs′ (19)

and

Π(q) =

s

Πsqs +
1
2!


s,s′
Πss′qsqs′, (20)

where µs and µss′ are the linear and nonlinear elements of the
dipole moment, andΠs, andΠss′ are those of the polarizability,
respectively. As in the case of 2D Raman spectroscopy, the 2D
signal defined in terms of the second-order response function,
given in Eq. (16), will vanish when the system is harmonic
and the optical property is linear, because in that case, there
is an odd number of Gaussian integrals involved in the
response function: tr[q(t2 + t1)q(t1)q(0) exp(−HS/kBT)].28–30

To illustrate the characteristic features of the 2D profile in the
frequency domain spectrum, here we study the anharmonic
(AH) contribution and nonlinear contribution (NL) separately.
For this purpose, we consider the following three elements:

RAH(t2, t1) =


s,s′,s′′
µsµs′Πs′′

× ⟨{{qs(t2 + t1),qs′(t1)}PB,qs′′(0)}PB⟩ , (21)

RNL2(t2, t1) = 1
2


s,s′,s′′,s′′′

µsΠs′s′′µs′′′

× ⟨{{qs(t2 + t1),qs′(t1)qs′′(t1)}PB,qs′′′(0)}PB⟩ ,
(22)

and

RNL3(t2, t1) = 1
2


s,s′,s′′,s′′′

Πss′µs′′µs′′′

×

{{qs(t2 + t1)qs′(t2 + t1),qs′′(t1)}PB,qs′′′(0)}PB

�
.

(23)

As has been demonstrated in the case of single-mode 2D
THz-Raman spectroscopy, these elements correspond to the
RII, IRI, and IIR signals, respectively, for µss′ = 0. It should
be noted that the NL term that corresponds to RII,

RNL1(t2, t1) = 1
2


s,s′,s′′,s′′′

µsµs′Πs′′s′′′

× ⟨{{qs(t2 + t1),qs′(t1)}PB,qs′′(0)qs′′′(0)}PB⟩
(24)

is weak or even vanishing. This point can be demonstrated
using diagram theory31–35 and model calculations.18,19
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TABLE I. Parameter values for the anharmonicity and optical properties in
the single-mode SL BO model.

Contribution gα3 µα Πα Παα

AH 0.21 1.0 1.0 . . .
NL2 0 1.0 . . . 0.10
NL3 0 1.0 . . . 0.10

1. Characteristic features of the 2D spectrum
in the single-mode case

First, we elucidate the characteristic features of the AH
and NL contributions in the single-mode case described
by the SL BO model. In the numerical calculations, we
employed dimensionless coordinates, system-bath coupling
strengths, LL coupling strengths, and SL coupling strengths
defined by qs ≡

√
msω0/~qs, ζ s ≡ ζs/ω0, V

(s)
LL ≡ V (s)

LL , and
V

(s)
SL ≡

√
~/msω0V

(s)
SL . The potential is then expressed as

Us(qs) = 1
2
~ω0

(
ωs

ω0

)2

q2
s +

1
3!
~ω0gs3q3

s, (25)

where gs3 is the cubic anharmonicity of the potential. We
also employ the following normalized optical variables
µs ≡

√
~/msω0µs, µs2 ≡


~2/m2

sω
2
0µs2, Πs ≡

√
~/msω0Πs,

and Πs2 ≡

~2/m2

sω
2
0Πs2. In this case, Eq. (8) was simplified

by reducing the hierarchal elements for the second mode,
β, described by n2.19 The system and heat bath parameter
values were chosen as ωα = 1.0, ζα = 0.50 ω0, γα = 0.50 ω0,
V

(α)
LL = 0 and V

(α)
SL = 1.0 with ω0 = 1.0 and ~ω0/kBT = 1.0.

The other parameter values are presented in Table I.
In Fig. 2, we display the 2D spectra for the (i)

AH, (ii) NL2, and (iii) NL3 contributions calculated using
Eqs. (21)–(23). The 2D spectrum of the AH contribution
exhibits positive and negative peaks labeled by “A” along the
diagonal direction. These arise from the interplay between
the linear polarizability and the cubic anharmonicity. The
NL2 contribution labeled by “A” arises from the nonlinear
polarizability. The diagonal peak in the NL2 case is identified
as an echo peak, which represents the rephrasing process. The
AH and NL3 contributions also exhibit spectral peaks along
the off-diagonal direction, labeled by “B” and “C”. It should be
noted that the off-diagonal peaks in 2D spectroscopy spectra

defined in terms of the second-order response function need
not be the mode-mode coupling peaks, as in the case of 2D
IR spectroscopy defined in terms of the third-order response
function.31–35 The spectral peaks near (ω1,ω2) = (ωα,2ωα)
labeled by “B” correspond to the overtone peak in the
ω2 direction. The broadened peaks near (ω1,ω2) = (ωα,0)
labeled by “C” arise from population relaxation; a signal
that relaxes as e−γt2 along the t2 axis with the relaxation
rate γ appears as

 ∞
0 e−γt2 sin(ω2t2)dt2 = ω2/(γ2 + ω2

2) in 2D
spectrum. Although our simulation results are classical, these
peak positions can be interpreted readily using the optical
Liouville paths, as discussed in Ref. 19.

2. Characteristic features of 2D signals
in the two-mode case

Next, we consider the two-mode case. Here, the
normalized potential for mode-mode interaction is expressed
as

Uss′(qs,qs′) = 1
3!
~ω0

(
3gs2s′q

2
sqs′ + 3gss′2qsq

2
s′
)
, (26)

where gs2s′ and gss′2 represent the cubic anharmonic
coupling of the potential. We employ the following nonlinear
optical coupling variables: µss′ ≡


~2/msms′ω

2
0µss′ and

Πss′ ≡

~2/msms′ω

2
0Πss′.

We fixed the system and bath parameter values as γα = γβ
= 0.50 ω0, V

(α)
LL = V

(β)
LL = 0, V

(α)
SL = V

(β)
SL = 1.0, gα3 = gβ3 = 0,

and Παα = Πββ = 0, with ω0 = 1.0 and ~ω0/kBT = 1.0. The
other parameter values are presented in Table II. In the two-
mode case, the vibrational modes interact through electrical
anharmonic coupling (EAHC) and/or mechanical anharmonic
coupling (MAHC).31–35 In Fig. 3, we present the 2D spectra in
the (i) AH1 and (ii) AH2 cases (arising from the MAHC) and
the (iii) NL2 and (iv) NL3 cases (arising from the EAHC),
calculated on the basis of the SL BO model. The spectra in
(a) are those for the high-frequency modes, and the spectra in
(b) are those for the low-frequency modes.

For the high-frequency modes, as in the single-mode
case depicted in Fig. 2(i), the diagonal peak, overtone
peak, and relaxation peak labeled by “A,” “B,” and “C”
for the two modes α and β are observed as the peaks
labeled by “A,” “B,” and “C” in Figs. 3(a-i) and 3(a-ii),

FIG. 2. 2D spectra of the single-mode system for the (i) AH, (ii) NL2, and (iii) NL3 contributions calculated using the one-mode SL BO model. The spectral
intensities are normalized.
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TABLE II. Parameter values of the anharmonicity and optical properties for
the two-mode SL BO model. We fixed the frequencies and bath coupling
strengths of the modes α and β as (a) ωα = 4.0, ωβ = 1.0, ζα = 1.3 ω0,
ζβ = 0.5 ω0 and (b) ωα = 1.0, ωβ = 0.20, ζα = 0.5 ω0, ζβ = 1.0 × 10−2 ω0,
with ω0= 1.0 and ~ω0/kBT = 1.0.

Case (a) gα2β gαβ2 µα µβ Πα Πβ Παβ

AH1 −0.42 0 1.0 1.0 1.0 1.0 . . .
AH2 0 −0.11 1.0 1.0 1.0 1.0 . . .
NL2 0 0 1.0 1.0 . . . . . . 0.10
NL3 0 0 1.0 1.0 . . . . . . 0.10

Case (b) gα2β gαβ2 µα µβ Πα Πβ Παβ

AH1 −9.0× 10−3 0 1.0 1.0 1.0 1.0 . . .
AH2 0 −1.8× 10−3 1.0 1.0 1.0 1.0 . . .
NL2 0 0 1.0 1.0 . . . . . . 0.10
NL3 0 0 1.0 1.0 . . . . . . 0.10

respectively. In addition, in the AH1, AH2 an NL2
spectra in this case, these appear off-diagonal peaks
near (ω1,ω2) = (ωβ,ωα) and (ω1,ω2) = (ωα,ωβ), labeled by
“D” and “E.” Also, for the high-frequency modes, there
are peaks near the positions, (ω1,ω2) = (ωβ,ωα + ωβ) and
(ω1,ω2) = (ωα,ωα + ωβ), labeled by “F” and “F′” and peaks
near (ω1,ω2) = (ωβ,ωα − ωβ) and (ω1,ω2) = (ωα,ωα − ωβ),
labeled by “G” and “G′” in the AH1, AH2, and NL3 spectra.
The peaks labeled by “D,” “E,” “F,” “G,” “F′,” and “G′”
in Figs. 3(a-iii) and 3(a-iv) arise from the EAHC. These
peak positions can be interpreted easily using the optical
Liouville paths depicted in Fig. 4. The peaks in Figs. 3(a-i)
and 3(a-ii) arise from the MAHC. Despite this fact, however,
the peaks labeled by “A,” “B,” “C,” “D,” “E,” “F,” “G,” “F′”
and “G′” appear at the same positions as those in the NL2
and NL3 spectra in the single-mode and two-mode cases.

The reason for this is that even if the dipole moment and the
polarizability are linear for both α and β, in the AH1 and AH2
cases, these can cause optical transitions with the help of the
anharmonic mode-mode couplings gα2βq2

αqβ and gαβ2qαq2
β,

which induce the double quantum transitions represented by
the green double circles in Fig. 4, in addition to the zero and
double quantum transitions for both α and β, as discussed
in Ref. 19.

For the low-frequency modes depicted in Figs. 3(b-i)
and 3(b-ii), we are not able to identify some of the peaks
discussed above with regard to the high-frequency modes
arising from the MAHC. This is due to the fact that these
peaks overlap because their resonant frequency are small,
while their widths are large. In Fig. 3(b-iii), it is seen that
clear cross peaks (labeled by “D” and “E”) arise from the
EAHC in the NL2 case. In the NL3 case, however, the peaks
labeled by “F” and “G” are indistinguishable, as are those
labeled by “F′” and “G′,” because the peaks at ω2 = ωα + ωβ

and ω2 = ωα − ωβ overlap for small ωβ.

III. FULL MD SIMULATION APPROACH
FOR TWO-DIMENSIONAL SPECTROSCOPIES

A. Equilibrium-nonequilibrium hybrid MD approach

In 1D vibrational spectroscopic approaches employing
full MD simulations, we can evaluate the observables easily by
calculating optical properties from an ensemble of molecular
trajectories. As illustrated in Eq. (15), the linear absorption
(1D IR) spectrum, I (1)IR (ω), and the 1D Raman spectrum,
I (3)Raman(ω), are calculated from the response function in time
domain, expressed as

R(t1) = 1
kBT

⟨Beq(t1)Ȧeq(0)⟩. (27)

FIG. 3. 2D spectra in the (i) AH1, (ii) AH2, (iii) NL2 and (iv) NL3 cases. The spectra in the AH1 and AH2 cases arise from the MAHC, while those in the
NL2 and NL3 cases arise from EAHC. These results were calculated using the two-mode SL BO model. The cases (a) and (b) are those with high-frequency
and lowfrequency modes, respectively. The spectral intensities are all normalized.
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FIG. 4. The Liouville paths involved in the (a) NL2 and (b) NL3 cases for the mode α with frequency ωα and the mode β with frequency ωβ are depicted.
Here, an energy eigenstate of the harmonic potential is denoted by

�
nα,nβ

�
, and we have depicted cases starting from the vibrational ground state. The blue

circles and the red circles represent single quantum transitions with respect to mode α and mode β, whereas the green double circles represent double quantum
transition with respect to both α and β modes. The other paths, which are the Hermitian conjugates of the above paths, are not presented.

Here, Aeq(t) and Beq(t) are the dipole moment or polarizability
obtained from the equilibrium MD (EMD) trajectories at
time t. The time derivative of A(t) is defined as Ȧeq(0)
≡ dAeq(t)/dt |t=0.

To calculate 2D signals, we apply the equilibrium-non-
equilibrium hybrid MD algorithm originally developed for 2D
Raman spectroscopy.16–18 The response functions in the cases
of 2D IR-Raman and 2D Raman spectroscopy are evaluated
as

R(t2, t1) = 1
kBTF∆t



Ȧeq(−t1) �C+B(0)(t2) − C−B(0)(t2)�� , (28)

where ∆t is the time step used in integrating the equations
of motion, and F is the constant that arises from the non-
equilibrium MD (NEMD) perturbation. In the 2D RII, IRI,
IIR, and 2D Raman cases, F is given by 2E1, E1E2, 2E1, and
E1E2, respectively. The RII signal, for example, is calculated as
follows. We first obtain the time derivative of the polarizability,
Π̇eq(−t1), from the equilibrium trajectories at time t = −t1.
Next, we evaluate the dipole moments µ+µ(0)(t2) and µ−µ(0)(t2)
at time t = t2 from the non-equilibrium trajectories, which
are generated by a perturbation at time t = 0, ∓µ(0)E1δ(t),
resulting from the external electric field of the jth pulse E j

acting on the dipole moment µ(0). The RII signal is then
evaluated as



Π̇eq(−t1) �µ+µ(0)(t2) − µ−µ(0)(t2)�� /(2kBT E1∆t).

B. POLI2VS potential

To calculate the 2D IR-Raman and 2D Raman spectra
on the basis of MD simulations, we utilized a polarizable

water model for intermolecular and intramolecular vibrational
spectroscopy (POLI2VS).46 In this flexible water model, the
charge-flow polarizability, permanent charge, dipole moment,
quadrupole moment, and atomic dipole polarizability are
expressed as functions of the intramolecular-geometry.46

These functions are evaluated from the computational results
with ab initio calculations employing the coupled-cluster
single- and double-excitation (CCSD) method with the aug-cc-
pVQZ basis set and distributed multipole analysis (DMA).63

In order to evaluate the optical observables measured in
spectroscopy experiments, we calculated the total dipole
moment, µ(t) = µP(t) + µI(t), and total polarizability, Π(t)
= ΠP(t) +ΠI(t), of the liquid water system in a MD
simulation, where µP(t), µI(t), ΠP(t), and ΠI(t) are the
permanent dipole moment, induced dipole moment, perma-
nent polarizability, and induced polarizability, given by µP(t)
=


i µ

p
i , µI(t) = 

i µ
i
i, Π

P(t) = 
iΠ

p
i , and ΠI(t) = 

iΠ
i
i,

respectively. Here, µp
i , µi

i, Π
p
i , and Πi

i are the permanent
molecular dipole moment, induced molecular dipole moment,
permanent molecular polarizability, and induced molecular
polarizability of water molecule i, which are obtained using
the full-order charge-flow dipole-induced-dipole (CFDID)
model.46 The details of the full-order CFDID polarizability
model and the POLI2VS potential model are presented in the
supplementary material.64 It should be noted that the full-order
CFDID model that we used in the previous investigation of 2D
THz-Raman spectroscopy employed a fixed geometry for the
rigid-body water model,17 while here we used the original full-
order CFDID polarizability of the POLI2VS potential model;
the permanent molecular polarizability and the permanent
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charge-flow polarizability depend on the intra-molecular
structure of water molecules.

C. Simulation details

To carry out the MD simulations for liquid water,
the interactions between the molecules were modeled with
POLI2VS. In the MD simulations, each system consisted of 64
molecules in a cubic box with periodic boundary conditions.
The interaction potentials containing the quadrupole moments
were cut off smoothly at a distance equal to half the
length of the system using a switching function, and the
long-range charge-charge, charge-dipole, and dipole-dipole
interactions were calculated with the Ewald summation
employing tinfoil boundary conditions.65 The equations of
motion were integrated using the velocity-Verlet algorithm
with ∆t = 0.25 fs. The volume and energy were fixed after
the completion of the isothermal simulations carried out
to establish equilibration. The conditions of the simulation
were set such that the average density and temperature
were 0.997 g/cm3 and 300 K, respectively. The 1D IR and
Raman spectra were calculated from the equilibrium trajectory
data, while the 2D IR-Raman and 2D Raman spectra were
calculated with the equilibrium-non-equilibrium hybrid MD
simulation algorithm.

IV. RESULTS AND DISCUSSION

In this section, we present our results for the 2D IR-
Raman and 2D Raman spectra calculated from the MD
simulations described in Sec. III. Then, we analyze the
obtained spectra using the LL+SL BO model described in
Sec. II. In order to compare the effect of the anharmonicity
with respect to the potential for each mode and mode-mode
coupling clearly, we employ the dimensionless coordinate
q̃s ≡ (ωs/ω0)qs. The renormalized Hamiltonian is presented in
Appendix B. To parametrize the BO model, we employed the
(1) intramolecular OH-stretching, (2) intramolecular HOH-
bending, (3) HB-intermolecular librational, and (4) HB-
intermolecular vibrational (translational) modes. In order to
reproduce the profiles of the 1D and 2D spectra obtained from
the MD simulations using the LL+SL BO model, we express
the signals in terms of the single-mode and coupled-mode
contributions as

I(ω1) =

s

Is(ω1) (29)

and

I(ω2,ω1) =

s

Is(ω2,ω1) +

s,s′>s

Iss′(ω2,ω1), (30)

where Is(ω1) and Is(ω2,ω1) are the 1D and 2D spectra arising
from the single mode, s, whereas Iss′(ω2,ω1) is the 2D
spectrum arising from the coupled mode, s and s′.

The resonant frequency, the bath parameter values, and
the linear optical properties of these modes were estimated
from the 1D Raman and 1D IR spectra obtained from the MD
simulations. The values of anharmonicity and nonlinearly of
the dipole moment and/or polarizability were determined by
requiring that the 2D spectra reproduce each of the 2D signal
profiles obtained from the MD simulations by capturing their
characteristic features. The calculations for the single- and
coupled-mode spectra Is(ω1) and Is(ω2,ω1) were carried out
separately, following the procedure explained in Secs. II C 1
and II C 2. In the coupled-mode case, Iss′(ω2,ω1), however,
we ignored the cubic anharmonicity of the potential (i.e., the
terms gs3q3

s and gs′3qs′3) when we calculated the contributions
of the 2D signals in order to avoid double counting of the
AH contributions that had been taken into account by the
signal-mode contributions, Is(ω2,ω1). The fitted system and
bath parameter values for the 2D spectra of liquid water are
listed in Tables III and IV withω0 = 4000 cm−1 and T = 300 K.
The 1D spectra were also calculated using these parameter
values without including the coupled-mode contributions,
because the spectral intensities of these contributions are
significantly weaker than the single-mode contributions. The
qualitative features of the peak profiles in the 2D spectra
obtained from the MD simulations are accurately, reproduced
with the multi-mode LL+SL BO model. The set of fitting
parameters for entire system are determined uniquely in
order to best reproduce all of the complex profiles of the
1D and 2D spectra obtained from the MD simulations. This
result indicates that this model based analysis captures the
essential features of the intermolecular and intramolecular
motion. As we show below, by utilizing the extracted model
parameter values, we can analyze the anharmonic mode-mode
coupling, the nonlinearity of the polarizability and dipole
moment, relaxation phenomena, and the vibrational dephasing
processes for each mode, even in the case that the 2D spectral
peaks obtained from the MD simulation overlap or are unclear.

In Fig. 5, we display (a) the 1D IR and 1D Raman spectra
obtained from the MD simulations and the LL+SL BO model,
(b) the 2D MD results, and (c) the 2D fitted results from the
LL+SL BO model for the (i) 2D RII, (ii) 2D IRI, (iii) 2D
IIR, and (iv) 2D Raman cases of liquid water. It should be

TABLE III. The parameter values of the LL+SL BO model for the (1) intramolecular OH-stretching, (2) intramolecular HOH-bending, (3) HB-intermolecular
librational, and (4) HB-intermolecular vibrational modes fitted to reproduce the 1D and 2D vibrational spectra of liquid water obtained from the full MD
simulations. We set the fundamental frequency and temperature as ω0= 4000 cm−1, and T = 300 K. The correlation times of the Gaussian-Markovian bath
noise, τs = 1/γs, are also presented.

s ωs (cm−1) γs/ω0 τs (fs) ζ̃s Ṽ
(s)
LL Ṽ

(s)
SL g̃s3 µ̃s µ̃ss Π̃s Π̃ss

1 3520 2.5× 10−2 333 6.2 0 1.0 −5.0 × 10−2 3.5 1.2× 10−2 3.5 2.5× 10−2

2 1710 1.8× 10−2 463 1.2 0 1.0 −1.4 × 10−2 1.4 0 0.47 −3.9× 10−2

3 430 8.5× 10−2 98 8.3 3.4× 10−3 1.0 9.7 × 10−2 18.6 0 2.1 −0.83
4 115 0.50 17 2.8 2.8× 10−3 1.0 9.7 × 10−2 31.3 2.1 9.0 2.3
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TABLE IV. The parameter values of the LL+SL BO model for the anhar-
monic mode-mode coupling fitted to reproduce the 2D vibrational spectra of
liquid water obtained from the full MD simulations.

s–s′ 3g̃s2s′ 3g̃ss′2 µ̃ss′ Π̃ss′

1-2 5.7× 10−2 5.7× 10−2 2.0× 10−3 2.6× 10−3

1-3 −3.9× 10−2 −3.9× 10−2 0.13 0.19
1-4 −7.5× 10−2 −7.5× 10−2 0.23 0.26
2-3 −1.5× 10−2 −1.5× 10−2 6.3× 10−2 7.4× 10−2

2-4 −2.0× 10−2 −2.0× 10−2 3.1× 10−2 3.1× 10−2

3-4 0.23 0.23 7.8× 10−2 0.16

noted that because our BO model does not distinguish the
IR active and Raman active modes, we could not fit the 1D
Raman spectrum accurately using the same parameter values
for the 1D IR spectrum. For each mode, the correlation time
of the Gaussian-Markovian bath noise, τs = 1/γs, is estimated
as τ1 = 334, τ2 = 463, τ3 = 98 and τ4 = 17 (fs), respectively.
These values are consistent with the time scale evaluated
from experiments and MD simulations.4,36–43,67,68 From the

BO analysis, we found that the spectral peak labeled by “A”
in the 2D IRI spectrum in Fig. 5(b-ii) arises from the HB-
intermolecular libration. This motion also yields the overtone
peaks labeled by “B” in the 2D IIR spectrum Fig. 5(b-iii)
as the NL3 contribution. A negative spectral peak labeled by
“C” in the 2D IRI spectrum in Fig. 5(b-ii) represents the
NL2 contribution of the HOH-bending motion. It is seen that
the peak in the 2D IRI spectrum overlaps with that resulting
from the MAHC contribution involving the OH-stretching
mode and HOH-bending mode, labeled by “D.” The overtone
peak of the HOH-bending mode in the 2D IIR spectrum
displayed in (b-iii) as the NL3 contribution is weak, and thus
the spectral peak labeled by “D′,” which results from the
MAHC contribution involving the OH-stretching mode and
HOH-bending mode, is more visible.

The peaks corresponding to the OH-stretching motion,
labeled by “E” in the 2D IR-Raman and 2D Raman
spectra, arise from the anharmonic contribution due to the
strong anharmonicity of the OH-stretching motion. There
also exist overtone peaks of the OH-stretching motion near
(ω1,ω2) = (4000,7000) cm−1 in both the MD and BO results,

FIG. 5. (a) The 1D signals of (i) IR and (ii) Raman for liquid water obtained from the MD simulations (red curves) and the LL+SL BO model (green curves).
(b) The 2D signals obtained from the MD simulations. (c) The 2D signals obtained from the LL+BO model. In (b) and (c), (i), (ii), and (iii) display the results
for the zzzz tensor element of the 2D RII, 2D IRI and 2D IIR spectra, respectively, while (iv) displays the results for the zzzzzz tensor element of the 2D
Raman spectrum. The spectral intensities are all normalized.



074201-10 H. Ito and Y. Tanimura J. Chem. Phys. 144, 074201 (2016)

but these are outside the frequency range of Fig. 5. (See Fig. 9
in Appendix C for a plot of the MD case.) The overtone
peaks of the OH-stretching and HOH-bending motion, which
correspond to the doubly excited peaks in the quantum picture,
are caused by the nonlinearity of the optical dipole or the
polarizability. The cross peaks labeled by “F” in all of the 2D
spectra arise from the interaction between the intermolecular
modes and intramolecular OH-stretching mode: These peaks
are prominent in comparison with the other mode-mode
coupling peaks, because the anharmonic elements for these
peaks are much larger than those for the other peaks, as
seen in Table IV. It should be noted that the cross peaks
labeled by “B,” “D′,” and “G” in Fig. 5(b) appear at the
peak positions for the libration-bending, bending-stretching,
and translation-stretching mode-mode coupling, respectively.
However, they may also contain contributions from the
overtone and population relaxation processes involved in
the NL3 and AH contributions, as illustrated in Fig. 2. In
Appendix C, we further analyze the MD results in terms of
three contributions, those of the permanent dipole moment and
polarizability, the induced dipole moment and polarizability,
and a mixture of the permanent and induced dipole moment
and polarizability. This is done in order to elucidate the roles
of the optical properties for each of the modes.

To investigate the mechanism of the intermolecular HB
and intramolecular OH-stretching coupling further, we enlarge
the spectra near the peak labeled by “F” in Fig. 6. Moreover,
in Fig. 7, we plot the contribution of the HB-intermolecular
vibrational and HB-intermolecular librational modes in the
MAHC and EAHC cases separately, in order to analyze the
origin of the signal. Note that here we consider the 2D IRI
case, but because our BO model does not distinguish between
the IR and Raman active modes, the MAHC and EAHC

contributions in all of the 2D IR-Raman and 2D Raman
spectra exhibit similar profiles; the only difference is in the
relative intensities of the MAHC and EAHC contributions.

As illustrated in Fig. 7, in the MAHC case, we observe
a negative peak and a positive peak whose node lines are
centered at the resonant frequency. In the EAHC case,
we observe a positive peak at the resonant frequency. The
existence of the negative peaks labeled by “A” in Fig. 7
indicates a strong anharmonic coupling between the OH-
stretching mode and the HB-intermolecular vibrational modes.
The peaks labeled by “B” involve both the MAHC and EAHC
contributions. The small peaks labeled by “C” in the IRI
and IIR spectra displayed in Figs. 6(ii) and 6(iii) arise from
the EAHC interaction between the OH-stretching mode and
the HB-intermolecular librational modes. We do not observe
these EAHC cross peaks in the 2D RII and 2D Raman spectra
displayed in Figs. 6(i) and 6(iv), because in these cases, the
HB-intermolecular librational motion could not be excited by
the first Raman pulse in the RII and RRR processes, due to
the weak polarizability of the librational motion.

The estimated values for the anharmonic coupling
strength presented in Table IV indicate that the coupling
strength between the OH-stretching modes and the HB-
intermolecular vibrational modes is comparable to that
between the OH-stretching modes and HOH-bending modes.
This result is consistent with the results of analysis based
on MD simulations.4,6 Moreover, the coupling between the
OH-stretching and HB-intermolecular vibrational modes can
be measured experimentally by observing the negative cross
peak between these modes, labeled by “A” in our figures.
This finding of the possibility to measure the strength of the
coupling between the OH-stretching and HB-intermolecular
vibration is important, because this coupling may be a cause

FIG. 6. (a) Results for the contributions of the intermolecular HB and intramolecular OH-stretching mode-mode coupling obtained from MD simulations. (b)
The corresponding results obtained from BO model calculations. (i), (ii) and (iii) display the results for the zzzz tensor element of the 2D RII, 2D TRI and 2D
TIR spectra, respectively, while (iv) displays the results for the zzzzzz tensor element of the 2D Raman spectrum. The spectral intensities are all normalized
with respect to the absolute value of the spectral peak intensities.
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FIG. 7. The 2D IRI spectrum decomposed into (a) the OH-stretching and HB-intermolecular vibrational coupling modes, (b) the OH-stretching and
HB-intermolecular librational coupling modes, and (c) the OH-stretching, HB-intermolecular vibrational and HB-intermolecular librational modes. The results
displayed here are for the (i) MAHC+EAHC, (ii) MAHC, and (iii) EAHC cases calculated using the LL+SL BO model. The spectral intensities are all
normalized. Also, we display the relative intensities with respect to the 2D IRI case depicted in Fig. 6(b-ii) in the top-right side of each panel.

of the fast thermal relaxation of the OH-stretching mode
observed experimentally.41

V. CONCLUSION

We calculated 2D IR-Raman and 2D Raman spectra for
liquid water using the full classical MD simulation approach.
The obtained 2D spectra exhibit diagonal and off-diagonal
peaks corresponding to the OH-stretching, HOH-bending,
HB-intermolecular librational and HB-intermolecular vibra-
tional modes and their mode-mode couplings that arise from
the MAHC and EAHC processes. The calculated signals
were then analyzed with the four-mode LL+SL BO model to
investigate the roles of intermolecular and intramolecular
mode-mode interactions. We showed that the coupling
strength between the OH-stretching and HB-intermolecular

vibrational modes is comparable to that between the OH-
stretching and HOH-bending modes. Moreover, the coupling
between the OH-stretching and HB-intermolecular vibrational
mode can be observed as positive and negative peaks in
2D IR-Raman and 2D Raman spectra. Contrastingly, other
mode-mode coupling peaks are not easy to separate from
the overtone and population relaxation contributions arise
from the EAHC. This finding of the possibility to measure
the strength of the OH-stretching and HB-intermolecular
vibrational coupling is important, because this coupling
may be a cause of the fast thermal relaxation of the OH-
stretching mode. While no single light source can cover both
intermolecular and intramolecular modes at the moment, 2D
IR-Raman measurements may provide a practical method to
explore the roles of intramolecular and intermolecular modes
in liquid water. Although it is not easy to experimentally
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measure 2D IR-Raman signals, the peak positions predicted
by the present analysis should be helpful in designing such
experiments.

In this work, we employed the POLI2VS potential
model46 to calculate the 2D signal. Although this potential can
reproduce 1D Raman and 1D IR signals for intermolecular and
intermolecular modes reasonably well, the force field potential
is not sufficiently accurate to obtain the correct profiles for the
2D IR-Raman and 2D Raman signals, due to the sensitivity of
the nonlinear response function.17 Moreover, while a quantum
mechanical treatment of the intramolecular mode is important
for 2D vibrational spectroscopy,49,69–71 the present results and
analysis are limited to the classical case. While the quantum
MD simulation of liquid water is difficult because it requires a
great deal of CPU power, a more practical approach may be to
calculate 2D spectra quantum mechanically on the basis of the
multi-mode LL+SL BO model with the set of parameter values
obtained in the present study, applied through use of quantum
hierarchal Fokker-Planck equations.48–60 The capability of
quantum mechanical model calculations for 2D spectra also
provides the possibility to directly analyze experimentally
obtained spectra instead of classical MD simulation results.
The LL+SL BO model developed in this work can be applied
to the investigation of energy and excitation transfer process
of liquid water. Extensions of the present treatment to 2D
IR spectroscopy defined in terms of third-order response
functions should also be possible. We leave such extensions
to future studies, in accordance with progress in experimental
and simulational techniques.
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APPENDIX A: CLASSICAL HIERARCHAL
FOKKER-PLANCK EQUATIONS
IN THE HERMITE REPRESENTATION

The hierarchal Fokker-Planck equations, Eq. (8),
converge very slowly as difference equations with a discrete
mesh in phase space. The convergence can be improved by
expanding W (n1,n2)(p,q; t) in terms of Hermite functions in the
momentum direction as19,72

W (n1,n2)(p,q; t) = ψ0(pα)ψ0(pβ)e−βUα+β(q)/2

×
∞
k=0

∞
l=0

c(n1,n2)
k,l

(q; t)ψk(pα)ψl(pβ), (A1)

where Uα+β(q) ≡ Uα(qα) +Uβ(qβ) +Uαβ(qα,qβ) is the poten-
tial of the system and ψ j(ps) is the jth Hermite function,

ψ j(ps) = 1
2 j j!as

√
π

H j

(
ps

as

)
exp

(
−

p2
s

2a2
s

)
, (A2)

with H j(x) the jth Hermite polynomial and as =
√

2mskBT .
The coefficients c(n1,n2)

k,l
(q; t) ≡ c(n1,n2)

k,l
(qα,qβ; t) are ex-

pressed as19

∂c(n1,n2)
k,l

(q; t)
∂t

=
√

k + 1D̂+αc(n1,n2)
k+1,l (q; t) − √kD̂−αc(n1,n2)

k−1,l (q; t)
+
√

l + 1D̂+βc(n1,n2)
k,l+1 (q; t) − √l D̂−βc(n1,n2)

k,l−1 (q; t)
− n1γαc(n1,n2)

k,l
(q; t) − n2γβc(n1,n2)

k,l
(q; t)

− n1γαΘ
(α)
k+1c(n1−1,n2)

k+1,l (q; t)
− n2γβΘ

(β)
l+1c(n1,n2−1)

k,l+1 (q; t)
−Φ(α)

k−1c(n1+1,n2)
k−1,l (q; t) − Φ(β)

l−1c(n1,n2+1)
k,l−1 (q; t),

(A3)

where

D̂±s =
1
2

1
√

mskBT

∂Uα+β(q)
∂qs

∓ 1
ms


mskBT

∂

∂qs
, (A4)

Θ
(s)
j = −ζs

V (s)(qs)
∂qs


mskBT


j, (A5)

and

Φ
(s)
j =

V (s)(qs)
∂qs

1
√

mskBT


j + 1. (A6)

We chose kmax and lmax so as to satisfy ck,l ≈ 0 (k
≥ kmax or l ≥ lmax) and solved Eq. (A3) as kmax and lmax
simultaneous equations. In this representation, the terminators
of the equations of motion are obtained by replacing the
operators as Φ(α)

k−1c(n1+1,n2)
k−1,l (q; t) → −Φ(α)

k−1Θ
(α)
k

c(n1,n2)
k,l

(q; t) and
Φ

(β)
l−1c(n1,n2+1)

k,l−1 (q; t) → −Φ(β)
l−1Θ̂

(β)
l

c(n1,n2)
k,l

(q; t).
In the numerical calculations, we employed the

dimensionless coordinate qs. The hierarchal coefficients
are then defined as c(n1,n2)

k,l
(qs,qs′; t) ≡ (1/ω0

√
mskBT)n1

(1/ω0
√

ms′kBT)n2c(n1,n2)
k,l

(qs,qs′; t), where ω0 represents the
fundamental frequency.

APPENDIX B: DIMENSIONLESS HAMILTONIAN
OF THE TWO-MODE SYSTEM

In order to compare the effect of anharmonicity with
respect to the potential for each mode and mode-mode
coupling, we employed the dimensionless coordinates q̃s

≡ (ωs/ω0)qs. In this case, the system Hamiltonian of the
two-mode BO model, given in Eq. (26), is expressed as

Hs+s′(q̃s, q̃s′) = ~ω0


1
2


p̃2
s + p̃2

s′ + q̃2
s + q̃2

s′



+
1
3!


g̃s3q̃3

s + 3g̃s2s′q̃
2
sq̃s′

+ 3g̃ss′2q̃sq̃s′2 + g̃s′3q̃
3
s′


, (B1)
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FIG. 8. (a) The 1D spectra of (i) IR and (ii) Raman for liquid water obtained from MD simulations expressed as the total (red), permanent (green), induced
(blue), and cross (pink) contributions.

FIG. 9. The MD results for the zzzz tensor element of the (i) 2D RII, (ii) 2D IRI, and (iii) 2D IIR spectra and the zzzzzz tensor element of (iv) the 2D
Raman spectra expressed as the (a) total (b) permanent, (c) induced, and (d) mixed contributions for liquid water. We display the relative intensities with respect
to the total contribution of each 2D spectrum in the top-right side of each panel. The peaks near (ω1,ω2)= (4000,7000) cm−1 are the overtone peaks of the
OH-stretching motion.
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FIG. 10. (a) The permanent dipole and polarizability contributions to the 1D spectra obtained from the MD simulations (red curves) and LL+SL BO model
(green curves). The results displayed in (i) and (ii) are the IR and Raman spectra, respectively. (b) The permanent contributions to the 2D spectra obtained from
the MD simulation. (This is the same as Fig. 9(b).) (c) The permanent contributions to the 2D spectra obtained from the LL+BO model. In (b) and (c), the results
displayed in (i), (ii) and (iii) are those for the zzzz tensor element of the 2D RII, 2D IRI and 2D IIR spectra, while the results displayed in (iv) are those for the
zzzzzz tensor element of the Raman spectrum. All spectral intensities are normalized.

where g̃ is the strength of the anharmonicity. Us-
ing the dimensionless coordinate q̃s, the system-bath
coupling strength, LL coupling strength, SL coupl-
ing strength, and hierarchal coefficients are defined
as ζ̃s ≡ (ω0/ωs)2ζ s, Ṽ (s)

LL ≡ (ωs/ω0)V (s)
LL, Ṽ (s)

SL ≡ V
(s)
SL , and

c̃(n1,n2)
k,l

(q̃s, q̃s′; t̃) ≡ (ω0/ωs)n1(ω0/ωs′)n2c(n1,n2)
k,l

(qs,qs′; t). The
optical properties are also renormalized, with µ̃s
≡ (ω0/ωs)µs, Π̃s ≡ (ω0/ωs)Πs, µ̃ss′ ≡ (ω2

0/ωsωs′)µss′, and
Π̃ss′ ≡ (ω2

0/ωsωs′)Πss′, respectively. The values of these
parameters that best reproduce the 1D and 2D vibrational
spectra of liquid water are listed in Tables III and IV.

APPENDIX C: 2D SPECTRAL ANALYSIS
OF MODE-MODE INTERACTIONS USING MD
AND BO MODEL APPROACHES

In the 2D IR-Raman and 2D Raman spectra of liquid
water obtained from MD simulations, the peaks representing
the coupling between the HB-intermolecular vibrational and
OH-stretching modes were clearly observed, while those

representing the coupling of other modes were unclear due
to their weak peak intensities. To elucidate this fact, we
decomposed the 2D spectra in terms of the permanent,
induced, and mixed contributions of the dipole moment and
polarizability elements. In this decomposition, the pure perma-
nent and pure induced contributions in the 2D RII signal are,
for example, expressed as


{{µP(t2),µP(0)}PB,Π
P(−t1)}PB

�

and

{{µI(t2),µI(0)}PB,Π

I(−t1)}PB
�
, respectively, while the

mixed contribution is expressed as the sum of six terms, one
of which is expressed as


{{µI(t2),µI(0)}PB,Π
P(−t1)}PB

�
.

We present the 1D IR and 1D Raman spectra in terms
of the total, permanent, induced, and mixed contributions
obtained from the MD simulations in Fig. 8 and display the
computational results for the zzzz tensor element of (i) 2D
RII, (ii) 2D IRI, and (iii) 2D IIR spectra and the zzzzzz tensor
element of (iv) 2D Raman spectra in terms of the (a) total,
(b) permanent, (c) induced, and (d) their mixed contributions
for liquid water obtained from the MD simulations in Fig. 8.
Comparing the calculated total spectra presented in Fig. 9(a)
with the decomposed spectra presented in Figs. 9(b)–9(d), we
find that the main contribution to the 2D spectra arises from
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TABLE V. The parameter values of the dipole moment and polarizability
for the LL+SL BO model fitted to reproduce the 1D and 2D spectra of the
permanent contribution obtained from the MD simulations.

s µ̃s µ̃ss Π̃s Π̃ss

1 0.92 3.1× 10−3 1.5 6.2× 10−3

2 1.6 0 0.23 −1.0× 10−2

3 14.9 0 1.0 −0.67
4 8.7 0 0 0

s–s′ µ̃ss′ Π̃ss′

1-2 0 1.3 × 10−3

1-3 5.1 × 10−2 0.10
1-4 5.5 × 10−2 0
2-3 0 3.0 × 10−2

2-4 7.8 × 10−3 0
3-4 3.1 × 10−2 0

the mixed contribution presented in Fig. 9(d). The labeled
peaks in each spectrum correspond to the peaks with the same
labels appearing in Fig. 5.

In all of the 2D spectra, we observe cross peaks between
the HB-intermolecular vibrational and OH-stretching modes
(labeled by “F”) arising from the interaction, as discussed
in Sec. IV, while we do not observe such cross peaks for
the other modes, except for the permanent contributions
presented in Fig. 9(b). For this reason, we employed the
LL+SL BO model to fit the permanent contributions to the
1D and 2D spectra obtained from the MD simulations, as
displayed in Figs. 10(a)–10(c). The parameter values for the
optical properties are presented in Table V, while those for
the bath and the anharmonicity of the potential are presented
in Tables III and IV. The 2D spectra for the (i) 2D RII, (ii)
2D IRI, (iii) 2D IIR, and (iv) 2D Raman cases of liquid water
obtained from the MD simulations and the LL+SL BO model
are presented in Figs. 10(b) and 10(c). On the basis of the BO
analysis, we find that the spectral peaks labeled by “H” and
“I” correspond to the cross peaks of the HB-intermolecular
libration and OH-stretching modes from the EAHC, which
are expressed in terms of Eqs. (22) and (23) in the NL2 and
NL3 cases.

The peaks near (ω1,ω2) = (800,1600) cm−1 and
(ω1,ω2) = (1600,800) cm−1 labeled by “J” in the 2D IRI
spectrum can be attributed to the EAHC peak between
the HB-intermolecular libration and HOH-bending modes,
while the overtone contribution of the HB-intermolecular
librational mode labeled by “J” from NL2 is suppressed,
because the nonlinearity of the permanent dipole moment
is small.19 The peaks near (ω1,ω2) = (800,1600) cm−1 and
(ω1,ω2) = (1600,800) cm−1 in the 2D IRI spectrum also
become similar, because the overtone contribution is small.

We observe the cross peaks between the OH-stretching
and HOH-bending modes from the MAHC at the points
labeled by “D,” “D′,” and “D′′.” Because the nonlinear
polarizability of the HOH bending mode is weak, the overtone
contributions of the HOH-bending mode described by the NL2
and NL3 processes that should appear at the points labeled by
“D” and “D′” are small.
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